
polyLarva: Runtime Verification with Configurable
Resource-Aware Monitoring Boundaries

Christian Colombo1, Adrian Francalanza1, Ruth Mizzi1, and Gordon J. Pace1

Department of Computer Science, University of Malta
{christian.colombo | adrian.francalanza | rmiz0015 | gordon.pace}@um.edu.mt

Abstract. Runtime verification techniques are increasingly being applied in in-
dustry as a lightweight formal approach to achieve added assurance of correct-
ness at runtime. A key issue determining the adoption of these techniques is the
overheads introduced by the runtime checks, affecting the performances of the
monitored systems. Despite advancements in the development of optimisation
techniques lowering these overheads, industrial settings such as online portals
present new challenges, since they frequently involve the handling of high vol-
ume transaction throughputs and cannot afford substantial deterioration in the
service they provide.
One approach to reduce overheads is the deployment of the verification compu-
tation on auxiliary computing resources, creating a boundary between the system
and the verification code. This limits the use of system resources with resource
intensive verification being carried out on the remote-side. However, under par-
ticular scenarios this approach may still not be ideal, as it may induce signif-
icant communication overheads. In this paper, we propose a framework which
enables fine-tuning of the tradeoff between processing, memory and communi-
cation monitoring overheads, through the use of a user-configurable monitoring
boundary. This approach has been implemented in the second generation of the
Larva runtime verification tool, polyLarva.

1 Introduction

Due to its scalability and reliability, runtime verification [2] is becoming a prevalent
technique for increasing the dependability of complex, security-critical, concurrent sys-
tems. Runtime verification broadly consists in checking for the correctness of the cur-
rent system execution at runtime; it avoids checking alternative system execution paths
and this, in turn, helps mitigate state-explosion problems associated with exhaustive
techniques such as model checking. In scenarios where delayed correctness violation
detection is unacceptable, runtime verification needs to be carried out in a synchronous
fashion with the execution of the system. Invariably, synchrony increases the interaction
with the system being monitored 1 and introduces overheads whose effects, particularly
at peak times of system load, are hard to predict and may affect adversely the system
behaviour.

1 Although the monitoring for system events and the verification of the generated events against
a specification are different operations, they are generally subsumed by the term runtime veri-
fication or runtime monitoring in the literature. We will use the terms interchangeably.

2 C. Colombo, A. Francalanza, R. Mizzi and G. J. Pace

This issue is particularly relevant to scenarios such as online betting and e-commerce
systems, where systems need to adequately handle multiple concurrent requests, result-
ing in uneven loads with peaks at particular times e.g., during an important sporting
event. The sheer size and complexity of such online portals, compounded with the
security-intensive nature of their execution (carrying a significant probability of fraud
attempts) makes synchronous runtime verification a good candidate for increased run-
time assurance. However, for this to be viable, the overheads introduced by the moni-
toring should not compromise the availability of system resources at any stage of the
execution of the system.

A possible approach to reduce the system overheads introduced by runtime veri-
fication is to deploy the synchronous verification processes onto separate computing
resources: events of interest generated by the system are sent over to the remote-side
(resources), where the necessary monitoring computation takes place and, as soon as
the remote-side deduces that the system has not violated the specification, control is
returned back to the system-side thereby allowing the system to proceed. This approach
promises to be effective when monitoring highly parallel systems because the synchrony
required between monitor and system usually concerns only a subset of the system pro-
cesses. Stated otherwise, in a system with a high degree of parallelism, the processes
that are not covered by the current runtime check may continue executing unfettered
on the system-side, without being burdened by the cost of the verification computation.
In cases of resource-intensive monitoring, this cost in (monitored) system performance
offsets any additional slowdown stemming from the added communication overhead
introduced by the distributed monitoring architecture.

For instance, consider an e-commerce system handling transactions of users that
are categorised as either greylisted (untrusted) or whitelisted (trusted) and a correct-
ness property for each greylisted user involving a computationally expensive statistical
analysis of all financial transfers performed by that user. Performing the greylisted user
checks remotely frees the system-side from the associated computational overhead, en-
suring that whitelisted users (and other greylisted users not performing a transfer at the
moment) are not affected by the monitoring computation.

However, shifting all monitor checking to the remote-side is no silver bullet. In cer-
tain cases, performing verification checks remotely is impractical because these checks
would require access to resources and state information kept by the system e.g., a lo-
cal database; a remote evaluation of these verification conditions would require either
resource replication or expensive remote access of resources. Furthermore, even when
verification checks do not require access to system-side resources, there are still in-
stances where shifting all runtime verification checks to the remote-side does not yield
the lowest level of overhead. For instance, whenever the slowdown associated with
communication outweighs the benefits gained from shifting monitoring checks to the
remote-side, it is advantageous to perform the verification check at the system-side,
circumventing any communication overhead. In the above e-commerce example, we
may have a property stating that greylisted users may not transfer more than $1000 in
a single transaction: since the cost of a single integer comparison is typically less than
that of communicating with the remote-side, it may pay to monitor the property on the
system-side.

polyLarva: Configurable Monitoring Boundaries 3

Even more complex situations may also arise. Consider again the e-commerce sys-
tem which checks greylisted users for fraud. In this case, in order to minimise monitor-
ing overhead, it may be advantageous to split the verification check across the system-
side and remote-side. More precisely, in order to avoid communication overheads the
check of whether a user is greylisted or not is performed on the system-side; this obvi-
ates the need for any communication with the remote-side (where the expensive statis-
tical check is performed) whenever the user is whitelisted.

These examples attest that, in settings where verification can be done remotely,
adequate control over where and when the verification computation is executed is es-
sential for minimising the overheads of runtime monitoring security-critical concurrent
systems. In spite of this need, the existing technologies that can be used for remote-
verification (e.g., [8]) do not offer structuring mechanisms to support the fine-grained
distribution control just discussed. In this paper, we propose a runtime verification sys-
tem with a configurable monitoring-boundary enabling the user to decide which ver-
ification tasks are to be computed on the system side and which are executed on the
remote side. This approach has been implemented in the tool polyLarva, the second
generation of the tool Larva [5], where language-support is provided to enable the user
to easily stipulate the system-monitor boundary. Such added flexibility empowers the
user to decide the best allocation strategy for the runtime check at hand.
The contributions of the paper are:

1. the presentation of a framework enabling the fine tuning of system-side and remote-
side computations;

2. showing the feasibility of the framework through its realisation in the polyLarva
tool; and

3. evaluating the approach through a number of case studies, measuring the effect of
changing the configuration of the monitoring boundary.

The paper is organised as follows. In Section 2 we present our specification logic,
the target architecture and the mapping from the logic to this architecture. Section 3
introduces the case study used to demonstrate the utility of our approach and Section 4
discusses the tests performed and the results obtained. Section 5 reviews related work
and Section 6 concludes.

2 Configuring the Monitoring Boundary

We limit ourselves to an interpretation of runtime verification that consists of two main
components. The behaviour of the system being monitored is characterised by a stream
of events which are analysed by a monitor which may be composed of various mon-
itoring tasks such as condition valuations and state updates. Our proposed framework
provides mechanisms, in the guise of a monitoring boundary, for controlling the local-
isation of the monitoring tasks, when setting up the runtime verification configuration.
One can therefore use this boundary to minimise the execution overhead introduced by
the instrumented runtime verification on the system. An important caveat is that the par-
titioning of monitoring components between the system-side and remote-side largely
depends on the kind of logic used and the forms of actions handled by the monitor.

4 C. Colombo, A. Francalanza, R. Mizzi and G. J. Pace

For instance, if the logic is a simple one limited only to identifying undesirable events,
i.e., no temporal event ordering, then verification essentially requires little computation,
which does not leave much scope for a monitoring boundary. However in more complex
logics, such as LTL e.g., [7, 10], the monitor has to keep track of how much of the LTL
formula one has already matched. Similarly, in logics expressed as symbolic automata
e.g., [5], one can directly program the monitor state; this gives more flexibility as to
how much and which parts of the code are to be executed on either side. Analogously,
the extent and the nature of the actions taken by the monitor also determines the level
of placement manouvering that can be performed to minimise overheads.

2.1 Monitoring using polyLarva

Our monitoring framework polyLarva uses a guarded-command style specification lan-
guage. Properties are expressed as a list of rules of the following form:

event | condition 7→ action
Whenever an event (possibly carrying parameters) is generated by the system, the

list of monitor rules is scanned for rule matches relating to that event. If a match is
found, the expression specified in the condition of the rule is evaluated and, if satisfied,
the action is triggered.

Example 1. Consider a scenario in which one desires to monitor whether a greylisted
user pays using a credit card after verifying it, blacklisting offending users if this rule
is violated. This may be expressed in terms of the following two rules for each active
user:2

register(user, card) | isGreylisted(user) 7→ registeredCards[card] := true;
pay(user, card) | isGreylisted(user) ∧ ¬registeredCards[card] 7→ blacklist(user);

In the above rules, register and pay are system events, parametrised by the values
user and card; isGreylisted(user) and ¬registeredCards[card] are conditions, while
registeredCards[card] := true and blacklist(user) are actions taken by the system.
While some conditions and actions may be cheap to perform (e.g. registeredCards[card] :=
true consists of a single assignment), others may be more computationally expensive
(e.g. a condition checking whether an ongoing transaction is fraudulent or not may re-
quire more computation).

2.2 The target architecture

Our approach gives sufficient high-level mechanisms such that a user can configure
the monitoring boundary for synthesised lists of rules discussed in Section 2.1. This
architecture allows for the possibility of having two sub-monitors that are automati-
cally synthesised from a polyLarva script, one on the system-side and the other on
the remote-side as shown in Figure 1. Communication across nodes is carried out using
socket connections: socket-based communication is low-level enough to be optimisable,
while also providing the flexibility of technology-agnosticism.3

2 For simplicity, we assume that the array of registered cards starts off with all cards unregistered,
and that only a single user may access a particular card.

3 As future work polyLarvawill be extended to support multiple technologies.

polyLarva: Configurable Monitoring Boundaries 5

compiles into compiles into

connection
socket

 SYSTEM

Specification Script

polyLarva
generated by

 MONITOR

Remote−Side

MONITOR

SYSTEM−SIDE

and weaved into system

generated by polyLarva

System−Side

message passing
monitor−related

Fig. 1. Separation of monitor and system in polyLarva

The typical monitoring control flow over such an architecture proceeds as follows:
(i) Events generated on the system-side trigger matching rules; (ii) Once a matching
rule is found, the condition to be evaluated is determined. This condition is made up of
a conjunctive sequence of (arbitrarily complex) basic conditions that are joined using
normal negation, disjunction and conjunction operators. The basic conditions are cat-
egorised as either system-side conditions, i.e., predicates which are to be evaluated on
the system-side, or remote-side conditions, i.e., predicates which should be evaluated at
the remote-side; (iii) The evaluation of the condition starts and control is passed back
and forth between the monitoring component on the system-side, whose role is that of
evaluating the system conditions, and the monitoring component on the remote-side,
whose role is to evaluate monitor conditions and coordinate control associated with
the boolean operators. (iv) If the condition succeeds, the list of actions dictated by the
matched rule is executed sequentially. Once again, actions are categorised as system-
or remote-side, which entails passing control back and forth between the two sides; (v)
Upon termination of the last action, control is passed back to the system to proceed.

Numerous variations and optimisations can be performed over the basic architec-
ture of the above control flow. For instance, it may be beneficial to perform the rule
matching process on the system-side, which avoids the overhead of communicating
the event to the remote-side when a rule is not matched. In cases when the matched
rule consists solely of system conditions and system actions, communication with the
remote-side can be avoided altogether if the system-side monitoring component is en-
trusted with rule coordination capabilities. A similar situation may arise if part of the
monitoring state is held at the system-side. Most of these optimisations are however
case-dependent and do not apply to all verification specifications in general. Thus, such
decisions cannot be automated: their control is best elevated at specification level and
left to the verification engineer.

6 C. Colombo, A. Francalanza, R. Mizzi and G. J. Pace

2.3 The Implementation

In polyLarva the rules presented in Example 1 are coded as shown in Program 2.1.
The rules are enclosed within a rules block, ¬, which replicates them for every new
user session that is opened, ­. The state, conditions and actions blocks define
specification-specific monitor state, conditions and actions respectively that are used
later in the rules section.

Program 2.1 Monitoring greylisted users for card registration
­ upon (newUserSession(u)) {

state {
remoteSide { boolean[] registeredCards; }

}
conditions {
systemSide { isGreylisted(u) = ... }

remoteSide { isRegistered(c) = { registeredCards[c] } }
}
actions {
systemSide { blacklistUser(u) = ... }

remoteSide { registerCard(c) = { registeredCards[c] := true } }
}
¬ rules {
register(u,c) \ isGreylisted(u) -> registerCard(c);
pay(u,c) \ isGreylisted(u) && !isRegistered(c) -> blacklistUser(u);

}
}

In this example, blacklistUser(u) is a system action changing the internal state
of the system relating to user u, whereas registerCard(c) is a remote action af-
fecting the remote state registeredCards (a boolean array keeping track of which
card numbers have been registered). Similarly, isGreylisted(u) is a system condi-
tion whereas isRegistered(c) is a remote condition, evaluated using the remote state
registeredCards. As a result, the first rule’s condition depends solely on system in-
formation, while the second refers to both the system state (whether a user is greylisted)
and the remote state (whether the card was previously registered).

Deciding whether to place conditions and actions on the system-side or the remote-
side to yield the minimum overhead is not straightforward and case-dependent. In the
next section we use a real-life case study to investigate the alternatives.

3 Case Study

polyLarva has been used to monitor JadaSite4 — an open source e-commerce solu-
tion written in Java, offering a range of features from back-office administration to au-

4 http://www.jadasite.com

polyLarva: Configurable Monitoring Boundaries 7

tomatic inventory control and online sales management. The case study focusses on
adding monitoring functionality to analyse user transactions in order to detect and pre-
vent fraudulent transactions. Performing fraud detection in an offline manner, through
the analysis of logs, is not ideal since by the time the analysis is carried out, a fraudulent
user may have affected multiple transactions. Synchronous monitoring, enabling block-
ing a user upon suspicion of fraud, is desirable. Unfortunately, effective fraud detection
typically requires costly analysis of the user’s history, involving multiple database ac-
cesses and processor-intensive calculations. Furthermore, since at peak times the system
may have multiple users performing transactions concurrently, reducing the overhead
is crucial.

The most straightforward partitioning is to place only parts which refer to the system
state on the system-side, and placing the rest of the code on the remote-side. Through
the code in Program 2.1 we see how polyLarva allows the actions and conditions to
be tagged in such a manner (highlighted in grey) instructing this code partitioning.
However, partitioning of code can involve more intricate situations.

Example 2. Consider the following extension to Example 1 with the property that un-
trusted customers are not allowed to perform a payment if the probability of a fraud
being committed is above a certain threshold.

pay(user, card) | ¬isWhitelisted ∧ isFraudulent(user) 7→ failTransaction(user, card);

The check for possible fraud is assumed to be a computationally expensive statistical
analysis, while the decision of whether a customer is whitelisted is assumed to depend
on the number of safely concluded payment transactions the user has already performed.
The monitoring execution of this property is depicted in Figure 2[left]), where the mon-
itor is notified of the relevant events (newUserSession and pay), updates its customer
state (increasing the number of transactions), checks any other appropriate conditions
(checks the transaction with the customer history for fraud patterns), and performs ac-
tions accordingly (stopping the transaction) before returning control to the system. Pro-
gram 3.1 shows an encoding of this example in polyLarva, except for the location of
state, conditions and actions, which will be discussed later.

Choosing the location of the monitoring code depends on different issues. For in-
stance, since the fraud check ® is assumed to be a resource-intensive operation, locating
it on the remote-side relieves the system of the overhead, thus remaining responsive to
the rest of the users. The stopping of a transaction ° is an action which affects the
system, meaning that it has to be located there. Finally, the transaction count is kept
as a monitor state, ¬, read by the monitor condition isWhitelisted ® and written to
by the verifier action incrementTransactionCount ±. This suggests that the three
entities should be co-located so as to reduce additional communication for remote state
access. Since the computation associated with this state is lightweight, it can be feasibly
located on the system-side without affecting the system performance in any consider-
able manner. The script which specifies such a boundary configuration is shown in
Program 3.2, with the resulting communication pattern shown in Figure 2[right].

Note that control may have to go back and forth the two sides multiple times due to
the way the rules are structured. From this, it should be clear that (i) from a communi-
cation point of view, it would appear to be desirable to commute the two conjuncts on

8 C. Colombo, A. Francalanza, R. Mizzi and G. J. Pace

create

System

return control

monitor

UserSession

Remote Monitor

return control

 pay

increaseCount

isWhitelisted?

isFraud?
return control

newUserSession

(a) Remote−side monitoring for fraud detection

monitor

(b) Hybrid monitoring for fraud detection

UserSession

create

System Remote Monitor

return control

newUserSession

[if not isWhitelisted] pay

isFraud?

Fig. 2. Monitoring for fraud detection.

Program 3.1 Monitoring for fraud detection
upon { newUserSession(u) } {
state {

¬ integer transactionCount;
}
conditions {

­ isWhitelisted = ...transactionCount...
® isFraudulent(u) = ...CPU intensive algorithm...

}
actions {

¯ incrementTransactionCount = transactionCount++;
° stopTransaction(u,c) = ...

}
rules {

± startTransaction \ true -> incrementTransactionCount;
² pay(u,c) \ !isWhitelisted && isFraudulent(u) -> stopTransaction(u,c);

}
}

polyLarva: Configurable Monitoring Boundaries 9

Program 3.2 Tagging the case study with a monitoring boundary
­ upon newUserSession(u) {
conditions {
systemSide {
isWhitelisted(u) = {
EntityManager em = JpaConnection...
... query = em.createQuery(sql);
Long custTransNo = (Long) query.getSingleResult();
return (...custTransNo.intValue()...)

}
}
remoteSide { isFraudulent(u) = ...CPU intensive algorithm... }

}
actions {
systemSide { failTransaction(u,c) = ... }

}
¬ rules {
pay(u,c) !isWhitelisted(u) && isFraudulent(u) -> failTransaction(u,c);

}

line ² so as to avoid control going from the monitor to the system side and back, but
the high computational cost of checking for fraudulence means that we would prefer
to start by performing the cheaper check for user trust first; (ii) If the system already
keeps a record of payment transaction counts per user in its database, one may locate the
trust checking condition to the system node, thus reducing communication by remov-
ing rule ±. In general, deciding the monitoring boundary can be seen as a minimisation
problem having: a system-side and a remote-side, a number of (weighted) monitoring
tasks, and a number of weighted communication signals as shown in Figure 3 (with task
represented as boxes and communication as arrows). A minimal placement is one with
the least number weighted boxes at the system-side, as few communication weights as
possible, and having conditions which fail with a high probability as early as possible.

In the next section we give case study results corresponding to different monitoring
boundary configurations showing how selected configurations can contribute to a non-
negligible reduction of the monitoring overhead in a real-life case study.

4 Results

We have carried out a series of empirical tests showing how different monitoring con-
figurations have a substantial impact on the performance of a monitored system. The
noticeable overhead differences justify the need for a verification technique that permits
flexibility with respect to the instrumented monitoring configurations i.e., a configurable
monitoring boundary. The tests also show how, in practice, the impact on system per-
formance cannot always be fully predicted at instrumentation time. Thus, a level of
abstraction that gives high-level control over the monitoring boundary, such as that

10 C. Colombo, A. Francalanza, R. Mizzi and G. J. Pace

return

c
o

n
d

it
io

n
s

a
c
ti

o
n

s

event

control

return

System−Side

(a)

Remote−Side

(b)

System−Side Remote−Side

event

c
o
n

d
it

io
n

s
a

c
ti

o
n

s

control

return

(c)

Remote−SideSystem−Side

c
o

n
d

it
io

n
s

a
c
ti

o
n
s

event

control

Fig. 3. Monitor placement

presented for polyLarva, is required to facilitate the re-configuration of instrumented
monitors.

Our tests are carried out on the JadaSite ecommerce system introduced in Section 3.
Since the application we consider consists in a web portal handling an extensive amount
of concurrent user request, an important aspect of system performance affected by mon-
itor overheads is the Average time taken for a Payment Transaction (APT) to be pro-
cessed, which directly translates to system responsiveness. Our tests synthesise run-
time monitors for different monitoring boundary configurations for Program 3.1 using
polyLarva. Three distinct monitoring configurations were considered for our tests:

System-side monitoring (SM): Verification is entirely deployed on the system-side,
running on the same address space as the system (all tags are systemSide).

Remote-side monitoring (RM): Verification checking exclusively is carried out on
the remote-side, running on a separate machine from the system (all tags are re-
moteSide).

Hybrid monitoring (HM): Verification checking is split between the system-side and
the remote-side as in Program 3.2.

For each user-load level, we also benchmark the performance of the Unmonitored Sys-
tem (US), which helps us calculate the overhead introduced by each monitoring config-
uration.

The performance of the monitored system is benchmarked subject to user loads
ranging from 40 to 120 concurrent user requests, involving operations such as adding
items to the shopping cart, confirming payment details and executing the payment trans-
action. Load testing of the JadaSite web application, in conjunction with runtime mon-
itoring, is carried out using Apache JMeter 2.5.15. Java SE 1.6 is used for the compila-

5 http://jmeter.apache.org/

polyLarva: Configurable Monitoring Boundaries 11

tion of the JadaSite system source code and for the generation and compilation of the
polyLarva monitors. JadaSite is deployed on an Apache Tomcat 7.0.236 server running
on an AMD Athlon 64 X2 Dual Core Processor 6000+ PC, 4GB RAM, running Mi-
crosoft Windows 7. The remote-side consisted of a separate machine having an Intel(R)
Core(TM)2 Duo CPU T6400, 2GB RAM with Microsoft Windows 7 operating system.

An important aspect affecting our tests is the ratio between whitelisted and greylisted
users. This is because the verification checks specified in tests such as Programs 3.1
differentiate between whitelisted users and greylisted ones: greylisted users are subject
to a monitoring condition requiring a computationally expensive fraud check whereas
whitelisted users are not. For our experiments, two-thirds of the users are chosen to be
whitelisted and the rest are considered to be greylisted. This ratio reflects more of a re-
alistic deployment of the system where most of the users are regular users; the majority
of these regular users are most likely to become whitelisted (trusted) after a probation
period during which their transactions do not violate any verification checks.

Table 1. Average payment transaction duration for each user wrt. user load (in secs)

Setup 40 50 60 70 80 100 120

US 11.4 17.7 24.0 28.7 37.4 56.2 69.2

SM 15.5 (35%) 21.5 (21%) 28.3 (17%) 34.6 (20%) 43.1 (15%) 67.8 (21%) 107.2 (55%)

RM 13.5 (18%) 19.7 (11%) 26.8 (11%) 34.4 (20%) 41.9 (12%) 60.4 (8%) 89.9 (30%)

HM 14.2 (24%) 22.7 (28%) 26.1 (8%) 30.9 (8%) 39.2 (5%) 58.4 (4%) 84.0 (21%)

Table 2. CPU processing units used wrt. to user load

Setup 40 50 60 70 80 100 120

US 16598 21836 28340 34026 39416 58097 73266

SM 17591 (6%) 22991 (5%) 31315 (10%) 36886 (8%) 43295 (10%) 63275 (9%) 103850 (41.7%)

RM 15215 (-8%) 20971 (4%) 26470 (-6%) 33729 (-1%) 42353 (7%) 58981 (1%) 93792 (28%)

HM 16187 (-2%) 23381 (7%) 28333 (0%) 32199 (-5%) 41195 (4.5%) 60636 (4.4%) 86216 (17.7%)

The main results of the experiments measuring the APT and the respective CPU us-
age at the system-side under different configurations can be found in Table 1 (depicted
in Figure 4) and Table 2. When compared to the base APT of the unmonitored system
in Table 1, it becomes evident that system-side monitoring (SM row) introduces sub-
stantial overheads, peaking at a level of 55% increase in APT when the tests hits a user
load of 120 concurrent transations. Table 2 indicates that the sharp increase in APT can
be attributed to the increase in CPU usage at the system-side, depleting resources from

6 http://tomcat.apache.org/

12 C. Colombo, A. Francalanza, R. Mizzi and G. J. Pace

10

20

30

40

50

60

70

80

90

100

110

40 50 60 70 80 100 120

D
u

ra
ti

o
n

 in
 s

e
co

n
d

s

US

SM

RM

HM

Fig. 4. The average payment processing time wrt. user load

the execution of the system.7 Such a deterioration in system responsiveness will most
likely discourage the adoption of runtime verification checks over the live system.

Table 1 shows that one effective way of substantially reducing overhead is by em-
ploying additional resources at the remote-side and shift all verification to the auxiliary
side (RM). Figures however show that, at a load of 120 users, overhead spike even
with this monitoring strategy reaching a level of 30% overhead increase. One possible
explanation for this is that the communication channel between the system-side and
remote-side becomes saturated causing a bottle-neck in the verification operations.

Our proposal towards solving this problem is to have a Hybrid setup, HR, leaver-
aging parts of the verification on the system-side. Figures in Table 1 show that at low
user request loads, e.g., 40 and 50 users, RM performs better than a hybrid approach
because more of a less-scarce resource i.e., the communication channel, is being used
as opposed to CPU usage at the system-side. However, at higher user loads such, e.g.,
80, 100 and 120 users, the balance tips in favour of shifting some verification on the
system-side, i.e., HR, where the overheads are consistently less that in the case of RM;
at these levels, a hybrid approach manages to approximately half the overheads intro-
duced by an extreme remote-side monitoring strategy. In more realistic distributions
where the level of untrusted (greylisted) users is even lower, a hybrid approach yielded
even better results. We conducted further experiments (see Table 3) where despite user

7 Fraud checking was not memory intensive and, as a result, memory usage was not an issue.

polyLarva: Configurable Monitoring Boundaries 13

load increases, the number of greylisted users was fixed at 14 users. The results yield
more significant gains as the number of users increase.

Table 3. APT per number of users (in secs) with increasing whitelisted users

Setup 40 70 100 120

US 11.4 28.7 56.2 69.2

SM 15.5 (35%) 35.2 (22%) 62.0 (9%) 99.2 (43%)

RM 13.5 (18%) 39.0 (36%) 60.9 (8%) 72.3 (4%)

HM 14.2 (24%) 34.3 (19%) 56.6 (1%) 69.6 (1%)

In conclusion, the CPU figures obtained in Table 2 for RM and HM at low user-
request loads deserve further comment, since they appear to suggest that introducing
monitors sometimes actually reduces CPU usage. This might be attributed to reduced
context switching due to the blocked users waiting for monitor feedback.

One aspect which is hidden in this quantitative analysis is the fact that the hybrid
approach allowed for the localisation of code which goes more naturally on the system
side e.g., code accessing data that is already computed on the system side. By contrast,
in the remote monitoring approach one would have no option but to duplicate this com-
putation and the associated data, introducing computation redundancy and additional
space overheads. In fact, in cases where resources replication is either not feasible or
undesirable,8 a hybrid approach turns out to be the only viable solution between these
two alternatives.

5 Related Work

Optimisation techniques for synchronous monitoring is a key issue in runtime verifi-
cation. These techniques broadly fall under two main categories: event sampling tech-
niques and static/dynamic analysis. In the first category [1, 6] only a subset of the sys-
tem events generated are checked by the monitor, typically in line with some periodic
overhead upper limit; this arrangement allows the verification instrumentation to give
certain guarantees with respect to monitor overheads, at the expense of monitoring pre-
cision. In the second category, static analysis is performed on the monitored properties
and their instrumentation [4, 3] in order to optimise their footprint. The first class of
techniques are not directly applicable to the security-critical systems discussed in the
Introduction since certain violations may go undetected. However a degenerate case of
sampling may be used in real world instantiations of our approach acting as a method of
last resort when the verification overheads overburden the system. The second class of
techniques are complementary to our approach since the enhanced control over where to
instrument monitors gives further scope for static analysis to optimise such placements.

8 Issues such as data privacy may prove to be one such stumbling block.

14 C. Colombo, A. Francalanza, R. Mizzi and G. J. Pace

To the best of our knowledge, Java-MaC [8] is the only runtime verification tool that
implicitely places a boundary between the system and the verifier (albeit with no sup-
port for flexibility), by distributing verification across nodes and potentially lowering
monitoring overheads. The monitor can however only be located on the verifier side;
we argued earlier why this placement strategy may not always yield an optimal level of
overheads. Other tools such as JavaMOP [9] and Larva [5] can support our proposed
architecture indirectly, since they allow full Java expressivity for monitoring checks and
actions. This permits monitor instrumentation to use monitoring actions to open con-
nections and instruct remote deployment of verification checks. However, such an ar-
rangement is far from ideal as it complicates immensely the specification of properties:
it requires additional knowledge of Java distribution mechanisms, thereby discouraging
the adoption of our proposed architecture. Moreover, this indirect approach clutters the
monitoring code which, in turn, makes monitoring more error prone.

6 Conclusions and Future Work

We have proposed a novel runtime verification technique facilitating the engineering
of runtime monitoring over highly parallel systems, thus minimising the inherent over-
heads introduced by the verification process. By elevating a configurable monitoring
boundary to the specification level, the technique allows the user to offload compu-
tationally expensive verification checks to a remote site while leaveraging the added
communication overhead by keeping lightweight verification checks at the site where
the monitored system is executing.

The technique has been implemented as part of a runtime monitoring tool called
polyLarva, which takes guarded-command style specification scripts and automatically
synthesises the system instrumentation together with the respective monitor verifying
the script. The tool allows the user to specify the location of where conditions and
actions are to be executed; these delineations correspond to configurable monitoring
boundary of the technique and give control over how system resources are managed.

We have also shown how our approach enables alternative monitor configurations
that lower overheads through tests performed on an online portal handling multiple user
requests in parallel. Our results indicate that different overhead savings can be obtained
under different monitoring boundary specifications, depending on the level of service
load experienced by the system and on whether monitoring is processing or communi-
cation intensive. These results show that while resource-intensive monitoring benefits
substantially from remote monitoring, communication does not scale up as well as other
resources. Balancing resources overheads against the communication incurred turned
out to be essential to lower these overheads, and polyLarva facilitated the necessary
fine-tuning immensely.

Future Work: We plan to extend our work in various ways. We intend to further our
tests to deployment architectures involving more than one node for the remote-side of
the monitoring boundary. We are also exploring ways how to integrate our optimisation
technique with complementary techniques such as sampling. These efforts should yield
even lower monitoring overheads which would increase the appeal of the technique

polyLarva: Configurable Monitoring Boundaries 15

to real-world scenarios with more stringent performance requirements, as opposed to
security-critical systems.

Work is already underway to extend polyLarva so that it can handle monitoring of
systems that are developed using different technologies and languages, thus broadening
the appeal of the tool.9 To this end, our present monitoring boundary implementation
over TCP should facilitate technology-agnostic monitoring of multi-technology sys-
tems.

The elevation of the monitoring boundary at the specification level lends itself to
further conceptual development. We plan to extend our technique to handle dynamic
monitor partitioning across the system/remote-sides that can reconfigure itself as the
system evolves, thus adapting to changes such as fluctuating system loads. The moni-
toring boundary also gives scope for various static analyses that can be carried out on
our existing polyLarva scripts so as to obtain automated partitioning and placement of
monitors across the boundary.

References

1. Arnold, M., Vechev, M., Yahav, E.: Qvm: an efficient runtime for detecting defects in de-
ployed systems. SIGPLAN Not. 43, 143–162 (October 2008)

2. Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokol-
sky, O., Tillmann, N. (eds.): Runtime Verification - First International Conference, RV 2010,
St. Julians, Malta, November 1-4, 2010. Proceedings, Lecture Notes in Computer Science,
vol. 6418. Springer (2010)

3. Bodden, E., Chen, F., Rosu, G.: Dependent advice: a general approach to optimizing history-
based aspects. In: Proceedings of the 8th ACM international conference on Aspect-oriented
software development. pp. 3–14. AOSD ’09, ACM, New York, NY, USA (2009)

4. Bodden, E., Hendren, L., Lhoták, O.: A staged static program analysis to improve the perfor-
mance of runtime monitoring. In: ECOOP 2007 - Object-Oriented Programming, 21st Euro-
pean Conference, Berlin, Germany, July 30 - August 3, 2007, Proceedings. Lecture Notes in
Computer Science, vol. 4609, pp. 525–549. Springer (2007)

5. Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time java pro-
grams (tool paper). In: Seventh IEEE International Conference on Software Engineering and
Formal Methods (SEFM). pp. 33–37. IEEE Computer Society (November 2009)

6. Dwyer, M.B., Diep, M., Elbaum, S.: Reducing the cost of path property monitoring through
sampling. In: Proceedings of the 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering. pp. 228–237. ASE ’08, IEEE Computer Society, Washington,
DC, USA (2008)

7. Geilen, M.: On the construction of monitors for temporal logic properties. In: Runtime Veri-
fication (RV). ENTCS, vol. 55, pp. 181–199 (2001)

8. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: A run-time assur-
ance approach for java programs. Formal Methods in System Design 24, 129–155 (2004)

9. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime ver-
ification framework. International Journal on Software Techniques for Technology Transfer
(2011), to appear; http://dx.doi.org/10.1007/s10009-011-0198-6

10. Sen, K., Rosu, G., Agha, G.: Generating optimal linear temporal logic monitors by coinduc-
tion. In: Asian Computing Science Conference (ASIAN’03). vol. 2896

9 At the time of writing, polyLarva supports monitoring of systems written in Java.

