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Abstract—The use of runtime verification, as a lightweight a monitoring system which receives the events and verifies
approach to guarantee properties of systems, has been increas them according to the specification in (ii); and (v) possialy

ingly employed on real-life software. In this paper, we present faaghack loop. The ARVA architecture is no exception and
the tool LARvA, for the runtime verification of properties of has the above five components

Java programs, including real-time properties. Properties can be ’ )
expressed in a number of notations, including timed-automata A user who wants to monitor a system usinghRvA

enriched with stopwatches, Lustre, and a subset of the duration must supply the system itself — a Java program — and a
calculus. The tool has been successfully used on a number Ofset of specifications in the form of aABVA script — a

case-studies, including an industrial system handling financial . . .
transactions. LARVA also performs analysis of real-time proper- textual representation of DATES [1], similar to timed-auita

ties, to calculate, if possible, an upper-bound on the memory and €nriched with stopwatches. Using thenkva compiler the
temporal overheads induced by monitoring. Moreover, through specification is transformed into the equivalent monitgrin
property analysis, LARVA assesses the impact of slowing down the code, together with a number of aspects that extract theteven
system through monitoring, on the satisfaction of the properties  f.om the system. Aspects are generated in AspectJ, one of the
aspect-oriented implementations for Java, enabling aatiom
|. INTRODUCTION code injection without directly altering the actual codettod
system. In lARVA, apart from extracting events, aspects are

A growing area in formal methods is runtime verification
— the monitoring of the program being executed by verifyin?lso used to send feedback to the system. Note that only

e generaed evrts aganst st of poperte. A pau 1% DV Code s necessap o natumentaton s
challenging aspect is the monitoring of real-time promatti party ) '

Apart from being difficult to express and monitor, an additib properties requires some knowledge of the system soura cod
- X . . ' since most events in aARVA script include method names.
challenge in introducing real-time, is that they are notaglsv

invariant under monitoring. Monitoring introduces oveatle ~ Although the ‘native’ logic of larvA is DATE, the tool
over and above the system, which may have the side eff@lfws for properties to be written in a number of other
of affecting the validity of the properties. In our approacHOg'CS (which are internally translated into DATES) for timme

we have created a runtime verification architecture call&gonitoring. These specification languages and logics declu

LARVA.L This enables the specification of properties, includingPPC [2], Lustre [3] and a subset of the duration calculus

real-time, and the monitoring of Java programs against thélled counte.rexample traces [4]. The complete architedtu
specified properties. The tool also performs property aigly SNOWn below:
to give feedback regarding the effect of monitoring the give

properties. The tool has been applied to a number of casE S W

. : : P ; et ~ |Lustre - g
studies, including a real-life financial system handlingdit QDD LARVA Monitoring System

card transactions. B
DATE Property Analysis

. e . . As an example, consider a system where one needs to
A runtime verification architecture normally involves the " . . .
. . o . nonitor bad logins and the activity of a logged in user. By
following five components: (i) a system to be monitore . . . .
. e K : .~ having access tbadlogin goodloginandinteractevents (each
(i) a set of specifications written in some formal notatio

(iii) a stream of events extracted from the system in (i)) (i?/(,nc which corresponds to a method call in the Java program),
y one can keep a successive bad-login counter and a clock
The research work disclosed in this publication is pagtidlinded by 0 Measure the time a user is inactive. Fig. 1 shows the
Malta Government Scholarship Scheme grant number ME 367/GifidSy specification of a property stating that there are no more tha
the I\élalt% l\éatlonal Research and Innovation (R&I) Programme32i@ject two successive bad logins and 30 minutes of inactivity when
number 052. . L
logged in, expressed as a DATE automaton [1]. Transitions

1The LARVA system, including further documentation and examples, ! a
available fromhttp:/www.cs.um.edu.mt/"svrg/Tools/LARVA . have three (backslash separated) labels: (i) the evegetiitg

II. LARVA
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inferact\\t.reset(); badlogin\\c+ +; (3) allusers (3) deleteUser

o (2) addUser\\userCnt++;
. goodiogin JuserCrit== . (4) delefeUser\userCnt—;
\\t.reset();

\userCnt--;

\\userCnt=0; (5) allUsers
=
\_j (1) addUser (1) addUser
) . (2) deleteUser +
{@30%60 logout\c=0;  padiogin \serCnf-+ \userCnt>5
oy )
bad delete
GLOBAL {
VARIABLES {
GLOBAL { int userCnt = 0;
VARIABLES { }
int ¢ = 0; EVENTS {
Clock t; addUser() = { =*.addUser()}
} delUser() = { «.deleteUser()}
EVENTS { allusers() = {User u. *()}
badlogin() = {  *.badlogin()} }
clk() = {t@30 =*60} PROPERTY users {
STATES {
} BAD { toomany baddel }
PROPERTY users { NORMAL { ok }
STATES { STARTING { start }
BAD { badlogins inactive } }
NORMAL { loggedin } TRANSITIONS {
STARTING { loggedout } start -> ok [addUser()\\userCnt++;]
} start -> baddel [delUser()\\]
TRANSITIONS {
loggedout -> badlogins [badlogin\c>=2\] ok -> ok [delUser()\userCnt--]
loggedout -> loggedin [goodlogin\\t.reset();] . ok -> ok [allUsers()]
loggedout -> loggedout [badlogin\\c++;] }
loggedin -> inactive  [clk\\] }
}
} Fig. 2. The automaton andARvA code of the simplified bank system.

—

Fig. 1. The automaton andARVA code of the bad logins scenario.

}
}
it; (i) the condition which is checked before taking it; aiid)

the action performed when it is taken. A total ordering on th'g Key Feat f the Tool
transitions is used to ensure determinism. - ey Frealures ot the 100

Furthermore, one may have properties which must hold forLARVA provides three distinctive features: (1) its highly
every user in a bank, or possibly properties which should hogxpressive logic, (2) its ability to calculate time and meyno
for each account owned by each user. Consider the monitorRi¢grheads, and (3) its guarantee on real-time propertres. |
of a simplified banking system, in which we would want tavhat follows we explain each one of these features thorgughl
monitor that at any time there should never be more than fivel) A highly expressive logid. ARVA can be used to monitor
users in the bank and that a deletion does not occur whalhproperties which can be written in DATEs. In other work we
there are no users (see Fig. 2). have given an in-depth account of the expressivity of DATEs

and compared it to the expressivity of other similar tools i

To apply the above logic for each user and limit eachnis work, we choose to highlight only the two most important
user’s number of accounts, one would simply need to repla@8Pects:
GLOBALwith FOREACHIn the first line of the code shown « The tool can monitor any property written in DATES
in Fig. 2, and apply the logic to accounts instead of users as which is at least as expressive as timed automata with

follows: stopwatches — although when using the tool for hard
time constraints, one must keep in mind that in Java one
FOREACH (User u) { cannot guarantee exact timing of events (without going

for an underlying real-time virtual machine, which we

PROPERTY accts { prefer to avoid)

TRANSITIONS { o Properties can be verified for each tuple of objects.
start -> ok [addAcct()\userAcct++] Thus, a monitor is (dynamically) generated for every
ok -> ok [delAcct()\userAcct-] tuple which is active in the system being verified. Each

} instance of the monitor, which is an automaton, can
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also communicate via channels and global variables withonitors might be removed from the system and we would like
other similar automata and also with a global automatoto guarantee that the properties which were respected avill r
making the logic very expressive. main true:truth preservatiorundertime interval-compression

2) Time and memory overhead estimatioharva can Through a syntactic analysis of the propertyaRvA can
provide a compiler that accepts Lustre code as input whioh cBrovide such guarantees.
be used for monitoring. Assuming that therva compiler is Furthermore, IaRVA provides a translation from the in-
correct, no extra overheads are introduced over and abeve \thstigated subset of the duration calculus into DATES, tvhic
Lustre time and memory requirements. Thus, for the subsetgserves these guarantees.
properties expressed in Lustre and translated into DATHEsS, t As a case study of using the duration calculus for runtime
tool can calculate an upper-bound of the resources requit@dnitoring in a real-life scenario, we have used a network in
for monitoring. This is a significant advantage in securitytrusion detection system. A number of properties are espres
critical systems. Admittedly, there is a limitation as teethas duration formulae or counterexample traces, and used to
accuracy of the time required for the monitor execution indetect possible malicious activities on a network conoecti
posed by the underlying operating system and the Java thr@&@uth of these properties &retch truth-preservingi.e. if the
scheduling system. However, in security-critical systame property holds on a system, it will also hold on a slowed-
would assume that the operating system gives priority to tdewn version of the system. This fact assures us that ingerti
system being executed and that the user opts for Java Reabnitors in the system, will not cause a violation of any @& th
Time. If this is the case the accuracy limitation should r@ab monitored properties — no false negatives will occur. Tgpic
problem. The full account of this work is soon to be submitteproperties verified are:
for publication [5].

3) Composing features togethefThe tool also enables
specification of properties using Lustre and duration daku
properties on Java code. By first translating the Lustre er th
duration calculus formulae into DATESs, the script with the
translated properties can be extended so as to be agplied
eachinstance of a particular object rather then just on the
global system.

1) Connection initiation It is desirable to disable any
incoming TCP packets which do not belong to con-
nections initiated by the host machine being moni-
tored. The initialisation of a TCP connection requires
a complete three-way handshake: first a synchroniza-
tion packet from the client, then a synchronization and
acknowledgement packet from the server and another
acknowledgement from the client. If the host machine

[1l. OBSERVERMATTERS PROPERTIES receives a synchronization packet without having sent
The satisfaction of real-time properties are sensitive to 9" be{_orehand, then an outsider is trying to open a
connection.

slowing down or speeding up of the underlying system. For
example, if a system is transferred to run on a faster magchine
some properties may be violated simply due to the system run-
ning faster e.gno more than 1000 accesses to the databases
may occur every secondimilarly, other bugs may appear
when the system is slowed down ean acknowledgement
must be sent no later than 0.1s after receiving a request
In runtime verification, slowing down occurs when adding
a monitor, while speeding up may also occur if the runtime
monitors are removed at some stage. 3

A fragment of the duration calculus [6] called counterex-
ample traces [4] has been identified, for which, as long as
the events of the underlying system do not change their order
(but the intervals between them become longer or shorter) th
validity of the properties remains unchanged [7]. Thesekse
have been implemented inaRvA, thus providing guarantees
on real-time properties.

Through an analysis of the specificationARvA tries to
deduce whether adding monitors to the system, thus slowing
it down, will have an effect on the validity of the specificati The duration formulae used are universally quantified over
The tool may deduce both truth and falsity preservation undgtate variables, exploiting the inherent parametrisatiwar
slowing down. For example, consider the properg more tuples of objects used inARVA. In summary, given a property
than three bad logins are allowed in ten minutedlo matter as a counterexample trace, the following steps are required
how much a system is slowed down by monitoring, there is no monitor a Java program to detect any violations of the
possibility that such a property can be violated if it is siid property: (i) use the tool to automatically convert the coun
in the non-monitored version. In other circumstances, therexample trace into aARVA script (at this point the tool

2) Redirection of messages
In the case of a machine with a routing table, a lot of
ICMP redirect messages can cause the system to slow
down. Therefore, if a number of ICMP redirect messages
are received in a relatively short time interval, this may
be considered as a threat to the system. The property,
which disallows three redirect messages with less than
two time units between subsequent messages.

) Connection failure retries
A denial-of-service attack can be carried out by initiating
an excessive number of connection initialisations to a
server and then leaving the handshake incomplete. The
server will have to wait for each of these initialisations
to timeout. Sometimes these timeouts can cause serious
availability problems for the server because connection
requests can be issued at very high speeds. A simple
check would be to limit the number of subsequent failed
connection retries originating from the same IP address.



examines the properties and outputs the guarantees which ca
be given); (ii) relate the monitoring events to system ewvent
(such as method calls); (iii) if the property is to be morgtbr

for each object of a particular class, modify tharRvA script
accordingly; (iv) add any Java code to be invoked in case of
a violation detection; (v) compile the script to generate th
monitoring system; and (vi) run the Java program with the
generated monitoring files in place.

Note that the properties in the intrusion detection systesm a
all slowdown truth preserving, i.e. slowing down the system
will not cause the properties to be violated. For example; co
sider the fast succession of redirect messages: if thedreyu
of redirect messages does not violate the above propeetg th
is no way by which the property can be violated by slowing «
down the system. The other cases are similar.

IV. TOOL IMPLEMENTATION ISSUES

A. Monitor Management

B. Real-Time Issues

The internals of a monitoin practical terms, a monitor is

a class with a number of local variables and object refer-
ences. When monitoring individual objects, a monitor can
be thought of as a wrapper around the object (or tuple of
objects) being monitored. An indispensable method in a
monitor is theequalsmethod which enables the system to
distinguish a monitor from another. A monitor class also
includes the monitoring logic generated from DATEs and
some utility functions for display.

Creating monitorsA global-level monitor is created as
soon as classes are being loaded by the system. On the

LARVA— Safer Monitoring of Real-Time Java Programs

the system. Thus, the solution is to use a single thread
for a master clock. Each clock can register with the
master clock to be notified when a particular time period
elapses. This approach ensures that clock events are
always carried out in the correct order, i.e. ordering is not
affected by thread scheduling. The only remaining source
of non-determinism is the thread scheduling between the
master clock and the system’s threads. This problem is
lessened by giving the master clock thread a high priority.
Furthermore, the problem is almost completely avoided
if the transition triggered by the clock does not refer to
the system time and modifies only the monitor state but
not the system state.

“Pausing” time For providing deterministic behaviour
with clocks, one would usually like to work under the
assumption that time ipausedwhile the monitor is
taking a transition. This is provided to the user by
allowing access to the precise timestamp at which the
clock was triggered throughout the transition condition
and action.

Thread issuesntroducing a thread in a Java system for
the master clock might still be dangerous for the system.
The solution to this issue is to avoid modifying the sys-
tem’s state in actions triggered by clock events but simply
changing monitor values. Monitor values are guarded
with a lock such that only one thread can modify the
monitor state at any one time. This locking mechanism
also makes the tool usable with multi-threaded systems.

other hand, a lower-level monitor is created for an obje&t: Inter-Monitor Communication

as soon as a relevant event of that object is detected.

Although inter-monitor communication might sound com-

Maintaining hierarchyDue to the hierarchical nature ofplex, it is in fact quite simple at an implementation level. A
nested automata, each monitor has a reference to difannel is always global and upon the call of semdmethod,
parent, making all the parent's variables available to the proadcasts the message to all the monitors using aspect

child.

technology themselves, i.e. using the normal event-datect

Loading monitorsMonitors are stored in a hash mammechanism used for all system events.

whose key is the monitor itself. This approach provides

fast retrieval of a monitor when an applicable event causes
an update. Note that the retrieval of a monitor highly

depends on théashCodeand equals methods of the

monitored object(s).

Discarding monitorsit is challenging to decide when a

V. CASE STUDY: FINANCIAL TRANSACTIONS

Apart from the network intrusion detection systennRvA
has been applied to a real-life system — a financial system
for handling credit card transactions, monitoring a nuntfer

monitor can be discarded. For example, an object whidperesting 'p.roperties, including:
has been serialised and discarded, might be later loaded) Conditions on events and system stateAfter the

again and deserialised. Logically, the object is the same
one and it should be monitored by its existing monitor.
For this reason, it is up to the user to ws&Eeptingstates
signalling that the automaton can be discarded once it
reaches an accepting state.

Single master cloclSince using Java Real-Time is not

an option in our case, great care was taken to ensure the
best attainable accuracy. Using a thread for each clock
creates a chaos of non-determinism and possibly a great
number of threads which are a considerable overhead to

2)

execution of certain crucial events the system should
guarantee certain security conditions. For example, upon
the logging of an event, we must ensure that no credit
card numbers are stored. In the case study, this was
achieved by detecting a logging event and analysing the
string being logged.

Object life cycles Usually, an entity in a system has

a number of states through which it can go during its

lifetime. In our financial system, transactions go through

a series of states which must be traversed in a particular
order and no state should be left out for a transaction to
be successfully completed.
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3)

4)

5)

TABLE |
EXPRESSIVITY FEATURES OF VARIOUS TOOLS
[ Tool [[ LARVA | ConSpec[ Java-MOP| Java-MaC| Hawk [ Lola |
Scope Ses$./ObjP [ v Sess./Obj. | Sess. Sess. | Sess
Exceptions v v X X X X
Temporal Logics X X v X v v
Real-Time v X x Ve v x
Mobile Application Policies|| x v X X X X
Invariants v X v v X X
Feedback v Stop® v v X X
Conditions v v v v X X
Numerical Queries X X X X X v

aSessstands for a session scope (i.e. a run of the program).
bObj stands for an object scope (i.e. a monitor for each object).
CRestricted (cannot trigger clock events).

dCan be extended to support real-time.

€Can only cause the system to halt completely.

Invariants A number of attributes of an object should VII. CONCLUSION

persistently adhere to particular conditions. For example potivated by the need of better expressivity and guaran-
during the processing of a transaction a number @feq monitoring of real-time properties, we have developed
details in the transaction object cannot be changgdarya. Using a number of translations, we offer the choice
Consider the amount specified on a transaction: it is n@f yse an appropriate notation. For particular logics, weeha
desirable that at any state during the communication witfpyeloped guarantees regarding the overheads and thetimpac
the bank system, the transaction amount is doubled. of monitoring on properties. The case studies and the otgcom
Counting the number of events Certain events are of the comparison with other tools have shownRvA to be
bounded on their number of occurrences. The financiglpromising tool. We believe that the tool and its surrougdin

system under investigation requires that failed transagreory provide a better platform for the challenging moriitg
tions are retried the correct number of times. of real-time properties.
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