
Lutin

Semantics and compilation

Pascal Raymond

Erwan Jahier

Yvan Roux

VERIMAG, Grenoble

2

Contents

The language . 3

Compiler front-end . 25

Abstract syntax .26

Semantics . 27

Compiler back-end . 39

3

The language

Reactive systems

• Lutin allows the description of non-deterministic reactive systems.

A system is declared with its parameters:

system toto (x: int ; y: bool)

returns (a,b: bool ; c: int) = trace-exp

• The body trace-exp describes the possible behaviours as a

“language” whose words are contraints on the parameters (said

support variables).

The language Reactive systems

4

Reactions

• An atomic behaviour (i.e. a non-deterministic reaction) is described

as a constraint on the current and previous values of the support

variables (x and pre x):

alg-exp ::= algebraic Boolean expression

• Thus, variables may be:

? controlables (outputs),

? uncontrolable (inputs, pre ’s).

• Performing an atomic reaction, for a given value of the

uncontrolable variables, consists in generating randomly a value for

the controlable variable that satisfies the constraint.

• N.B. if no solution exists, the system deadlocks

The language Reactions

5

• Example. Let x be a Boolean input, c a real output, the execution of

the following atomic reaction:

(x and (c <= 10.0) and (c > pre c))

? produces, if x is true and pre c ≤ 10, some value c in the

interval]pre c, 10.0],

? otherwise deadlocks.

The language Reactions

6

Sequencing reactions

• Atomic reactions are combined with operators inspired by regular

expressions:

trace-exp ::= trace-exp fby trace-exp

| loop trace-exp

| { trace-exp | ... | trace-exp }

• And some specific constructs:

? assert alg-exp in trace-exp

distributes the constraint alg-exp (Boolean expression) all along

the behaviour trace-exp

? exist ident : type in trace-exp

declares a local support variables (hiden outpout)

? try trace-exp do trace-exp

if the left trace-exp deadlocks, behaves as the right one.
The language Sequencing reactions

7

Controling non-determinism

• relative weights on choices (default is 1):

{ trace-exp weight w1 | ... | trace-exp weight wn }

where each wi is a uncontrolable integer expresssion

• iterations constrained by an interval:

loop [min, max] trace-exp

where min and max are static integer expressions

• iterations constrained by average and standard deviation:

loop ˜ av: sd trace-exp

where av and sd are static integer expressions

The language Controling non-determinism

8

Instantaneous loops

• An iteration loop may be instantaneous:

• Worst: loop loop c infinitely loops without doing anything if c is

not satisfiable

Well founded loop principle

A loop may stop of continue, but if it continues it must generate

something not empty.

In terms of regular languages: loop t = (t \ ε)∗

The language Well founded loop principle

9

Non-determinism, deadlock and probabilities

• Reactivity principle: a choice should not deadlock unless all

possibilities deadlock

• N.B. reactivity is prior than weights:

{ t1 weight 1000000 | t2 weight 1 }

if t1 deadlocks while t2 do not, t2 is chosen.

The language Non-determinism, deadlock and probabilities

10

• Example : { X weight 3 | Y weight 5 | Z }

Actual probabilities are:

deadlocking set X Y Z deadlock

∅ 3/9 5/9 1/9 0

{X} 0 5/6 1/6 0

{Y} 3/4 0 1/4 0

...

{X,Y} 0 0 1 0

...

{X,Y,Z} 0 0 0 1

The language Non-determinism, deadlock and probabilities

11

Non-determinism, deadlock and priority

Even with a tiny weight, a non-deadlocking branch has some

probability to be chosen. We need some well defined priority choice .

• priority choice (aka “or else”) :

{ t1 |> t2 |> ... |> tn }

• Typical example: { optimal |> degraded |> rescue |> lost }

The language Non-determinism, deadlock and priority

12

Concurrency

• Syntax :

{ trace-exp &>... &>trace-exp }

• All along the execution, each branch produces its own constraint,

whose conjunction gives the global one.

• The statement terminates if and when all branches have terminated

(cf. Esterel).

• If (at least) one branch deadlocks, the whole statement deadlocks.

The language Concurrency

13

Concurrency versus probabilities

They do not live in harmony ...

{ { X weight 1000 | Y } &> { A weight 1000 | B } }

If X and A do not deadlock separately, while their conjunction do:

• the most probable behaviour can be Y&>A, which is unfair for the

first branch,

• or it can be X&>B, which is unfair for the second one.

Design choice:

• the first branch “plays” first, the second tries to do with it, etc.

• i.e., weights are treated in sequence.

• N.B. The syntax outlines the fact that the statement is not

commutative.
The language Concurrency versus probabilities

14

Exceptions

They allow to bypass the normal control-flow. They ressemble

classical exceptions (caml, Java etc.) and also Esterel trap signals.

• Declaration/scope:

exception ident -- global

exception ident in trace-exp -- local

• Raise statement: raise ident

• Catching point:

catch ident in t1 do t2

if ident is raised within t1, the control passes immediately to t2.

The language Exceptions

15

• Shortcut: trap x in t1 do t2

for : exception x in catch x in t1 do t2

• Deadlock: is equivalent to the raise of a predefined exception.

catch DeadLock in t1 do t2

is equivalent to: try t1 do t2

• Exception and concurrency:

? there is no “multiple” raise,

? just like weights, raise statements are treated in sequence, from

left to right.

? e.g. { raise E &>X } ⇔ raise E

The language Exceptions

16

Modularity

The language provides a “functional” layer in order to:

• share definitions,

• define and re-use new operators, for both data and behaviours.

• An (abstract) type trace is defined, in order to characterize

behaviour operators and parameters.

• The semantics is simply defined in terms of substitution (macros

rather than functions).

The language Modularity

17

• A macro can be global (outside a particular system) :

let ident (params) : type = exp

exp is either a trace-exp or a data-exp, according to its type.

• or it can be local to a trace-exp:

let ident (params) : type = exp in exp

in which case, classical scope rules hold.

• Input params, and output type are optional.

• Beware to not mistake support variables with input-free macros

(aliases)

The language Modularity

18

Examples

Of data combinator: the “interval” relation

let within(x, min, max: real): bool =

(min <= x) and (x <= max)

Of trace combinator: the initial constraint

let assert init (init : bool ; t : trace) : trace =

trap Stop in {

-- implicit cast bool → (1-length) trace

init

&>

t fby raise Stop

}

The language Examples

19

Examples

Concurrent execution that terminates as soon as the second branch

terminates:

let as long as(X, Y : trace) : trace =

trap Stop in

X &> { Y fby raise Stop }

}

Or as soon as one branch terminates:

let racing(X, Y : trace) : trace =

trap Stop in

{ X fby raise Stop } &> { Y fby raise Stop }

}

The language Examples

20

Parameters and support variables

• The type trace is rather abstract: what about the support ?

• Actually, it does not matter :

trace operators (pre- or user-defined) are in general polymorphic .

• If a support variable is specifically expected as argument, the type

must be over-specified: x: type ref

In this case, the type-checking will reject any call where the actual

argument is not a support variable.

• N.B. the flag ref is not really necessary unless some pre operator

is used within the macro:

let foo (x: bool) = ... pre x ... -- TYPE ERROR

let foo (x: bool ref) = ... pre x ... -- OK

The language Parameters and support variables

21

Example

The “first-order-filter” relation:

let fof (y: real ref ; x, gain: real): bool =

(y = gain*(pre y) + (1.0 -gain)*x)

The language Example

22

Example

A whole system:

• Output x tends to input t when input c is true, otherwise tends to 0.

• The system works almost properly for about 1000 reactions: it may

“miss” some c commands (1 times out of 10).

• Then it breaks down, and x quickly tends to 0.

The language Example

23

system foo(c: bool ; t: real) returns (x: real) =

within(x, -100.0 , 100.0) fby

local a: real in

let gen gain(): trace = loop {

within(a, 0.8 , 0.9)

fby loop [30, 40] (a = pre a)

} in

as long as (

gen gain(),

loop ˜ 1000 : 100 {

(c and fof(x, a, t)) weight 9

| fof(x, a, 0.0)

}

) fby loop fof(x, 0.7 , 0.0)

The language Example

24

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200

steps

_c
_t
_x

The language Example

25

Compiler front-end

Type/binding check

• rather classical

Expansion

• To an internal “core” language.

• Not really necessary, but modular compilation is far more complex

(related to higher-order implementation).

Operational semantics is defined for the core language.

Compiler front-end Expansion

26

Abstract syntax

Trace (i.e. behaviour) expressions are:

empty: ε

contraint: c

raise: ↪→
x

sequence: t · t′

priority: t � t′

concurrency: t & t′

empty filter: t \ ε

catch: [t
x

↪→ t′]

choice: t/w | t′/w′

random loop: t
(ωc,ωs)
i

priority loop: t?

• ε and t \ ε do not exist in the concrete syntax, but are helful for the

semantics.

• The random loop syntax is explained in the sequel.

Abstract syntax Expansion

27

Semantics

Execution environement

Constraint solving, weights evaluation and random selection are all

devoted to the execution environment. We suppose that this

environment provides:

• a predicate e |= c, true if c is satisfiable

• a “function” Sorte(t1/w1, · · · , tn/wn) = [ti1, · · · , tik] that:

? evaluates the weights wj ,

? randomly computes priority range according to those relative

weights,

? sorts the k traces with non-null weights according to those

priorities. Note that, the result is empty if all weights are

evaluated to 0.
Semantics Execution environement

28

Atomic action

• The execution of a trace t within an environment e

(Run(e, t) = α), produces an action α which is either:

? a normal transition
c→n where c is a satisfiable constraint and t

rewrites into the (next) trace n.

? a termination ↪→
x

where the flag x is either:

∗ ε in case of normal termination,

∗ δ in case of deadlock,

∗ some user-defined exception.

• Let c be a satisfiable constraint in e, e rewrites itself (after random

selection, memorization etc) in a next environment e′:

e
c→e′.

Semantics Atomic action

29

A complete run

The execution of a trace t0 within an initial environment e0 is defined

as a sequence of environments: (e0, e1, · · · , en)

where:

• ∃c0, · · · , cn−1 ∃t1, · · · , tn such that

• ∀i = 0 · · · n − 1

Run(ei, ti) =
ci→ti+1 and ei

ci→ei+1

• and ∃x Run(en, tn) = ↪→
x

Semantics A complete run

30

The semantics function

• Now that all “dirty stuff” is hiden within the environment, the

semantics can be formally defined as a deterministic Run function

• Run is defined via an inductive function Re (run in e) whose

parameters are:

? the trace t,

? the goto continuation function g(c, n) called whenever a

transition is up to be fired whitin t,

? the stop continuation function s(x) called whenever t is up to

terminates with the flag x.

Semantics The semantics function

31

Top-level semantics

The main call is Run(e, t) = Re(t, g, s) where the continuations

are “trivial”:

• g(c, n) =
c→n

• s(x) = ↪→

x

Semantics Top-level semantics

32

Empty behaviour

Re(ε, g, s) = s(ε)

Exception raise

Re(↪→

x
, g, s) = s(x)

Constraint

This is where satisfiability matters:

Re(c, g, s) = (e |= c)? g(c, ε) : s(δ)

Semantics Constraint

33

Sequence

Re(t · t′, g, s) = Re(t, g′, s′) where:

• g′(c, n) = g(c, n · t′)

• s′(x) = (x = ε)? Re(t
′, g, s) : s(x)

Priority choice

Re(t � t′, g, s) = let α = Re(t, g, s)

in (α 6= ↪→

δ
)? α : Re(t

′, g, s)

Semantics Priority choice

34

Priority loop

• empty filter replaces normal terminations by deadlocks:

Re(t \ ε, g, s) = Re(t, g, s′) where:

? s′(x) = (x = ε)? ↪→

δ
: s(x)

• Semantics is defined by syntactic equivalence:

t? ⇔ (t \ ε) · t? � ε

Semantics Priority loop

35

Catch

N.B. by construction, it only concerns δ and user-defined exception,

(not the normal termination ε):

Re([t
z

↪→ t′], g, s) = Re(t, g′, s′) where:

• g′(c, n) = g(c, [n
z

↪→ t′])

• s′(x) = (x = z)? Re(t
′, g, s) : s(x)

Semantics Catch

36

Concurrency

Re(t & t′, g, s) = Re(t, g′, s′) where:

• s′(x) = (x = ε)? Re(t
′, g, s) : s(x)

• g′(c, n) = Re(t
′, g′′, s′′) where:

? s′′(x) = (x = ε)? g(c, n) : s(x)

? g′′(c′, n′) = (e |= c ∧ c′)? g(c ∧ c′, n & n′) : ↪→

δ

Semantics Concurrency

37

Weighted choice

In the current environment, weights are evaluated, and a random sort

is performed according to the weights:

Re(t1/w1| · · · |tn/wn, g, s) =

• s(δ) if Sort(t1/w1, · · · , tn/wn) = []

(i.e. all weights are actually null).

• Re(tj1 � · · · � tjk
, g, s)

if Sort(t1/w1, · · · , tn/wn) = [tj1, · · · tjk
]

Semantics Weighted choice

38

Random loops

• The abstract syntax is: t
(ωc,ωs)
i

• i is an integer constant giving the the number of already performed

iterations,

• The other labels are weight functions depending on i:

? the weight of “continue”, ωc(i)

? the weight of “stop” ωs(i)

• Those functions are statically determined by the nature (interval,

random) and the parameters of the concrete loop.

• The semantics follows:

t
(ωc,ωs)
i ⇔ (t \ ε) · t

(ωc,ωs)
i+1 /ωc(i) | ε/ωs(i)

Semantics Random loops

39

Compiler back-end

Interpreter

• Constraints generation strictly follows the operational semantics.

• Constraints solving is performed by a module inherited from

Lucky/Lurette (Lustre testing tool). The solver mixes BDDs and

convex polyhedra.

Compiler back-end Interpreter

40

Compilation into automata

• The target language is Lucky (explicit automata labelled with

constraints and weights).

• The generation almost follows the semantics:

? states are derivations of the initial program

? termination is guaranted because the number of (different)

derivations is finite (cf. regular expression to automata).

? deadlock management is simplified, because it is “built-in” in the

target language.

Compiler back-end Compilation into automata

41

Further work

• Compilation into flat automata is not satisfactory (combinational

explosion). We plan to compile Lutin into hierarchical, concurrent

automata (à la SynchCharts).

• The forthcomming version of the language will allow to define

mutually tail-recursive traces ; in other terms explicit automata .

• Data types should be extented (arrays, records ...)

• Some notion of signal and clock whould also be helpful.

Compiler back-end Further work

	Contents
	The language
	Reactive systems
	Reactions
	Sequencing reactions
	Controling non-determinism
	Instantaneous loops
	Well founded loop principle
	Non-determinism, deadlock and probabilities
	Non-determinism, deadlock and priority
	Concurrency
	Concurrency versus probabilities
	Exceptions
	Modularity
	Examples
	Examples
	Parameters and support variables
	Example
	Example

	Compiler front-end
	Type/binding check
	Expansion

	Abstract syntax
	Semantics
	Execution environement
	Atomic action
	A complete run
	The semantics function
	Top-level semantics
	Empty behaviour
	Exception raise
	Constraint
	Sequence
	Priority choice
	Priority loop
	Catch
	Concurrency
	Weighted choice
	Random loops

	Compiler back-end
	Interpreter
	Compilation into automata
	Further work

