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The language

Reactive systems

• Lutin allows the description of non-deterministic reactive systems.

A system is declared with its parameters:

system toto (x: int ; y: bool )

returns (a,b: bool ; c: int ) = trace-exp

• The body trace-exp describes the possible behaviours as a

“language” whose words are contraints on the parameters (said

support variables ).

The language Reactive systems
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Reactions

• An atomic behaviour (i.e. a non-deterministic reaction) is described

as a constraint on the current and previous values of the support

variables ( x and pre x ):

alg-exp ::= algebraic Boolean expression

• Thus, variables may be:

? controlables (outputs),

? uncontrolable (inputs, pre ’s).

• Performing an atomic reaction, for a given value of the

uncontrolable variables, consists in generating randomly a value for

the controlable variable that satisfies the constraint.

• N.B. if no solution exists, the system deadlocks

The language Reactions
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• Example. Let x be a Boolean input, c a real output, the execution of

the following atomic reaction:

(x and (c <= 10.0) and (c > pre c))

? produces, if x is true and pre c ≤ 10, some value c in the

interval ]pre c, 10.0],

? otherwise deadlocks.

The language Reactions
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Sequencing reactions

• Atomic reactions are combined with operators inspired by regular

expressions:

trace-exp ::= trace-exp fby trace-exp

| loop trace-exp

| { trace-exp | ... | trace-exp }

• And some specific constructs:

? assert alg-exp in trace-exp

distributes the constraint alg-exp (Boolean expression) all along

the behaviour trace-exp

? exist ident : type in trace-exp

declares a local support variables (hiden outpout)

? try trace-exp do trace-exp

if the left trace-exp deadlocks, behaves as the right one.
The language Sequencing reactions
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Controling non-determinism

• relative weights on choices (default is 1):

{ trace-exp weight w1 | ... | trace-exp weight wn }

where each wi is a uncontrolable integer expresssion

• iterations constrained by an interval:

loop [ min, max] trace-exp

where min and max are static integer expressions

• iterations constrained by average and standard deviation:

loop ˜ av: sd trace-exp

where av and sd are static integer expressions

The language Controling non-determinism
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Instantaneous loops

• An iteration loop may be instantaneous:

• Worst: loop loop c infinitely loops without doing anything if c is

not satisfiable

Well founded loop principle

A loop may stop of continue, but if it continues it must generate

something not empty.

In terms of regular languages: loop t = (t \ ε)∗

The language Well founded loop principle
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Non-determinism, deadlock and probabilities

• Reactivity principle: a choice should not deadlock unless all

possibilities deadlock

• N.B. reactivity is prior than weights:

{ t1 weight 1000000 | t2 weight 1 }

if t1 deadlocks while t2 do not, t2 is chosen.

The language Non-determinism, deadlock and probabilities
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• Example : { X weight 3 | Y weight 5 | Z }

Actual probabilities are:

deadlocking set X Y Z deadlock

∅ 3/9 5/9 1/9 0

{X} 0 5/6 1/6 0

{Y} 3/4 0 1/4 0

... ... ... ... ...

{X,Y} 0 0 1 0

... ... ... ... ...

{X,Y,Z} 0 0 0 1

The language Non-determinism, deadlock and probabilities
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Non-determinism, deadlock and priority

Even with a tiny weight, a non-deadlocking branch has some

probability to be chosen. We need some well defined priority choice .

• priority choice (aka “or else”) :

{ t1 |> t2 |> ... |> tn }

• Typical example: { optimal |> degraded |> rescue |> lost }

The language Non-determinism, deadlock and priority
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Concurrency

• Syntax :

{ trace-exp &>... &>trace-exp }

• All along the execution, each branch produces its own constraint,

whose conjunction gives the global one.

• The statement terminates if and when all branches have terminated

(cf. Esterel).

• If (at least) one branch deadlocks, the whole statement deadlocks.

The language Concurrency
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Concurrency versus probabilities

They do not live in harmony ...

{ { X weight 1000 | Y } &> { A weight 1000 | B } }

If X and A do not deadlock separately, while their conjunction do:

• the most probable behaviour can be Y&>A, which is unfair for the

first branch,

• or it can be X&>B, which is unfair for the second one.

Design choice:

• the first branch “plays” first, the second tries to do with it, etc.

• i.e., weights are treated in sequence.

• N.B. The syntax outlines the fact that the statement is not

commutative.
The language Concurrency versus probabilities
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Exceptions

They allow to bypass the normal control-flow. They ressemble

classical exceptions (caml, Java etc.) and also Esterel trap signals.

• Declaration/scope:

exception ident -- global

exception ident in trace-exp -- local

• Raise statement: raise ident

• Catching point:

catch ident in t1 do t2

if ident is raised within t1, the control passes immediately to t2.

The language Exceptions
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• Shortcut: trap x in t1 do t2

for : exception x in catch x in t1 do t2

• Deadlock: is equivalent to the raise of a predefined exception.

catch DeadLock in t1 do t2

is equivalent to: try t1 do t2

• Exception and concurrency:

? there is no “multiple” raise,

? just like weights, raise statements are treated in sequence, from

left to right.

? e.g. { raise E &>X } ⇔ raise E

The language Exceptions
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Modularity

The language provides a “functional” layer in order to:

• share definitions,

• define and re-use new operators, for both data and behaviours.

• An (abstract) type trace is defined, in order to characterize

behaviour operators and parameters.

• The semantics is simply defined in terms of substitution (macros

rather than functions).

The language Modularity



17

• A macro can be global (outside a particular system ) :

let ident ( params ) : type = exp

exp is either a trace-exp or a data-exp, according to its type.

• or it can be local to a trace-exp:

let ident ( params ) : type = exp in exp

in which case, classical scope rules hold.

• Input params, and output type are optional.

• Beware to not mistake support variables with input-free macros

(aliases)

The language Modularity
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Examples

Of data combinator: the “interval” relation

let within(x, min, max: real ): bool =

(min <= x) and (x <= max)

Of trace combinator: the initial constraint

let assert init ( init : bool ; t : trace ) : trace =

trap Stop in {

-- implicit cast bool → (1-length) trace

init

&>

t fby raise Stop

}

The language Examples
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Examples

Concurrent execution that terminates as soon as the second branch

terminates:

let as long as(X, Y : trace ) : trace =

trap Stop in

X &> { Y fby raise Stop }

}

Or as soon as one branch terminates:

let racing(X, Y : trace ) : trace =

trap Stop in

{ X fby raise Stop } &> { Y fby raise Stop }

}

The language Examples
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Parameters and support variables

• The type trace is rather abstract: what about the support ?

• Actually, it does not matter :

trace operators (pre- or user-defined) are in general polymorphic .

• If a support variable is specifically expected as argument, the type

must be over-specified: x: type ref

In this case, the type-checking will reject any call where the actual

argument is not a support variable.

• N.B. the flag ref is not really necessary unless some pre operator

is used within the macro:

let foo ( x: bool ) = ... pre x ... -- TYPE ERROR

let foo ( x: bool ref ) = ... pre x ... -- OK

The language Parameters and support variables
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Example

The “first-order-filter” relation:

let fof (y: real ref ; x, gain: real ): bool =

(y = gain*(pre y) + ( 1.0 -gain)*x)

The language Example
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Example

A whole system:

• Output x tends to input t when input c is true, otherwise tends to 0.

• The system works almost properly for about 1000 reactions: it may

“miss” some c commands (1 times out of 10).

• Then it breaks down, and x quickly tends to 0.

The language Example
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system foo(c: bool ; t: real ) returns (x: real ) =

within(x, -100.0 , 100.0 ) fby

local a: real in

let gen gain(): trace = loop {

within(a, 0.8 , 0.9 )

fby loop [ 30, 40] (a = pre a)

} in

as long as (

gen gain(),

loop ˜ 1000 : 100 {

(c and fof(x, a, t)) weight 9

| fof(x, a, 0.0 )

}

) fby loop fof(x, 0.7 , 0.0 )

The language Example
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The language Example
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Compiler front-end

Type/binding check

• rather classical

Expansion

• To an internal “core” language.

• Not really necessary, but modular compilation is far more complex

(related to higher-order implementation).

Operational semantics is defined for the core language.

Compiler front-end Expansion
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Abstract syntax

Trace (i.e. behaviour) expressions are:

empty: ε

contraint: c

raise: ↪→
x

sequence: t · t′

priority: t � t′

concurrency: t & t′

empty filter: t \ ε

catch: [t
x

↪→ t′]

choice: t/w | t′/w′

random loop: t
(ωc,ωs)
i

priority loop: t?

• ε and t \ ε do not exist in the concrete syntax, but are helful for the

semantics.

• The random loop syntax is explained in the sequel.

Abstract syntax Expansion
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Semantics

Execution environement

Constraint solving, weights evaluation and random selection are all

devoted to the execution environment. We suppose that this

environment provides:

• a predicate e |= c, true if c is satisfiable

• a “function” Sorte(t1/w1, · · · , tn/wn) = [ti1, · · · , tik] that:

? evaluates the weights wj ,

? randomly computes priority range according to those relative

weights,

? sorts the k traces with non-null weights according to those

priorities. Note that, the result is empty if all weights are

evaluated to 0.
Semantics Execution environement
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Atomic action

• The execution of a trace t within an environment e

(Run(e, t) = α), produces an action α which is either:

? a normal transition
c→n where c is a satisfiable constraint and t

rewrites into the (next) trace n.

? a termination ↪→
x

where the flag x is either:

∗ ε in case of normal termination,

∗ δ in case of deadlock,

∗ some user-defined exception.

• Let c be a satisfiable constraint in e, e rewrites itself (after random

selection, memorization etc) in a next environment e′:

e
c→e′.

Semantics Atomic action
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A complete run

The execution of a trace t0 within an initial environment e0 is defined

as a sequence of environments: (e0, e1, · · · , en)

where:

• ∃c0, · · · , cn−1 ∃t1, · · · , tn such that

• ∀i = 0 · · · n − 1

Run(ei, ti) =
ci→ti+1 and ei

ci→ei+1

• and ∃x Run(en, tn) = ↪→
x

Semantics A complete run
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The semantics function

• Now that all “dirty stuff” is hiden within the environment, the

semantics can be formally defined as a deterministic Run function

• Run is defined via an inductive function Re (run in e ) whose

parameters are:

? the trace t,

? the goto continuation function g(c, n) called whenever a

transition is up to be fired whitin t,

? the stop continuation function s(x) called whenever t is up to

terminates with the flag x.

Semantics The semantics function
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Top-level semantics

The main call is Run(e, t) = Re(t, g, s) where the continuations

are “trivial”:

• g(c, n) =
c→n

• s(x) = ↪→

x

Semantics Top-level semantics
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Empty behaviour

Re(ε, g, s) = s(ε)

Exception raise

Re( ↪→

x
, g, s) = s(x)

Constraint

This is where satisfiability matters:

Re(c, g, s) = (e |= c)? g(c, ε) : s(δ)

Semantics Constraint
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Sequence

Re(t · t′, g, s) = Re(t, g′, s′) where:

• g′(c, n) = g(c, n · t′)

• s′(x) = (x = ε)? Re(t
′, g, s) : s(x)

Priority choice

Re(t � t′, g, s) = let α = Re(t, g, s)

in (α 6= ↪→

δ
)? α : Re(t

′, g, s)

Semantics Priority choice
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Priority loop

• empty filter replaces normal terminations by deadlocks:

Re(t \ ε, g, s) = Re(t, g, s′) where:

? s′(x) = (x = ε)? ↪→

δ
: s(x)

• Semantics is defined by syntactic equivalence:

t? ⇔ (t \ ε) · t? � ε

Semantics Priority loop
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Catch

N.B. by construction, it only concerns δ and user-defined exception,

(not the normal termination ε):

Re([t
z

↪→ t′], g, s) = Re(t, g′, s′) where:

• g′(c, n) = g(c, [n
z

↪→ t′])

• s′(x) = (x = z)? Re(t
′, g, s) : s(x)

Semantics Catch
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Concurrency

Re(t & t′, g, s) = Re(t, g′, s′) where:

• s′(x) = (x = ε)? Re(t
′, g, s) : s(x)

• g′(c, n) = Re(t
′, g′′, s′′) where:

? s′′(x) = (x = ε)? g(c, n) : s(x)

? g′′(c′, n′) = (e |= c ∧ c′)? g(c ∧ c′, n & n′) : ↪→

δ

Semantics Concurrency
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Weighted choice

In the current environment, weights are evaluated, and a random sort

is performed according to the weights:

Re(t1/w1| · · · |tn/wn, g, s) =

• s(δ) if Sort(t1/w1, · · · , tn/wn) = []

(i.e. all weights are actually null).

• Re(tj1 � · · · � tjk
, g, s)

if Sort(t1/w1, · · · , tn/wn) = [tj1, · · · tjk
]

Semantics Weighted choice
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Random loops

• The abstract syntax is: t
(ωc,ωs)
i

• i is an integer constant giving the the number of already performed

iterations,

• The other labels are weight functions depending on i:

? the weight of “continue”, ωc(i)

? the weight of “stop” ωs(i)

• Those functions are statically determined by the nature (interval,

random) and the parameters of the concrete loop.

• The semantics follows:

t
(ωc,ωs)
i ⇔ (t \ ε) · t

(ωc,ωs)
i+1 /ωc(i) | ε/ωs(i)

Semantics Random loops
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Compiler back-end

Interpreter

• Constraints generation strictly follows the operational semantics.

• Constraints solving is performed by a module inherited from

Lucky/Lurette (Lustre testing tool). The solver mixes BDDs and

convex polyhedra.

Compiler back-end Interpreter
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Compilation into automata

• The target language is Lucky (explicit automata labelled with

constraints and weights).

• The generation almost follows the semantics:

? states are derivations of the initial program

? termination is guaranted because the number of (different)

derivations is finite (cf. regular expression to automata).

? deadlock management is simplified, because it is “built-in” in the

target language.

Compiler back-end Compilation into automata
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Further work

• Compilation into flat automata is not satisfactory (combinational

explosion). We plan to compile Lutin into hierarchical, concurrent

automata ( à la SynchCharts ).

• The forthcomming version of the language will allow to define

mutually tail-recursive traces ; in other terms explicit automata .

• Data types should be extented (arrays, records ...)

• Some notion of signal and clock whould also be helpful.

Compiler back-end Further work
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