• Nature shows behaviour that is not linear
• Equations (differential) that had a solution describe two types of behaviour
 – Steady State
 – Periodic or Quasi-Periodic
• In 1975, scientists realised of another type of motion: *Chaos*
 – Erratic (not quasi-periodic with long periods)
 – Not due to large number of particles
 – Possible in very simple systems
• 2 particles in a box have neither motion A nor B and in the long term unpredictable
• Very small changes in initial motion of particles result in large changes in trajectories
• Starting with random position, ALL directions of travel are likely
 – Dynamical Systems Theory
• In Chaotic systems one cannot determine
 – how long the complex behaviour will continue
 – Predict future behaviour
• Assume \(f(x) \) to be a function representing a population
• Let \(f(x) = 2x \) then we have

\[
x_n = f(x_{n-1}) = 2x_{n-1}
\]
(1)

where \(n \) represents time and \(x_n \) the population at time \(n \).

• Our system is non-random or non-stochastic
• Defn: Two types of dynamical systems
 – Discrete-Time
 – Continuous-Time: where \(((n-1)-n) \rightarrow 0\)
• Our aim is to find out $f^k(x)$ where $f^k(x) = f(f^{k-1})(x)$

• Our model clearly grows exponentially for ever

• A better model is $g(x) = 2x(1 - x)$ for $0 < x < 1$ where now we have

![Graph 1](image1.png)

• These graphs are not adequate to show evolution with time

• Starting with $x_i = 0.01$ and $x_i = 0.9$ we have

![Graph 2](image2.png)

• This shows that $g(x)$ tends to move always towards 0.5
• **Def**: A function whose domain space and range space are the same is called a *map*. The *orbit* of x under f is the set of points $\{x, f(x), f^2(x), \ldots\}$. The starting point x for the orbit is the *initial value* of the orbit. A point p is a *fixed point* if $f(p) = p$.

• Thus to find fixed points, one solves the equation $f(x) = x$.

• To plot an orbit one uses a *cobweb plot*. For $g(x)$ where $x_i = 0.1$ and $x_i = 0.7$ we have

One can see that the orbit converges to $g(x) = 0.5$

• **Exercise**: Find the fixed points of $f(x) = 2x$

• **Exercise**: Find expressions for $f^r(x)$ and $g^r(x)$ for $r = 2, 3, 4, 5, 6$

• **Exercise**: From the above derive a general expression in terms of r
• **Exercise**: Plot the function \(f(x) = \frac{(3x-x^3)}{2} \)

• **Exercise**: Find the fixed points for this function

• **Exercise**: Draw up the cob-webplot for this function

• **Exercise**: Examine the behaviour of \(f^r(x) \) for \(x_i \) close to 1, 0 and -1.
• **Def:** The *epsilon neighborhood* $N_\epsilon(p)$ is the interval of numbers $\{x \in \mathbb{R} : |x - p| < \epsilon\}. \epsilon$ is usually a small, positive number.

• **Def:** Let f be a map on \mathbb{R} and p be a fixed point of f. If there is an $\epsilon > 0$ such that for all x in the epsilon neighborhood $N_\epsilon(p)$, $\lim_{k \to \infty} f^k(x) = p$, then p is a *sink* or an attracting fixed point.

• **Def:** Likewise, if there is an $\epsilon > 0$ such that for all x in the epsilon neighborhood $N_\epsilon(p)$, and $\lim_{k \to \infty} f^k(x)$ maps outside $N_\epsilon(p)$, then p is a *source* or a repelling fixed point.

• **Theorem 1:** Let f be a smooth map on \mathbb{R}, and assume that p is a fixed point of f

 - if $|f'(p)| < 1$, then p is a sink,

 - if $|f'(p)| > 1$, then p is a source,

• Prove the above.

• The above merely states that points close to the fixed point are attracted or repelled to p. But ϵ might be extremely small. In fact, sinks usually attract a large number of points.

• **Def:** The set of initial conditions whose orbits converge to the sink is known as the *basin* of the sink.

• **Exercise:** Verify the above theorem for $g(x)$.

Joseph Cordina

November 8, 2004

6
• What is the basin for fixed point 0.5 in \(g(x) \)?

One can see that the basin is the interval \((0, 1)\). Obviously \(x_i = 0 \) and \(x_i = 1 \) are not basins of this sink (verify!).

• Another method which is more formal is to compare algebraically \(|g(x) - \frac{1}{2}| \) to \(|x - \frac{1}{2}| \).

• Try the above to see that any point \(x \in (0, 1) \) will be decreased towards the fixed point when applied to \(g \).

• **Exercise** Apply the above techniques to \(f(x) = \frac{(3x-x^3)}{2} \).

• Note that we cannot determine the stability of a fixed point where \(f'(p) = 0 \).
• What happens in the equation
\[h(x) = 3.3x(1 - x) \] \hspace{1cm} (2)
• The fixed points are \(x = 0 \) and \(x = 0.69 \). Are they attractors or repellers?
• Since they are repellers, what does the orbit do?

\begin{center}
\includegraphics[width=0.5\textwidth]{chaos_diagram.png}
\end{center}

• Looking at the above and calculating the points, one finds the orbit settles to a pattern of alternating between \(p_1 = 0.4794 \) and \(p_2 = 0.8236 \).
• This is typical of an orbit that converges to a period-2 sink \(\{p_1, p_2\} \).
• Two main points are:
 \begin{itemize}
 \item \(h(p_1) = p_2 \) and \(h(p_2) = p_1 \). Thus \(h^2(p_1) = p_1 \). Thus \(p_1 \) is a fixed point of \(h^2 \).
 \item This periodic oscillation is stable and attracts orbits. The pair \(\{p_1, p_2\} \) is a periodic orbit.
 \end{itemize}
• **Def:** We call p a *periodic point of period* k if $f^k(p) = p$ and if k is the smallest such positive integer. The orbit with initial point p is called a *periodic orbit of period* k. This is also known as a *period-k orbit*.

• The map $f(x) = -x$ is an interesting example. It has one fixed point and any other point is a period-two point.

• To find period k orbits, one obviously would solve $f^k(x) = x$ for x.

• **Exercise:** Find the period 1 and period 2 fixed points of $f(x) = 2x^2 - 5x$.

• **Def:** Let f be a map and assume that p is a period-k point. The period-k orbit of p is a *periodic sink* if p is a sink for the map f^k. Likewise the orbit of p is a *periodic source* if p is a source for the map f^k.

• The chain rule states

\[(f \circ g)'(x) = f'(g(x))g'(x)\]
(3)

for $f = g$

\[(f^2)'(x) = f'(f(x))f'(x)\]
(4)

• Thus the derivative of f^2 for a period-2 orbit is simple the product of the derivates of f at the two points in the orbit!
• Using the chain rule one can speak of the stability of period-2 orbits.

• Thus from Theorem 1, if \((f^2)'(p_1) < 1\) then a period-two orbit will be a sink.

• For \(h(x)\), we had a periodic orbit of .4984 and .8236.
 \[
 (h^2)'(p_1) = h'(p_1)h'(p_2) = (h^2)'(p_2)
 \]
 \[
 h'(0.4794)h'(8236) < 1
 \]
 Thus the period-2 orbit is a sink.

• Exercise: Examine \(g(x) = ax(1 - x)\) for \(a = 3.5\). Produce the cobweb plots and verify what period orbit this function represent. Verify if the ensuing orbit is a sink or a source.

• Theorem 2 The periodic orbit \(\{p_1, ..., p_k\}\) is a sink if
 \[
 |f'(p_k)...f'(p_1)| < 1
 \]
 and a source if
 \[
 |f'(p_k)...f'(p_1)| > 1
 \]

• Exercise: Prove this using the chain rule for \((f^k)'(p_1)\).