Compiler Theory

(A Simple Syntax-Directed Translator)
Lecture Outline

- We shall look at a simple programming language and describe the initial phases of compilation.

- We start off by creating a ‘simple’ syntax directed translator that maps infix arithmetic to postfix arithmetic.

- This translator is then extended to cater for more elaborate programs such as (check page 39 Aho)

 - While (true) { x=a[i]; a[i]=a[j]; a[j]=x; }

- Which generates simplified intermediate code (as on pg40 Aho)
Two Main Phases (Analysis and Synthesis)

- **Analysis Phase** :- Breaks up a source program into constituent pieces and produces an internal representation of it called intermediate code.

- **Synthesis Phase** :- translates the intermediate code into the target program.

- During this lecture we shall focus on the analysis phase (compiler front end ... see figure next slide)
A model of a compiler front end

Figure 2.3: A model of a compiler front end
Syntax vs Semantics

- The *syntax* of a programming language describes the proper form of its programs.

- The *semantics* of the language defines what its programs mean.

- e.g. fact n = if (n==0) 1 else n*fact (n-1)
A note on Grammars (context-free) !!

- Consider the Maltese grammar. It specifies how correct Maltese sentences should be.

- A formal grammar is used to specify the syntax of a formal language (for example a programming language like C, Java)

- Here grammar describes the structure (usually hierarchical) of programming languages.

- For e.g. in Java an IF statement should fit in
 - if (expression) statement else statement

- statement -> if (expression) statement else statement

- Note the recursive nature of statement.
A CFG has four components . . .

- A set of terminal symbols, sometimes referred to as ‘tokens’. The terminals are the elementary symbols of the language defined by the grammar.

- A set of non-terminals, sometimes called ‘syntactic variables’. Each non-terminal represents a set of strings of terminals.

- A set of productions (LHS \rightarrow RHS), where each production consists of a non-terminal (LHS) and a sequence of terminals and/or non-terminals (RHS).

- A designation of one of the non-terminals as the start symbol.
A Grammar for ‘list of digits separated by + or –’

- list → list + digit
 list → list – digit
 list → digit
 digit → 0 | 1 | ... | 9

- Accepts strings such as 9-5+2, 3-1, or 7.

- list and digit are non-terminals
- 0 | 1 | ... | 9, +, - are the terminal symbols
Parsing ... and derivations

- Parsing is the problem of taking a string of terminals and figuring out how to derive it from the start symbol of the grammar,

- A grammar derives strings by beginning with the start symbol and repeatedly replacing a non-terminal by the body of a production,

- If it cannot be derived from the start symbol then reporting syntax errors within the string.
Parse Trees (and their Ambiguities)

- A parse tree pictorially shows how the start symbol of a grammar derives a string in the language.

- A grammar can have more than one parse tree generating a given string of terminals (thus making it ambiguous);

- If we did not distinguish between digits and lists in the previous grammar then we would end up with ambiguous parse trees; (9-5)+2 and 9-(5+2)

- Check grammar below:

 - string → string + string | string - string | 0 ... 9
Operator Associativity and Precedence

- To resolve some of the ambiguity with grammars that have operators we use:
 - **Operator associativity** :- in most programming languages arithmetic operators have left associativity.
 - Eg 9+5-2 = (9+5)-2
 - However = has right associativity, i.e.
 - a=b=c is equivalent to a=(b=c)
 - **Operator Precedence** :- if an operator has higher precedence then it will bind to it’s operands first.
 - eg. * has higher precedence then +, therefore
 - 9+5*2 is equivalent to 9+(5*2)
A grammar for a subset of Java statements

\[
\begin{align*}
\text{stmt} & \rightarrow \text{id} = \text{expression}; \\
& \quad | \text{if (expression) stmt} \\
& \quad | \text{if (expression) stmt else stmt} \\
& \quad | \text{while (expression) stmt} \\
& \quad | \text{do stmt while (expression);} \\
& \quad | \{ \text{stmts} \} \\
\text{stmts} & \rightarrow \text{stmts stmt} \\
& \quad | \text{e}
\end{align*}
\]
Syntax Directed Translation (Rules)

- Done by attaching rules (or program fragments) to productions in a grammar.

- E.g. With \(expr \rightarrow expr1 + term \),
 - one would apply rules
 - translate \(expr1 \), then
 - translate \(term \) and finally
 - Handle +

- Syntax Directed translation will be used here to translate infix expressions into postfix notation, to evaluate expressions, and to build syntax trees for programming constructs.
Postfix Notation (defined for E)

- If E is a variable or constant, then the postfix notation for E is E itself.

- If E is an expression of the form $E_1 \text{ op } E_2$, where op is any binary operator, then the postfix notation for E is $E_1' \ E_2' \ \text{op}$, where E_1' and E_2' are the postfix notations for E_1 and E_2, respectively.

- If E is a parenthesized expression of the form (E_1), then the postfix notation for E is the same as the postfix notation for E_1.
Synthesised Attributes (i)

- Associate attributes with non-terminals and terminals in a grammar.
- Then, attach rules to the productions of the grammar which describe how the attributes are computed.

- Syntax-directed definition associates
 - A set of attributes with each grammar symbol
 - A set of semantic rules for computing the values of the attributes associated with the symbols appearing in the production.
Suppose node N is labelled by grammar symbol X

X.a denotes the value of attribute a of X at that node.

expr.t = 95-2+ (attribute value at the root of parse tree for 9-5+2.

Check parse tree for 9-5+2 (page 54 Aho)

An attribute is said to be synthesised if its value at a parse-tree node N is determined from attribute values of the children of N and at N itself.

Therefore, if this is the case for every attribute, we can evaluate a parse tree in a single bottom-up traversal.

Eventually we shall discuss “inherited” attributes as well.
Semantic Rules for infix to postfix

- The annotated parse tree of 9-5+2 is based on the following syntax directed definition. || represents string concatenation.

<table>
<thead>
<tr>
<th>Production</th>
<th>Semantic Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr → expr₁ + term</td>
<td>expr₁ := expr₁.t</td>
</tr>
<tr>
<td>expr → expr₁ - term</td>
<td>expr₁ := expr₁.t</td>
</tr>
<tr>
<td>expr → term</td>
<td>expr.t := term.t</td>
</tr>
<tr>
<td>term → 0</td>
<td>term.t := '0'</td>
</tr>
<tr>
<td>term → 1</td>
<td>term.t := '1'</td>
</tr>
<tr>
<td>term → 9</td>
<td>term.t := '9'</td>
</tr>
</tbody>
</table>

Fig. 2.5. Syntax-directed definition for infix to postfix translation.
Tree Traversals

- A traversal of a tree starts at the root and visits each node of the tree in some order.
- Breadth First
- Depth First
 - Preorder traversal of node N consists of N, followed by the pre-orders of the subtrees of each of its children, if any, from the left.
 - Postorder traversal of node N consists of the postorders of each of the subtrees for the children of N, if any, from the left, followed by N itself.
Actions translating 9-5+2 into 95-2+

Fig. 2.14. Actions translating 9-5+2 into 95-2+.
Instead of attaching strings as attributes to the nodes we can execute program fragments (and not manipulate strings)

Semantic Actions: program fragments embedded within production bodies

The position at which an action is to be executed is shown by enclosing it between curly braces.

* e.g. (check pg59 Aho for full grammar)
 * Expr -> expr1 + term {print('+')}
 * Expr -> term
 * Expr -> 1 {print('1')}

Check next slide for parse tree ... postorder traversal gives us the required postfix translation (95-2+)
Parsing

- Parsing is the process of determining how a string of terminals can be generated by a grammar.
- Recursive descent parsing: technique which can be used both to parse and to implement syntax-directed translators.
- Two classes:
 - Bottom-up, where construction starts at the leaves and proceeds towards the root;
 - Top-down, where construction starts at the root and proceeds towards the leaves.
Top-Down parsing (i)

- Let us first look at a simplified (abstracted) C/Java grammar.

 - stmt ->
 - expr;
 - if (expr) stmt
 - for (optexpr; optexpr; optexpr) stmt
 - other

- optexpr ->
 - ε
 - expr
Top-Down parsing (ii)

- Construction of the parse tree is carried out by starting from the root (call it node N), labelled with the starting non-terminal `stmt`,
 - At node N, labelled with a non-terminal A, select one of the productions for A and construct children at N for the symbols in the production body,
 - Find the next node at which a sub-tree is to be constructed, typically the leftmost unexpanded non-terminal of the tree and repeat step 1.

- Next slide shows the parse tree for statement
 - `for (; expr ; expr) other`
Top-down parsing while scanning the input from left to right (Aho pg 63) – Using Lookahead

Figure 2.18: Top-down parsing while scanning the input from left to right
Predictive Parsing (top-down)

- In general choosing which production to expand is trial and error where backtracking might be used.

- But not in *predictive parsing*! (which is a simple form of recursive-descent parsing)

- The lookahead symbol *unambiguously* determines the flow of control through the procedure body of each non-terminal.

- The sequence of procedure calls during the analysis of an input string implicitly defines the parse tree for the input.
void stmt() {
 switch (lookahead) {
 case expr:
 match(expr); match(;''); break;
 case if:
 match(if); match('('; match(expr); match(')'); stmt();
 break;
 case for:
 match(for); match('('; optexpr(); match(';''); optexpr(); match(;''); optexpr();
 match(')'); stmt(); break;
 case other:
 match(other); break;
 default:
 report("syntax error");
 }
}
`void optexpr() {`
` if (lookahead == expr) match(expr);
`}

`void match(terminal t) {`
` if (lookahead == t) lookahead = nextTerminal;
` else report("syntax error");
`}

Figure 2.19: Pseudocode for a predictive parser
Predictive parsing (iii)

- Let a be a string of grammar symbols (terminals and/or non-terminals)
- Let $\text{First}(a)$ be the set of terminals that appear as the first symbols of one or more strings of terminals generated from a. e.g. $\text{First}(\text{stmt}) = \{\text{expr, if, for, other}\}$. $\text{First}(\text{expr ;}) = \{\text{expr}\}$
- Given any two productions in the grammar $A \rightarrow a$ and $A \rightarrow \beta$, then a predictive parser requires that $\text{First}(a)$ is disjoint from $\text{First}(\beta)$.
- We shall see how $\text{First}(a)$ is computed later on.
- The lookahead symbol determines which production to expand. Lookahead changes when a terminal is matched.
When to use ϵ production?
- When you've got no other rule to match.

If we had
- Optexpr -> expr | ϵ

If the lookahead symbol is not in First(expr) then the ϵ-production is used!
Left Recursion (i)

- \(expr \rightarrow expr + term \)

- Productions like the above make it possible for a recursive-descent parser to loop forever, since the leftmost symbol of the body is the same as the non-terminal at the head of the production.

- Since the lookahead symbol changes only when a terminal is matched, no change to the input takes place between recursive calls of \(expr \).
Left Recursion (and how to avoid it)

- $A \rightarrow Aa \mid \beta$
 - (note that Aa may be derived through intermediate productions)
- A new non-terminal R is required to remove left recursion ...
 - $A \rightarrow \beta R$
 - $R \rightarrow aR \mid \epsilon$
- Check out derivation for $\beta a a a a a a$ (pg 68)
Postfix to infix removal of Left Recursion in Translation Scheme

- expr ->
 - expr + term { print('+') }
 - expr - term { print('-') }
 - Term
- term ->
 - 0 { print('0') }
 - 9 { print('9') }

expr -> term rest

- rest ->
 - + term { print('+') } rest
 - - term { print('-') } rest
 - ε
- term ->
 - 0 { print('0') }
 - 9 { print('9') }

A -> Aa | Ab | y
- This will always start with a 'y' and end with an 'a' or a 'b'.

A -> yR
- R -> aR | bR | ε
New Parse Tree for 95-2+ (pg 71)

Fig. 2.21. Translation of 9-5+2 into 95-2+.
Abstract and Concrete Syntax Trees

- In an abstract syntax tree, each interior node represents an operator (programming constructs); the children of the node represent the operands of the operator.

- In a concrete syntax tree (parse tree) the interior nodes represent non-terminals in the grammar.

- Ideally our parse tree go as close to abstract syntax trees as possible.
Lexical Analysis

- Consider
 - Factor -> (expr) | num | id

- A lexer will not find terminals num and id in the input.

- These range over a number of inputs which the lexer must recognise.

- Attribute num.value stores the value of the number

- Attribute id.lexeme stores the string of the id
Reading Ahead – Input Buffer

- Is it '>' or '>='? ... The lexer needs to read one character in order to decide what token to return to the parser.

- One-character read ahead usually suffices, so a simple solution is to use a variable, call it `peek`, to hold the next input character.

- If (peek holds a digit) {
 - v = 0;
 - Do {
 v = v * 10 + integer value of digit peek;
 Peek = next input character;
 } while (peek holds a digit);
 - Return token <num, v>

- Simulate parsing some number e.g. 256
Recognising keywords and identifiers

- `<id, 'count'> <=> <id, 'count'> <+> <id, 'inc'> <;>`
- We can identify between keywords and identifiers by creating a table and initializing it with the keywords and their tokens. When matching the input the lexical analyser return the tokens stored in this table (for keywords) otherwise creates a new one and returns token `<id, 'cnt'>`
- Dragon book has a Java implementation of a lexer using this technique. (pg 83 and 84)
Symbol Table(s)

- Data structures that are used by compilers to hold information about the source-program constructs.
- Information is collected incrementally throughout the analysis phase and used for the synthesis phase.
- One symbol table per scope (of declaration)...

```c
{ int x; char y; { bool y; x; y; } x; y; }
  { { x:int; y:boolean; } x:int; y:char; }
```
Intermediate Code Generation

- The front end of a compiler constructs an intermediate representation of the source program from which the back end generates the target program.

- Let us (just for now) consider only expressions and statements.

- Two main options
 - Trees, including parse trees + (abstract) syntax trees
 - Linear representation, mainly “three-address code”
Pg 94 (Aho) describes a translation scheme that constructs syntax trees. This is then modified to emit three-address code.

\[
\text{stmt} -> \text{while} (\text{expr}) \text{stmt}
\]

\[
\{ \text{stmt.n = new While(expr.n, stmt.n) } \}
\]

"n is a node in the syntax tree"

\[
\text{stmts} -> \text{stmts_1 stmt}
\]

\[
\{ \text{stmts.n = new Seq(stmts_1.n, stmt.n); } \}
\]
Part of a syntax tree

Figure 2.40: Part of a syntax tree for a statement list consisting of an if-statement and a while-statement
Syntax Trees for Expressions

- term -> term₁ * factor
 - { term.n = new Op('*', term₁.n, factor.n); }

- Class Op can implement operators +, -, *, /, %.

- Note how in the syntax tree we lose information from the parse tree ... as in term, term₁, etc.

- The parameter to Op (e.g. '*') identifies the actual operator, in addition to the nodes term₁.n and factor.n for the sub-expressions.
Three Address Code

- Now that we have a syntax tree ...
- We can write functions, which process it and as a side-effect, emit the necessary three-address code.
- $x = y \textbf{op} z$ (instructions in a three-address code)
- Executed in a numerical sequence unless a jump is encountered. e.g. ifFalse/ifTrue x goto L, goto L
- Arrays
 - $x [y] = z$
 - $x = y [z]$
- Copy value
 - $x = y$
Translation of Statements

- Use jump instructions to implement the flow of control through the statement.

- The statements 'if expr then stmt' can be represented in 3-address code using,
 - ifFalse x goto after

Figure 2.42: Code layout for if-statements
Translation of Expressions

- Expressions contain binary operators, array accesses, assignments, constants and identifiers.
- We can take the simple approach of generating one three-address instruction for each operator node in the syntax tree of an expression.
- Expression: \(i-j+k \) translates into

 - \(t1 = i-j \)
 - \(t2 = t1+k \)
- Expression: \(2 \times a[i] \) translates into

 - \(t1 = a[i] \)
 - \(t2 = s \times t1 \)
Functions \textit{lvalue}(x:Expr) and \textit{rvalue}(x:Expr)

- In \(a = a + 1\), \(a\) is computed differently on the LHS and the RFS of the instruction.
- Hence we need a way to distinguish between (L|R)HS.
- The simple approach is to use two functions:
 - \textit{Rvalue}, which when applied to a nonleaf node \(x\), generates the instructions to compute \(x\) into a temporary var, and returns a new node representing the temporary var.
 - \textit{Lvalue}, which when applied to a nonleaf, generates instructions to compute the subtrees below \(x\), and returns a node representing the “\texttt{address}” for \(x\).
- R-values is what we usually think of as “values” while L-values are “locations”
lvalue(x:Expr) -> Expr

- x = identifier e.g. a
 - return x
- x = array access e.g. a[i]
 - Return Access(y, rvalue(z)), where
 - y = name of array
 - z = index in array
- Note call to rvalue(z) in order to generate instructions, if needed, to compute the r-value of z
- e.g. If x is a[2*k] then lvalue(x) first generates the instruction “t = 2 * k” which computes the index and then returns a new node x' representing the l-value a[t]
\(rvalue(x:Expr) \rightarrow Expr \)

- \(x = \text{constant or identifier} \)
 - return \(x \)

- \(x = y \ op \ z \)
 - First compute \(y' = rvalue(y) \) and \(z' = rvalue(z) \), then generates an instruction \(t = y' \ op \ z' \). Return new node for temporary \(t \)

- \(x = y[z] \)
 - Similar to lvalue

- \(x = y = z \)
 - First compute \(z' = rvalue(z) \), then generate instruction for \(lvalue(y) = z' \) (this is like a side-condition) and finally return \(z' \). e.g. \(a = b = 7 \)
e.g. $a[i] = 2 \times a[j-k]$

- `rvalue(a[i] = 2* a[j-k])`
 - $t3 = j - k$
 - $t2 = a[t3]$
 - $t1 = 2 \times t2$
 - $a[i] = t1$

- Check out pg 104 (and the rvalue pseudo-code) if you have difficulties understanding how the instructions have been generated.
Two possible translations of a statement

```c
if ( peek == '\n' ) line = line + 1;
```

Lexical Analyzer

```
<if> <()> <id, "peek"> <eq> <const, '\n'> ()>
<id, "line"> <assign> <id, "line"> <+> <num, 1> <;>
```

Syntax-Directed Translator

```
if
```

1: t1 = (int) '\n'
2: ifFalse peek == t1 goto 4
3: line = line + 1
4:

Figure 2.46: Two possible translations of a statement