Answer any two questions. Each question carries 50 marks. Students are allowed to use course notes, books and calculators.

1. Consider the grammar G with the following production rules (where S and A are non-terminal symbols, a and \geq are terminal symbols and S is the start symbol):

 $S \rightarrow aSa \mid A \geq$
 $A \rightarrow aA \mid \varepsilon$

 (a) Prove that $\{a^n \mid n \in \mathbb{N}\} \subseteq \{w \mid A \Rightarrow^* w\}$.
 (b) Prove that $\{a^nS^na^n \mid n \in \mathbb{N}\} \subseteq \{w \mid S \Rightarrow^* w\}$.
 (c) Hence or otherwise prove that $\{a^n \geq a^m \mid n \geq m\} \subseteq \mathcal{L}(G)$.

2. (a) Using induction on n, prove that $(a^n)^R = a^n$.
 (b) Hence prove that $(a^nba^n)^R = a^nba^n$.
 (c) Using standard constructions, give a pushdown automaton equivalent to the context-free grammar given in question 1.
 (d) Using standard constructions, give a regular grammar equivalent to the following regular expression $(a + ab)^+$.

PTO
3. (a) Consider an automaton M with two states q_0 and q_1 (q_0 is the initial state, and q_0 is also the only final state), and the following transition relation:

$\{(q_0, a, q_0), (q_1, a, q_0), (q_0, a, q_1), (q_1, b, q_1)\}$

Using standard constructions, give a regular expression equivalent to M.

(b) Given a finite state automaton $M = \langle Q, \Sigma, q_0, t, F \rangle$, we can construct automaton $M' = \langle Q \cup \{\delta\}, \Sigma, \delta, t', \{q_0\}\rangle$, where t' is defined as follows:

$\{(q', a, q) \mid (q, a, q') \in t\} \cup \{(\delta, a, q) \mid \exists q' : Q \cdot q' \in F \land (q', a, q) \in t\}$

It can be proved that M' accepts the reverse of the language accepted by M. Show your understanding of the above construction, by applying it to the automaton constructed in part (a) of this question.