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Motivation

 More widespread use of SOA, dynamic service 
composition, long-lived transactions, system-of-systems 
architectures lead to greater need for handling failure 
as part of a system’s normal behaviour.

 Catering for failure of components is becoming more 
important in various scenarios:

 Systems built of separate components may not 
be able to trust the success of the constituent 
parts.

 Components may be discovered, invoked at 
runtime, not knowing enough about them at 
compile time.

 Invoking multiple services (for the same 
computation) and using the first result would 
require undoing the other partial transactions.
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Compensation vs Reparation

 Reparation

 Classical exception and error handling

 What to do to make up for the fact that 
the current block has failed

 Local by its very nature

 Compensation

 What to do if something else fails later on 
and I have to ‘undo’ this block

 Requires storing dynamic context 
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An Example of Compensations

 The bog-standard example: A customer buying books from 
an on-line bookshop

 The service proceeds as follows:

 The customer commits an order

 The bookshop gets payment from the customer

 The bookshop orders a courier

 The books are identified in the warehouse

 The books are packed

 The books are posted to the customer

 But errors may occur at various points in the process:

 The bookshop realizes that one of the books is not in stock

 The credit card payment may fail

 The customer may cancel an order while still being 
processed
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An Example of Compensations

Choose books

Give credit 

card details

Place order

Find book

in warehouse

Find book

in warehouse

Find book

in warehouse

Confirm 

payment

Order courierPack books

Post order

…
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The Question

 How can we use information about 

compensations in a system to 

support or strengthen runtime 

verification?
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Further Motivation

 We are applying runtime verification 
techniques to an industrial case study 
system for financial transactions.

 Ixaris Systems Ltd are provide online 
payments solutions and virtual credit 
card provider.

 Their systems already include an 
implementation of compensable 
actions and rollbacks to handle long-
lived transactions.
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Challenges of Compensations

Actions performed before the failure 
occurs have to be “undone”:



Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

9Synchron 2009 / Dagstuhl

Challenges of Compensations

Actions performed before the failure 
occurs have to be “undone”:

a
an
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Challenges of Compensations

Actions performed before the failure 
occurs have to be “undone”:

a/b
anbn
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Challenges of Compensations

Actions performed before the failure 
occurs have to be “undone”:

a/(b/c)
anbncn
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Challenges of Compensations

Actions performed before the failure 
occurs have to be “undone”:

 Undoing actions may involve doing something other than the 
inverse of the forward action:

 chargeAcct == charge(€1) / refund(95c)

 Compensations may be nested:

 ( … ) / (destroyAcct / recreateBlacklistedAcct; …)

 Compensations may be overridden:

 ( createAcct; chargeAcct; makeOrder ) / destroyAcct; 
verifyClient

 Compensations may be scoped:

 payment; { advertisment }; delivery

 Parallelizing parts of the process makes compensation 
handling more involved
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So Many Logics, So Little Time

 There are various flavours of 

compensations:

 Process calculus style (CSP, pi-calculus 

based) 

 Petri net based

 Language-based approaches

 Deontic logics
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Remember the Question?

 How can we use information about 

compensations in a system to 

support or strengthen runtime 

verification?
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Online Runtime Verification

 Instrumented code of the monitor M is added within the 
running system S, sharing the same address space.

 Running synchronously with the system.

 As soon as a problem is identified, mitigation may occur 
without the system running further.

 But, we are effectively monitoring S || M, not S.

 The overheads and interaction with the system are not 
always acceptable in an industrial setting.

System Monitor
proceed

action
Online

monitoring
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Offline Runtime Verification

 The system produces a log to run the verification code on 
at a later stage.

 Running asynchronously with the system.

 Verification much more acceptable and faithful since the 
logging code is typically much more lightweight than the 
monitoring code.

 But by the time a problem is identified it may already been 
too late.

System MonitorLog
readwrite

Offline

monitoring
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Quasi-Online Runtime Verification

 Monitoring is identical to offline 
monitoring:
 The system produces a log at runtime.

 The monitors run concurrently but on 
separate address spaces.

 May not be in sync.

read

Log

pay

pay

deposit

transfer

deposit

paywrite

Monitor

Quasi-

online

monitoring

write

System
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Quasi-Online Runtime Verification

 But when a problem is identified:
 The monitor may stop the system, and

 Use compensations to undo the actions performed 
by the system in the meantime.

stop

compensate

read

Log

pay

pay

deposit

transfer

deposit

paywrite

Monitor

Quasi-

online

monitoring

write
System



Semantics &
Verification

Research Group

Department of Computer Science

University of Malta

19Synchron 2009 / Dagstuhl

Quasi-Online Runtime Verification

 In this example we would want to 

perform a compensation for:

 transfer; deposit; pay

stop

compensate

read

Log

pay

pay

deposit

transfer

deposit

paywrite

Monitor

Quasi-

online

monitoring

write
System
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Quasi-Online Runtime Verification

 Compensate for actions:

 up to the point which the system reached,

 regressing back to just before or after the error.

 Compensations may be specified by either:

 the system, or

 as part of the properties themselves.

 The major challenge is resuming the system 

from the point where it was ‘rewound’ to.
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Runtime Verification and LARVA

GLOBAL {

VARIABLES { Clock t; int c = 0; }

EVENTS {

interact() = {*.action()}

t30() = {t@30*60}

...

}

PROPERTY users {

STATES {

BAD { inactive badlogins }

NORMAL { loggedin }

STARTING { loggedout }

}

TRANSITIONS {

loggedout -> loggedin  [goodlogin\\t.reset();]

loggedout -> loggedout [badlogin\\c++;]

...

} } }
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Compensation Automata

 Extends automata with compensations 

using hierarchical automata with three 

structuring elements:

 Compensation declaration to enact a 

compensation of an automaton.

 Deviation to redirect compensations.

 Scoping of compensations.
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Compensation Automata

pay(€1)

rfnd(75c)

finalise

addOrder

pack

unpack

notify
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Compensations in Financial Transaction Systems

 We are exploring the use of LARVA with 
compensations to monitor transactions handled by the 
systems built at Ixaris.

 Using compensations as specifications of expected 
behaviour and to specify recovery actions can already 
be done by translating into base LARVA.

 We are exploring the quasi-online approach, in which 
we use the compensations already built in the system. 
Major challenges are:

 Resuming the system after recovery (easy on a 
transaction by transaction system, but tough 
otherwise).

 Making sure that rollbacks induced by the monitors do 
not interfere with rollbacks induced by the system.
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Reactivity and Compensations

 How can compensation be encoded in a reactive 

setting?

 If the monitor lags behind the system by at most n

time units, compensation handling uses bounded 

space

 What if this is not the case?

 Enable the monitor to pause the system

 Skim over parts of the trace

 Breaking loops and/or using additional properties (eg 

idempotency of certain compensations)
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Conclusions and Future Directions

 The system is up and running at Ixaris 

– monitoring for properties and 

compensations but still working on 

the quasi-online approach.

 Naïve implementation of 

compensations may induce 

unbounded overhead.

 Investigating adding real-time.
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Auxiliary Slides
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Monitoring of Financial Transaction Systems

 Life cycle

 Frozen or reclaimed credit cards cannot be used in financial transactions.

 The states in the life-cycle of an entity (eg. user, credit card) are correctly 
traversed, i.e. in the correct order.

 Real-time

 After six months (but not before) of user inactivity, the user should be put 
in a dormant state.

 After a year (but not before) of user inactivity, the user should be removed 
from the system.

 Access rights

 A user must have the necessary right before loading money onto the credit 
card.

 A user must have the necessary right before transferring money from a card 
to another.

 Amounts

 The number of times a user loads money to a credit card should not exceed 
the stipulated amount for a day or a month.

 The total sum of money loaded should not exceed the stipulated limit for a 
day or for a month.


