Answer one odd numbered question and one even numbered question. Each question carries 50 marks. Students are allowed to use course notes, books and calculators.

1. Consider grammar G with two production rules $S \rightarrow SSS \mid ab$, where S is the start symbol, and a and b are terminal symbols. Prove that $L(G) \subseteq \{(ab)^n \mid n \in \mathbb{N}\}$.

2. Using standard transformations, construct a regular expression equivalent to the following automaton:

3. Consider grammar G with four production rules $S \rightarrow aSb \mid bSa \mid ab \mid \varepsilon$, where S is the start symbol, and a and b are terminal symbols. Prove that $\{(ab)^n \mid n \in \mathbb{N}\} \subseteq L(G)$.
4. Using standard transformations, construct a deterministic automaton equivalent to the following non-deterministic one: