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1 Introduction

Runtime Verification[BFF+10] (RV), is a lightweight verification technique for deter-
mining whether the current system run observes a correctness property. Much of the
technique’s scalability comes from the fact that checking is carried out at runtime, al-
lowing it to use information from the current run, such as the execution paths chosen, to
optimise checking. Two crucial aspects of any RV setup are runtime overheads, which
need to be kept to a minimum so as not to degrade system performance, and monitor
correctness, which guarantees that the runtime checking carried out by monitors indeed
corresponds to the property being checked for.

Typically, ensuring monitor correctness is non-trivial because correctness properties are
specified using one formalism, e.g., a high-level logic, whereas the respective moni-
tors are described using another formalism, e.g., a programming language, making it

∗The research work disclosed in this publication is partially funded by STEPS grant contract number
7/195/2012
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harder to ascertain the semantic correspondence between the two descriptions. Auto-
matic monitor synthesis can mitigate this problem by standardising the translation from
the property logic to the monitor formalism. Moreover, the regular structure of the
synthesised monitors gives greater scope for a formal treatment of monitor correctness.
In this work we investigate the monitor-correctness analysis of synthesised monitors,
characterised as:

A system violates a property ϕ iff the monitor for ϕ flags a violation. (1)

Recent technological developments have made monitor correctness an even more press-
ing concern. In order to keep monitoring overheads low, engineers are increasingly
using concurrent monitors[CFMP12, MJG+11, KVK+04, SVAR04] so as to exploit the
underlying parallel architectures pervasive to today’s mainstream computers.

Despite the potential for lower overheads, concurrent monitors are harder to analyse
than their sequential counterparts. For instance, multiple monitor interleavings ex-
ponentially increase the computational space that need to be considered. Concurrent
monitors are also susceptible to elusive errors originating from race conditions, which
may result in non-deterministic monitor behaviour, deadlocks or livelocks. Whereas
deadlocks may prevent monitors from flagging violations in (1) above, livelocks may
lead to divergent processes that hog scarce system resources, severely affecting runtime
overheads. Moreover, the possibility of non-determinism brings to the fore the im-
plicit (stronger) requirement in correctness criteria (1): monitors must flag a violation
whenever it occurs. Stated otherwise, in order to better utilise the underlying parallel
architectures, concurrent monitors are typically required to have multiple potential in-
terleavings which, in turn, means that for particular system runs violating a property, the
respective monitors may have interleavings that correctly flag the violations and other
that do not. This substantially complicates analysis for monitor correctness because all
possible monitor interleaving need to be considered.

To address these issues, we propose a formal technique that alleviates the task of ascer-
taining the correctness of synthesised concurrent monitors by performing three separate
(weaker) monitor-correctness checks. Since these checks are independent to one an-
other, they can be carried out in parallel by distinct analysing entities. Alternatively,
inexpensive checks may be carried out before the more expensive ones, thus acting as
vetting phases that abort early and keep the analysis cost to a minimum. More impor-
tantly however, the three checks together imply the stronger correctness criteria outlined
in (1).

The first monitor-correctness check of the technique is called Violation Detectability. It
relates monitors to their respective system-property and ensures that violations are de-
tectable (i.e., there exists at least one monitor execution path that flags the violation)
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and, conversely, that the only detectable behaviour is that of violations. The may-
analysis required by this check is weaker that the must-requirements of (1), but also
less expensive; it may therefore also forestall other checks since the absence of a single
flagging computation interleaving obviates the need to consider all potential executions.
The second monitor-correctness check is called Detection Preservation and guarantees
(observational) determinism, ensuring that monitors behave uniformly for every sys-
tem run. In particular this ensures that, for a specific system run, if a monitor flags a
violation for some (internal) interleaving of sub-monitor execution, it is guaranteed to
also flag this violation along any other monitor interleaving. The final monitor check is
called Monitor Separability and, as the name implies, it guarantees that the system and
monitor executions can be analysed in isolation. What this really means however is that
the computation of the monitor does not affect the execution of the monitored system
i.e., a form of non-interference check.

The technical development for this technique is carried out for a specific property logic
and monitor language. In particular, we focus on actor-style[HBS73] monitors writ-
ten in Erlang[CT09, Arm07], an established, industry strength, concurrent language
for constructing fault-tolerant scalable systems. As an expository logic we consider
an adaptation of SafeHML[AI99], a syntactic subset of the more expressive logic, µ-
calculus, describing safety properties - which are guaranteed to be monitorable[MP90,
CMP92]); the choice of our logic was, in part, motivated by the fact that the full µ-
calculus was previously adapted to describe Erlang program behaviour in [Fre01], albeit
for model-checking purposes.

The rest of the paper is structured as follows. Section 2 introduces the syntax and se-
mantics of the Erlang subset considered for our study. Section 3 presents the logic and
its semantics wrt. Erlang programs, whereas Section 4 defines the monitor synthesis
of the logic. Section 5 defines monitor correctness, details our technique for proving
monitor correctness and applies the technique to prove the correctness of the synthe-
sis outlined in Section 4. Section 6 collects the technical proofs relating to the three
subconditions of the technique. Finally Section 7 discusses related work and Section 8
concludes.

2 The Erlang Language

Our study focusses on a (Turing-complete) subset of the language, following [SFBE10,
Fre01, Car01]; in particular, we leave out distribution, process linking and fault-trapping
mechanisms. We give a formal presentation for this language subset, laying the founda-
tions for the work in subsequent sections.
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Actors, Expressions, Values and Patterns

A, B,C ∈ Actr ::= i[e / q]m | A ‖ B | (i)A
q, r ∈ MBox ::= ε | v : q

e, d ∈ Exp ::= v | self | e!d | rcv g end | e(d) | spw e
| case e of g end | x = e, d | try e catch d | . . .

v, u ∈ Val ::= x | i | a | µy.λx.e | {v, . . . , v} | l | exit | . . .
l, k ∈ Lst ::= nil | v : l

g, f ∈ PLst ::= ε | p→ e; g
p, o ∈ Pat ::= x | i | a | {p, . . . , p} | nil | p : x | . . .

Evaluation Contexts

C ::= [−] | C!e | v!C | C(e) | v(C) | caseC of g end | x =C, e | . . .

Figure 1: Erlang Syntax

2.1 Syntax

We define a calculus for modelling the computation of Erlang programs. We assume
denumerable sets of process identifiers i, j, h ∈ Pid, atoms a, b ∈ Atom, and variables
x, y, z ∈ Var. The full syntax is defined in Figure 1.

An executing Erlang program is made up of a system of actors, Act, composed in par-
allel, A ‖ B, where some identifiers, e.g., i, are scoped, (i)A. Individual actors, i[e / q]m,
are uniquely identified by an identifier, i, and consist of an expression, e, executing
wrt. a local mailbox, q, (denoted as a list of values) subject to a monitoring-modality,
m, n ∈ {◦, •, ∗}, where ◦, • and ∗ denote monitored, unmonitored and tracing resp.; we
abuse notation and let v : q denote the mailbox with v at the head of the queue and q as
the tail, but also let q : v denote the mailbox q appended by v at the end.

Top-level actor expressions typically consist of a sequence of variable binding xi = ei,
terminated by an expression, en+1, i.e., x1 = e1, . . . ,xn = en, en+1. Expressions are ex-
pected to evaluate to values, v, and may also consist of self references (to the actor’s own
identifier), self, outputs to other actors, e1!e2, pattern-matching inputs from the mail-
box, rcv p1→ e1; . . . ; pn→ en end, case-branchings, case e of p1→ e1; . . . ; pn→ en end,
function applications, e1(e2) and actor-spawnings, spw e, amongst others. Pattern-matching
consists of a list of expressions guarded by patterns, pi→ ei. Values may consist of vari-
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ables, x, process ids, i, recursive functions,1 µy.λx.e , tuples {v1, . . . , vn} and lists, l,
amongst others.

Expressions also specify evaluation contexts, denoted as C, also defined in Figure 1. For
instance, evaluation contexts specify that an expression is only evaluated when at the top
level variable binding, x =C, e; the other cases are also fairly standard.2 We denote the
application of a context C to an expression e as C[e].

Shorthand: We write λx.e and d, e for µy.λx.e and y = d, e resp. when y < fv(e).
Similarly, for guarded expressions p→ e, we replace x in p with whenever x < fv(e).
We write µy.λ(x1, . . . xn).e for µy.λx1. . . . λxn.e. When an actor is monitorable, we elide
its modality and write i[e / q] for i[e / q]◦; similarly we elide empty mailboxes, writing
i[e] for i[e / ε]. (When the surrounding context makes it absolutely clear, we sometimes
also use the same abbreviation when the contents of the mailbox is not important to our
discussion. e.g., i[e] for i[e / q] for some q.)

2.2 Semantics

We give a Labelled Transition System (LTS) semantics for systems of actors where the
set of actions Actτ, includes a distinguished internal label, τ, and is defined as follows:

γ ∈ Actτ ::= (~j)i!v (bound output) | i?v (input) | τ (internal)
α, β ∈ BAct ::= i!v (output) | i?v (input)

We write A
γ
−−→ B in lieu of 〈A, γ, B〉 ∈−→ for the least ternary relation satisfying the

rules in Figures 2, 3 and 4; we also identify a subset of basic actions, α, β ∈ BAct
(excluding τ and bound outputs). As usual, we write weak transitions A ===⇒ B and
A

γ
==⇒ B, for A

τ
−→
∗

B and A
τ
−→
∗

·
γ
−→ ·

τ
−→
∗

B resp. We let s, t ∈ (Act)∗ range over lists of
basic actions; the sequence of weak (basic) actions A

α1
−→ · · ·

αn
−→ B, where s = α1, . . . , αn

is often denoted as A
s

==⇒ B (or as A
s

==⇒ when B is unimportant).

The semantics of Figures 2, 3 and 4 assumes well-formed actor systems, whereby every
actor identifier is unique. It is also termed to be a tracing semantics, whereby a distin-
guished tracer actor, identified by the modality ∗, receives messages recording the com-
putation events of monitored actors. The tracing described by the semantics of Figure 2

1The preceding µy denotes the binder for function self-reference.
2Expressions are not allowed to evaluate under a spawn context, spw [−], which differs from the

standard Erlang semantics. This however allows us to describe the spawning of a function application in
lightweight fashion. Spawn in Erlang takes the module and function name of the function to be spawned,
together with a list of arguments the spawned function is applied to.
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SndM

j[C[i!v] / q]◦ ‖ h[e / r]∗
i!v
−−→ j[C[v] / q]◦ ‖ h[e / r:tr(i!v)]∗

RcvM
fv(v) = ∅

i[e / q]◦ ‖ h[d / r]∗
i?v
−−−→ i[e / q:v]◦ ‖ h[d / r:tr(i?v)]∗

SndU
m ∈ {•, ∗}

j[C[i!v] / q]m i!v
−−→ j[C[v] / q]m

RcvU
m ∈ {•, ∗} fv(v) = ∅

i[e / q]m i?v
−−−→ i[e / q:v]m

Com
j[C[i!v] / q]m ‖ i[e / q]n τ

−→ j[C[v] / q]m ‖ i[e / q:v]n

Rd1
mtch(g, v) = e

i[C[g] / (v : q)]m τ
−→ i[C[e] / q]m

Rd2
mtch(g, v) = ⊥ i[C[rcv g end] / q]m τ

−→ i[C[e] / r]m

i[C[rcv g end] / (v : q)]m τ
−→ i[C[e] / (v : r)]m

Cs1
mtch(g, v) = e

i[C[case v of g end] / q]m τ
−→ i[C[e] / q]m

Cs2
mtch(g, v) = ⊥

i[C[case v of g end] / q]m τ
−→ i[C[exit] / q]m

Figure 2: Erlang Semantics for Actor Systems (1)
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App
i[C[µy.λx.e (v)] / q]m τ

−→ i[C[e{µy.λx.e/y}{v/x}] / q]m

Ass
v , exit

i[C[x = v, e] / q]m τ
−→ i[C[e{v/x}] / q]m

Ext
i[C[x = exit, e] / q]m τ

−→ i[C[exit] / q]m

Try
i[C[try v catch e] / q]m τ

−→ i[C[v] / q]m

Ctc
i[C[try exit catch e] / q]m τ

−→ i[C[e] / q]m

Spw
(m = ◦ = n) or (n = •)

i[C[spw e] / q]m τ
−→ ( j)

(
i[C[ j] / q]m ‖ j[e / ε]n)

Slf
i[C[self] / q]m τ

−→ i[C[i] / q]m

Figure 3: Erlang Semantics for Actor Systems (2)

Scp
A

γ
−−→ B

( j)A
γ
−−→ ( j)B

j <
(
obj(γ) ∪ subj(γ)

)

Opn
A

(~h)i!v
−−−−→ B

( j)A
( j,~h)i!v
−−−−−→ B

i , j, j ∈ subj
(
(~h)i!v

)

Par
A

γ
−−→ A′

A ‖ B
γ
−−→ A′ ‖ B

obj(γ)∩fId(B) = ∅ Str
A ≡ A′ A′

γ
−−→ B′ B′ ≡ B

A
γ
−−→ B

Figure 4: Erlang Semantics for Actor Systems (3)
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sCom
A ‖ B ≡ B ‖ A

sAss
(A ‖ B) ‖ C ≡ A ‖ (B ‖ C)

sCom
i < fId(A)

A ‖ (i)B ≡ (i)
(
B ‖ A

) sSwp
(i)( j)A ≡ ( j)(i)A

sCtxP
A ≡ B

A ‖ C ≡ B ‖ C
sCtxS

A ≡ B
(i)A ≡ (i)B

Figure 5: Structural Equivalence for Actors

closely follows the mechanism offered by the Erlang Virtual Machine (EVM) [CT09],
whereby we choose to only record asynchronous message sends and mailbox message
receives; see rules SndM and RcvM resp.; in these rules, the tracer actor receives a mes-
sage in its mailbox reporting the action, defined through the function3 defined below:

tr(α) def
=

{sd, i, v} if α = i!v
{rv, i, v} if α = i?v

By contrast, unmonitored actor actions are not traced; see rules SndU and RcvU. Inter-
nal communication is not traced either, even when it involves monitored actions, thereby
limiting tracing to external interactions (of monitored actors); see rules Com and Par.
In Par, the side-condition in Par enforces the single-receiver property of actor systems;
for instance, it prevents a transition with an action j!v when actor j is part of the actor
system B.

Our semantics assumes substitutions, σ ∈ Sub :: Var ⇀ Val, which are partial maps
from variables xi to values vi and denoted as {v1, . . . , vn /x1, . . . , xn}. Rules Rd1 and Rd2 (in
conjunction with Snd, Rcv and Com) describe how actor communication is not atomic,
as opposed to more traditional message-passing semantics [Mil89], but happens in two
steps: an actor first receives a message in its mailbox and then reads it at a later stage.
The mailbox reading command includes pattern-matching functionality, allowing the
actor to selectively choose which messages to read first from its mailbox whenever a
pattern from the pattern list is matched; when no pattern is matched, mailbox reading
blocks. This differs from pattern matching in case branching, described by the rules Cs1
and Cs2: similar to the mailbox read construct, it matches a value to the first appropriate
pattern in the pattern list, launching the respective guarded expression with the appro-
priate variable bindings resulting from the pattern match; if, however, no match is found
it generates an exception, exit, which aborts subsequent computation, Ext, unless it is

3We elevate tr to basic action sequences s in point-wise fashion, tr(s), where tr(ε) = ε.
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caught using Ctc.4 Rules Rd1, Rd2, Cs1 and Cs2 make use of the auxiliary function
mtch : PLst × Val→ Exp⊥ defined as follows:

Definition 1 (Pattern Matching) We define mtch and vmtch as follows:

mtch(g, l)
def
=


⊥ if g = ε

eσ if g = p→ e : f , vmtch(p, v) = σ

d if g = p→ e : f , vmtch(p, v) = ⊥,mtch( f , v) = d
⊥ otherwise

vmtch(p, v)
def
=



∅ if p = v (whenever p is a, i or nil)
{v/x} if p = x⊎n

i=1 σi if p = {p1, . . . , pn}, v = {v1, . . . , vn} where vmtch(pi, vi) = σi

σ ] {l/x} if p = o : x, v = u : l where vmtch(o, u) = σ

⊥ otherwise

σ1 ] σ2
def
=


σ1 ∪ σ2 if dom(σ1) ∩ dom(σ2) = ∅

σ1 ∪ σ2 if ∀v ∈ dom(σ1) ∩ dom(σ2).σ1(v) = σ2(v)
⊥ if σ1 = ⊥ or σ2 = ⊥

⊥ otherwise

Spawning, using rule Spw, launches a new actor whose scoped identifier is known only
to the spawning actor, and whose monitoring modality is inherited from the spawning
actor when this is either ◦ (monitorable) or • (un-monitorable); if the spawning ac-
tor is the tracer process (the ∗ modality), the monitoring modality of the new actor is
set to • (un-monitorable). Due to the asynchronous nature of actor communication,
scoped actors can send messages to the environment but cannot receive messages from
it. Identifier scope is extended, possibly opened up to external observers, through ex-
plicit communication as in standard message-passing systems; see Opn. The functions
in Def. 14 identifies values that include identifiers and thus, extending the identifiers
scope. Structural equivalence, A ≡ B, is employed to simplify the presentation of the
LTS rules; see rule Str together with Figure 5. The remaining rules in Figure 2 are
fairly straightforward.

4In the case of exceptions, let variable bindings x = e, d behave differently from standard let encodings
in terms of call-by-value functions, i.e., λx.d(e), which is why we model them separately.
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Definition 2 We define obj, subj5 and fId as follows:

obj(γ)
def
=

∅ if γ = τ

{i} if γ = (~h)i!v or i?v

subj(γ)
def
=


∅ if γ = τ(
idv(v) \ {~h}

)
if γ = (~h)i!v

idv(v) if γ = i?v

fId(A)
def
=


{i} if A = i[e / q]m

fId(B) ∪ fId(C) if A = B ‖ C
fId(B) \ {i} if A = (i)(B)

Discussion: Our tracing semantics sits at a slightly higher level of abstraction than
that offered by the EVM[CT09]. For instance, trace entries typically contain more in-
formation. Moreover, in contrast to our semantics, the EVM records internal communi-
cation between monitored actors, as an output trace entry immediately followed by the
corresponding input trace entry; here we describe a sanitised trace whereby matching
trace entries are filtered out. Our tracing semantics is also more restrictive since the
monitored actors are fixed: we model a simple (Erlang) monitor instrumentation setup
whereby actors are registered to be monitored upfront before computation commences
or actors that are spawned by other monitored actors. The instrumentation approach is
discussed in further detail in Section 4.1.

Example 1 (Non-Deterministic behaviour) Actors may exhibit non-deterministic be-
haviour as a result of internal choices, but also as a result of external choices [Mil89,
HM85]. Consider the actor system:

A , ( j, h, imon)
(
i[rcv x→ obs!x end / ε]◦ ‖ j[i!v]◦ ‖ h[i!u]◦ ‖ imon[e / q]∗

)
According to the semantics defined in Figures 2, 3 and 4, we could have the behaviour
where actor j sends value v to actor i, (2), i reads it from its mailbox, (3) and subse-
quently outputs it to some external actor obs, (4) (while recording the external commu-
nication at the monitor’s mailbox as the entry {sd, obs, v}).

A
τ
−→ ( j, h, imon)

(
i[rcv x→ obs!x end / v]◦ ‖ j[v] ‖ h[i!u] ‖ imon[e / q]∗

)
(2)

τ
−→ ( j, h, imon)

(
i[obs!v / ε]◦ ‖ j[v] ‖ h[i!u] ‖ imon[e / q]∗

)
(3)

obs!v
−−−−→ ( j, h, imon)

(
i[v / ε]◦ ‖ j[v] ‖ h[i!u] ‖ imon[e / q : {sd, obs, v}]∗

)
(4)

However, if actor h sends the value u to actor i before actor j, this τ-action would

5The functions idv, ide and idg are defined in the appendix section.
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amount to an internal choice and we observe the different external behaviour A
obs!u

====⇒ B
(for some B); correspondingly the monitor at B would hold the entry {sd, obs, u}.

The actor system A could also receive different external inputs resulting an external

choice. For instance we can derive A
i?v1
−−−→ B1 or A

i?v2
−−−→ B2 where from B1 we can only

observe the output B1
obs!v1

=====⇒ C1 and, dually, B2 can produce the weak external output

B2
obs!v2

=====⇒ C2 (for some C1 and C2). Correspondingly, the monitor mailbox at C1 would
be appended by the list of entries {rv, i, v1} : {sd, obs, v1} (and dually for C2).

3 A Monitorable Logic for Open Systems

We consider an adaptation of SafeHML (SHML) [AI99], a sub-logic of the Hennessy-
Milner Logic (HML) with recursion6 for specifying correctness properties of the actor
systems defined in Section 2. SHML syntactically limits specifications to safety proper-
ties which can be monitored at runtime[MP90, CMP92, BLS11].

3.1 Logic

Our logic assumes a denumerable set of formula variables, X,Y ∈ LVar, and is induc-
tively defined by the following grammar:

ϕ, ψ ∈ sHML ::= ff | ϕ∧ψ | [α]ϕ | X | max(X, ϕ)

The formulas for falsity, ff, conjunction, ϕ∧ψ, and action necessity, [α]ϕ, are inherited
directly from HML[HM85], whereas variables X and the recursion construct max(X, ϕ)
are used to define maximal fixpoints; as expected, max(X, ϕ) is a binder for the free
variables X in ϕ, inducing standard notions of open and closed formulas.

We only depart from the standard SHML of [AI99] by limiting necessity formulas to
basic actions α, β ∈ BAct. This is more of a design choice so as keep our technical
development manageable. The handling of bounded output actions is well understood
[MPW93] and do not pose problems to monitoring, apart from making action pattern
matching cumbersome. Silent τ labels can also be monitored using minor adaptations
to the monitors we defined later in Section 4; however, they would increase substan-
tially the size of the traces recorded, unnecessarily cluttering the tracing semantics of
Section 2.

6HML with recursion has been shown to be as expressive as the µ-calculus[Koz83].
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3.2 Semantics

The semantics of our logic is defined over sets of actor systems, S ∈ P(Actr). Tradi-
tional presentations assume variable environments, ρ ∈ (LVar → P(Actr)), mapping
formula variables to sets of actor systems, together with the operation ϕ{ψ/X}, which
substitutes free occurances of X in ϕ with ψ without introducing any variable capture,
and the operation ρ[X 7→ S ], returning the environment mapping X to S while acting as
ρ for the remaining variables.

Definition 3 (Satisfaction) For arbitrary variable environment ρ, the set of actors sat-
isfying ϕ ∈ sHML, denoted as ~ϕ�ρ, is defined by induction on the structure of ϕ as:

~ff�ρ
def
= ∅

~ϕ∧ψ�ρ
def
= ~ϕ�ρ ∩ ~ψ�ρ

~[α]ϕ�ρ def
=

{
A | B ∈ ~ϕ�ρ whenever A

α
==⇒ B

}
~X�ρ

def
= ρ(X)

~max(X, ϕ)�ρ def
=

⋃
{S | S ⊆ ~ϕ�ρ[X 7→ S ]}

Whenever ϕ is a closed formula, its meaning is independent of the environment ρ and is
written as ~ϕ�. When an actor system A satisfies a closed formula ϕ, we write A |=s ϕ
in lieu of A ∈ ~ϕ�. When restricted to closed formulas, the satisfaction relation |=s can
alternatively be specified as Definition 4 (adapted from [AI99].)

Definition 4 (Satisfiability) A relation R ∈ Actr × sHML is a satisfaction relation iff:

(A, ff) ∈ R never
(A, ϕ∧ψ) ∈ R implies (A, ϕ) ∈ R and (A, ψ) ∈ R

(A, [α]ϕ) ∈ R implies (B, ϕ) ∈ R whenever A
α

==⇒ B
(A,max(X, ϕ)) ∈ R implies (A, ϕ{max(X, ϕ)/X}) ∈ R

Satisfiability, |=s, is the largest satisfaction relation; we write A |=s ϕ in lieu of (A, ϕ) ∈ sat.7

Example 2 (Satisfiability) SHML formulas specify safety properties i.e., prohibited be-
haviours that should not be exhibited by satisfying actors. Consider the formula

ϕex , max(X, [α][α][β]ff∧ [α]X ) (5)

7It follows from standard fixed-point theory that the implications of satisfaction relation are bi-
implications for Satisfiability.
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stating that a satisfying actor system cannot perform a sequence of two external actions
α followed by the external action β (through the subformula [α][α][β]ff), and that this
condition needs to hold after every α action (through the subformula [α]X); effectively
the formula states that any sequence of external actions α that is greater than two cannot
be followed by an external action β.

An actor system A1 exhibiting (just) the external behaviour A1
αβ

==⇒ A′1 for arbitrary A′1
satifies ϕex, just as an actor system A2 with (infinite) behaviour A2

α
=⇒ A2. An actor sys-

tem A3 with an external action trace A3
ααβ

===⇒ A′3 cannot satify ϕex; if, however, (through

some internal choice) it exhibits an alternate external behaviour such as A3
β

=⇒ A′′3 we
could not observe any violation since the external trace β is allowed by ϕex.

Because of the potenially non-deterministic nature of actors which may violate a prop-
erty along one execution trace but satify it along another, we define a violation relation,
Def. 5, characterising actors that violate a property along a specific violating trace.

Definition 5 (Violation) The violation relation, denoted as |=v, is the least relation of
the form (Actr × Act∗ × sHML) satisfying the following rules:8

A, s |=v ff always
A, s |=v ϕ∧ψ if A, s |=v ϕ or A, s |=v ψ

A, αs |=v [α]ϕ if A
α

==⇒ B and B, s |=v ϕ

A, s |=v max(X, ϕ) if A, s |=v ϕ{max(X, ϕ)/X}

Example 3 (Violation) Recall the safety formula ϕex defined in (5). Actor A3, from
Ex. 2, together with the witness violating trace ααβ violate ϕex, i.e., (A3, ααβ) |=v ϕex.
However, A3 together with trace β do not violate ϕex, i.e., (A3, β) 6|=v ϕex. Def 5 relates
a violating trace with an actor only when that trace leads the actor to a violation. For
instance, if A3 cannot perform the trace αααβ then we have(A3, αααβ) 6|=v ϕex according
to Def 5, even though the trace is prohibited by ϕex. Moreover, a violating trace may
lead an actor system to a violation before the end of the trace is reached; for instance,
we can show that (A3, ααβα) |=v ϕex according to Def 5.

Although it is more convenient to work with Def 5 when reasoning about runtime mon-
itors, we still have to show that it corresponds to the dual of Def. 4.

Theorem 1 (Correspondence) ∃s.A, s |=v ϕ iff A 6|= ϕ

8We write A, s |=v ϕ in lieu of (A, s, ϕ) ∈ |=v. It also follows from standard fixed-point theory that the
constrainst of the violation relation are biimplications.
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Proof For the if case we prove the contrapositive, namely that

∀s.A, s 6|=v ϕ implies A |=s ϕ

by showing that the relation

R = {(γ, ϕ) | ∀s.A, s 6|=v ϕ}

is a satisfaction relation. The proof proceeds by induction on the structure of ϕ:

ff: Contradiction, because from Def. 5 we know we can never have A, s 6|=v ff for any s.

ϕ∧ψ: From the definition ofRwe know that ∀s.A, s 6|=v ϕ∧ψ and, by Def. 5, this implies
that ∀s.

(
A, s 6|=v ϕ and A, s 6|=v ψ

)
. Distributing the universal quantification yields

∀s.A, s 6|=v ϕ (6)
∀s.A, s 6|=v ψ (7)

and by the definition of R, (6) and (7) we obtain (A, ϕ) ∈ R and (A, ψ) ∈ R, as
required for satisfiability relations by Def. 4.

[α]ϕ: From the definition of R we know that ∀s.A, s 6|=v [α]ϕ. In particular, for all
s = αt, we know that ∀t.A, αt 6|=v [α]ϕ. From Def. 5 it must be the case that
whenever A

α
==⇒ B we have that ∀t.B, t 6|=v ϕ, which in turn implies that (B, ϕ) ∈ R

(from the definition of R); this is the implication required by Def. 4.

max(X, ϕ): From the definition of R we know that ∀s.A, s 6|=v max(X, ϕ). For each s,
from A, s 6|=v max(X, ϕ) and Def. 5 we obtain A, s 6|=v ϕ{max(X, ϕ)/X} and thus, from
the definition of R, we conclude that (A, ϕ{max(X, ϕ)/X}) ∈ R as required by Def. 4.

For the only-if case we prove

∃s.A, s |=v ϕ implies A 6|= ϕ

by rule induction on A, s |=v ϕ. Note that A 6|= ϕ means that there does not exist any
satisfiability relation including the pair (A, ϕ).

A, s |=v ff: Immediate by Def. 4.

A, s |=v ϕ∧ψ because A, s |=v ϕ: By A, s |=v ϕ and I.H. we obtain A 6|= ϕ. As a result,
we conclude that A 6|= ϕ∧ψ.

A, s |=v ϕ∧ψ because A, s |=v ψ: Similar.
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A, s |=v [α]ϕ because s = αs′, A
α

==⇒ B and B, s′ |=v ϕ: By B, s′ |=v ϕ and I.H. we obtain
B 6|= ϕ, and subsequently, by A

α
==⇒ B, we conclude that A 6|= [α]ϕ.

A, s |=v max(X, ϕ) because A, s |=v ϕ{max(X, ϕ)/X}: By A, s |=v ϕ{max(X, ϕ)/X} and I.H. we
obtain A 6|= ϕ{max(X, ϕ)/X} which, in turn, implies that
A 6|= max(X, ϕ). �

Def. 5 allows us to show that SHML is a safety language as defined in [MP90, CMP92];
this relies on the standard notion of trace prefixes i.e., s ≤ t iff ∃.s′ such that t = ss′.

Theorem 2 (Safety Relation) A, s |=v ϕ and s ≤ t implies A, t |=v ϕ

Proof By Rule Induction on A, s |=v ϕ:

A, s |=v ff: Immediate.

A, s |=v ϕ∧ψ because A, s |=v ϕ: By A, s |=v ϕ, s ≤ t and I.H. we obtain
A, t |=v ϕ which, by the same rule, implies A, t |=v ϕ∧ψ.

A, s |=v ϕ∧ψ because A, s |=v ψ: Similar.

A, s |=v [α]ϕ because s = αs′, A
α

==⇒ B and B, s′ |=v ϕ: From s = αs′ and s ≤ t we
know

t = αt′ (8)
s′ ≤ t′ (9)

By (9), B, s′ |=v ϕ and I.H. we obtain B, t′ |=v ϕ and by A
α

==⇒ B and (8) we derive
A, t |=v [α]ϕ.

A, s |=v max(X, ϕ) because A, s |=v ϕ{max(X, ϕ)/X}: By A, s |=v ϕ{max(X, ϕ)/X}, s ≤ t and
I.H. we obtain A, t |=v ϕ{max(X, ϕ)/X} which implies A, t |=v max(X, ϕ) by the same
rule. �

4 Runtime Verifying SHML properties

We define a translation from SHML formulas of Section 3 to programs from Section 2
that act as monitors, analysing the behaviour of a system and flagging an alert whenever
the property denoted by the respective formula is violated by the current execution of the
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system. Apart from the language translated into, our monitors differ from tests, as de-
fined in [AI99], in a number of ways. Firstly, they monitor systems asynchronously and
act on traces. By contrast, tests interact with the system directly (potentially inducing
certain system behaviour). More importantly, however, we impose stronger detection
requirements on monitors as opposed to those defined for test in [AI99]: whereas tests
are required to have one possible execution that detects property violations, we require
monitors to flag violations whenever they occur.9

In terms of our logic, the stronger monitoring requirements are particularly pertinent
to conjunction formulas, ϕ1∧ϕ2, whereby a monitor needs to ensure that neither ϕ1

nor ϕ2 are violated. Concurrent monitoring for the subformula ϕ1 and ϕ2 provides a
natural translation in terms of the language presented in Section 2, bringing with it the
advantages discussed the Introduction.

Conjunction formulas arise frequently in cases where systems are subject to numerous
requirements from distinct parties. Although the various requirements ϕ1, . . . , ϕn can
sometimes be consolidated into a formula without top-level conjunction, it is often con-
venient to just monitor for an aggregate formula of the form ϕ1∧ . . .∧ϕn, which would
translate to n concurrent monitors each analysing the system trace independently.

Example 4 (Conjunction Formulas) Consider the formula the two independent for-
mulas

ϕno dup ans , [αcall]
(
max(X, [αans][αans]ff∧[αans][αcall]X)

)
(10)

ϕreact ans , max(Y, [αans]ff∧[αcall][αans]Y) (11)

Formula ϕno dup ans requires that call actions αcall are at most serviced by a single answer
action αans, whereas ϕreact ans requires that answer actions are only produced in response
to call actions. Even though it is possible to rephrase the conjunction of the two for-
mulas as a single formula without a top-level conjunction, it is more straightforward to
monitor for ϕno dup ans∧ϕreact ans using two parallel monitors, one for each subformula.10

Moreover, multiple conjunctions arise indirectly when they are used under fixpoint op-
erators in formulas.

Example 5 (Conjuctions and Fixpoints) Recall ϕex, defined in (5) in Ex. 2. Seman-
tically, the formula represents the infinite tree depicted in Figure 6(a), comprising of

9There are other discrepancies such as the fact that monitors are required to keep overheads to a
minimum, whereas tests typically are not.

10In cases where distinct parties are responsible for each subformula, keeping the subformulas separate
may also facilitate maintainability and increases separation of concerns.
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Figure 6: Monitor Combinator generation
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an infinite number of conjunctions. Although in practice, we cannot generate an infinite
number of concurrent monitors, ϕex will translate into a number of concurrent monitors.

Monitor synthesis (~−�m : sHML → Exp) described in Def. 6, returns functions that
are parametrised by a map (encoded as a list of tuples) from formula variables to other
synthesised monitors of the same form; the map encodes the respective variable bindings
in a formula and is used for formula recursive unrolling. We only limit monitoring to
closed, guarded11 sHML formulas: monitor instrumentation, performed through the
function M defined below, spawns the synthesised function applied to the empty map,
nil, and then acts as a message forwarder to the spawned process, mLoop, for the trace
it receives through the tracing semantics of Section 2.2.

M def
= λxfrm.zpid = spw

(
~xfrm�

m(nil)
)
, mLoop(zpid)

mLoop def
= µyrec.λxpid.rcv z→ xpid!z end, yrec(xpid)

Definition 6 (Monitors)

~ff�m def
= λxenv.sup!fail

~ϕ∧ψ�m def
=


λxenv. ypid1 = spw

(
~ϕ�m(xenv)

)
,

ypid2 = spw
(
~ψ�m(xenv)

)
,

fork(ypid1, ypid2)

~[α]ϕ�m def
=


λxenv.rcv tr(α) → ~ϕ�m(xenv);

→ ok
end

~max(X, ϕ)�m def
= λxenv. ~ϕ�

m({′X′, ~ϕ�m} : xenv)

~X�m def
=

λxenv. ymon = lookUp(′X′, xenv),
ymon(xenv)

11In guarded SHML formulas, formula variables appear only as a subformula of a necessity formula.
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Auxiliary Function definitions and meta-operators:

fork
def
= µyrec.λ(xpid1, xpid2).rcv z→

(
xpid1!z, xpid2!z

)
end, yrec(xpid1, xpid2)

lookUp
def
=



µyrec.λ(xvar, xmap).case xmap of
({xvar, zmon} : ) → zmon

: ztl → yrec(xvar, ztl)
nil → exit

end

In Def. 6, the monitor translation for ff immediately reports a violation by sending the
message fail to a predefined actor sup handling the violation. The translation of ϕ1∧ϕ2

consists in spawning the respective monitors for ϕ1 and ϕ2 and then forwarding the trace
messages to these spawned monitors through the auxiliary function fork. The translated
monitor for [α]ϕ behaves as the monitor translation for ϕ once it receives a trace message
encoding the occurrence of action α (see meta-function tr(−)), but terminates if the trace
message does not correspond to α.

The translations of max(X, ϕ) and X are best understood together: the monitor for
max(X, ϕ) behaves like that for ϕ, under the extended map where X is mapped to the
monitor for ϕ, effectively modelling the formula unrolling ϕ{max(X, ϕ)/X} from Def. 4;
the monitor for X retrieves the monitor translation for the formula it is bound to in the
map through using function lookUp, and behaves like this monitor. The assumption that
synthesised formulas is closed guarantees that map entries are always found by lookUp,
whereas the assumption regarding guarded formulas guarantees that monitor executions
do not produce infinite bound-variable expansions.

Example 6 (Monitor Translation) The generated monitor for ϕex, defined in (5), is

Moni to r = m max ( ’X’ ,
m and ( m nec send ( alphaTo , alphaMsg

m nec send ( alphaTo , alphaMsg ,
m nec send ( betaTo , betaMsg , m f l s ( ) ) ) ) ,

m nec send ( alphaTo , betaMsg , m var ( ’X ’ ) ) ) ) ,
M( Moni to r ) .

where the referenced functions are defined as

m f l s ( ) → fun ( Mappings ) → sup ! f a i l end .

m n e c r e c v ( Rece ive r , Message , Ph i ) →
fun ( Mappings ) →

r e c e i v e
{ a c t i o n , { recv , Rece ive r , Message } } → Phi ( Mappings ) ;
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{ a c t i o n , } → ok
end

end .

m nec send ( To , Message , Ph i ) →
fun ( Mappings ) →

r e c e i v e
{ a c t i o n , { send , SentFrom , To , Message } } → Phi ( Mappings ) ;
{ a c t i o n , } → ok

end
end .

m and ( Phi1 , Ph i2 ) →
fun ( Mappings ) →

A = spawn ( fun ( ) → Phi1 ( Mappings ) ) ,
B = spawn ( fun ( ) → Phi2 ( Mappings ) ) ,
f o r k (A, B)

end .

f o r k (A, B) → r e c e i v e Msg →
A ! Msg ,
B ! Msg

end ,
f o r k (A, B ) .

m max ( Var , Ph i ) → fun ( Mappings ) →
Phi ( [ { Var , Ph i } | Mappings ] )

end .

m var ( Var ) → fun ( Mappings ) →
Moni to r = lookUp ( Var , Mappings ) ,
Moni to r ( Mappings )

end .

lookUp ( Var , Mappings ) →
case Mappings o f

[ { Var , Moni to r } | O t h e r ] → Moni to r ;
[ | T a i l ] → lookUp ( Var , T a i l ) ;
[ ] → e x i t

end .

The code in this example first creates the structure of functions that together represent
the property that is being verified. The functions called m_form are the direct Erlang
translation from the Def. 6. The process M is responsible to start up the monitor for
the property generated through the call to these monitor functions and forwarding the
trace messages to these monitors. When spawning the monitor for the property, the
property is passed an empty environment. The function for the maximum fixpoint ex-
tends this environment with a reference to the definition of the property itself and con-
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tinues to execute the remaining property. When a free instance of the variable X is
encountered, the monitor definition is retrieved from the environment using the func-
tion lookUp(Var, Mappings) and continues executing as the result of this function.
Thus, the actor executing the property for X evolves to an ∧ node while spawning two
new actors, one checking for the subformula [α][α][β]ff, and another one checking for
the formula [α]X. This is depicted in Figure 6(c). Whenever the monitor for the vari-
able X is encountered following a sequence of received traces, the same unfolding is
repeated by the rightmost actor in Figure 6(c), thereby increasing the monitor overhead
incrementally, as required by the runtime behaviour of the system being monitored.

4.1 Tool Implementation

The monitor generation procedure given in Def. 6 acts as a basis for a prototype imple-
mentation of a tool automating monitor synthesis of sHML formula into actual Erlang
monitors. The tool can be downloaded from [Sey13]. Several design decisions were
taken while implementing the tool so as to integrate and instrument the system with the
generated monitors.

As discussed earlier, we make use of the tracing mechanism that is available in the EVM
to gather the trace of a particular process. However, when monitoring a system, we need
to collect traces from a collection of processes that are communicating with each other
and also with external processes. In Erlang, the tracing functionality is enabled using
the trace/2 built-in function where the first argument is the process identifier to trace
and the second parameter is a list of flags to specify the type of tracing required. One
of the flags that is used in our tool is called set_on_spawn that enables tracing on
newly spawned processes. This flag’s behaviour matches the language semantics in the
rule Spw since if the process spawning a new child process is traceable, the new child
process is also traceable.

Another challenge that arose when instrumenting the system was that of the approach
to use so as to initialise the monitoring tool. The ideal way to initialise the monitor is
to enable the monitoring while the system is already executing. In order to be able to
do so, a list of all the PIDs of the processes in the system being monitored is required.
In order to avoid the race-condition where new processes are spawned while enabling
tracing, it would be necessary to suspend the execution of the system through some
instrumentation mechanism. Instead, our tool provides the monitor with the function
that needs to be called when starting up the system. The monitor spawns a special
initiator process that blocks its execution immediately using the receive construct. The
monitor then enables the tracing for this newly spawned process with the setting of the
set_on_spawn flag, after which it notifies the process that it can resume its execution
and start up the system. The result of this setup is that all processes spawned by the
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system are monitored as well.12

After instrumenting the system to receive trace messages for its actions, the actual mon-
itoring needs to take place. The user specifies the correctness property using the sHML
logic introduced in Section 3. Hence, a parser is also provided in order to translate the
property in sHML to the actual synthesis presented in this study. This synthesis is used
after the instrumentation is in place in order to monitor the system for violating traces.

5 Correctness

We now discuss how, in the model of the runtime system, monitors are instrumented to
execute wrt. monitored systems, Section 5.1, how correct monitor behaviour is specified
in such a setting, Section 5.2.

5.1 System Instrumentation

We limit monitoring to monitorable systems, Def. 7, whereby all actors of a system
are monitorable. This guarantees that all the basic actions produced by the system are
recorded as trace entries at the monitor’s mailbox; note that due to the asynchronous
nature of communication, even scoped actors can generate visible actions by sending
messages to other actors in the environment. An important property for our monitoring
setup is that monitorable systems are closed wrt. weak sequences of basic actions;
this is essential for our instrumentation to remain valid over the course of a monitored
execution.

Definition 7 (Monitorable Systems) An actor system A is said to be monitorable iff

A ≡ (h̃)
(
i[e / q]m ‖ B

)
implies m = ◦

Lemma 1 A is monitorable and A‖ i[e / q]∗
s

=⇒ B‖ i[e′ / q′]∗ implies B is monitorable

Proof By induction on the length of A
s

==⇒ B and then by rule induction for the inductive
case. Note that in rule Spw, the spawned process inherits the monitoring modality of
the process spawning it. Since in a monitorable system, all actors are monitored, new
spawned actors will be set with a monitorable modality as well. �

12The blocking is necessary so as to prevent the system from spawning new processes that are not
monitored and resulting in the same race condition as before.
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Figure 7: A high level architecture of the monitor

Our correctness results concern (unmonitored) basic systems, Def. 8, that are instru-
mented to execute in parallel with a synthesised monitor from Def. 6 as depicted in
Figure 7. Our instrumentation is defined in terms of the operation d−e, Def. 9, convert-
ing basic systems into monitorable ones; see Lemma 2. Importantly, instrumentation
does not affect the external visible behaviour of a basic system; see Lemma 3.

Definition 8 (Basic Systems) A system is said to be basic if it does not contain a mon-
itor actor13 and each actor is unmonitored. Formally, basic systems are characterised
by the predicate

A ≡ (h̃)
(
i[e / q]m ‖ B

)
implies m = •

Definition 9 (Instrumentation) Instrumentation, denoted as d−e :: Actr → Actr is
defined inductively as:

di[e / q]me
def
= i[e / q]◦

dB ‖ Ce
def
= dBe ‖ dCe

d(i)Be def
= (i)dBe

Lemma 2 If A is a basic system then dAe is monitorable.

Proof By induction on the structure of A. �

Lemma 3 For all basic actors A where imon < fn(A):

• A
α
−−−→ B iff (imon)

(
dAe ‖ imon[e / q]m) α

−−−→ (imon)
(
dBe ‖ imon[e / q : tr(α)]m)

• A
τ
−−→ B iff (imon)

(
dAe ‖ imon[e / q]m) τ

−−→ (imon)
(
dBe ‖ imon[e / q]m)

Proof By rule induction. �

13A monitor actor is identified by the tracing modality ∗.
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5.2 Monitor Correctness

Specifications relating to monitor correctness are complicated by two factors: system
non-determinism and system divergence. We deal with the non-determinism of the mon-
itored system by requiring proper monitor behaviour only when the system performs a
violating execution; this can be expressed through the violation relation formalised in
Def. 5.

System divergence however complicates statements relating to any deterministic de-
tection behaviour expected from the synthesised monitor should the monitored system
perform a violating execution: although we would like to require that the monitor must
always detect and flag a violation whenever it occurs, a divergent system executing
in parallel with it can postpone indefinitely this behaviour. Even though we have no
guarantees on the behaviour of the system being monitored, the EVM provides fair-
ness guarantees[CT09] for actor executions. In such cases, it therefore suffices to re-
quire a weaker property from our synthesised monitors, reminiscent of the condition in
fair/should-testing[RV07].

Definition 10 (Should-α) A ⇓α
def
=

(
A ===⇒ B implies B

α
==⇒

)
Definition 11 (Correctness) e ∈ Exp is a correct monitor for ϕ ∈ sHML iff for any
basic actors A ∈ Actr, i < fId(A), and execution traces s ∈ Act∗ \ {sup!fail}:

(i)
(
dAe ‖ i[e]∗

) s
=⇒ B implies

(
A, s |=v ϕ iff B ⇓sup!fail

)
6 Proving Correctness

Def. 11, defined in the previous section, allows us to state the main result of the paper,
Theorem 3.

Theorem 3 (Correctness) For all ϕ ∈ sHML, M(ϕ) is a correct monitor for ϕ.

Proving Theorem 3 directly can be an arduous task because it requires reasoning about
all the possible execution paths of the monitored system in parallel with the instru-
mented monitor. Instead we propose a technique that teases apart three sub-properties
about our synthesised monitors from the correctness property of Theorem 3. As argued
in the Introduction, these sub-properties can be checked by distinct analysing entities or
used as vetting checks so as to abort early our correctness analysis. More importantly,
together, these weaker properties imply the stronger property of Theorem 3.
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The first sub-property is Violation Detection, Lemma 4, guaranteeing that for every
violating trace s of formula ϕ there exists an execution by the respective synthesised
monitor that detects the violation. This property is easier to verify than Theorem 3
because it requires us to consider the execution of the monitor in isolation and, more
importantly, requires us to verify the existence of a single execution path that detects the
violation; concurrent monitors typically have multiple execution paths.

Lemma 4 (Violation Detection) For basic A ∈ Actr and imon < fId(A), A
s

==⇒ implies:

A, s |=v ϕ iff imon[M(ϕ) / tr(s)]∗
sup!fail

=====⇒

Unlike Lemma 4, the next property, called Detection Preservation (Lemma 5), is not
concerned with relating detections to actual violations; instead it guarantees that if a
monitor can potentially detect a violation, further reductions do not exclude the possi-
bility of this detection. In the case where monitors always have a finite reduction wrt.
their mailbox contents (as it turns out to be the case for the monitors given in Def. 6) this
condition suffices to guarantee that the monitor will deterministically detect violations.
More generally, however, in a setting that guarantees fair actor executions, Lemma 5
ensures that detection will always eventually occur, even when monitors execute in par-
allel with other, potentially divergent, systems.

Lemma 5 (Detection Preservation) For all ϕ ∈ sHML, q ∈ Val∗

imon[M(ϕ) / q]∗
sup!fail

=====⇒ and imon[M(ϕ) / q]∗ ===⇒ B implies B
sup!fail

=====⇒

The third sub-property we require is Separability, Lemma 6, which implies that the be-
haviour of a (monitored) system is independent of the monitor and, dually, the behaviour
of the monitor depends, at most, on the trace generated by the system.

Lemma 6 (Monitor Separability) For all basic actors A ∈ Actr, imon < fId(A), ϕ ∈
sHML, s ∈ Act∗ \ {sup!fail},

(imon)
(
dAe ‖ imon[M(ϕ)]∗

) s
=⇒ B implies ∃B′, B′′s.t.


B ≡ (imon)

(
B′ ‖ B′′

)
A

s
=⇒ A′ s.t. B′ = dA′e

imon[M(ϕ) / tr(s)]∗ =⇒ B′′

These three properties suffice to show monitor correctness.
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Recall Theorem 3 (Monitor Correctness). For all ϕ ∈ sHML, basic actors A ∈ Actr,
imon < fn(A), s ∈ Act∗ \ {sup!fail}, whenever (imon)

(
dAe ‖ imon[M(ϕ)]∗

) s
=⇒ B then:

A, s |=v ϕ iff B ⇓sup!fail

Proof For the only-if case, we assume

(imon)
(
A ‖ imon[M(ϕ)]∗

) s
=⇒ B (12)

A, s |=v ϕ (13)

From Def. 10 we can further assume

B =⇒ B′ (14)

and then be required to prove that B′
sup!fail
====⇒. From (12) (14) and Lemma 6 we know

∃B′′, B′′′s.t. B′ = (imon)
(
B′′ ‖ B′′′

)
(15)

A
s

==⇒ A′ for some A′ where dA′e = B′′ (16)
imon[M(ϕ) / tr(s)]∗ ===⇒ B′′′ (17)

From (16), (13) and Lemma 4 we obtain

imon[M(ϕ) / tr(s)]∗
sup!fail

=====⇒ (18)

and from (17), (18) and Lemma 5 we obtain B′′′
sup!fail

=====⇒ and hence, by (15), and by rules

Par and Scp, we obtain B′
sup!fail

=====⇒, as required.

For the if case we know:

(imon)
(
dAe ‖ imon[M(ϕ)]∗

) s
==⇒ B (19)

B ⇓sup!fail (20)

and have to prove that A, s |=v ϕ. From (20) we know B
sup!fail

=====⇒ which, together with
(19) implies

∃B′ s.t. (imon)
(
dAe ‖ imon[M(ϕ)]∗

) s
==⇒ B′

sup!fail
−−−−−−→ (21)
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From Lemma 6 and (21) we obtain

∃B′′, B′′′s.t. B′ = (imon)
(
B′′ ‖ B′′′

)
(22)

A
s

==⇒ A′ for some A′ where dA′e = B′′ (23)
imon[M(ϕ) / tr(s)]∗ ==⇒ B′′′ (24)

From (21), (22) and the freshness of sup!fail to A we deduce that B′′
sup!fail
−−−−−→, and subse-

quently, by (24), we obtain

imon[M(ϕ) / tr(s)]∗
sup!fail
====⇒ (25)

Finally, by (23), (25) and Lemma 4 we obtain A, s |=v ϕ, as required. �

6.1 Proofs of the Sub-Properties

In this section we detail the proofs of the individual sub-properties identified in Sec. 6;
on first reading, the reader may safely skip this section.

6.1.1 Violation Detection

The first sub-property we consider is Lemma 4, Violation Detection. One of the main
Lemmas used in the proof, namely Lemma 10, relies on an encoding of formula sub-
stitutions, θ :: LVar⇀ sHML, partial maps from formula variables to (possibly open)
formulas, to lists of tuples containing a string representation of the variable and the
respective monitor translation of the formula as defined in Def. 6. Formula substitu-
tions are denoted as lists of individual substitutions, {ϕ1/X1} . . . {ϕn/Xn} where every Xi is
distinct, and empty substitutions are denoted as ε.

Definition 12 (Formula Substitution Encoding)

enc(θ) def
=

nil when θ = ε

{
′X′, ~ϕ�m} : enc(θ′) if θ = {max(X, ϕ)/X}θ′

We can show that our monitor lookup function of Def. 6 models variable substitution,
Lemma 7. We can also show that different representations of the same formula substi-
tution do not affect the outcome of the execution of lookUp on the respective encoding,
which justifies the abuse of notation in subsequent proofs that assume a single possible
representation of a formula substitution.
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Lemma 7 θ(X) = ϕ implies i[lookUp(′X′, enc(θ)) / q]m ===⇒ i[~ϕ�m / q]m

Proof By induction on the number of mappings {ϕ1/X1} . . . {ϕn/Xn} in θ. �

Lemma 8 If θ(X) = ϕ then i[lookUp(′X′, enc(θ′)) / q]m ===⇒ i[~ϕ�m / q]m whenever θ
and θ′ denote the same substitution.

Proof By induction on the number of mappings {ϕ1/X1} . . . {ϕn/Xn} in θ. �

In one direction, Lemma 4 relies on Lemma 10 in order to establish the correspondence
between violations and the possibility of detections; this lemma, in turn, uses Lemma 9
which relates possible detections by monitors synthesised from subformulas to possible
detections by monitors synthesised from conjunctions using these subformulas.

Lemma 9 For an arbitrary θ, (i)
(
imon[mLoop( j1) / tr(s)]∗ ‖ i[~ϕ1�

m(enc(θ))]•
) sup!fail

====⇒

implies (i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�

m(enc(θ))]•
) sup!fail

====⇒ for any ϕ2 ∈ sHML.

Proof By Def. 6 we know that

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�

m(enc(θ))]•
)

==⇒

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ ( j, h)

(
i[fork( j, h)]• ‖ j[~ϕ1�

m(enc(θ))]• ‖ h[~ϕ2�
m(enc(θ))]•

))
We then prove by induction the structure of s that

(i)
(
imon[mLoop(i) / tr(s)]• ‖ i[~ϕ1�

m(enc(θ)) / q]•
) sup!fail

====⇒ implies

(i)
(

imon[mLoop(i) / tr(s)]∗ ‖
( j, h)

(
i[fork( j, h)]• ‖ j[~ϕ1�

m(enc(θ)) / q]• ‖ h[~ϕ2�
m(enc(θ)) / q]•

) )
sup!fail
====⇒

s = ε: From Def. 6 we know that imon[mLoop(i) / ε]• in the system
(i)

(
imon[mLoop(i) / tr(s)]• ‖ i[~ϕ1�

m(enc(θ)) / q]•
)

is stuck (after one τ-transition).

Thus it must have been the case that i[~ϕ1�
m(enc(θ)) / q]•

sup!fail
====⇒. The result thus

follows by repeated applications of rules Par and Scp.

s = αt: We have two subcases to consider. Either i[~ϕ1�
m(enc(θ)) / q]•

sup!fail
====⇒ immedi-

ately, in which case the result follows analogously to the previous case. Alterna-
tively, we have

(i)
(
imon[mLoop(i) / tr(α) : tr(t)]∗ ‖ i[~ϕ1�

m(enc(θ)) / q]•
)

==⇒

(i)
(
imon[mLoop(i) / tr(t)]∗ ‖ i[~ϕ1�

m(enc(θ)) / q : tr(α)]•
) sup!fail

====⇒
(26)
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By (26) and I.H. we obtain

(i)

 imon[mLoop(i) / tr(t)]∗ ‖

( j, h)
(

i[fork( j, h)]• ‖
j[~ϕ1�

m(enc(θ)) / q : tr(α)]• ‖ h[~ϕ2�
m(enc(θ)) / q : tr(α)]•

)  sup!fail
====⇒

and the result follows from the fact that

(i)
(

imon[mLoop(i) / tr(s)]∗ ‖
( j, h)

(
i[fork( j, h)]• ‖ j[~ϕ1�

m(enc(θ)) / q]• ‖ h[~ϕ2�
m(enc(θ)) / q]•

) )
==⇒

(i)

 imon[mLoop(i) / tr(t)]∗ ‖

( j, h)
(

i[fork( j, h)]• ‖
j[~ϕ1�

m(enc(θ)) / q : tr(α)]• ‖ h[~ϕ2�
m(enc(θ)) / q : tr(α)]•

) 
�

Lemma 10 If A, s |=v ϕθ and lenv = enc(θ) then

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

) sup!fail
=====⇒ .

Proof Proof by rule induction on A, s |=v ϕθ:

A, s |=v ffθ: Using Def. 6 for the definition of ~ff�m and the rule App (and Par and Scp),
we have

(i)(imon[mLoop(i) / tr(s)]∗ ‖ i[~ff�m(lenv)]•) ==⇒ (i)(imon[mLoop(i) / tr(s)]∗ ‖ i[sup!fail]•)

The result follows trivially, since the process i can transition with a sup!fail action
in a single step using the rule SndU.

A, s |=v (ϕ1∧ϕ2)θ because A, s |=v ϕ1θ: By A, s |=v ϕ1θ and I.H. we have

(i)(imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1�
m(lenv)]•)

sup!fail
====⇒

The result thus follows from Lemma 9, which allows us to conclude that

(i)(imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�
m(lenv)]•)

sup!fail
====⇒

A, s |=v (ϕ1∧ϕ2)θ because A, s |=v ϕ2θ: Analogous.

A, s |=v ([α]ϕ)θ because s = αt, A
α

==⇒ B and B, t |=v ϕθ: Using the rule App Scp and Def. 6
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for the property [α]ϕ we derive (27), by executing mLoop— see Def. 6 — we ob-
tain (28), and then by rule Rd1 we derive (29) below.

(i)
(
imon[mLoop(i) / tr(αt)]∗ ‖ i[~ϕ�m(lenv)]•

) τ
−−→ (27)

(i)
(
imon[mLoop(i) / tr(αt)]∗ ‖ i[rcv (tr(α)→ ~ϕ�m(lenv) ; → ok) end]•

)
==⇒ (28)

(i)
(
imon[mLoop(i) / tr(t)]∗ ‖ i[rcv (tr(α)→ ~ϕ�m(lenv) ; → ok) end / tr(α)]•

) τ
−−→

(29)

(i)
(
imon[mLoop(i) / tr(t)]∗ ‖ i[~ϕ�m(lenv)]•

)
By B, t |=v ϕθ and I.H. we obtain

(i)
(
imon[mLoop(i) / tr(t)]∗ ‖ i[~ϕ�m(lenv)]•

) sup!fail
====⇒

and, thus, the result follows by (27), (28) and (29).

A, s |=v (max(X, ϕ))θ because A, s |=v ϕ{max(X, ϕ)/X}θ: By Def. 6 and App for process i,
we derive

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~max(X, ϕ)�m(lenv)]•

)
==⇒

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m({′X′, ~ϕ�m} : lenv)]•

)
(30)

Assuming the appropriate α-conversion for X in max(X, ϕ), we note that from
lenv = enc(θ) and Def. 12 we obtain

enc({max(X, ϕ)/X}θ) = {′X′, ~ϕ�m} : lenv (31)

By A, s |=v ϕ{max(X, ϕ)/X}ρ, (31) and I.H. we obtain

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m({′X′, ~ϕ�m} : lenv)]•

) sup!fail
====⇒ (32)

The result follows from (30) and (32). �

In the other direction, Lemma 4 relies on Lemma 15, which establishes a correspon-
dence between violation detections and actual violations, as formalised in Def. 5.

Lemma 15 relies on a technical result, Lemma 14 which allows us to recover a violating
reduction sequence for a subformula ϕ1 or ϕ2 from that of the synthesised monitor of
a conjuction formula ϕ1∧ϕ2. Lemma 14 employs Corollary 1, which in turn relies on
the technical Lemmata 11 and 12, which prove the result for the specific cases were the
violation is generated by the synthesised monitor of ϕ1 and ϕ2 resp..
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Lemma 11 For some l ≤ n:

( j, h)
(
i
[
fork( j, h) / q1

frkq
2
frk

]•
‖ j[~ϕ1�

m(lenv) / q]• ‖ h[~ϕ2�
m(lenv) / r]•

)
(

τ
−−→)n

( j, h)
(
i
[
e j,h

fork / q2
frk

]•
‖ A ‖ B

) sup!fail
−−−−−→ because A

sup!fail
−−−−−→

for some A ≡ (~j′)
(
j[e / q′]• ‖ A′

)
where j[~ϕ1�

m(lenv) / qq1
frk]
• ==⇒ A

and some B ≡ (~h′)
(
h[d / r′]• ‖ B′

)
where h[~ϕ2�

m(lenv) / rq1
frk]
• ==⇒ B

implies ( j)
(
imon[mLoop( j) / q1

frkq
2
frk]
∗ ‖ j[~ϕ1�

m(lenv) / q]•
)
(

τ
−−→)l sup!fail

−−−−−→

and

( j, h)
(
i
[
v, h!v, fork( j, h) / q1

frkq
2
frk

]•
‖ j[~ϕ1�

m(lenv) / q]• ‖ h[~ϕ2�
m(lenv) / r]•

)
(

τ
−−→)n

( j, h)
(
i
[
e j,h

fork / q2
frk

]•
‖ A ‖ B

) sup!fail
−−−−−→ because A

sup!fail
−−−−−→

for some A ≡ (~j′)
(
j[e / q′]• ‖ A′

)
where j[~ϕ1�

m(lenv) / qq1
frk]
• ==⇒ A

and some B ≡ (~h′)
(
h[d / r′]• ‖ B′

)
where h[~ϕ2�

m(lenv) / rq1
frk]
• ==⇒ B

implies ( j)
(
imon[mLoop( j) / q1

frkq
2
frk]
∗ ‖ j[~ϕ1�

m(lenv) / q]•
)
(

τ
−−→)l sup!fail

−−−−−→

Proof We prove both statements simultaneously, by induction on the structure of the
mailbox at actor imon, (q1

frkq2
frk).

(q1
frkq2

frk) = ε: We prove the first case; the second case is analogous. From the structure
of fork, Def. 6, we know that i

[
fork( j, h) / ε

]• will get stuck after the function
application, which means that it must be the case that j[~ϕ1�

m(lenv) / q]• ==⇒ A,
from which the conclusion holds trivially by Par and Scp.

(q1
frkq2

frk) = v : q′′frk: We prove the first case again, and leave the second, analogous case
to the reader. We have two subcases to consider:

• Either j[~ϕ1�
m(lenv) / q]• ==⇒ A, independently of the actor at imon. The

proof follows as in the base case.

• Or it is not the case that j[~ϕ1�
m(lenv) / q]• ==⇒ A. This means that the
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reduction sequence can be decomposed as

( j, h)
 i

[
fork( j, h) / (q1

frkq2
frk)

]•
‖ j[~ϕ1�

m(lenv) / q]• ‖ h[~ϕ2�
m(lenv) / r]•

 (
τ
−−→)k

( j, h)
(
i
[
v, h!v, fork( j, h) / q′′frk

]•
‖ (~j′)

(
j[e / q′ : v]• ‖ A′′′

)
‖ B′′

)
(

τ
−−→)n−k

(33)

( j, h)
(
i
[
e j,h

fork / q′frk
]•
‖ A ‖ B

) sup!fail
−−−−−→

for some k = k1 + k2 + 3, where

j[~ϕ1�
m(lenv) / q]• (

τ
−→)k1 (~j′)

(
j[e / q′]• ‖ A′′′

)
(34)

B′′ ≡ (~h′)
(
h[d / r′]• ‖ B′′′

)
where h[~ϕ2�

m(lenv) / r]• (
τ
−→)k2 B′′. (35)

By (33), (34) and (35) we can reconstruct the reduction sequence

( j, h)
 i

[
v, h!v, fork( j, h) / q′′frk

]•
‖ j[~ϕ1�

m(lenv) / q : v]• ‖ h[~ϕ2�
m(lenv) / r]•

 (
τ
−−→)n−3

( j, h)
(
i
[
e j,h

fork / q′frk
]•
‖ A ‖ B

) sup!fail
−−−−−→

By and I.H. we deduce that for l ≤ n − 3

( j)
(
imon[mLoop( j) / q′′frk]∗ ‖ j[~ϕ1�

m(lenv) / q : v]•
)
(

τ
−−→)l sup!fail

−−−−−→

Thus, by preceeding this transition sequence by three additional τ-transitions
we obtain

( j)
(
imon[mLoop( j) / v : q′′frk]∗ ‖ j[~ϕ1�

m(lenv) / q]•
)
(

τ
−−→)l sup!fail

−−−−−→

�

32



Lemma 12 For some l ≤ n:

( j, h)
(
i
[
fork( j, h) / q1

frkq
2
frk

]•
‖ j[~ϕ1�

m(lenv) / q]• ‖ h[~ϕ2�
m(lenv) / r]•

)
(

τ
−−→)n

( j, h)
(
i
[
e j,h

fork / q2
frk

]•
‖ A ‖ B

) sup!fail
−−−−−→ because B

sup!fail
−−−−−→

for some A ≡ (~j′)
(
j[e / q′]• ‖ A′

)
where j[~ϕ1�

m(lenv) / qq1
frk]
• ==⇒ A

and some B ≡ (~h′)
(
h[d / r′]• ‖ B′

)
where h[~ϕ2�

m(lenv) / rq1
frk]
• ==⇒ B

implies (h)
(
imon[mLoop(h) / q1

frkq
2
frk]
∗ ‖ h[~ϕ2�

m(lenv) / r]•
)
(

τ
−−→)l sup!fail

−−−−−→

and

( j, h)
(
i
[
v, fork( j, h) / q1

frkq
2
frk

]•
‖ j[~ϕ1�

m(lenv) / q]• ‖ h[~ϕ2�
m(lenv) / r]•

)
(

τ
−−→)n

( j, h)
(
i
[
e j,h

fork / q2
frk

]•
‖ A ‖ B

) sup!fail
−−−−−→ because B

sup!fail
−−−−−→

for some A ≡ (~j′)
(
j[e / q′]• ‖ A′

)
where j[~ϕ1�

m(lenv) / qq1
frk]
• ==⇒ A

and some B ≡ (~h′)
(
h[d / r′]• ‖ B′

)
where h[~ϕ2�

m(lenv) / rq1
frk]
• ==⇒ B

implies (h)
(
imon[mLoop(h) / q1

frkq
2
frk]
∗ ‖ h[~ϕ2�

m(lenv) / r]•
)
(

τ
−−→)l sup!fail

−−−−−→

Proof Analogous to the proof of Lemma 11. �

Corollary 1 For some l ≤ n:

( j, h)
(
i
[
fork( j, h) / qfrk

]•
‖ j[~ϕ1�

m(lenv) / q]• ‖ h[~ϕ2�
m(lenv) / r]•

)
(

τ
−−→)n sup!fail

−−−−−→

implies ( j)
(
imon[mLoop( j) / qfrk]∗ ‖ j[~ϕ1�

m(lenv) / q]•
)
(

τ
−−→)l sup!fail

−−−−−→

or (h)
(
imon[mLoop(h) / qfrk]∗ ‖ h[~ϕ2�

m(lenv) / r]•
)
(

τ
−−→)l sup!fail

−−−−−→

Proof Follows from Lemma 11 and Lemma 12 and the fact that i[fork( j, h) / qfrk]•

cannot generate the action sup!fail. �

Lemma 14 uses another technical result, Lemma 13, stating that silent actions are, in
some sense, preserved when actor-mailbox contents of a free actor are increased; note
that the lemma only applies for cases where the mailbox at this free actor decreases in
size or remains unaffected by the τ-action, specified through the sublist condition q′ ≤ q.

Lemma 13 (Mailbox Increase) (~h)(i[e / q]m ‖ A)
τ
−−→ (~j)(i[e′ / q′]m ‖ B) where i < ~h

and q′ ≤ q implies (~h)(i[e / q : v]m ‖ A)
τ
−−→ (~j)(i[e′ / q′ : v]m ‖ B)
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Proof By rule induction on (~h)(i[e / q]m ‖ A)
τ
−−→ (~j)(i[e′ / q′]m ‖ B). �

Equipped with Corollary 1 and Lemma 13, we are in a position to prove Lemma 14.

Lemma 14 For some l ≤ n

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ ( j, h)

(
i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

))
(

τ
−−→)k sup!fail

−−−−−→

implies (i)
(
imon[mLoop(i) / tr(ts)]∗ ‖ i[~ϕ1�

m(lenv)]•
)
(

τ
−−→)l sup!fail

−−−−−→

or (i)
(
imon[mLoop(i) / tr(ts)]∗ ‖ i[~ϕ2�

m(lenv)]•
)
(

τ
−−→)l sup!fail

−−−−−→

Proof Proof by induction on the structure of s.

s = ε: From the structure of mLoop, we know that after the function application, the
actor imon[mLoop(i)]∗ is stuck. Thus we conclude that it must be the case that

( j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−→)k sup!fail

−−−−−→

where k = n or k = n − 1. In either case, the required result follows from Corol-
lary 1.

s = αs′: We have two subcases:

• If

( j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−→)k sup!fail

−−−−−→

for some k ≤ n then, by Cor. 1 we obtain

( j)
(
imon[mLoop( j) / tr(t)]∗ ‖ j[~ϕ1�

m(lenv)]•
)
(

τ
−−→)l sup!fail

−−−−−→

or (h)
(
imon[mLoop(h) / tr(t)]∗ ‖ h[~ϕ2�

m(lenv)]•
)
(

τ
−−→)l sup!fail

−−−−−→

for some l ≤ k. By Lemma 13 we thus obtain

( j)
(
imon[mLoop( j) / tr(ts)]∗ ‖ j[~ϕ1�

m(lenv)]•
)
(

τ
−−→)l sup!fail

−−−−−→

or (h)
(
imon[mLoop(h) / tr(ts)]∗ ‖ h[~ϕ2�

m(lenv)]•
)
(

τ
−−→)l sup!fail

−−−−−→

as required.
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• Otherwise, it must be the case that

(i)

 imon[mLoop(i) / tr(s)]∗

‖ ( j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)  (
τ
−−→)k (36)

(i)
(

imon[mLoop(i) / tr(s′)]∗

‖ ( j, h)
(
i
[
efork / q : tr(α)

]•
‖ A

) )
(

τ
−−→)n−k sup!fail

−−−−−→ (37)

For some k = 3 + k1 where

( j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−→)k1

( j, h)
(
i
[
efork / q

]•
‖ A

) (38)

By (38) and Lemma 13 we obtain

( j, h)
(

i
[
fork( j, h) / tr(t) : tr(α)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−→)k1

( j, h)
(
i
[
efork / q : tr(α)

]•
‖ A

)
and by (37) we can construct the sequence of transitions:

(i)

 imon[mLoop(i) / tr(s′)]∗

‖ ( j, h)
(

i
[
fork( j, h) / tr(t) :α

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)  (
τ
−−→)n−3 sup!fail

−−−−−→

Thus, by I.H. we obtain, for some l ≤ n − 3

(i)
(
imon[mLoop(i) / tr(tαs′)]∗ ‖ i[~ϕ1�

m(lenv)]•
)
(

τ
−−→)l sup!fail

−−−−−→

or (i)
(
imon[mLoop(i) / tr(tαs′)]∗ ‖ i[~ϕ2�

m(lenv)]•
)
(

τ
−−→)l sup!fail

−−−−−→

The result follows since s = αs′. �

Lemma 15 If A
s

==⇒, lenv = enc(θ) and (i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

) sup!fail
====⇒

then A, s |=v ϕθ, whenever fv(ϕ) ⊆ dom(θ).

Proof By strong induction on (i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

)
(
τ
−→)n sup!fail

−−−−−→.

n = 0: By inspection of the definition for mLoop, and by case analysis of ~ϕ�m(lenv)
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from Def. 6, it can never be the case that

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

) sup!fail
−−−−−→

Thus the result holds trivially.

n = k + 1: We proceed by case analysis on ϕ.

ϕ = ff: The result holds immediately for any A and s by Def. 5.

ϕ = [α]ψ: By Def. 6, we know that

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~[α]ψ�m(lenv)]•

)
(

τ
−−→)k1 (39)

(i)
(
imon[mLoop(i) / tr(s2)]∗ ‖ i[~[α]ψ�m(lenv) / tr(s1)]•

) τ
−−→ (40)

(i)


imon[mLoop(i) / tr(s2)]∗ ‖

i
[
rcv

(
tr(α)→ ~ψ�m(lenv) ;
→ ok

)
end / tr(s1)

]•  (
τ
−→)k2

sup!fail
−−−−−→ (41)

where k + 1 = k1 + k2 + 1 and s = s1s2 (42)

From the analysis of the code in (41), the only way for the action sup!fail
to be triggered is by choosing the guarded branch tr(α)→ ~ϕ�m(lenv) in actor
i. This means that (41) can be decomposed into the following reduction
sequences.

(i)


imon[mLoop(i) / tr(s2)]∗ ‖

i
[
rcv

(
tr(α)→ ~ψ�m(lenv) ;
→ ok

)
end / tr(s1)

]•  (
τ
−→)k3 (43)

(i)


imon[mLoop(i) / tr(s4)]∗ ‖

i
[
rcv

(
tr(α)→ ~ψ�m(lenv) ;
→ ok

)
end / tr(s1s3)

]•  τ
−−→ (44)

(i)
(

imon[mLoop(i) / tr(s4)]∗ ‖
i
[
~ψ�m(lenv) / tr(s5)

]• )
(

τ
−−→)k4

sup!fail
−−−−−→ (45)

where k2 = k3 + k4 + 1 and s1s3 = αs5 and s2 = s3s4 (46)

By (42) and (46) we derive

s = αt where t = s5s4 (47)
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From the definition of mLoop we can derive

(i)
(
imon[mLoop(i) / tr(t)]∗ ‖ i[~ψ�m(lenv)]•

)
(

τ
−−→)k5

(i)
(
imon[mLoop(i) / tr(s4)]∗ ‖ i

[
~ψ�m(lenv) / tr(s5)

]•) (48)

where k5 ≤ k1 + k3. From (47) we can split A
s

==⇒ as A
α

==⇒ A′
t

==⇒ and from
(48), (45), the fact that k5 + k4 < k + 1 = n from (42) and (46), and I.H. we
obtain

A′, t |=v ψθ (49)

From (49), A
α

==⇒ A′ and Def. 5 we thus conclude A, s |=v
(
[α]ψ

)
θ.

ϕ = ϕ1∧ϕ2 From Def. 6, we can decompose the transition sequence as follows

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�

m(lenv)]•
)
(
τ
−→)k1 (50)

(i)
(
imon[mLoop(i) / tr(s2)]∗ ‖ i[~ϕ1∧ϕ2�

m(lenv) / tr(s1)]•
) τ
−−→ (51)

(i)


imon[mLoop(i) / tr(s2)]∗

‖ i

 y1 = spw
(
~ϕ1�

m(lenv)
)
,

y2 = spw
(
~ϕ2�

m(lenv)
)
,

fork(y1, y2)
/ tr(s1)


•

 (
τ
−→)k2 (52)

(i)


imon[mLoop(i) / tr(s4)]∗

‖ i

 y1 = spw
(
~ϕ1�

m(lenv)
)
,

y2 = spw
(
~ϕ2�

m(lenv)
)
,

fork(y1, y2)
/ tr(s1s3)


•

 (
τ
−→)2 (53)

(i)


imon[mLoop(i) / tr(s4)]∗

‖ ( j)

 i
[
y2 = spw

(
~ϕ2�

m(lenv)
)
,

fork( j, y2) / tr(s1s3)
]•

‖ j[~ϕ1�
m(lenv)]•


 (

τ
−−→)k3

sup!fail
−−−−−→

(54)

where k + 1 = k1 + 1 + k2 + 2 + k3, s = s1s2 and s2 = s3s4 (55)

From (54) we can deduce that there are two possible transition sequences
how action sup!fail was reached:

1. If sup!fail was reached because

j[~ϕ1�
m(lenv)]•(

τ
−−→)k4

sup!fail
−−−−−→
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on its own, for some k4 ≤ k3 then, by Par and Scp we deduce

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ j[~ϕ1�

m(lenv)]•
)
(

τ
−−→)k4

sup!fail
−−−−−→

From (55) we know that k4 < k + 1 = n, and by the premise A
s

==⇒ and
I.H. we obtain A, s |=v ϕ1θ. By Def. 5 we then obtain A, s |=v

(
ϕ1∧ϕ2

)
θ

2. Alternatively, (54) can be decomposed further as

(i)


imon[mLoop(i) / tr(s4)]∗

‖ ( j)

 i
[
y2 = spw

(
~ϕ2�

m(lenv)
)
,

fork( j, y2) / tr(s1s3)
]•

‖ j[~ϕ1�
m(lenv)]•


 (

τ
−−→)k4 (56)

(i)


imon[mLoop(i) / tr(s6)]∗

‖ ( j)

 i
[
y2 = spw

(
~ϕ2�

m(lenv)
)
,

fork( j, y2) / tr(s1s3s5)
]•

‖ j[~ϕ1�
m(lenv)]•


 (

τ
−→)2 (57)

(i)


imon[mLoop(i) / tr(s6)]∗

‖ ( j, h)

 i
[
fork( j, h) / tr(s1s3s5)

]•
‖ j[~ϕ1�

m(lenv)]•

‖ h[~ϕ2�
m(lenv)]•


 (

τ
−−→)k5

sup!fail
−−−−−→ (58)

wherek3 = k4 + 2 + k5 and s4 = s5s6 (59)

From (58) and Lemma 14 we know that either

(i)
(
imon[mLoop(i) / tr(s1s3s5s6)]∗ ‖ i[~ϕ1�

m(lenv)]•
)
(

τ
−−→)k6

sup!fail
−−−−−→

or (i)
(
imon[mLoop(i) / tr(s1s3s5s6)]∗ ‖ i[~ϕ2�

m(lenv)]•
)
(

τ
−−→)k6

sup!fail
−−−−−→

where k6 ≤ k5

From (55) and (59) we know that s = s1s3s5s6 and that k6 < k + 1 = n.
By I.H., we obtain either A, s |=v ϕ1θ or A, s |=v ϕ2θ, and in either case,
by Def. 5 we deduce A, s |=v

(
ϕ1∧ϕ2

)
θ.

ϕ = X By Def. 6, we can deconstruct (i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~X�m(lenv)]•

)
(
τ
−→
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)k+1 sup!fail
−−−−−→ as

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~X�m(lenv)]•

)
==⇒

τ
−→ (60)

(i)
(
imon[mLoop(i) / tr(s2)]∗ ‖ i[y = lookUp(′X′, lenv), y(lenv) / tr(s1)]•

)
==⇒

τ
−→

(61)

(i)
(
imon[mLoop(i) / tr(s4)]∗ ‖ i[y = v, y(lenv) / tr(s1s3)]•

)
==⇒

τ
−→ (62)

(i)
(
imon[mLoop(i) / tr(s6)]∗ ‖ i[v(lenv) / tr(s1s3s5)]•

)
==⇒

sup!fail
−−−−−−→

(63)

where s = s1s2, s2 = s3s4 and s4 = s5s6

Since X ∈ dom(θ), we know that

θ(X) = ψ (64)

for some ψ. By the assumption lenv = enc(θ) and Lemma 7 we obtain that
v = ~ψ�m. Hence, by (60), (61), (62) and (63) we can reconstruct

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ψ�m(lenv)]•

)
(
τ
−→)k1

(i)
(
imon[mLoop(i) / tr(s6)]∗ ‖ i[~ψ�m(lenv) / tr(s1s3s5)]•

)
(
τ
−→)k2

sup!fail
−−−−−−→

(65)

where k1 + k2 < k + 1 = n. By (65) and I.H. we obtain A, s |=v ψ, which is
the result required, since by (64) we know that Xθ = ψ.

ϕ = max(X, ψ) By Def. 6, we can deconstruct

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~max(X, ψ)�m(lenv)]•

)
(
τ
−→)k+1 sup!fail

−−−−−→

as follows:

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~max(X, ψ)�m(lenv)]•

)
(
τ
−→)k1

τ
−→

(i)
(
imon[mLoop(i) / tr(s2)]∗ ‖ i[~ψ�m({′X′, ψ} : lenv) / tr(s1)]•

)
(
τ
−→)k2

sup!fail
−−−−−→

from which we can reconstruct the transition sequence

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ψ�m({′X′, ψ} : lenv)]•

)
(
τ
−→)k1+k2

sup!fail
−−−−−→ (66)

By the assumption lenv = Γ(θ) we deduce that {′X′, ψ} : lenv = enc({max(X, ψ)/}θ)
and, since k1 + k2 < k + 1 = n, we can use (66), A

s
==⇒ and I.H. to obtain
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A, s |=v ψ{max(X, ψ)/X}θ. By Def. 5 we then conclude A, s |=v max(X, ψ)θ. �

We are now in a position to prove Lemma 4; we recall that the lemma was stated wrt.
closed sHML formulas.

Recall Lemma 4 (Violation Detection). Whenever A
s

==⇒ then :

A, s |=v ϕ iff imon[M(ϕ) / tr(s)]∗
sup!fail

=====⇒

Proof For the only-if case, we assume A
s

==⇒ and A, s |=v ϕ and are required to prove

imon[M(ϕ) / tr(s)]∗
sup!fail

=====⇒. We recall from Sec. 4 that M was defined as

λxfrm.zpid = spw
(
~xfrm�

m(nil)
)
, mLoop(zpid). (67)

and as a result we can deduce (using rules such as App, Spw and Par) that

imon[M(ϕ) / tr(s)]∗ ===⇒ (i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(nil)]•

)
(68)

Assumption A, s |=v ϕ can be rewritten as A, s |=v ϕθ for θ = ε, and thus, by Def. 12 we
know nil = enc(θ). By Lemma 10 we obtain

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(nil)]•

) sup!fail
=====⇒ (69)

and the result thus follows from (68) and (69).

For the if case, we assume A
s

==⇒ and imon[M(ϕ) / tr(s)]∗
sup!fail

=====⇒ and are required to
prove A, s |=v ϕ.

Since ϕ is closed, we can assume the empty list of substitutions θ = ε where, by default,
fv(ϕ) ⊆ dom(θ) and, by Def. 12, nil = enc(θ). By (67) we can decompose the transition

sequence imon[M(ϕ) / tr(s)]∗
sup!fail

=====⇒ as

imon[M(ϕ) / tr(s)]∗(
τ
−−→)3

(i)
(
imon[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(nil)]•

) sup!fail
====⇒ (70)

The result, i.e., A, s |=v ϕ, follows from (70) and Lemma 15. �
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6.1.2 Detection Preservation

In order to prove Lemma 5, we are able to require a stronger guarantee, i.e., confluence
under weak transitions (Lemma 18) for the concurrent monitors described in Def. 6.
Lemma 18 relies heavily on Lemma 17.

Definition 13 (Confluence modulo Inputs with Identical Recepients))

cnf(A) def
= A

γ
−→ A′, A

π
−→ A′′ implies


γ = i?v1, π = i?v2 or;
γ = π, A′ = A′′ or;

A′
π
−→ A′′′, A′′

γ
−→ A′′′ for some A′′′

Before we embark on showing that our synthesised monitors (Def. 6) remain confluent
after a sequence of silent transitions, Lemma 17 and Lemma 18, we find it convenient
to prove a technical result, Lemma 16, identifying the possible structures a monitor can
be in after an arbitrary number of silent actions; the lemma also establishes that the only
possible external action that a synthesised monitors can perform is the fail action: this
property helps us reason about the possible interactions that concurrent monitors may
engage in when proving Lemma 17.

Lemma 16 (Monitor Reductions and Structure) For all ϕ ∈ sHML, q ∈ (Val)∗ and
θ :: LVar⇀ sHML if i[~ϕ�m(enc(θ)) / q]•(

τ
−→)nA then

1. A
α
−−−→ B implies α = sup!fail and;

2. A has the form i[~ϕ�m(enc(θ)) / q]• or, depending on ϕ:

ϕ = ff: A ≡ i[sup!fail / q]• or A ≡ i[fail / q]•

ϕ = [α]ψ: A ≡ i[rcv (tr(α)→ ~ψ�m(enc(θ)) ; → ok) end / q]• or(
A ≡ B where i[~ψ�m(enc(θ)) / r]•(

τ
−→)kB for some k < n and q = tr(α) : r

)
or
A ≡ i[ok / r]• where q = u : r

ϕ = ϕ1∧ϕ2: A ≡ i
[

y1 = spw
(
~ϕ1�

m(enc(θ))
)
,

y2 = spw
(
~ϕ2�

m(enc(θ))
)
, fork(y1, y2) / q

]•
or
A ≡ ( j1)

(
i[e / q]• ‖ (̃h1)( j1[e1 / q1]• ‖ B)

)
where

• e is y1 = j1, y2 = spw
(
~ϕ2�

m(enc(θ))
)
, fork(y1, y2) or

y2 = spw (~ϕ2�
m(enc(θ))) , fork( j1, y2)
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• j1[~ϕ1�
m(enc(θ))]• (

τ
−→)k (̃h1)( j1[e1 / q1]• ‖ B) for some k < n

or

A ≡ ( j1, j2)
(

i[y2 = j2, fork( j1, y2) / q]•

‖ (̃h1)( j1[e1 / q1]• ‖ B) ‖ (̃h2)( j2[e2 / q2]• ‖ C)

)
where

• j1[~ϕ1�
m(enc(θ))]• (

τ
−→)k (̃h1)( j1[e1 / q1]• ‖ B) for some k < n

• j2[~ϕ2�
m(enc(θ))]• (

τ
−→)l (̃h2)( j2[e2 / q2]• ‖ C) for some l < n

or
A ≡ ( j1, j2)

(
i[e / r]• ‖ (̃h1)( j1[e1 / q′1]• ‖ B) ‖ (̃h2)( j2[e2 / q′2]• ‖ C)

)
where

• e is either fork( j1, j2) or
(
rcv z→ j1!z, j2!z end, fork( j1, j2)

)
or j1!u, i2!u, fork( j1, j2) or j2!u, fork( j1, j2)

• j1[~ϕ1�
m(enc(θ)) / q1]• (

τ
−→)k (̃h1)( j1[e1 / q′1]• ‖ B) for k < n, q1 < q

• j2[~ϕ2�
m(enc(θ)) / q2]• (

τ
−→)l (̃h2)( j2[e2 / q′2]• ‖ C) for l < n, q2 < q

ϕ = X: A ≡ i[y = lookUp(′X′, enc(θ′)), y(enc(θ)) / q]• where θ′ < θ or

A ≡ i

y =


case enc(θ′) of {′X′, zmon} : → zmon;

: ztl→ lookUp(′X′, ztl);
nil→ exit;

end

 , y(enc(θ)) / q


•

where θ′ < θ
or
A ≡ B where

• i[y = ~ψ�m, y(enc(θ)) / q]• (
τ
−→)k B

• θ(X) = ψ

or A ≡ i[y = exit, y(enc(θ)) / q]• or A ≡ i[exit / q]•

ϕ = max(X, ψ): A ≡ B where i[~ψ�m({′X′, ~ψ�m} : enc(θ)) / q]•(
τ
−→)kB

for k < n.

Proof The proof is by strong induction on i[~ϕ�m(lenv) / q]•(
τ
−→)nA. The inductive case

involved a long and tedious list of case analysis exhausting all possibilities.

n = 0 Trivially, A ≡ i[~ϕ�m(enc(θ)) / q]• and it cannot perform any external actions.

n = k + 1 We have i[~ϕ�m(lenv) / q]•(
τ
−→)kA′

τ
−−→ A. The proof proceeds by case analy-

sis on ϕ. We only consider the case when ϕ = ϕ1∧ϕ2, which is the most involving.
The proof for the other cases are analogous but simpler.
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ϕ = ϕ1∧ϕ2: By I.H., we know that the actor A′ has one of the four stated forms
above; we consider the second subcase, where

A′ ≡ ( j1)

 i

 y1 = j1,
y2 = spw

(
~ϕ2�

m(enc(θ))
)
,

fork(y1, y2)
/ q


•

‖ (̃h1)
(
j1[e1 / q1]• ‖ B

)
where

j1[~ϕ1�
m(enc(θ))]• (

τ
−→)l (̃h1)

(
j1[e1 / q1]• ‖ B

)
for some l < k. (71)

Since l < k + 1, by (71) and I.H. we also know that

(̃h1)
(
j1[e1 / q1]• ‖ B

) α
−−→ B implies α = sup!fail (72)

Thus, from the structure of the expression at actor i and (72) we know that
A′

τ
−→ A can be generated as a result of two subcases:

• Par, Scp and

i[y1 = j1, y2 = spw
(
~ϕ2�

m(enc(θ))
)
, fork(y1, y2) / q]•

τ
−→ i[y2 = spw

(
~ϕ2�

m(enc(θ))
)
, fork( j1, y2) / q]•

which means that the structure of A′ is included in the cases stated, and
by the structure of i[y2 = spw

(
~ϕ2�

m(enc(θ))
)
, fork( j1, y2) / q]• and by

(72) A
α
−−→ implies α = sup!fail.

• Par, Scp and (̃h1)
(
j1[e1 / q1]• ‖ B

) τ
−→ (̃h′1)

(
j1[e′1 / q′1]• ‖ B′

)
. By (71)

we obtain

j1[~ϕ1�
m(enc(θ))]• (

τ
−→)l+1 (̃h′1)

(
j1[e′1 / q′1]• ‖ B′

)
where l + 1 < k + 1

(73)
which means that A is of the required structure. Clearly, the expression
at actor i cannot perform external actions, and since l + 1 < k + 1 we
can apply the I.H. on (73) and deduce that (̃h′1)

(
j1[e′1 / q′1]• ‖ B′

) α
−−→

implies α = sup!fail. This allows us to conclude that A
α
−−→ implies

α = sup!fail. �

Lemma 17 (Translation Confl.) For all ϕ ∈ sHML, q ∈ (Val)∗ and θ :: LVar⇀ sHML,
i[~ϕ�m(enc(θ)) / q]• ===⇒ A implies cnf(A).

Proof Proof by strong induction on i[~ϕ�m(enc(θ)) / q]•(
τ
−→)nA.
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n = 0: The only possible τ-action that can be performed by i[~ϕ�m(enc(θ)) / q]• is that
for the function application of the monitor definition, i.e.,

i[~ϕ�m(enc(θ)) / q]•
τ
−−→ i[e / q]• for some e. (74)

Apart from that i[~ϕ�m(enc(θ)) / q]• can also only perform input action at i, i.e.,

i[~ϕ�m(enc(θ)) / q]•
i?v
−−−→ i[~ϕ�m(enc(θ)) / q : v]•

On the one hand, we can derive i[e / q]•
i?v
−−−→ i[e / q : v]•. Moreover, from (74)

and Lemma 13 we can deduce i[~ϕ�m(enc(θ)) / q : v]•
τ
−−→ i[e / q : v]• which

allows us to close the confluence diamond.

n = k + 1: We proceed by case analysis on the property ϕ, using Lemma 16 to infer the
possible structures of the resulting process. Again, most involving cases are those
for conjunction translations, as they generate more than one concurrent actor; we
discuss one of these below:

ϕ = ϕ1∧ϕ2: By Lemma 16, A can have any of 4 general structures, one of which
is

A ≡ ( j1, j2)
(

i[ j2!u, fork( j1, j2) / q]•
‖ (̃h1)( j1[e1 / q′1]• ‖ B)
‖ (̃h2)( j2[e2 / q′2]• ‖ C)

)
(75)

where

j1[~ϕ1�
m(lenv) / q1]• (

τ
−→)k (̃h1)( j1[e1 / q′1]• ‖ B) for k < n, q1 < q (76)

j2[~ϕ2�
m(lenv) / q2]• (

τ
−→)l (̃h2)( j2[e2 / q′2]• ‖ C) for l < n, q2 < q (77)

By Lemma 16, (76) and (77) we also infer that the only external action that
can be performed by the processes (̃h1)( j1[e1 / q′1]• ‖ B) and (̃h2)( j2[e2 /
q′2]• ‖ C) is sup!fail. Moreover by (76) and (77) we can also show that

fId
(
(̃h1)( j1[e1 / q′1]• ‖ B)

)
= { j1} fId

(
(̃h2)( j2[e2 / q′2]• ‖ C)

)
= { j2}

Thus these two subactors cannot communicate with each other or send mes-
sages to the actor at i. This also means that the remaining possible actions
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that A can perform are:

A
τ
−−→ ( j1, j2)

(
i[u, fork( j1, j2) / q]•

‖ (̃h1)( j1[e1 / q′1]• ‖ B)
‖ (̃h2)( j2[e2 / q′2 : u]• ‖ C)

)
(78)

A
τ
−−→ ( j1, j2)

(
i[ j2!u, fork( j1, j2) / q]•

‖ (̃h′1)( j1[e′1 / q′′1 ]• ‖ B′)
‖ (̃h2)( j2[e2 / q′2]• ‖ C)

)
because

(̃h1)( j1[e1 / q′1]• ‖ B)
τ
−−→ ( h̃′1 )( j1[e′1 / q′′1 ]• ‖ B′)

(79)

A
τ
−−→ ( j1, j2)

(
i[ j2!u, fork( j1, j2) / q]•

‖ (̃h1)( j1[e1 / q′1]• ‖ B)
‖ (̃h′2)( j2[e′2 / q′′2 ]• ‖ C′)

)
because

(̃h2)( j2[e2 / q′2]• ‖ C)
τ
−−→ ( h̃′2 )( j2[e′2 / q′′2 ]• ‖ C′)

(80)

A
i?v
−−−→ ( j1, j2)


i[ j2!u, fork( j1, j2) / q : v]•

‖ (̃h1)( j1[e1 / q′1]• ‖ B)
‖ (̃h2)( j2[e2 / q′2]• ‖ C)

 (81)

We consider actions (78) and (80) and leave the other combinations for the
interested reader. From (80) and Lemma 13 we derive

(̃h2)( j2[e2 / q′2 : u]• ‖ C)
τ
−−→ ( h̃′2 )( j2[e′2 / q′′2 : u]• ‖ C′)

and by Par and Scp we obtain

( j1, j2)
(

i[u, fork( j1, j2) / q]•
‖ (̃h1)( j1[e1 / q′1]• ‖ B)
‖ (̃h2)( j2[e2 / q′2 : u]• ‖ C)

)
τ
−−→

( j1, j2)
(

i[u, fork( j1, j2) / q]•
‖ (̃h1)( j1[e1 / q′1]• ‖ B)
‖ (̃h′2)( j2[e′2 / q′′2 : u]• ‖ C′)

)
(82)
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Using Com, Str, Par and Scp we can derive

( j1, j2)
(

i[ j2!u, fork( j1, j2) / q]•
‖ (̃h1)( j1[e1 / q′1]• ‖ B)
‖ (̃h′2)( j2[e′2 / q′′2 ]• ‖ C′)

)
τ
−−→

( j1, j2)
(

i[u, fork( j1, j2) / q]•
‖ (̃h1)( j1[e1 / q′1]• ‖ B)
‖ (̃h′2)( j2[e′2 / q′′2 : u]• ‖ C′)

)
(83)

thus we close the confluence diamond by (82) and (83). �

Lemma 18 (Weak Confluence) For all ϕ ∈ sHML, q ∈ Val∗

imon[M(ϕ) / q]∗ ===⇒ A implies cnf(A)

Proof By strong induction on n, the number of reduction steps imon[M(ϕ) / q]∗ (
τ
−−→)n A.

n = 0 We know A = imon[M(ϕ) / q]∗. It is confluent because it can perform either of
two actions, namely a τ-action for the function application (see App in Figure 3),
or else an external input at imon, (see RcvU in Fig 2). The matching moves can be
constructed by RcvU on the one hand, and by Lemma 13 on the other, analogously
to the base case of Lemma 17.

n = k + 1 By performing a similar analysis to that of Lemma 16, but for imon[M(ϕ) /
q]∗, we can determine that this actor can only weakly transition to either of the
following forms:

1. A = imon[M = spw (~ϕ�m(nil)), mLoop(M) / q]∗

2. A ≡ (i)
(
imon[mLoop(i) / q]∗ ‖ B

)
where i[~ϕ�m(lenv) / r]• =⇒ B for

some r.

3. A ≡ (i)
(
imon[rcv z→ i!z end, mLoop(i) / q]∗ ‖ B

)
where

i[~ϕ�m(lenv) / r]• =⇒ B for some r.

4. A ≡ (i)
(
imon[i!v, mLoop(i) / q]∗ ‖ B

)
where i[~ϕ�m(lenv) / r]• =⇒ B for

some r.

5. A ≡ (i)
(
imon[v, mLoop(i) / q]∗ ‖ B

)
where i[~ϕ�m(lenv) / r]• =⇒ B for

some r.

We here focus on the 4th case of monitor structure; the other cases are analogous.
From i[~ϕ�m(lenv) / r]• =⇒ B and Lemma 16 we know that

B
γ
−−→ implies γ = sup!fail or γ = τ

B ≡ (~h)
(
i[e / r]• ‖ C

)
where fId(B) = i
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This means that (i)
(
imon[i!v, mLoop(i) / q]∗ ‖ B

)
can only exhibit the following

actions:

(i)
(
imon[i!v, mLoop(i) / q]∗ ‖ B

) imon?u
−−−−−→

(i)
(
imon[i!v, mLoop(i) / q : u]∗ ‖ B

) (84)

(i)
(
imon[i!v, mLoop(i) / q]∗ ‖ B

) τ
−→

(i)
(
imon[v, mLoop(i) / q]∗ ‖ (~h)

(
i[e / r : v]• ‖ C

)) (85)

(i)
(
imon[i!v, mLoop(i) / q]∗ ‖ B

) τ
−→ (i)

(
imon[i!v, mLoop(i) / q]∗ ‖ C

)
(86)

Most pairs of action can be commuted easily by Par and Scp as they concern
distinct elements of the actor system. The only non-trivial case is the pair of
actions (85) and (86), which can be commuted using Lemma 13, in analogous
fashion to the proof for the base case. �

Lemma 18 allows us to prove Lemma 19, and subsequently Lemma 20; the latter
Lemma implies Detection Preservation, Lemma 5, used by Theorem 3.

Lemma 19 For all ϕ ∈ sHML, q ∈ Val∗

imon[M(ϕ) / q]∗ ===⇒ A, A
sup!fail

=====⇒ and A
τ
−→ B implies B

sup!fail
=====⇒

Proof From imon[M(ϕ) / q]∗ ===⇒ A and Lemma 18 we know that cnf(A). The proof is

by induction on A(
τ
−−→)n·

sup!fail
−−−−−−→.

n = 0: We have A
sup!fail
−−−−−−→ A′ (for some A′). By A

τ
−→ B and cnf(A) we obtain B

sup!fail
−−−−−−→

B′ for some B′ where A′
τ
−→ B′.

n = k + 1: We have A
τ
−−→ A′(

τ
−−→)k·

sup!fail
−−−−−−→ (for some A′). By A

τ
−→ A′, A

τ
−→ B and

cnf(A) we either know that B = A′, in which case the result follows immediately,
or else obtain

B
τ
−→ A′′ (87)

A′
τ
−→ A′′ for some A′′ (88)

In such a case, by A
τ
−−→ A′ and imon[M(ϕ) / q]∗ ===⇒ A we deduce that

imon[M(ϕ) / q]∗ ===⇒ A′,
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and subsequently, by (88), A′(
τ
−−→)k·

sup!fail
−−−−−−→ and I.H. we obtain A′′

sup!fail
=====⇒; the

required result then follows from (87). �

Lemma 20 (Detection Confluence) For all ϕ ∈ sHML, q ∈ Val∗

imon[M(ϕ) / q]∗ ===⇒ A, A
sup!fail

=====⇒ and A ===⇒ B implies B
sup!fail

=====⇒

Proof By induction on A(
τ
−−→)nB:

n = 0: The result is immediate since B = A.

n = k + 1: For some B′, We have A
τ
−→ B′ and B′(

τ
−→)kB. From A

τ
−→ B′, A

sup!fail
=====⇒,

imon[M(ϕ) / q]∗ ===⇒ A and Lemma 19 we obtain

B′
sup!fail

=====⇒ . (89)

By imon[M(ϕ) / q]∗ ===⇒ A and A
τ
−→ B′ we obtain imon[M(ϕ) / q]∗ ===⇒ B′ and by

B′(
τ
−→)kB, (89) and I.H. we obtain B

sup!fail
=====⇒. �

Recall Lemma 5 (Detection Preservation). For all ϕ ∈ sHML, q ∈ Val∗

imon[M(ϕ) / q]∗
sup!fail

=====⇒ and imon[M(ϕ) / q]∗ ===⇒ B implies B
sup!fail

=====⇒

Proof Immediate, by Lemma 20 for the special case where imon[M(ϕ) / q]∗ ===⇒ imon[M(ϕ) /
q]∗. �

6.1.3 Monitor Separability

With the body of supporting lemmata proved thus far, the proof for Lemma 6 turns out
to be relatively straightforward. In particular, we make use of Lemma 3, relating the
behaviour of a monitored system to the same system when unmonitored, Lemma 13
delineating behaviour preservation after extending mailbox contents at specific actors,
and Lemma 16, so as to reason about the structure and generic behaviour of synthesised
monitors.
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Recall Lemma 6 (Monitor Separability). For all basic actors ϕ ∈ sHML, A ∈ Actr
where imon is fresh to A, and s ∈ Act∗ \ {sup!fail},

(imon)
(
dAe ‖ imon[M(ϕ)]∗

) s
=⇒ B implies ∃B′, B′′s.t.


B ≡ (imon)

(
B′ ‖ B′′

)
A

s
==⇒ A′ s.t. B′ = dA′e

imon[M(ϕ) / tr(s)]∗ ==⇒ B′′

Proof By induction on n in (imon)
(
dAe ‖ imon[M(ϕ)]∗

)
(

γk
−−→ )nB, the length of the se-

quence of actions:

n = 0: We know that s = ε and A = (imon)
(
dAe ‖ imon[M(ϕ)]∗

)
. Thus the conditions hold

trivially.

n = k + 1: We have (imon)
(
dAe ‖ imon[M(ϕ)]∗

)
(

γk
−−→ )kC

γ
−−→ B. By I.H. we know that

C ≡ (imon)
(
C′ ‖ C′′

)
(90)

A
t

==⇒ A′′ s.t. C′ = dA′′e (91)
imon[M(ϕ) / tr(t)]∗ ==⇒ C′′ (92)
γ = τ implies t = s and γ = α implies tα = s (93)

and by (92) and Lemma 16 we know that

C′′ ≡ (~h)
(
imon[e / q]∗ ‖ C′′′

)
(94)

fId(C′′) = {imon} (95)

We proceed by considering the two possible subcases for the structure of γ:

γ = α: By (93) we know that s = tα. By (95) and (94), it must be the case that
C ≡ (imon)

(
C′ ‖ C′′

) α
−−→ B happens because

for some B′ C′
α
−−→ B′ (96)

B ≡ (imon)
(
B′ ‖ (~h)

(
imon[e / q : tr(α)]∗ ‖ C′′′

))
(97)

By (96), (91) and Lemma 3 we know that ∃A′ such that dA′e = B′ and that
A′′

α
−−→ A′. Thus by (91) and s = tα we obtain

A
s

==⇒ A′ s.t. B′ = dA′e
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By (92), (94) and repeated applications of Lemma 13 we also know that

imon[M(ϕ) / tr(t) : tr(α)]∗ = imon[M(ϕ) / tr(s)]∗ ==⇒

(~h)
(
imon[e / q : tr(α)]∗ ‖ C′′′

)
= B′′

The result then follows from (97).

γ = τ: Analogous to the other case, where we also have the case that the reduction
is instigated by C′′, in which case the results follows immediately. �

7 Related Work

Runtime monitoring of web services and component-based systems has attracted a con-
siderable amount of study, e.g., [FJN+11, GCN+07, CPQFC10] focussing on verifying
systems with respect to external interactions with clients of the services or components.
The type of correctness properties that this body of work describes is similar to the
properties that can be specified using sHML formulas involving external interactions.
These systems are generally based on the design by contract principle and RV is applied
to verify whether such systems are satisfying the contract they were designed to satisfy.
To the best of our knowledge, none of the works in this area tackles aspects of correct
monitor synthesis but only focus their evaluation on performance benchmarks.

Colombo et al. [CFG11, CFG12] present an RV tool, eLarva, that also makes use of the
tracing mechanism in Erlang to gather the execution trace of the system. In eLarva, a
specification of an automata is synthesised into an Erlang program. Several other works
and tools such as MOP [CR03, CR07], Larva [CPS09] and polyLarva [CFMP12] im-
plement the monitors using an aspect-oriented programming approach by synthesising
monitors as aspects that are weaved at runtime with the system under test. The con-
currency aspect in these tools is hidden within the AOP library being used, in most
cases AspectJ. Thus, the correctness of the tool also depends on how concurrency is
well-handled in such AOP tools. In these works, the authors do not tackle the issue of
correctly synthesising the specification i.e., the correctness of the translation between
the specification of the property to the concrete monitor.

The works of Geilen [Gei01] and Sen [SRA04] focus on monitor correctness for LTL
formulas defined over infinite strings and give their synthesis in terms of automata and
pseudo-code resp.. Leuker et al. [BLS11] also present a translation from LTL to non-
deterministic Büchi automata that recognizes good and bad prefixes and as a result acts
as monitors for a specified LTL formula. The monitor specifications however sit at a
higher level of abstraction than ours, e.g., Büchi automata, and avoids issues relating to
concurrent monitoring.
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Fredlund [Fre01] adapted the µ-calculus, which is a variant of HML with recursion, to
specify correctness properties in Erlang albeit for model-checking purposes. Fredlund
also gives a formal semantics for Erlang but does not provide a monitoring semantics
for the tracing functionality available in the EVM.

Finally, there is work that gives translation of HML with recursion formulas to tests in
a process calculus such as CCS [Mil82]. Aceto et al. [AI99] gives such a translation,
restricting it to a subset of the HML with recursion for safety properties, similar to the
logic discussed in Section 3. Cerone and Hennessy [CH10] built on this and differen-
tiate between may and must testing. None of the synthesised CCS tests are concurrent
however; we have also already discussed how tests differ from monitors in Section 4.

8 Conclusions

We have studied the problem of ensuring monitor correctness in concurrent settings. In
particular, we have constructed a formally-specified tool that automatically synthesises
monitors from sHML formulas so as to asynchronously detect property violation by
Erlang programs at runtime. We have then showed how the synthesised monitors can be
proven correct with respect to a novel definition for monitor correctness in concurrent
settings.

The contributions of the paper are:

1. We present a monitoring semantics for a core subset of Erlang, Figures 2, 3, 4
and 5, modelling the tracing mechanism offered by the Erlang VM, and used by
asynchronous monitoring tools such as the one presented in this paper and by
others, such as Exago [DWA+10] and eLarva [CFG11, CFG12].

2. We adapt sHML to be able to specify safety Erlang properties, Def. 4. We give an
alternative, violation characterisation for sHML, Def. 5, that is more amenable to
reasoning about violating executions of concurrent (Erlang) programs. We prove
that this violation relation corresponds to the dual of the satisfaction definition of
the same logic, Theorem 1, and also prove that sHML is indeed a safety language,
Theorem 2, in the sense of [MP90, CMP92].

3. We give a formal translation form sHML formulas to Erlang expressions from
which we construct a tool, available at [Sey13], that allows us to automate concurrent-
monitor synthesis.

4. We formalise a novel definition of monitor correctness in concurrent settings,
Def. 11, dealing with issues such as non-determinism and divergence.
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5. We propose a proof technique that teases apart different aspects of the monitor
correctness definition, Lemma 4, Lemma 5 and Lemma 6, allowing us to prove
correctness in stages. We subsequently apply this technique to prove that our
synthesised monitors are correct, Theorem 3.

Future Work There are many avenues emanating from this work that are worth in-
vestigating. The Erlang monitoring semantics of Section 2 can be used as a basis to
formally prove existing Erlang monitoring tools such as [CFG11, CFG12]. There is
also substantial work to be done on logics for runtime verification; a simple example
would be extending sHML to handle limited, monitorable forms of liveness properties
(often termed co-safety properties [MP90, CMP92]). It is also worth exploring mecha-
nisms for synchronous monitoring, as opposed to asynchronous variant studied in this
paper.

The overheads of the monitors produced by our synthesis need to be assessed better.
We also conjecture that more efficient monitor synthesis, perhaps using Erlang features
such as process linking and supervision, can be attained; our framework can probably
be extended in straightforward fashion to reason about the correctness of these more
efficient monitors.

Monitor distribution can also be used to lower monitoring overheads even further [CFMP12]
and Erlang provides the necessary abstractions to facilitate distribution. Distributed
monitoring can also be used to increase the expressivity of our tool so as to handle
correctness properties for distributed programs. The latter extension, however, poses a
departure from our setting because the unique trace described by our framework would
be replaced by separate independent traces at each location, and the lack of a total or-
dering of events may prohibit the detection of certain violations [FGP11, FGP12].

There is also substantial work to be done on how to handle the violations detected,
which changes the focus from runtime verification to runtime enforcement [FFM12]. In
the case of Erlang, corrective actions may range from the complete halting of the sys-
tem, to more surgical halting of the violating actors (through exit-killing and trapping
mechanism[Arm07, CT09]), to the runtime replacement of the violating sub-system
with “limp-home” code that provides limited functionality known (a-priori) to be safe;
the latter violation handling mechanisms allow for a more pragmatic, graceful degrada-
tion of the system being analysed.
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9 Appendix

Definition 14 We define idv, ide and idg as follows:

idv(v)
def
=



{i} if v = i
idv(u) if v = µy.λx.u
ide(e) if v = µy.λx.e⋃n

i=0 idv(ui) if v = {u0, . . . un}

idv(u) ∪ idv(l) if v = u : l
∅ if v = a or x or nil or exit

ide(e)
def
=



ide(d) if e = spw d
ide(e′) ∪ ide(d) if e = e′!d or try e′ catch d or x = e′, d or e′(d)
idg(g) if e = rcv g end
ide(d) ∪ idg(g) if e = case d of g end
∅ if e = self or x or nil or exit

idg(g)
def
=

ide(e) ∪ idg( f ) if g = p→ e ; f
∅ if g = ε
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