1. (a) Recall the definition of the factorial function:

\[n! = n \times (n - 1) \times \ldots \times 2 \times 1 \]

Prove that \(L! \) (as defined below) is not in the class of context free languages \(\mathcal{L}_2 \).

\[L! = \{ a^{n!} \mid n \in \mathbb{N} \setminus \{0\} \} \]

(b) A concurrent transition grammar is similar to a context free grammar but has two sets of production rules. The first set of rules map single non-terminals to a string of non-terminals whereas the rules in the second map single non-terminals to strings of terminal symbols. Each set contains exactly one rule from each non-terminal.

A concurrent transition grammar \(G \) can be represented as a 5-tuple \(\langle \Sigma, N, S, P_1, P_2 \rangle \), where:

- \(\Sigma \) = the set of terminal symbols
- \(N \) = the set of non-terminal symbols
- \(S \) = the start symbol (\(S \in N \))
- \(P_1 \in N \rightarrow N^* \)
- \(P_2 \in N \rightarrow \Sigma^* \)

i. We say that \(\beta \) is immediately concurrently derivable from \(\alpha \) (\(\alpha, \beta \in N^* \)), written as \(\alpha \Rightarrow \beta \) if each non-terminal in \(\alpha \) is replaced according to the rules in \(P_1 \).

For example, if \(P_1 = \{ A \rightarrow AB, B \rightarrow A \} \), \(AA \Rightarrow ABAB \) and \(BA \Rightarrow AAB \).

Formally define \(\Rightarrow \).

ii. We say that \(\alpha \) concurrently resolves to \(\beta \) (\(\alpha \in N^*, \beta \in \Sigma^* \)), written as \(\alpha \Rightarrow_r \beta \) if each non-terminal in \(\alpha \) is replaced according to the rules in \(P_2 \).
For example, if $P_2 = \{ A \rightarrow a, B \rightarrow ba \}$, $AA \Rightarrow_r aa$ and $BA \Rightarrow_r baa$.

Formally define concurrent resolution.

iii. A string $x \in \Sigma^*$ is said to be in the language generated by grammar $G = \langle \Sigma, N, S, P_1, P_2 \rangle$ if we can perform a number of immediate concurrent derivations starting from S followed by a single concurrent resolution to reach x. Formally define $L(G)$, the class of all such strings.

2. Forced termination non-deterministic finite state automata (FT-NFSA) are different from standard non-deterministic finite state automata (N FSA) in that termination is forced once a terminal state is reached. In other words, final states may have no transitions going out of them.

 (a) Formalise FT-NFSA and define the language of strings accepted by this class of automata.

 (b) Give a construction to show that FT-NFSA are equivalent to NFSA, provided that ε is not in the language recognised by the automata.

 (c) Hence or otherwise prove that there is no FT-NFSA which accepts the following language:

 $$ \{ww \mid w \in \{a, b\}^+ \} $$

3. (a) Prove that the following problem is NP-complete:

 Longest Path (LP)

 Instance: Graph $G = (V, E)$, positive integer $k \leq |V|$.

 Question: Does G contain a simple path (a path encountering no vertex more than once) with k or more edges?

 (b) Consider the following problem:

 Given a set of web-pages and links between pages, is there a subset of not more than n pages such that each web-page in the original set is reachable in not-more than k clicks from this set of pages?

 Formalise the problem and prove that it is NP-complete. You may assume that **Dominating Subset** (See section 10.4 of the notes) is NP-complete.

 Clearly state any results proved in the course notes which you use.