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Abstract Asynchronous monitoring relieves the system from add#iaverheads induced
through online runtime monitoring. The price paid with susbnitoring approaches is that
the system may proceed further despite having reached anadmas state. Any actions
performed by the system after the error occurring are uralgsi, since for instance, an
unchecked malicious user access may perform unauthorzezhs. In this paper we in-

vestigate the use of compensations to enable the undoingcbfndesired actions, thus
enriching asynchronous monitoring with the ability to oestthe system to the original
state just after the anomaly had occurred. Furthermorehaw fow adaptive synchronisa-
tion and desynchronisation of the monitor with the systemalao be achieved and report
on the use of the proposed approach on an industrial casg stwfinancial transaction

handling system.

1 Introduction

Runtime verification techniques have addressed the inagased for system correctness
as a relatively lightweight approach for system verificati@hich scales up to large systems
while still guaranteeing the detection of abnormal behawidlthough monitoring of prop-
erties is usually computationally cheap when compared ¢catftual computation taking
place in the system, the monitors induce an additional @stwhich is not always desir-
able in real-time, reactive systems. In transaction prEingssystems, the additional over-
head induced by each transaction can limit throughput aipgleruser-experience at peak
times of execution. This is particularly true in applicasowvhere load tends to converge at
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particular times. For example, in an online betting seftimge would expect a pattern of
usage which surges during particular intervals when resptime and performance are at
a premium, but with relatively low load for the rest of the &nOne approach, sometimes
adopted in such circumstances, is that of evaluating thetorerasynchronously with the

system, possibly on a separate address space. The oveshieddded to the cost of logging
events of the system, which will be processed by the monitdosvever, the downside of

this approach is that by the time the monitor has identifietbalpm, the system may have
proceeded further.

The problem is closely related to one found in long-livechsactions [16] — trans-
actions which may last for too long a period to allow for lawiof resources, but which
could lead to an inconsistent internal state if the res@uace released too early. To solve
the problem, typically one define®@mpensationdo undo partially executed transactions if
discovered to be infeasible halfway through. In the casewfiehronous monitoring, allow-
ing the system to proceed before the monitor has completetiéicks may lead to situations
where the system should have been terminated earlier. Aslovig-lived transactions, we
allow this run-ahead computation and adopt the use of cosgtiems in our setting to en-
able the undoing of system behaviour when an asynchronongondiscovers a problem
late, thus enabling the system to rollback to a sane stat@etds, in many real-life cases,
it is not realistic to assume that transactions can be undbaay time after their comple-
tion. Therefore, we enrich our compensation model with ssaparking boundaries beyond
which compensation is no longer possible. Furthermore, seting such as transaction-
processing systems, one cdfoad most of the time to run the monitors in synchrony with
the system, falling back to asynchrony only when requiregltdthigh system load. In more
stringent settings, monitors can be run asynchronously,symchronising when there is a
high risk of violation.

A compensation-aware monitoring architecture has begrosex [9] to enable loosely-
coupled execution of monitors with the system, typicallgring synchronously, but allow-
ing for de-synchronisation when required and re-syncisation when desired. Although
manual switching from synchronous monitoring to asyncbhtsmonitoring is plausible,
it is preferable to automate this process through the useuwfdtics. Thus, we propose an
extension to the existing architecture to support the ipo@tion and easy modification and
extensibility of such heuristics. As an example, we choosetaof heuristics based on a
real-life case study and implement them in terms of DATEY{ [@i§namic automata sup-
porting event-based monitoring), facilitating the intgwn with the current DATE-based
compensation-aware monitoring implementatidnyrva.

This paper is an extended and revised version of [9] withgtdlofs of the main results
and the following new contributions: (i) the compensatiood®l has been enriched to allow
scoped compensations such that once the scope is closegegsation of actions within
that scope is no longer possible; (i) we prove that the @edccompensation model is
sound; (iii) we outline possible heuristics which can bedugeautomate the decision to
switch between synchronous and asynchronous monitorisgleation of which have been
implemented in terms of other monitors; (iv) discuss how ariséics component has been
incorporated within the compensation-aware monitorirpiéecture; and (v) the case study
is further elaborated upon.

The paper is organised as follows: in section 2 we preserkgoagnd necessary to
reason about compensations, which we use to formally cteaise compensation-aware
monitoring in section 3. In section 4, we extend compengeadare monitoring to include
scopes and prove that the previous result still hold. Anigecture implementing this mode
of monitoring is presented in section 5, and we propose a Bumibheuristics and show
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how these can be incorporated within the monitoring archite in section 6. Next, we
illustrate the use of our architecture on an industrial cstady in section 7. Finally, we
discuss related work in section 8 and conclude in section 9.

2 Compensations

Two major changes occurred which rendered traditionalbdestas inadequate in certain cir-
cumstances [15,16]: (i) the advent of the Internet faddiathe participation of hetero-
geneous systems in a single transaction, and (ii) tramsectiecame longer in terms of
duration (frequently, the latter being a consequence ofdhmer). These changes meant
that it was possible for a travel agency to automaticallykbadlight and a hotel on behalf
of a customer without any human intervention — a process hwhiay take time (mainly
due to communication with third parties and payment confiilmnd and which may fail.
Resource locking for the whole duration of the transactieceine impractical since it may
cause severe availability problems. This scenario mati/tiie need for a more flexible way
of handling transactions amongst heterogeneous systeiites atlihe same time ensuring
correctness.

A possible solution is the use of compensations [15,16] vfasiee able to deal with
partially committed long-lived transactions with rela&igase. Taking again the example of
the flight and hotel booking, if the customer payment falig, agency might need to reverse
the bookings. This can be done by first cancelling the hotmation followed by the
flight cancellation, giving the impression that the boolsimgver occurred. Although several
notations supporting compensations have been proposé&dl[323], little work [5, 6] has
been done to provide a mathematical basis for compensativactness. For example, in
the case of compensating CSP (cCSP) [5], to study fileeteof the use of compensations,
it is assumed that they are perfect cancellations of pdati@ctions. This leads to the idea
that executing an action followed by the execution of its pensation, is the same as if
no action has been performed at all. In practice, it is rattedycase that two operations are
perfect inverses of each other and that after their exetutotrace is left. However, the
notion of cancellation is useful as a check to the soundnfetse dormalism.

In this section we present the necessary background natfozencellation compensa-
tions, based on [5].

2.1 Notation

To enable reasoning about system behaviour and compeamsatie will be talking about
finite strings of events. Given an alphabgtve will write 2* to represent the set of all finite
strings overr, with & denoting the empty string. We will use variabk to range over,
andv, wto range oveZ™. We will also assume actionindicating internal system behaviour,
which will be ignored when investigating the externallyible behaviour. We will writeX;

to refer to the alphabet consistingbtJ {7}.

Definition 1 Given a stringw over 2., its external manifestatigrwrittenw™7, is the same
string but dropping instances of

Two stringsv andw are said to bexternally (or observationally) equivalentrittenv =, w,
if their external manifestation is identical’™ = w™". We say that a set of string4 is
contained in another s@é’ up to external manifestation, writtés . W', if for every string
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in W, there is an externally equivalent stringdi. Set equality up to external manifestation,
W =, W, is defined as containment in both directions.

External equivalence is an equivalence relation, and arcenge up to string concatenation.

2.2 Compensations

For every event that happens in the system, we will assumevehean automatically deduce
a compensation which, in some sense, corresponds to tloe dotbe taken to make up for
the original event. Note that executing the two in sequeniienat necessarily leave the
state of the system unchanged — a typical example being freperson withdrawing a
sum of money from a bank ATM, with its compensation being tfatturning the sum but
less bank charges.

Definition 2 Corresponding to every eveatin alphabet>, its compensation will be de-
noted bya. We will write = to denote the set of all compensation actions. For simplicit
of presentation, we will assume that the set of events artdofttheir compensations are
disjoint'. Extending compensations to an alphabet enriched withrifeerial actionr, we
assume thag = 7.
We also overload the compensation operator to strings Byean such a way that the
ef — —

individual events are individually compensated, but ireree orderz = & andaw= wa. For
exampleabc= cha.

To check for consistency of use of compensations, the apprsaypically to consider an
ideal setting in which executirgg immediately followed bya will be just like doing nothing
to the original state. Although not typically the case, tigiproach checks for sanity of the
triggering of compensations.

Definition 3 The compensation cancellation of a string simplifies itsrapé by (i) drop-
ping all internal actions; and (ii) removing actions followed immediately by theinepen-
sation. We defineance(w) to be the shortest string for which, after dropping all inté
actions, there are no further reductions of the faance({w;aaw,) = cance(wiw).

Since the sets of normal and compensation events are djsptiimgs may change under
cancellation only if they contain symbols from bathand 2. Cancellation reduction is
confluent and terminates.

Definition 4 Two stringsw andw’ are said to beancellation-equivaleptrittenw =¢ W,
if they reduce via compensation cancellation to the sanmgsitance{w) = cance(w’). A
set of stringdV is said to bencluded in set Wup-to-cancellationwritten W c. W', if for
every string inW, there is a cancellation-equivalent stringifi:

Wc W EvweW- 3w e W -w=cW

Two sets are said to egual up-to-cancellatignwritten W = W', if the inclusion relation
holds in both directions.

1 One may argue that the two could contain common elements —deppsitcan either be done during
the normal forward execution of a system, or to compensate fithalraw action. However, one usually
would like to distinguish between actions taken during tbenmal forward behaviour and ones performed
to compensate for errors, and we would thus much ratherag@positas the name of the compensation of
withdraw, even if it behaves just likdeposit
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Cancellation equivalence is an equivalence relation, areddongruence up to string (and
language) concatenation. Furthermore, a string followeishcompensation cancels to the
empty string:

Proposition 1 The concatenation of a string with its compensation is chatien equiva-
lent to the empty stringéw - ww = &.

3 Compensations and Asynchronous Monitoring

In order to be able to reason about compensation-aware onioigit and its correctness
relative to regular monitoring strategies, we start by abtarising synchronous and asyn-
chronous monitoring. In the synchronous version, it is assiithat the system and monitor
perform a handshake to synchronise upon each event. Inaspnin the asynchronous ap-
proach, the events the system produces are stored iffex,land consumed independently
by the monitor, which may thus lag behind the system. We thefinel a compensation-
aware monitoring strategy, which monitors asynchronqualy makes sure to undo any
system behaviour which has taken place after the event vigicto failure.

3.1 Synchronous and Asynchronous Monitoring

We will assume a labelled transition system semantics dpbabet> for both system and
monitor. Given a class of system stagave will assume the semanties»sysC Sx 2 xS,
and similarly a relatior—mon Over the set of monitor statéd. We also assume a distinct
© € S identifying a stopped system, amle M denoting a monitor which has detected
failure. Botho and® are assumed to have no outgoing transitions.

Using standard notation, we will write —a>5ysa’ (resp.m imon nY) as shorthand for

(0,8,0") € —sys(resp. (na,M’) € —mon). We write ésys and =W>mon (wherew e 2*) to
denote the reflexive transitive closure-efsysand—mon respectively.

Definition 5 The transition system semantics of the synchronous cotiposif a system
and monitor is defined ov&x M using the rules given in Fig. 1. The rulex® defines how
the system and monitor can take a step together, whiteExr handles the case when the
monitor discovers an anomaly. A state i) is said to be (isuspended o = ©; (i) faulty
if m=®; and (iii) saneif it is not suspended unless faulty E © = m=gQ).

The set of traces generated through the synchronous cainopasii systenu- and mon-
itor m, writtentraces (o, m) is defined as follows:

traces;(o,m) = {w| 3(o”, M) - (. M) = (o', 117)}

Example 1Consider a systerR over alphabeta, b} and a monitorA which consumes an
alternation ofa andb events starting witla i.e. abab... but breaks upon receiving any other
input. The synchronous composition of the system and motates a step if and only if
both the system and the monitor can take a step on the given ifiperefore, if the system

performs eveng: (P, A) —a>H (P, A). If systemP performs &b instead, the system would
b
break: (D,A) — (@, ®)
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Proposition 2 A sequence of actions is accepted by the synchronous cdiopadia sys-
tem and a monitor, if and only if it is accepted by both the nmosrand the system acting

independently. Provided that’'mt ®, (o, m) %” (o’,m), if and only ifo =W>Syso-’ and
m%monm.

In contrast to synchronous monitoring, asynchronous rodnij enables the system and
the monitor to take steps independently of each other. Ete sf asynchronous monitoring
also includes an intermediate fier between the system and the monitor so as not to lose
events emitted by the system which are not yet consumed bydmétor.

Definition 6 The asynchronous composition of a system and a monitor, finedeover
Sx 2% x M, in terms of the three rules given in Fig. 1. RulevAcs allows progress of the
system adding the events to the intermediat@douwhile rule Ay~cy allows the monitor
to consume events from the fiber. Finally rule AyncErr suspends the system once the
monitor detects an anomaly. Suspended, faulty and sares sta defined as in the case of
synchronous monitoring by ignoring thefter.

The set of traces accepted by the asynchronous composfteyst@mo and monitor
m, writtentraces (o, m) is defined as follows:

traces) (o, M) = (W | Ao, W, ) - (0, £, m) = (o, W, ')}

Example 2Taking the same example as before, upon each step of thersgstevent is

added to the Wiier — if the system starts with an evdmt(P, &, A) i’l\l (P’,b,A). Subse-
quently, the system may either continue further, or the tooian consume the event from
the bufer and fail: ', b, A) ;’\H (P, e,®). At this stage the system can still progress further
until it is stopped by the rule #~cErr:

b T b T
(P,S,A) [ (P',b,A) I (P’,s,@) —C (P",b,®) | (@, b,®)

Proposition 3 The system can always proceed independently when asyocisfgrmoni-
tored, adding events to the jer, while the monitor can also proceed independently, con-

suming events from the fer: (i) if o =>sys0”, then(o, W, m) =, (o', w'w, m); and (ii) f

m =W>m0nnY, then(o, ww',m) ;HI (o, W', ).

3.2 Compensation-Aware Monitoring

The main problem with asynchronous monitoring is that thetesy can proceed beyond
an anomaly before the monitor detects the problem and shepsystem. We enrich asyn-
chronous monitoring with compensation handling so as tdéuactions which the system
has performed after an error is detected.

Definition 7 Compensation-aware monitoring semantiesc are identical to asynchronous
monitoring rules, but include an additional rule;w@, which performs a compensating ac-
tion for each action still lying in the biter once the monitor detects an anomaly. The rule is
shown in Fig. 1.

The set of traces generated through the compensation-a@amgosition of systeror
and monitom, writtentracesc (o, m), is defined as follows:

tracesc(o,m) = (w| 3(c”, M) - (0, &,m) =>¢ (o7, &,n7)}

Sane, suspended and faulty states are defined as in asyoghmonitoring.
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[
Synchronous Monitoring

a , a a , a
0 —sys0”, M—mon N 0 —sys0 , M—mon®
Sync 3 m+® SyNcERR 3
(o;m) — (o, ) (oom) — (0,®)

Asynchronous Monitoring

a , a
T —sys0 M — mon M
AsyNcs a AsyNcum p=
(o, w,m) — (0, wa,m) (o, aw,m) — (o, w, )
AsYNCERR T*O

(o, W, ®) ;>m (o,w,®)
Compensation-Aware Monitoring

Comp

©.Wae) o (0,W,8)
Adaptive Monitoring

REeSyNC p- DeSync p-
(o,&,m) — 4 (o, m) (o,m) — 4 (o, e,m)

L

Fig. 1 Semantics of dferent monitoring schemas

Example 3Consider the previous example with:

b b
(P.e.A) —>c (P'.b.A) —5c (P”.bb,A) —5¢ (P”.b.®) —5¢ (P, ba®) —c (0.ba®)
At this stage, compensation actions are executed for thenaatemaining in the Hier in

reverse order:

(©,ba8) “5¢ (@,b,8) e (©,6,0)

Proposition 4 States reachable (under synchronous, asynchronous angeswation-aware
monitoring) from a sane state are themselves sane. Sipifarlsuspended and faulty states.

Strings accepted by compensation-aware monitoring cahdersto follow a regular pat-
tern.

Lemma 1 For an unsuspended stée, £, m), if (o, &, m) =W>c (o,v,®), then there exist some
w1, Ws € 2* such that the following three properties hold: (i} wivwoWwo; (i) m gmon@x
(iii) Jo" -0 s

Similarly, for an unsuspended stafe, £, m), if (o, &,m) éc (o7, v,m) (with o’ # ©),
then there exists we 2* such that the following three properties hold: (i) wiv; (i)

Wq W1V ,
M=monM; (iii) o =sys0”’.

Proof The proof of the lemma is by induction on string
For the base case, with we, we consider the two possible cases separately:
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— Given that(o, &,m) éc (0,v,®), it follows immediately that- = ©, v=¢ and m= g,
and all three statements follow immediately.

— Alternatively, if(o, &, m) éc (o7,v, ), it follows immediately that = o/, v= ¢ and
m=nY. By taking w = ¢, all three statements follow immediately.

Assume the property holds for a string w, we proceed to piloaeit holds for a string wa.
By analysis of the transition rules, there are four possilégys in which the final transition
can be produced:

(a) Using the ruleAsyncErr: (o, &,m) éc (o7,v,®) e (6,v,®).
(b) Using the ruleComeB: (o, &,m) =5 ¢ (0,va,8) —¢ (0,V,®).

(c) Using the ruleAsyncs: (o,,m) =¢ (07, v, ) —wc (o, va,n).
(d) Using the ruleAsyney: (o,e,m) = (07, av,m”) —c (o, v, ).

The proofs of the four possibilities proceed similarly:

Possibility (a):
(.6.M) ¢ (07.V.8) —¢ (0.V.®)

By the inductive hypothesis, it follows that there exisfssuch that (i) w=; wyv; (ii)
Wy LWy

M =mon®,; (iii) o =sys0”.

We require to prove that there existvand w such that: (i) w =; wavweW,; (ii)

Wl AT 7 WlV‘NZ /7
M =mon®,; (iii) Jo"’" -0 = syso”’.

Taking w = w; and w = &, statement (i) can be proved as follows:

wr

=, { by statement (i) of the inductive hypothesis and
wyv

= { by definition of compensation of strings

Wy Veg

{ by choice of wand w }

W1 VWoWo

Statement (ii) follows immediately from statement (iihefinductive hypothesis and the

TAY
fact that w = w;. Similarly, from statement (iii) of the inductive hypotises =1>Sysa’,

it follows by definition of wand w, thato-wglzsysa”.
Possibility (b):

(o,e,m) :W>c (o,va,®) ic o,v,®)

By the inductive hypothesis, it follows that there exi$tamd w, such that (i) w=;
LW wyvav)

W Vaw,Wwo; (i) M =mon®; (ii)) 07" -0 = "syso”’.

We require to prove that there existvand w such that: (i) v@a =, wivweWy; (ii)

W1 ” wivawp ”
M=mon®; (iii) 0" -0 = sys0”.

Taking w = w; and w, = aw,, statement (i) can be proved as follows:
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wa
=, { by statement (i) of the inductive hypothésis
W, vaw,w;a
= { by definition of compensation of strings
w;vawbaw,
{ by choice of wand w }
W1VWo W2
Statement (ii) follows immediately from statement (iipefinductive hypothesis and the

(WAYEL
fact that w = w}. Similarly, from statement (iii) of the inductive hypotises- l=~mésys

o, itfollows by definition of wand w, thate = ¢ys0.
Possibility (c):
(08.m) =5c (0 .v.m) —5¢ (o7 va )
By the inductive hypothesis, it follows that there exi$tsarch that (i) w=, wyv; (ii)
wy LWy
M=monNT; (iiil) 0 =sys0”.
We require to prove that there exisi wuch that: (i) wa=; wyva; (i) m gmonm’; (iii)
a
o vgsyso“.
Taking w = wy, statement (i) can be proved as follows:

wa

=, { by statement (i) of the inductive hypothésis
wyva

= { by choice of w}
wiva

Statement (ii) follows immediately from statement (iihefinductive hypothesis and the

whv
fact that w = w/ . Similarly, from statement (iii) of the inductive hypotises =1>syso-”,

it follows by definition of wand the application of rulésyncs, thato vgsyso-’.
Possibility (d):

(0,6,m) =5 (07, av,m") —c (o7, v, )
By the inductive hypothesis, it follows that there existssuch that (i) w=, w)av; (ii)
w,av
M= monM”; (iil) o =>sys”’.
We require to prove that there exisg wuch that: (i) w =, wyv; (i) m %monm(; (iii)
o gsysﬂ".
Taking W = w; a, statement (i) can be proved as follows:

Wr

=, { by statement (i) of the inductive hypothésis
wjav

= { by choice of w}
W1V

Statement (i) follows from statement (ii) of the inductiypothesis, the application of
rule Asyncy, and the fact that w=w/ a.
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wjav
Statement (iii) follows immediately from statement (ifidf@ inductive hypothesis,£>SyS

o’, and the fact that w= w;a.
O

We can now prove that synchronous monitoring is equivatenbmpensation-aware moni-
toring with perfect compensations. This result ensuresainéty of compensation triggering
as defined in the semantics.

Theorem 1 Given a sane system and monitor p&t,m), the set of traces produced by
synchronous monitoring is cancellation-equivalent to fle¢ of traces produced through
compensation-aware monitoringaces; (o, m) =¢ tracesc(c, m).

Proof To prove thatraces) (o, m) Cc tracesc (o, m), we note that every synchronous tran-
sition (¢, n) —a>H (o”’,m"), can be emulated in two or three steps by the compensation-

aware transitions (three are required when the monitorspfb’,v, nv) a:T>c (o”,v,m"),
leaving the bgfer intact. Using this fact, and induction on string w, one crow that if
(o, m) =W>H (o7, m'), then (o, &, m) :v>c (07, e,m'), with w=v~". Hence,traces(c,m) C¢
tracesc(o, m).

Proving it in the opposite directiontracesc (o, m) Cc traces) (o, m)) is more intricate.

By definition, if we tracesc (o, m), then(o, &, m) éc (o7,&,m). We separately consider the
two cases of (iy” = o and (i) o’ # ©.

— When the final state is suspended £ ©):

(o, &,m) éc (©,&,n7)
= { by sanity of initial state and proposition}4
(o,e,m) %c (0,6,®)
= {bylemma 1}
77 Wl / 77 Wl /7
AW, Wo - W = WiWoWo AM=mon® Ado” - o —sysO
— { by proposition 2
Aw, Wo - W = WiWoWo A do”” - (o, m) gu (0”,®)
= { by definition oftraces;, }
Aw, Wo - W =7 WiWoWo A W1 € traces; (o, m)
= { by proposition 1
3wy - W =¢ W1 AW € traces) (o, m)

— When the final state is not suspendet £ ©):

(0,6,m) = (0, &,m)
= {bylemma 1}
W1 W1
AWy W=y W AM=monM A0 =gys0”
= { by proposition 2
Awy -w=; wy A (o, m) gu (o7, nY)
= { by definition oftraces; }
Awg - W =; W1 AW € traces) (o, m)
= { by the alphabet of synchronous monitoring
Awg - W =c Wy AWy € traces) (o, m)
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Hence, in both cases it follows that:
W € tracesc(o,m) = Iwg-W=¢ W1 AW € traces)(c,m)
From which we can conclude that:
tracesc (o, m) ¢ tracesy(o,m)

3.3 Desynchronisation and Resynchronisation

Despite compensation-awareness, in some systems it magsiralile to run monitoring

synchronously with the system for operations considergd/rionly to desynchronise the
system from the monitor again once control leaves the rigigration. In this section, we
investigate a monitoring strategy which can run both symebusly or asynchronously in
a non-deterministic manner. Any heuristic used to decidensio switch between modes
corresponds to a refinement of this approach.

Definition 8 The adaptive monitoring of a system, is defined in terms ofs§rehronous
and asynchronous monitoring rules and two additional ogiesif in Fig. 1). Rule RSync
allows the system to synchronise once th&dauis empty, while rule BSync allows the
monitor to be released asynchronously. By also includiegcdmpensation ruledse, we
obtain adaptive compensation-aware monitorirg £c)-

The set of traces generated through the adaptive compositisystemo- and monitor
m, writtentraces (o, M), is defined as follows:

traces a(o, M) & (w | 3o, W, T - (0, M) = & (07, W, M) V (0, M) == A (0, )}

The traces for compensation-aware adaptive compositémes aoc(o, m) can be similarly
defined.

Theorem 2 Asynchronous and adaptive monitoring are observationaliystinguishable:
traces a(o, m) =, traces (o, m).

Proof Proving thattraces (o, m) S traces a(o,m) is trivial since all the rules which can
be used to generate tracestnaces (o, m) are also available for traces itraces a(c, m).

Proving thattracesa(o,m) S, traces (o, m) is also easy and can be done by showing
that bothReSync and DeSy~c do not gfect traces. In fact both rules either introduce or
consume an empty fiar while adding ar to the trace — all actions which clearly leave no
effect on traces.

[}
Theorem 3 Compensation-aware adaptive monitoring is also indigtisgable from
compensation-aware monitoring up to tracésices ac(o, m) =; tracesc(o, m).
Proof The proof is similar to that of the previous theorem. |

An immediate corollary of these results is that compengeatiware adaptive monitoring is
cancellation-equivalent to synchronous monitoring.

It is important to note that the results hold about traceedence. In the case of adap-
tive monitoring, we are increasing the set of diverging agunfations since every state can
diverge through repeatedly desynchronising and resyning. One would be required to
enforce fairness constraints on desynchronising and cesgnising rules to ensure achiev-
ing progress in the monitored systems.
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4 Compensation Scopes

The compensations we have used till now in the paper undat@é actions takeafter an
error has occurred. To avoid additional complexity arisiregn compensation resolution,
we assumed that each action has a unique compensationeirdiay of its context. Two is-
sues arise from this limitation: (i) an action may be usedffedent ways, thus necessitating
different compensations inftérent parts of the program e.g. a transfer of funds can bereith
a withdrawal or a deposit, for whichftierent charges would apply when undoing; and (ii)
an action may have fierent compensations, depending on what occurred befofeeottze
action e.qg. if an account has been closed after a transéar,ith compensation should not
attempt to transfer back the funds. The first issue can beldhbg our framework by view-
ing the diferent uses as fierent actions with dierent compensations. The second is much
more involved — to solve the problem in general, and allovtireguser to program context-
sensitive compensations incurs a substantial increasegrgm complexity and hence the
possibility of errors. However, one scenario frequentlguwcng in compensations is that
actions which form part of a transaction become locked ambgsible to compensate for
once it is closed. For example, an online order may be spditarseries of transfers of funds
between accounts involving the buyer, the seller, the eowdmpany and possibly féér-
ent banks. Failure during the transaction should lead tgtbeious actions to be undone.
However, once the full order is processed, none of the stdbphthe transaction should be
undone. To address this issue, we develop an extension gfersation-aware monitoring
to handle compensation-scoping.

To handle compensation scopes, we will allow the systemrfoie two special actions:
< to open a scope, amdto close the most recently opened one. These two symbolbavill
considered as part of the alphabetnd we will assume that the system will always produce
proper scope markers — at no point will it have produced reottean «.

Definition 9 We say that a string over such an alphabet including scopkersais well-
scoped if every prefix has no more close scope markers thansmope ones. A stringis
said to be balanced, writtdmalanceds), if it contains an equal number of open and close
scope markers, and all prefixes are well-scoped.

Example 4To illustrate the use of scopes with compensation-awareitorarg, we look
at different system traces with errors captured on prefixes by thetonpindicating the
expected behaviour of the recovery mechanism upon erroowisy:

1. If the system performeab « cd » e (with each single letter indicating an action) by the
time the monitor discovered a problem after executing actjoéhe compensation mech-
anism must compensate fbr« cd » e. However, the scopa cd » cannot be undone,
meaning that we will compensate by performiig

2. If the system has, however, performaiol« cd by the time the monitor discovered a
problem after executing actiom the compensation mechanism will compensate for
b < cd by performingdcb.

3. To look at the use of subscopes, if the system’s behavidhegoint in time when the
monitor discovers an error & <« cd « e f » g, the behaviour within the subscope f »
will not be compensated for since the context is closed. Wewéehe outer scope, which
is not yet closed, will allow for compensation of actiam®, ¢, d andg, depending on
the point of the tract where the error is discovered.

4. Now consider a prefix trach « cd» e f « g of the system’s behaviour the moment an
error is discovered by the monitor after consumatige c. The actions left in the bier
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which have to be compensated for dne ef « g. Since the second scope has not been
closed, we will compensate ferf gby performinggfe. Should actiord be compensated
for? If we compensate by executidgto reverse the system to the point of error we may
run into problems since the scope closure indicates thauregs may no longer be
available. The compensation fdyshould thus not be triggered, since it appeared within
a closed scope.

Definition 10 Given a trace of actionis we definestrip(t) to be the same trace but remov-
ing away all actions occuring within a scope and any remgiipen scope markers. We
definestrip(w) to be the shortest string for which there are no further céidns of the form
strip(wy <« w » wWy) = strip(wiwz) (where« and» do not appear iw), strip(w; <« wp) =
strip(wiwe) (wheres does not appear iw,) andstrip(wy » w») = strip(wz) (where« does
not appear iwy).

Stringsw andw’ are said to becope-cancellation-equivalemrrittenw =sc W, if they
reduce via compensation cancellation and scope strippiriget same stringstrip(w) =¢
strip(w’). As before, we define what it means for a set of strings tmbleded in set Wup-
to-scope-cancellationwyritten W Csc W/, and setquality up-to-scope-cancellatipwritten
W =gcW'.

Scope stripping is well-defined and cancels with compeonisati

Proposition 5 Scope strippingstrip is a well-defined function over the domain of well-
scoped strings. Furthermore, strip@w) =sc &.

To handle scopes in compensations, we adopt the addititwesf tules to the compensation-
aware monitoring semantics. In the first two cases, wheregeope closure is found in
the bufer, the whole scope is removed before proceeding (consglegparately whether
or not the scope was opened before the error was discovered):

CLOSESCOPEV - w=w <«wW’ » with balanceqw”)
(©.W,®) —sc(O.W,®)

CLOSESCOPE - W =W >, €4 DOES NOT APPEAR IN W
©.W,8) —sc(0,¢,8)

Whenever a scope open symBaiks found, it is simply discarded, since it represents a scope
which was opened but not closed by the time the error wasifaht

ComPOPENSCOPE

(@,W 4®) —>sc (0, W,®)

The state sanity preservation result of proposition 4, alslds for scope compensation-
aware monitoring.

Proposition 6 States reachable through scope compensation-aware mimgjfoom a sane
state are themselves sane. Similarly, for suspended alty fates.

To prove that the modified system is still correct, we needrenger version of lemma
1, which caters for complete contexts which will be discdrdéhen compensations are
triggered:
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Lemma 2 For an unsuspended stafe, e, m), if (o, &,m) érsc (0,v,®), then there exist
some w, Wy € 2* such that the following three properties hold: (i} wivwestripfws); (i)

w w1V
m zlmon®; (l”) 30’” o 1:v\>l23y30'”.

Similarly, for an unsuspended stde, &,m), if (o, s, M) =c (¢, v, M) (with o” # ©),
then there exists we 2* such that the following three properties hold: (i)=w wav; (i)

w w1V
M= monM; (iil) o =>eys0”.

i

The proof of lemma 2 is almost identical to that of lemma 1, talking into account the
additional bdfer reduction rules. This allows us to prove the strongerréracstating the
correctness of scoped compensation-aware monitoring:

Theorem 4 Synchronous and compensation-aware monitoring with scbekave in equiv-
alent manner. Given a sane system and monitor @gim):

(i) A trace accepted by synchronous monitoring is also ampy compensation-aware
monitoring with scopestraces) (o, m) Csc tracessd(o, m).

(ii) A trace accepted by compensation-aware monitoringisitopes can be split into two
parts, the first of which is accepted by synchronous momigpind the second of which
is cancellation-equivalent to doing nothing:

W e tracessc(o,m) = Awy, Wo - W= WiWo AW € traces)(o, M) AWz =gc &

Proof The correctness of the first part (i) follows from thetfédnat every synchronous tran-
sition can be emulated by two or three scoped compensati@mearules. This ensures for-
ward language inclusion.

As in the proof of theorem 1, the proof of (ii) f¢w,s,m) i>sc (o,&,nY) takes into
consideration two cases: (&) = ©; and (b)o”’ # ©. Case (b) is identical to the proof of the
equivalent case in theorem 1. Case (a) can be proved as fllow

(08, m) =>sc (0,2,1M)
= { by sanity of initial state and proposition}6

(O’, &, m) %sc (@, &, ®)
= {bylemma 2

Awg, Wy W=, le\/lstrip(vv'l) AMm gmon & Add” o ggyso-”
— { by proposition 2

Awg, W - W = Wy Wi strip@w) AJo” - (o, m) g“ (0”,®)
= { by definition oftraces; }

Awg, Wi - W =, Wiwistrip@w)) Aw; € traces (o, m)
= { adding variable w = w;strip(wi) }

Elwl,vv’l,\_/v_z ‘W= WiW, A W2 = W strip(w;) A wy € traces) (o, m)
= { proposition 5}

W, Wo - W = WiWo A Wo =sc £ AW € traces;(o-, m)

This completes the proof.
i

Using this result, we can show that scoping still keeps nooimi¢y correct up to ignoring
of scope content and compensations. The semantics giveope sompensation monitor-
ing gather the scopes in thefber and only discard them while emptying thefflen. The
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advantage of this approach, is that the decision of how tdlkeatopes is left until the com-
pensation triggering phase. Alternatively, one could tdisearded actions in the fier as
soon as the system closes a scope, which is less flexible, dutesult in smaller ifiers
being used.

5 A Compensation-Aware Monitoring Architecture

Larva [11] is a synchronous runtime verification architecturepguping DATESs [10] as
a specification language. A user wishing to monitor a systeimgulLarva must supply a
system (a Java program) and a set of specifications in thedbanarva script — a textual
representation of DATEs. Using theskva compiler, the specification is transformed into
the equivalent monitoring code together with a number oéeatspwhich extract events from
the system. Aspects are generated in AspectJ, an aspesteatimplementation for Java,
enabling automatic code injection without directly alterithe actual code of the system.
When a system is monitored byakva generated code, the system waits for the monitor
before continuing further execution.

We propose an asynchronous compensation-aware monitr@hitecture and imple-
mentationcL arva, with a controlled synchronous elementclmarva, control is continually
under the jurisdiction of the system — never of the monitawver, the system exposes
two interfaces to the monitor: (i) an interface for the montb communicate the fact that a
problem has been detected and the system should stop; jad {fiterface for the monitor
to indicate which actions should be compensated. Note tieget correspond precisely to
rules AsyncErr and Gome respectively. Furthermore, the actual time of stopping laowa
the indicated actions are compensated for are decisiansgéd the system.

Fig. 2 shows the four componentsabfarva and the communication links between them.
The monitor receives system events through the eventsidtaye the log, while the system
can continue unhindered. If the monitor detects a faultpihmunicates with the system
so that the latter stops. Depending on the actions the systeried out since the actual
occurrence of the fault, the monitor indicates the actiortset compensated for.

Stop

System Monitor
Compensa]

[¢]

Events Player
Log

Ll

Fig. 2 The asynchronous architecture with compensatibnagva.

To support switching between synchronous and asynchromanstoring, asynchronisa-
tion managercomponent is added as shown in Fig. 3. All connectors in thgrdm are
synchronous with the system not proceeding after relaymevant until it receives control
from the manager. The following shows the logic of the syooigation manager:

c = proceed ; set default control to proceed
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while (c != stop)

if (monitoring_mode == SYNC)
e = in_event() ; read event from system
c = out_event(e) forward to monitor and get its resulting state
out_control(c) relay control to system

else
par ; parallel execution

el = in_event() read from system

addToBuffer(el) ; store in buffer
out_control(c) ; return control to system
with

e2 = readFromBuffer() ; read from buffer
c = out_event(e2) forward to monitor and get its resulting state

end

Des, Sy .
System Monitor

Events Events
Manager
 Stop/Cont  Stop/Cont

T

Compensate

Fig. 3 The asynchronous architecture with synchronisation asgragronisation controls.

In real-life scenarios it is usually undesirable to stop altsystem if an error is found.
However, in many cases it is notfiicult to delineate components of the system to ensure
that only the relevant parts of the system are stopped. Fonpbe, when a transaction is
carried out without necessary rights, it should be stoppeldlcampensated for. Similarly, if
a user has managed to illegally login and start a session,ahly user operations during
that session should be stopped and compensated for.

This approach of system decomposition into relatively petelent parts can be ex-
tended further to simultaneously allow synchronous andi@synous monitoring. This is
further discussed in the next section.

6 Extending the Architecture with Automatic Synchronisation and Desynchronisation
Heuristics

Synchronisation guarantees immediate identification arssiple reparation of problems,
making it desirable for parts of the system where higher déability is required. For in-
stance, if a particular transaction is considered higk-iisvould be desirable to synchronise
monitoring during the transaction, only to desynchronisescagain when a less risky part of
the system is reached. Having an architecture which allaitsising between synchronous
and asynchronous modes of monitoring requires a mechaaoiappropriately select the ac-
tive mode. Although the switching between synchronous agd@hronous monitoring can
be done manually, it is much more useful to have an automatithamism which handles
this feature.

The issue is how to assess risk associated with particaleassand actions, thus ensuring
that high risk actions are always monitored synchronodsigre are various ways in which
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this can be achieved: (i) keep track of the activities of easdr and use pattern matching
and statistics to deduce the risks associated with indatidsers; or (ii) classify transactions
according to the risk they involve, e.g. a transfer betweesea’s own accounts might be
considered as safe but spending a large sum of money mightfreotransaction has an
associated high risk factor afod is being carried out by a user tagged as risky, then one
might decide that during this action the monitor should skib synchronous mode.

In this section, we propose possible heuristics which candsel to automate such a
mechanism, @ectively determining the switching between synchronoutsasynchronous
monitoring. We also discuss implementation consideratand how these heuristics can be
incorporated ircL Arva.

6.1 Adding Heuristics to the Monitoring Architecture

An important design issue is where to decidgsgiachronisation: either within the system
itself, at the manager, or at the monitor. Leaving the denisip to the system has the ad-
vantage that the system would always be in control of the tadng mode. On the other
hand, this would add an overhead to the system; somethinghwvthe whole architecture
is meant to avoid. If heuristics are executed by the managén, synchronised and desyn-
chronised modes are possible. However, useful informdgindeciding dégsynchronisation
(such as user risk factor) might be already available withexmonitor; making it wasteful
to recalculate at the system or manager.

In our case study we opt for a monitor-side, asynchronoysydehronisation decision
where the heuristics are themselves implemented as menitbrs strategy avoids any du-
plication between monitors and heuristics while also awngjdhe introduction of additional
overheads to the system. Although this might lead to /ayshehronisation decision to be
taken late, the problem is minimised by the schedulingegsatliscussed in section 6.2.

Therefore, updating the architectural view of the systeraldi@volve adding a heuris-
tics component (to the architecture shown in Fig. 3) whidh isharge of executing heuris-
tics and signalling the manager to switch between synclueaod asynchronous monitor-
ing. Such a component requires the following connectioiis ¢onnection to the incom-
ing system events — supplying the required information fagcaiting heuristics; and (ii)
connections to the dgynchronisation signals entering the synchronisationagan The
updated architecture with these modifications is showngn i

Des" Sy Heuristics
System pu—
Events Events
Manager ST
Stop/Cont Stop/Cont )
- - Monitor
Compensate

Fig. 4 The monitoring architecture with heuristics.
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In practice, this approach requires that the monitoringesgscan handle parametrised
monitoring of transactiorigsers. Furthermore, it requires a way of decomposing thersys
into independent components which would simultaneoustyvasynchronous and asyn-
chronous monitoring. In the kind of financial systems we ames@ering (such as the case
study in the next section), such components are usuallgd@ions or users.

In fact, the monitor-side (including the manager) typigathnsists of multiple parametrised
monitors, each with its own lier, synchronisation manager and heuristics componerg. Thi
is expanded further in the following subsection.

6.2 Monitor Demultiplexing and Scheduling

Monitors incLarva are dynamically instantiated for each monitored objectslla system’s
monitor is in fact composed of many sub-monitors. For exanifpilve are monitoring a
number of properties regarding a number of transactiongdoh logged-in user, then a
monitor would be created for each property, for each traimacfor each user. For this
reason, although at a high level we have shown the architeetsi having one Ifter, in
actual fact it has a bter for each sub-monitor as illustrated in Fig. 5.

1. Demultiplexing 2. De/Synchronising ~ 3. Monitoring/Scheduling

Events .

; "|Heuristicg ; L
o Manager : High—priority :
-1 Stop/Cont Stop/Cont ; :
e 22OPEOME MMonitor | synchronised :

" Gompensaig e . scheduling

System ;

: D
. Events
.

5 - Low-priority
Desgisif/f T ! risk—ordered !
Events . scheduling

R " | Heuristics
o Manager _
- gStop/Cont =Stop/Copt /Monitor

. Compensaté

Fig. 5 The monitoring architecture with heuristics, demultiplexiand scheduling.

To coordinate the execution of the sub-monitors, upon tbeipe of a system event, the
following steps are carried out:

1. The event is replicated to all the relevant sub-monitafdsa. For example, a transac-
tion event would be copied to all Hers pertaining to sub-monitors of that particular
transaction.

2. Subsequently, if the sub-monitor is in asynchronous moatgrol is immediately passed
back to the system. Otherwise the manager first forwardsvidmet €o the heuristics and
the monitor components and waits for their response beftmwiag the system to pro-
ceed further.
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3. Given the potentially substantial number of sub-mosittine choice of a scheduling
strategy among sub-monitors might be crucial to detectlprob as early as possible. A
sensible scheduling strategy would be to associate a slihgguiority according to the
corresponding risk; the higher the risk, the higher the dalieg priority. Naturally, this
is over and above the priority that synchronised monitoosikhhave over asynchronous
monitors; to ensure minimal disruption to the system, aSyomous monitors should
only be allowed to run when no synchronous monitors are ngini

Note that by following the above steps, the priority of hstics execution is the same as that
of the corresponding sub-monitor. Given that heuristiesraarmally based on the history

of system events, heuristics can in fact be implemented astons as discussed in the next
subsection.

6.3 Implementing Heuristics as DATEs

In practice, one expects there to be a substantial overlapele monitors and heuristics.
For example to monitor for fraudulent behaviour, one wowdally try to measure how
risky a particular pattern of activities is. Such a measuarelend itself useful to decide for
or against synchronous monitoring. In this subsection westivow how DATES can be used
for this purpose.

The following features of DATEs are particularly useful forplementing heuristics: (i)
it is easy to integrate such heuristics witharva which is DATE-based,; (ii) the composi-
tionality of DATEs — diferent heuristics can be implemented as separate DATEs and th
connected together to form a single DATE through channelnsonication; (iii) LarvaStat
[8] builds upon Lsrva, extending DATES to support statistical properties; amylitiis easy
to keep track of multiple objects at a time through the dyrmaméchanism which replicates
monitors — one for each object being monitored.

Using these features and considering our case study (seseawion) we opt to imple-
ment the following heuristics for each user: (i) the monitses statistics to calculate the
risk factor depending on the series of activities which teeryperforms; and (ii) if the risk
factor exceeds a particular threshold, then the monitoorisefd to synchronise before the
end of a scope (Note that the end of a scope can be time-baged,mirchase can only be
compensated within 24 hours. In such a case the end of the seejgnalled earlier so that
there would be ample time for synchronisation and compenrsdinecessary).

Thus, we will split the implementation of the heuristicsarihe following parts: (i) a
DATE which keeps track of whether a user is currently momiosynchronously or asyn-
chronously; (ii) a DATE which keeps track of the risk factdreouser; and (iii) a DATE
which decides whether a user should be monitored synchsbnhouasynchronously upon
detecting a close-scope event based on the risk factor @mdhanicates the decision to
(). In what follows, we give the definition of these DATES:

1. Fig. 6 shows the main DATE which listens on two channgysig signifying that the
monitor should be synchronised, aagyncto signal that the monitor need no longer
remain synchronised.

As soon as the DATE receives either of these messages (fitwen wionitors assessing
whether it would be advisable to synchronise or switch tmekyonous mode), it relays
the change to the synchronisation manager. Note that siragould like to apply the

heuristics on a per-user basis, the DATE has to be paraeetios each user. The limi-
tation of this approach is that properties which span ovdtiphe users have to be very
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async?\\setManagerMode(async);

sync?\setManagerMode(sync);

Fig. 6 The DATE which listens to other DATEs for messages to syndeeoar desynchronise the monitor
from the system.

carefully devised as the monitor states dfelient users might reflectférent synchro-
nisation levels. For this reason communication across BASfould only occur through
channel communication and not through global variables.

2. The Larva framework has an extension to directly support the spetificaf statis-
tical properties called LarvaStat [8]. One of the case s&idarried out with LarvaS-
tat involved an intrusion detection system on top of an fiyese assessing each user,
and assigning him or her a risk factor. The risk factor wasudated using two main
techniques: (i) a Markov chain analysing the user’'s comnsatience, with each ftp
command being related to a risk factor, and marking the ussuspicious if the com-
mand sequence exceeds a threshold; and (ii) the use ofistdtisoments for the char-
acterisation of abnormal user behaviour, monitoring eaghr'si download and upload
behaviour patterns, and assuming a statistically preaietaattern. Similar techniques
can be used as heuristics which increase or decrease theveeraser risk factor: for
example users who use the money for a purchase are not catsaterisky, while users
who load money a number of consecutive times, perform sktraresfers and withdraw
the money are considered highly suspicious. This logic ded as a Markov chain
shown in Fig. 7(a).

cardCreation\\risk *= 1.7 closeScope\risk>threshold\sync!
loadMoney\\risk *= 1.3 revise?\risk<threshold\async!
purchase\\risk *= 0.5
transfer\\risk *= 1.2
withdraw\\risk *= 2
revisel

risk= threshold = 2

(@ (b)

Fig. 7 The DATEs which track the user risk factor and notifies of & deange over channetvise(a) and
decides whether to synchronise or desynchronise (b).

3. Fig. 7(b) illustrates the DATE which would force a monitoisynchronise (by sending a
signal to the main DATE (Fig. 6)) in case a closing scope adsaletected and the risk
factor of the corresponding user is higher than the thresioh the other hand, when
the risk goes below the threshold, the monitor is desyndbednfrom the system. Note
that new users are considered risky and thus their risk fastmitialised to a higher
value than the threshold. Such users are only considere@gaf carrying out a pattern
of non-risky transactions.
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In what follows, we describe a real-life case study where BAEuristics similar to the ones
described above have been used to prioritise the monitafingers with high perceived
risk.

7 Case Study

We have appliedL arva on Entropay, an online prepaid payment serviffered by Ixaris
Systems Ltd. Entropay users deposit funds through funding instrum@nish as their own
personal credit card or through a bank transfer mechanischspend such funds through
spending instruments (such as a virtual VISA card or a Ri&dtistercard). The service is
used worldwide and thousands of transactions are processadaily basis.

The advantage of applying the proposed architecture t@Pair is that the latter already
incorporates compensations in its implementation. The sagdy is further simplified by
the fact that properties are not monitored globally buteatbn a per user or per credit
card basis. Therefore, when a problem is found with a pdaticuser or card, only the
compensations for that particular entity need to be trigder

The case study implementation closely follows the architecdescribed above with
two control connections: one with an interface for stoppifrgroPay with respect to a
particular user and another to the compensation interfaéatvoPay, through which the
monitor can cause the system to execute compensations.

In what follows, we give a classification of properties whighre monitored success-
fully and how these are compensated in case of a violaticecten.

Life cycle: A lot of properties in Entropay depend on whictaph of the life-cycle an entity
is in. Fig. 8 is an illustration of the user life-cycle, stag with registration and activa-
tion, allowing the user to login and logout (possibly camgyout a series of operations
in between), and finally, the possibility of freezingfreezingdeleting a user in case of
inactivity.

register

operation
activate

login

Logged
L

unfreeze logout

Fig. 8 The lifecycle property.

Implicitly, such a property checks that for a user to perfaparticular operation and
reach a particular state, the user must be in an approptaite  a life cycle property
is violated, the user actions carried out after the viotatice compensated and the user

2 http://www.ixaris.com
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state is corrected. For example, if a user did not login andaged to carry out a trans-
fer, then as soon as the monitor detects the violation, agpiog user operations are
stopped and the illegal transfer is compensated.

Real-time: Several properties in Entropay, have a reat-@ement. For example, a user
account which is inactive for more than six months is frodéfreezing does not take
place, then, upon detection, the monitor issues a compendat any actions carried
out after the expected freezing and freezes the user account

Rights: User rights are a very important aspect of Entrapagturity. A number of trans-
actions require the user to have the appropriate rightsdeftransaction is permitted.
If a transaction is carried out without the necessary rights compensated.

Amounts: There are various limits (for security reasons)renfrequency of certain trans-
actions and the total amount of money which these transectionstitute. If a user is
found to have carried out more transactions than allowexh the excess transactions
are compensated. Similarly, transaction amounts whictegord the allowed threshold
are compensated for.

The case study was successfully executed on a sarfitdadbase of 300,000 users with
around a million virtual cards. A number of issues have bestealed through the mon-
itoring system: (i) not all system activities were recordsxhsistently; (i) some system
state was found to be inconsistent, e.g. certain cards widrk marked as inactive were
still found to be active; (iii) in some exceptional casesteyn limits did not tally with the
overall balance of the transactions monitored.

Although the current properties being monitored on Entyape relatively light-weight,
due to security and performance considerations, it is nsiralde to run the monitor syn-
chronously when there is no clear evidence of specificaii@aton. Users which pose little
or no risk to the system and which have been using the systearfomber of years should
not sufer any service deterioration. The conciliatory approacblakva would guarantee
added security with the cost of logging under normal executvhile incurring overhead
only when there is convincing evidence that something iswyro

7.1 Real-Life Traces

To demonstrate the results of our case study, in this stibsege give three anonymiséd
system traces in which problems were discovered.

In the following traces, we assume that any transactioristawith > signifies nor-
mal behaviour while those starting with represent the corresponding compensation. A
transaction with neither symbols does not have a compemsaturthermore, a number of
transactions do not have a closing scope, meaning that #me\oe compensated at any
time after their occurrence. These include user login artdalicredit card creation. On the
other hand, for the rest of the compensable activities, gy scope is time-bound. For
simplicity we assume that the time limit always occurs onarhefter the completion of
the activity. This approach to scoping might seem at odds thi¢ theory presented earlier
where scopes cannot intersect (except by inclusion). Hewevpractice, thelL arva would
have a monitor for each transaction and thus the scopes weutt intersect locally.

The following are excerpts from the system log merged withmitoo actions:

3 User information was obfuscated for the purpose of this study
4 Due to privacy considerations the data in certain fields cabe exposed.
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No rights issue: After encountering traces such as the oesepted below, the monitor
reported that some actions were carried out without thessacg rights. For example
a user requires a special right to be allowed to login, toteraavirtual credit card and
also to load money onto the credit card. The following traes ¥ound:

Timestamp: User: Transaction: Amount :

13:00:35 5-5-2010 userl account registration n/a
... a monitor is dynamically created for userl with default risk factor 3 ...

13:05:41 5-5-2010 userl >account activation n/a

13:05:45 5-5-2010 userl >logged in n/a
... userl logged in without having the right ...

13:07:10 5-5-2010 userl >created virtual credit card n/a
... risk factor for userl increases to 5.1 ...

13:12:06 5-5-2010 userl >loaded money onto virtual credit card £100

. risk factor for userl increases to 6.63 ...
. monitor detects rights violation ...
... monitor initiates compensation ...
13:12:52 5-5-2010 userl <withdraw money from virtual credit card £100

13:12:05 5-5-2010 userl <delete virtual credit card n/a
13:12:10 5-5-2010 userl <logged out n/a

In this trace the monitor was run asynchronously with a higbrity scheduling. Once
the monitor detected the violation, the transactions whimturred after the illegal login
were compensated (see last three trace entries).

Late freezing of user accounts: According to the systemifipation, after six months of
user monetary inactivity, i.e. no transactions involvingrmay are carried out, the user
account is frozen. Nonetheless, traces such as the follparie were discovered:

Timestamp: User: Transaction: Amount :
15:00:38 8-6-2010 user2 account registration n/a
... a monitor is dynamically created for user2 with default risk factor 3 ...
15:15:31 8-6-2010 user2 >account activation n/a
15:15:33 8-6-2010 user2 >granted login, card creation rights n/a
15:15:45 8-6-2010 user2 >logged in n/a
15:35:45 8-6-2010 user2 logged out n/a
18:12:14 5-9-2010 user2 >logged in n/a
18:42:55 5-9-2010 user2 logged out n/a
... by now the account of user2 should have been frozen ...
17:52:21 8-12-2010 user2 >logged in n/a
17:55:50 8-12-2010 user2 >created virtual credit card n/a

. risk factor increases to 5.1 ...
. monitor detects unfrozen account ...
... monitor initiates compensation ...
18:00:12 8-12-2010 user2 <delete virtual credit card n/a

18:00:15 8-12-2010 user2 <logged out n/a
18:00:20 8-12-2010 user2 account frozen n/a

In the above trace, there are two compensating activitiesshwhave been suggested
by the monitor upon the time of detection (third and secoaddrentries from below).
The last activity is the correction which is carried out asrection after the synchro-
nisation (of the system and the monitor) is complete. Naa afthough the risk factor
for this user was relatively high (ensuring favourable sicti@g), this could not lead to
synchronisation since no scope closes were encountered.

Excessive money loading to credit cards: The system’s basilogic imposes limits on the
amount of money which can be loaded onto a virtual credit each day, each week
and each month. However, two traces similar to the followirege discovered where
the limit for user3for a day was £2000.

Timestamp: User: Transaction: Amount :
. risk factor for user3 is 1.6 ...
11:05:15 7-10-2010 user3 >logged in n/a

11:12:16 7-10-2010 user3 >loaded money onto virtual credit card £1000
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. risk factor for user3 increases to 2.08 ...

11:25:44 7-10-2010 user3 logged out n/a
. monitor synchronises at 12:13:20
13:15:35 7-10-2010 user3 >logged in n/a

. user3 attempts to load £1500 onto virtual credit card ...

. risk factor for user3 increases to 2.704 ...

. monitor detects violation and stops the activity ...
In this case, the risk associated witker3exceeded the threshold and thus upon the
closing scope of the money load, the monitor was synchrdnidete that for this reason
the system was immediately stopped when attempting to ahewser to load money
which exceeded the limit.

Notwithstanding rigorous testing, unexpected behavidiliraccurs in complex systems
such as Entropay. Although the issues detected and shovire iaktove traces are minor
issues, having monitors in place with automated compergatechanisms has thus been
shown to provide an extra security layer to the benefit of tie@rtess and the clients.

8 Related Work

In principle, any algorithm used for synchronous monitgraan be used for asynchronous
monitoring as long as all the information available at nniis still available asynchronously
to the monitor through some form of fiar. The inverse, however, is not always true because
monitoring algorithms such as [21] require that the congpligice is available at the time of
checking. In our case, this was not an option since our mohés to support desynchroni-
sation and resynchronisation at any time during the praogss the trace.

There are numerous algorithms and tools [1,2,7,13,1411822 which support asyn-
chronous monitoring — sometimes also known as trace chgakirffline monitoring. A
number of these tools and algorithms [1,2,7,21] suppory aslynchrony unlike our ap-
proach which supports both synchronous and asynchronqueaxghes. Furthermore, al-
though a number of approaches [13, 14, 18, 22] support boithsgnous and asynchronous
monitoring, no monitoring approach of which we are awarebig & switch between syn-
chronous and asynchronous monitoring during a single ¢ixecu

Although the idea of using rollbacks (or perfect compeimse) as a means of synchro-
nisation might be new in the area of runtime verifications tisi not the case other areas,
such as distributed games [12,19, 20]. The problem of Higied games is to minimise the
effects on the playing experience due to network latencies. geveral approaches taken
are pessimistic and optimistic synchronisation mechasidthe former waits for all parties
to be ready before anyone can progress while the latter sléaxeh party to progress and
resolve any conflicts later through rollbacks.

The problem which we have addressed in this work is a varibihteodistributed game
problem with two players: the system and the monitor. In alamfashion to game syn-
chronisation algorithms, the system rolls-back (or conspégs) to revert to a state which is
consistent with the monitor.

9 Conclusions and Future Work

Notwithstanding the rigorous testing which critical systendergo, problems still arise par-
ticularly due to the unpredictable environment under wisicbh systems operate. This sce-
nario motivates the need for monitoring such systems durorgnal use where the occur-
rence of an error might imply serious repercussions. Howéve problem with monitoring
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is that it adds overhead to the system which might alreadynolerupressure during peak
hours of usage. This motivates the use of asynchronous onimgjtwhich minimises the
overhead to logging system events. The problem with asyncius monitoring is that upon
the detection of a problem, it might be too late to take anyemtive measures. Adaptive
compensation-aware monitoring is a conciliatory approabich allows the monitoring
architecture to switch between synchronous and asynchsommnitoring, using compen-
sations to restore the system state in case an error is eétate.

In this paper we extended compensation-aware monitorifgitalle scopes such that
when a compensation terminates, it is no longer compenskbtéhermore, we have ex-
tended the architecture to include heuristics which are tbhutomatically steer the moni-
toring system from synchrony to asynchrony and vice-veéksa heuristic example we have
demonstrated the use of perceived user risk for switchimgdoitor synchrony upon scope
closure detection.

A significant limitation of our work is the assumption thatngoensations are associ-
ated to individual actions. Apart from the fact that this htigot always be the case, this
approach is highly inflexible as one cannot simultaneoustymensate for several actions.
In the future, we aim to lift this limitation by introducing more structured approach to
compensation handling.

Another possible direction for future work is to support gensating monitoring which
is not constrained to compensate only foffbted actions. This can be useful for example
in the case of fraud detection where violation can be dedeletie even when monitoring
synchronously, and in which case one may desire to undoicextdions which took place
before the violation.
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