Department of Computer Science

University of Malta

Compensations and
Runtime Monitoring

Gordon J. Pace
Christian Colombo
University of Malta
November 2009

Synchron 2009

I[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Motivation

= More widespread use of SOA, dynamic service
composition, long-lived transactions, system-of-systems
architectures lead to greater need for handling failure
as part of a system’s normal behaviour.

= (Catering for failure of components is becoming more
Important In various scenarios:

= Systems built of separate components may not
be able to trust the success of the constituent
parts.

= Components may be discovered, invoked at
runtime, not knowing enough about them at
compile time.

= Invoking multiple services (for the same
computation) and using the first result would
require undoing the other partial transactions.

Synchron 2009 / Dagstuhl 2

Department of Computer Science

University of Malta

Compensation vs Reparation

= Reparation
= (Classical exception and error handling

= What to do to make up for the fact that
the current block has failed

= |ocal by its very nature

= Compensation

= What to do if something else fails later on
and I have to 'undo’ this block

= Requires storing dynamic context

Synchron 2009 / Dagstuhl 3

I[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

An Example of Compensations

= The bo?-standard example: A customer buying books from
an on-line bookshop

= The service proceeds as follows:
= The customer commits an order
= The bookshop gets payment from the customer
= The bookshop orders a courier
= The books are identified in the warehouse
= The books are packed
= The books are posted to the customer
= But errors may occur at various points in the process:
= The bookshop realizes that one of the books is not in stock
= The credit card payment may fail

= The customer may cancel an order while still being
processed

Synchron 2009 / Dagstuhl 4

Department of Computer Science
University of Malta

I[Semantics &

Verification
Research Group

An Example of Compensations

Choose books
v
Give credit
card details
v
Place order
[* |
v v v v
Find book Find book Find book Confirm
in warehouse in warehouse | | in warehouse payment
| v v v |
* A 4
Pack books Order courier
[* * |
v
Post order

Synchron 2009 / Dagstuhl 5

Department of Computer Science

University of Malta

The Question

= How can we use information about

compensations in a system to
support or strengthen runtime

verification?

Synchron 2009 / Dagstuhl 6

Department of Computer Science

University of Malta

Further Motivation

= We are applying runtime verification
techniques to an industrial case study
system for financial transactions.

= [xaris Systems Ltd are provide online
payments solutions and virtual credit
card provider.

= Their systems already include an
implementation of compensable
actions and rollbacks to handle long-
lived transactions.

Synchron 2009 / Dagstuhl 7

I[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Challenges of Compensations

Actions performed before the failure
occurs have to be "undone”:

Synchron 2009 / Dagstuhl 8

Department of Computer Science

University of Malta

Challenges of Compensations

Actions performed before the failure
occurs have to be "undone”:

Synchron 2009 / Dagstuhl 9

Department of Computer Science

University of Malta

Challenges of Compensations

Actions performed before the failure
occurs have to be "undone”:

Synchron 2009 / Dagstuhl 10

Department of Computer Science

University of Malta

Challenges of Compensations

Actions performed before the failure
occurs have to be "undone”:

\<i al(blc) Anpnn

Synchron 2009 / Dagstuhl 11

Department of Computer Science
University of Malta

I[Semantics &

Verification
Research Group

Challenges of Compensations

Actions performed before the failure
occurs have to be "undone”

= Undoing actions may involve doing something other than the
inverse of the forward action:

= chargeAcct == charge(€1) / refund(95c)
= Compensations may be nested:

= (..)/ (destroyAcct / recreateBlacklistedAcct; ...)
= Compensations may be overridden:

= (createAcct; chargeAcct; makeOrder) / destroyAcct;
verifyClient

= Compensations may be scoped:
= payment; { advertisment }; delivery

= Parallelizing parts of the process makes compensation
handling more involved

Synchron 2009 / Dagstuhl 12

Department of Computer Science

University of Malta

So Many Logics, So Little Time

= There are various flavours of
compensations:

= Process calculus style (CSP, pi-calculus
pased)

= Petri net based
= |anguage-based approaches
= Deontic logics

Synchron 2009 / Dagstuhl 13

Department of Computer Science
University of Malta

Remember the Question?

= How can we use information about

compensations in a system to
support or strengthen runtime

verification?

Synchron 2009 / Dagstuhl 14

I[Semantics & Department of Computer Science

Verification University of Malta
Research Group

Online Runtime Verification

Online action

A 4

monitoring

System Monitor
proceed

A

= Instrumented code of the monitor M is added within the
running system S, sharing the same address space.

= Running synchronously with the system.

= As soon as a problem is identified, mitigation may occur
without the system running further.

= But, we are effectively monitoring S || M, not S.

= The overheads and interaction with the system are not
always acceptable in an industrial setting.

Synchron 2009 / Dagstuhl 15

I[Semantics &

P —— Department of Computer Science
erification University of Malta
Research Group

Offline Runtime Verification

Offline

monitoring wirite réad

System Monitor

= The system produces a log to run the verlﬂcatlon code on
at a later stage.

= Running asynchronously with the system.

= Verification much more acceptable and faithful since the

logging code is typically much more lightweight than the
monitoring code.

= But by the time a problem is identified it may already been
too late.

Synchron 2009 / Dagstuhl 16

Department of Computer Science

University of Malta

Quasi-Online Runtime Verification

Quasi-

= r:ad
online §

System Monitor

monitoring

write

= Monitoring is identical to offline
monitoring:
= The system produces a log at runtime.

= The monitors run concurrently but on
separate address spaces.

= May not be in sync.
Synchron 2009 / Dagstuhl 17

I[Semantics &

- Department of Computer Science
riricati University of Malta

Research Group

Quasi-Online Runtime Verification

Quasi- .
i rdad

online =

monitoring

System Monitor

write

stop
| compensate |

<«

= But when a problem is identified:
= The monitor may stop the system, and

= Use compensations to undo the actions performed
by the system in the meantime.

Synchron 2009 / Dagstuhl 18

Semantics & .
I[Verification Department of Computer Science

University of Malta
Research Group

Quasi-Online Runtime Verification

Quasi- .
i rdad

online =

monitoring

System Monitor

write

stop
| compensate |

= In this example we would want to
perform a compensation for:

= transfer; deposit; pay

Synchron 2009 / Dagstuhl 19

I[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Quasi-Online Runtime Verification

= Compensate for actions:
= up to the point which the system reached,
= regressing back to just before or after the error.

= Compensations may be specified by either:
= the system, or
= as part of the properties themselves.

= The major challenge is resuming the system
from the point where it was ‘rewound’ to.

Synchron 2009 / Dagstuhl 20

I[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Runtime Verification and LARVA

GLOBAL {
VARIABLES { Clock t; int ¢ = 0; }
EVENTS {
interact() = {*.action()}
interact\\t.reset(); pbadlogin\\Cc+ +; t30() = {t@30%60}
goodiogin
\\f.reset();)
logged in logged out PROPERTY users {
~ 7 STATES {

logou\c=0; padiogin

BAD { inactive badlogins }
\c>=2

NORMAL { loggedin }
STARTING { loggedout }
}
TRANSITIONS {
loggedout -> loggedin [goodlogin\\t.reset();]
loggedout -> loggedout [badlogin\\c++;]

t1@30*60

bad logins

11}

Synchron 2009 / Dagstuhl 21

Department of Computer Science

University of Malta

Compensation Automata

= Extends automata with compensations
using hierarchical automata with three
structuring elements:

= Compensation declaration to enact a
compensation of an automaton.

= PDeviation to redirect compensations.
= Scoping of compensations.

Synchron 2009 / Dagstuhl 22

I[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Compensation Automata

— ~\
7 A\
¥ pay(€1) R finalise M

- rfnd(75c:) é unpack C
= \ J
addOrder

_omo

Synchron 2009 / Dagstuhl 23

A 4

—

I[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Compensations in Financial Transaction Systems

= We are exploring the use of LARVA with
compensations to monitor transactions handled by the
systems built at Ixaris.

= Using compensations as specifications of expected
behaviour and to specify recovery actions can already
be done by translating into base LARVA.

= We are exploring the quasi-online approach, in which
we use the compensations already built in the system.
Major challenges are:

= Resuming the system after recovery (easy on a
transaction by transaction system, but tough
otherwise).

= Making sure that rollbacks induced by the monitors do
not interfere with rollbacks induced by the system.

Synchron 2009 / Dagstuhl 24

I[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Reactivity and Compensations

= How can compensation be encoded in a reactive
setting?

= If the monitor lags behind the system by at most n
time units, compensation handling uses bounded
space

= What if this is not the case?
= Enable the monitor to pause the system
= Skim over parts of the trace

= Breaking loops and/or using additional properties (eg
idempotency of certain compensations)

Synchron 2009 / Dagstuhl 25

Department of Computer Science

University of Malta

Conclusions and Future Directions

= The system is up and running at Ixaris
— monitoring for properties and
compensations but still working on
the quasi-online approach.

= Nailve implementation of
compensations may induce
unbounded overhead.

= Jnvestigating adding real-time.

Synchron 2009 / Dagstuhl 26

Department of Computer Science
University of Malta

I[Semantics &

Verification
Research Group

Auxiliary Slides

Synchron 2009 / Dagstuhl 27

I[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Monitoring of Financial Transaction Systems

= Life cycle
= Frozen or reclaimed credit cards cannot be used in financial transactions.

= The states in the life-cycle of an entity (eg. user, credit card) are correctly
traversed, i.e. in the correct order.

g Real-time

. After six months (but not before) of user inactivity, the user should be put
in a dormant state.

- After a year (but not before) of user inactivity, the user should be removed
from the system.

= Access rights

- A uger must have the necessary right before loading money onto the credit
card.

= A user must have the necessary right before transferring money from a card
to another.

n Amounts

= The number of times a user loads money to a credit card should not exceed
the stipulated amount for a day or a month.

= The total sum of money loaded should not exceed the stipulated limit for a
day or for a month.

Synchron 2009 / Dagstuhl 28

