Answer one question. Each question carries 100 marks. Students are allowed to use course notes, books and calculators.

1. (a) Consider the language \(L_\Sigma = \{ w\psi(w) \mid w \in \Sigma^* \} \), where \(\psi(w) \) is defined as follows:

\[
\begin{align*}
\psi(\epsilon) & \overset{df}{=} \epsilon \\
\psi(as) & \overset{df}{=} 1a\psi(s)
\end{align*}
\]

Prove that \(L_{\{0\}} \) is not a regular language. Show that it is a context-free language. Is \(L_{\{1\}} \) a context-free language? Is it a regular language?

(b) An \(\alpha \)-stuttering automaton (where \(\alpha \) is an element of the automaton’s alphabet) is a normal non-deterministic finite-state automaton, except that it can always accept any number of repetitions of \(\alpha \) without changing its state. For example, an \(x \)-stuttering automaton \(M \) works just like the normal automaton \(M \), except that it may accept any number of \(x \)s whenever it wants.

As in the case of normal automata, a string is accepted if one can follow transitions from the initial state, leading to a final state.

i. Formalise the notion of an \(\alpha \)-stuttering automaton.

ii. Formalise the configuration of these automata.
iii. Define C_0, the initial configuration, and the set C_F, the set of final configurations.

iv. Define $C \xrightarrow{a} C'$, meaning that configuration C' can be reached from configuration C reading symbol (not string) a.

v. Define $C \xrightarrow{s} C'$, meaning that configuration C' can be reached from configuration C with string s.

vi. Hence or otherwise define the language accepted by an α-stuttering automaton.

vii. Give a construction to show that every language accepted by an α-stuttering automaton is regular.

2. (a) Given two finite state automata M_1 and M_2 (where M_i is $\langle \Sigma_i, Q_i, I_i, t_i, F_i \rangle$), we can define their asynchronous composition $M_1 \otimes M_2$ to be $\langle \Sigma, Q, I, t, F \rangle$, where:

\[
\begin{align*}
\Sigma & \overset{df}{=} \Sigma_1 \cup \Sigma_2 \\
Q & \overset{df}{=} Q_1 \times Q_2 \\
I & \overset{df}{=} (I_1, I_2) \\
t & \overset{df}{=} \{(q_1, q_2), a, (q_1', q_2') \mid (q_1, a, q_1') \in t_1, \ q_2 \in Q_2\} \\
& \quad \cup \{(q_1, q_2), a, (q_1, q_2') \mid (q_2, a, q_2') \in t_2, \ q_1 \in Q_1\} \\
& \quad \cup \{(q_1, q_2), a, (q_1', q_2') \mid (q_1, a, q_1') \in t_1, \ (q_2, a, q_2') \in t_2\} \\
F & \overset{df}{=} F_1 \times F_2
\end{align*}
\]

Show your understanding of this construct by drawing the asynchronous composition of M_1 and M_2 defined on the following page:
(b) Consider the following decision problem:

Car/Bike Travelling Saleswoman (CBTS)

Given: Given a set of n cities C, two partial cost functions of travelling from one city to another by car ($cost_c$) or by bike ($cost_b$) (such that $cost_c(c_1, c_2)$ is defined if there is a direct means of travelling from city c_1 to city c_2, and if defined is the cost of the travelling by car — similarly for $cost_b$), a set of cities from which the saleswoman may switch to a car C_c, a set of cities from which the saleswoman may switch to a bike C_b and an amount of money m.

Question: Starting with a car, is there a way of travelling through all the cities exactly once, returning back to the initial city, and in the process not spending more than the amount of money m (possibly changing means of transport in the process)?

Show that $CBTS \in NP$-complete.

Hint: From the input, create an alternative graph, where the nodes encode not only the city in which the saleswoman is but also her means of transport.