
Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

Synchron 2009

Compensations and

Runtime Monitoring

Gordon J. Pace

Christian Colombo

University of Malta

November 2009

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

2Synchron 2009 / Dagstuhl

Motivation

 More widespread use of SOA, dynamic service
composition, long-lived transactions, system-of-systems
architectures lead to greater need for handling failure
as part of a system’s normal behaviour.

 Catering for failure of components is becoming more
important in various scenarios:

 Systems built of separate components may not
be able to trust the success of the constituent
parts.

 Components may be discovered, invoked at
runtime, not knowing enough about them at
compile time.

 Invoking multiple services (for the same
computation) and using the first result would
require undoing the other partial transactions.

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

3Synchron 2009 / Dagstuhl

Compensation vs Reparation

 Reparation

 Classical exception and error handling

 What to do to make up for the fact that
the current block has failed

 Local by its very nature

 Compensation

 What to do if something else fails later on
and I have to ‘undo’ this block

 Requires storing dynamic context

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

4Synchron 2009 / Dagstuhl

An Example of Compensations

 The bog-standard example: A customer buying books from
an on-line bookshop

 The service proceeds as follows:

 The customer commits an order

 The bookshop gets payment from the customer

 The bookshop orders a courier

 The books are identified in the warehouse

 The books are packed

 The books are posted to the customer

 But errors may occur at various points in the process:

 The bookshop realizes that one of the books is not in stock

 The credit card payment may fail

 The customer may cancel an order while still being
processed

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

5Synchron 2009 / Dagstuhl

An Example of Compensations

Choose books

Give credit

card details

Place order

Find book

in warehouse

Find book

in warehouse

Find book

in warehouse

Confirm

payment

Order courierPack books

Post order

…

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

6Synchron 2009 / Dagstuhl

The Question

 How can we use information about

compensations in a system to

support or strengthen runtime

verification?

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

7Synchron 2009 / Dagstuhl

Further Motivation

 We are applying runtime verification
techniques to an industrial case study
system for financial transactions.

 Ixaris Systems Ltd are provide online
payments solutions and virtual credit
card provider.

 Their systems already include an
implementation of compensable
actions and rollbacks to handle long-
lived transactions.

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

8Synchron 2009 / Dagstuhl

Challenges of Compensations

Actions performed before the failure
occurs have to be “undone”:

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

9Synchron 2009 / Dagstuhl

Challenges of Compensations

Actions performed before the failure
occurs have to be “undone”:

a
an

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

10Synchron 2009 / Dagstuhl

Challenges of Compensations

Actions performed before the failure
occurs have to be “undone”:

a/b
anbn

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

11Synchron 2009 / Dagstuhl

Challenges of Compensations

Actions performed before the failure
occurs have to be “undone”:

a/(b/c)
anbncn

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

12Synchron 2009 / Dagstuhl

Challenges of Compensations

Actions performed before the failure
occurs have to be “undone”:

 Undoing actions may involve doing something other than the
inverse of the forward action:

 chargeAcct == charge(€1) / refund(95c)

 Compensations may be nested:

 (…) / (destroyAcct / recreateBlacklistedAcct; …)

 Compensations may be overridden:

 (createAcct; chargeAcct; makeOrder) / destroyAcct;
verifyClient

 Compensations may be scoped:

 payment; { advertisment }; delivery

 Parallelizing parts of the process makes compensation
handling more involved

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

13Synchron 2009 / Dagstuhl

So Many Logics, So Little Time

 There are various flavours of

compensations:

 Process calculus style (CSP, pi-calculus

based)

 Petri net based

 Language-based approaches

 Deontic logics

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

14Synchron 2009 / Dagstuhl

Remember the Question?

 How can we use information about

compensations in a system to

support or strengthen runtime

verification?

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

15Synchron 2009 / Dagstuhl

Online Runtime Verification

 Instrumented code of the monitor M is added within the
running system S, sharing the same address space.

 Running synchronously with the system.

 As soon as a problem is identified, mitigation may occur
without the system running further.

 But, we are effectively monitoring S || M, not S.

 The overheads and interaction with the system are not
always acceptable in an industrial setting.

System Monitor
proceed

action
Online

monitoring

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

16Synchron 2009 / Dagstuhl

Offline Runtime Verification

 The system produces a log to run the verification code on
at a later stage.

 Running asynchronously with the system.

 Verification much more acceptable and faithful since the
logging code is typically much more lightweight than the
monitoring code.

 But by the time a problem is identified it may already been
too late.

System MonitorLog
readwrite

Offline

monitoring

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

17Synchron 2009 / Dagstuhl

Quasi-Online Runtime Verification

 Monitoring is identical to offline
monitoring:
 The system produces a log at runtime.

 The monitors run concurrently but on
separate address spaces.

 May not be in sync.

read

Log

pay

pay

deposit

transfer

deposit

paywrite

Monitor

Quasi-

online

monitoring

write

System

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

18Synchron 2009 / Dagstuhl

Quasi-Online Runtime Verification

 But when a problem is identified:
 The monitor may stop the system, and

 Use compensations to undo the actions performed
by the system in the meantime.

stop

compensate

read

Log

pay

pay

deposit

transfer

deposit

paywrite

Monitor

Quasi-

online

monitoring

write
System

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

19Synchron 2009 / Dagstuhl

Quasi-Online Runtime Verification

 In this example we would want to

perform a compensation for:

 transfer; deposit; pay

stop

compensate

read

Log

pay

pay

deposit

transfer

deposit

paywrite

Monitor

Quasi-

online

monitoring

write
System

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

20Synchron 2009 / Dagstuhl

Quasi-Online Runtime Verification

 Compensate for actions:

 up to the point which the system reached,

 regressing back to just before or after the error.

 Compensations may be specified by either:

 the system, or

 as part of the properties themselves.

 The major challenge is resuming the system

from the point where it was ‘rewound’ to.

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

21Synchron 2009 / Dagstuhl

Runtime Verification and LARVA

GLOBAL {

VARIABLES { Clock t; int c = 0; }

EVENTS {

interact() = {*.action()}

t30() = {t@30*60}

...

}

PROPERTY users {

STATES {

BAD { inactive badlogins }

NORMAL { loggedin }

STARTING { loggedout }

}

TRANSITIONS {

loggedout -> loggedin [goodlogin\\t.reset();]

loggedout -> loggedout [badlogin\\c++;]

...

} } }

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

22Synchron 2009 / Dagstuhl

Compensation Automata

 Extends automata with compensations

using hierarchical automata with three

structuring elements:

 Compensation declaration to enact a

compensation of an automaton.

 Deviation to redirect compensations.

 Scoping of compensations.

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

23Synchron 2009 / Dagstuhl

Compensation Automata

pay(€1)

rfnd(75c)

finalise

addOrder

pack

unpack

notify

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

24Synchron 2009 / Dagstuhl

Compensations in Financial Transaction Systems

 We are exploring the use of LARVA with
compensations to monitor transactions handled by the
systems built at Ixaris.

 Using compensations as specifications of expected
behaviour and to specify recovery actions can already
be done by translating into base LARVA.

 We are exploring the quasi-online approach, in which
we use the compensations already built in the system.
Major challenges are:

 Resuming the system after recovery (easy on a
transaction by transaction system, but tough
otherwise).

 Making sure that rollbacks induced by the monitors do
not interfere with rollbacks induced by the system.

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

25Synchron 2009 / Dagstuhl

Reactivity and Compensations

 How can compensation be encoded in a reactive

setting?

 If the monitor lags behind the system by at most n

time units, compensation handling uses bounded

space

 What if this is not the case?

 Enable the monitor to pause the system

 Skim over parts of the trace

 Breaking loops and/or using additional properties (eg

idempotency of certain compensations)

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

26Synchron 2009 / Dagstuhl

Conclusions and Future Directions

 The system is up and running at Ixaris

– monitoring for properties and

compensations but still working on

the quasi-online approach.

 Naïve implementation of

compensations may induce

unbounded overhead.

 Investigating adding real-time.

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

27Synchron 2009 / Dagstuhl

Auxiliary Slides

Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

28Synchron 2009 / Dagstuhl

Monitoring of Financial Transaction Systems

 Life cycle

 Frozen or reclaimed credit cards cannot be used in financial transactions.

 The states in the life-cycle of an entity (eg. user, credit card) are correctly
traversed, i.e. in the correct order.

 Real-time

 After six months (but not before) of user inactivity, the user should be put
in a dormant state.

 After a year (but not before) of user inactivity, the user should be removed
from the system.

 Access rights

 A user must have the necessary right before loading money onto the credit
card.

 A user must have the necessary right before transferring money from a card
to another.

 Amounts

 The number of times a user loads money to a credit card should not exceed
the stipulated amount for a day or a month.

 The total sum of money loaded should not exceed the stipulated limit for a
day or for a month.

