
Formal Methods in Systems Design manuscript No.
(will be inserted by the editor)

Safer Asynchronous Runtime Monitoring Using
Compensations

Christian Colombo · Gordon J. Pace ·
Patrick Abela

Received: date/ Accepted: date

Abstract Asynchronous monitoring relieves the system from additional overheads induced
through online runtime monitoring. The price paid with suchmonitoring approaches is that
the system may proceed further despite having reached an anomalous state. Any actions
performed by the system after the error occurring are undesirable, since for instance, an
unchecked malicious user access may perform unauthorized actions. In this paper we in-
vestigate the use of compensations to enable the undoing of such undesired actions, thus
enriching asynchronous monitoring with the ability to restore the system to the original
state just after the anomaly had occurred. Furthermore, we show how adaptive synchronisa-
tion and desynchronisation of the monitor with the system can also be achieved and report
on the use of the proposed approach on an industrial case study of a financial transaction
handling system.

1 Introduction

Runtime verification techniques have addressed the increasing need for system correctness
as a relatively lightweight approach for system verification, which scales up to large systems
while still guaranteeing the detection of abnormal behaviour. Although monitoring of prop-
erties is usually computationally cheap when compared to the actual computation taking
place in the system, the monitors induce an additional overhead which is not always desir-
able in real-time, reactive systems. In transaction processing systems, the additional over-
head induced by each transaction can limit throughput and cripple user-experience at peak
times of execution. This is particularly true in applications where load tends to converge at

The research work disclosed in this publication is partially funded by the Malta National Research and Inno-
vation (R&I) Programme 2008 project number 052.

C. Colombo, G. J. Pace
Dept. of Computer Science,
University of Malta, Malta
E-mail: {christian.colombo, gordon.pace}@um.edu.mt

P. Abela
Ixaris Ltd, Malta
E-mail: patrick.abela@ixaris.com

2 Christian Colombo et al.

particular times. For example, in an online betting setting, one would expect a pattern of
usage which surges during particular intervals when response time and performance are at
a premium, but with relatively low load for the rest of the time. One approach, sometimes
adopted in such circumstances, is that of evaluating the monitors asynchronously with the
system, possibly on a separate address space. The overhead is reduced to the cost of logging
events of the system, which will be processed by the monitors. However, the downside of
this approach is that by the time the monitor has identified a problem, the system may have
proceeded further.

The problem is closely related to one found in long-lived transactions [16] — trans-
actions which may last for too long a period to allow for locking of resources, but which
could lead to an inconsistent internal state if the resources are released too early. To solve
the problem, typically one definescompensations, to undo partially executed transactions if
discovered to be infeasible halfway through. In the case of asynchronous monitoring, allow-
ing the system to proceed before the monitor has completed its checks may lead to situations
where the system should have been terminated earlier. As with long-lived transactions, we
allow this run-ahead computation and adopt the use of compensations in our setting to en-
able the undoing of system behaviour when an asynchronous monitor discovers a problem
late, thus enabling the system to rollback to a sane state. However, in many real-life cases,
it is not realistic to assume that transactions can be undoneat any time after their comple-
tion. Therefore, we enrich our compensation model with scopes marking boundaries beyond
which compensation is no longer possible. Furthermore, in asetting such as transaction-
processing systems, one can afford most of the time to run the monitors in synchrony with
the system, falling back to asynchrony only when required due to high system load. In more
stringent settings, monitors can be run asynchronously, only synchronising when there is a
high risk of violation.

A compensation-aware monitoring architecture has been proposed [9] to enable loosely-
coupled execution of monitors with the system, typically running synchronously, but allow-
ing for de-synchronisation when required and re-synchronisation when desired. Although
manual switching from synchronous monitoring to asynchronous monitoring is plausible,
it is preferable to automate this process through the use of heuristics. Thus, we propose an
extension to the existing architecture to support the incorporation and easy modification and
extensibility of such heuristics. As an example, we choose aset of heuristics based on a
real-life case study and implement them in terms of DATEs [10] (dynamic automata sup-
porting event-based monitoring), facilitating the integration with the current DATE-based
compensation-aware monitoring implementation,cLarva.

This paper is an extended and revised version of [9] with fullproofs of the main results
and the following new contributions: (i) the compensation model has been enriched to allow
scoped compensations such that once the scope is closed, compensation of actions within
that scope is no longer possible; (ii) we prove that the enriched compensation model is
sound; (iii) we outline possible heuristics which can be used to automate the decision to
switch between synchronous and asynchronous monitoring, aselection of which have been
implemented in terms of other monitors; (iv) discuss how a heuristics component has been
incorporated within the compensation-aware monitoring architecture; and (v) the case study
is further elaborated upon.

The paper is organised as follows: in section 2 we present background necessary to
reason about compensations, which we use to formally characterise compensation-aware
monitoring in section 3. In section 4, we extend compensation-aware monitoring to include
scopes and prove that the previous result still hold. An architecture implementing this mode
of monitoring is presented in section 5, and we propose a number of heuristics and show

Safer Asynchronous Runtime Monitoring Using Compensations 3

how these can be incorporated within the monitoring architecture in section 6. Next, we
illustrate the use of our architecture on an industrial casestudy in section 7. Finally, we
discuss related work in section 8 and conclude in section 9.

2 Compensations

Two major changes occurred which rendered traditional databases inadequate in certain cir-
cumstances [15,16]: (i) the advent of the Internet facilitated the participation of hetero-
geneous systems in a single transaction, and (ii) transactions became longer in terms of
duration (frequently, the latter being a consequence of theformer). These changes meant
that it was possible for a travel agency to automatically book a flight and a hotel on behalf
of a customer without any human intervention — a process which may take time (mainly
due to communication with third parties and payment confirmation) and which may fail.
Resource locking for the whole duration of the transaction became impractical since it may
cause severe availability problems. This scenario motivated the need for a more flexible way
of handling transactions amongst heterogeneous systems while at the same time ensuring
correctness.

A possible solution is the use of compensations [15,16] which are able to deal with
partially committed long-lived transactions with relative ease. Taking again the example of
the flight and hotel booking, if the customer payment fails, the agency might need to reverse
the bookings. This can be done by first cancelling the hotel reservation followed by the
flight cancellation, giving the impression that the bookings never occurred. Although several
notations supporting compensations have been proposed [3–5,17,23], little work [5,6] has
been done to provide a mathematical basis for compensation correctness. For example, in
the case of compensating CSP (cCSP) [5], to study the effect of the use of compensations,
it is assumed that they are perfect cancellations of particular actions. This leads to the idea
that executing an action followed by the execution of its compensation, is the same as if
no action has been performed at all. In practice, it is rarelythe case that two operations are
perfect inverses of each other and that after their execution no trace is left. However, the
notion of cancellation is useful as a check to the soundness of the formalism.

In this section we present the necessary background notionsof cancellation compensa-
tions, based on [5].

2.1 Notation

To enable reasoning about system behaviour and compensations, we will be talking about
finite strings of events. Given an alphabetΣ, we will write Σ∗ to represent the set of all finite
strings overΣ, with ε denoting the empty string. We will use variablesa, b to range overΣ,
andv, w to range overΣ∗. We will also assume actionτ indicating internal system behaviour,
which will be ignored when investigating the externally visible behaviour. We will writeΣτ
to refer to the alphabet consisting ofΣ ∪{τ}.

Definition 1 Given a stringw overΣτ, its external manifestation, written w−τ, is the same
string but dropping instances ofτ.
Two stringsv andw are said to beexternally (or observationally) equivalent, writtenv=τ w,
if their external manifestation is identical:v−τ = w−τ. We say that a set of stringsW is
contained in another setW′ up to external manifestation, writtenW⊆τW′, if for every string

4 Christian Colombo et al.

in W, there is an externally equivalent string inW′. Set equality up to external manifestation,
W=τ W′, is defined as containment in both directions.

External equivalence is an equivalence relation, and a congruence up to string concatenation.

2.2 Compensations

For every event that happens in the system, we will assume that we can automatically deduce
a compensation which, in some sense, corresponds to the action to be taken to make up for
the original event. Note that executing the two in sequence will not necessarily leave the
state of the system unchanged — a typical example being that of a person withdrawing a
sum of money from a bank ATM, with its compensation being thatof returning the sum but
less bank charges.

Definition 2 Corresponding to every eventa in alphabetΣ, its compensation will be de-
noted bya. We will write Σ to denote the set of all compensation actions. For simplicity
of presentation, we will assume that the set of events and that of their compensations are
disjoint1. Extending compensations to an alphabet enriched with the internal actionτ, we
assume thatτ = τ.

We also overload the compensation operator to strings overΣτ, in such a way that the
individual events are individually compensated, but in reverse order:ε

def
= ε andaw

def
=wa. For

example,abc= cba.

To check for consistency of use of compensations, the approach is typically to consider an
ideal setting in which executinga, immediately followed bya will be just like doing nothing
to the original state. Although not typically the case, thisapproach checks for sanity of the
triggering of compensations.

Definition 3 The compensation cancellation of a string simplifies its operand by (i) drop-
ping all internal actionsτ; and (ii) removing actions followed immediately by their compen-
sation. We definecancel(w) to be the shortest string for which, after dropping all internal
actions, there are no further reductions of the formcancel(w1aaw2) = cancel(w1w2).

Since the sets of normal and compensation events are disjoint, strings may change under
cancellation only if they contain symbols from bothΣ andΣ. Cancellation reduction is
confluent and terminates.

Definition 4 Two stringsw andw′ are said to becancellation-equivalent, written w=c w′,
if they reduce via compensation cancellation to the same string: cancel(w) = cancel(w′). A
set of stringsW is said to beincluded in set W′ up-to-cancellation,written W ⊆c W′, if for
every string inW, there is a cancellation-equivalent string inW′:

W⊆c W′
def
= ∀w ∈W · ∃w′ ∈W′ ·w=c w′

Two sets are said to beequal up-to-cancellation, written W =c W′, if the inclusion relation
holds in both directions.

1 One may argue that the two could contain common elements — e.g.depositcan either be done during
the normal forward execution of a system, or to compensate for awithdraw action. However, one usually
would like to distinguish between actions taken during the normal forward behaviour and ones performed
to compensate for errors, and we would thus much rather useredepositas the name of the compensation of
withdraw, even if it behaves just likedeposit.

Safer Asynchronous Runtime Monitoring Using Compensations 5

Cancellation equivalence is an equivalence relation, and is a congruence up to string (and
language) concatenation. Furthermore, a string followed by its compensation cancels to the
empty string:

Proposition 1 The concatenation of a string with its compensation is cancellation equiva-
lent to the empty string:∀w · ww=c ε.

3 Compensations and Asynchronous Monitoring

In order to be able to reason about compensation-aware monitoring, and its correctness
relative to regular monitoring strategies, we start by characterising synchronous and asyn-
chronous monitoring. In the synchronous version, it is assumed that the system and monitor
perform a handshake to synchronise upon each event. In contrast, in the asynchronous ap-
proach, the events the system produces are stored in a buffer, and consumed independently
by the monitor, which may thus lag behind the system. We then define a compensation-
aware monitoring strategy, which monitors asynchronously, but makes sure to undo any
system behaviour which has taken place after the event whichled to failure.

3.1 Synchronous and Asynchronous Monitoring

We will assume a labelled transition system semantics over alphabetΣ for both system and
monitor. Given a class of system statesS, we will assume the semantics−→sys⊆ S×Σ ×S,
and similarly a relation−→mon over the set of monitor statesM. We also assume a distinct
⊙ ∈ S identifying a stopped system, and⊗ ∈ M denoting a monitor which has detected
failure. Both⊙ and⊗ are assumed to have no outgoing transitions.

Using standard notation, we will writeσ
a
−→sysσ

′ (resp.m
a
−→monm′) as shorthand for

(σ,a,σ′) ∈ −→sys (resp. (m,a,m′) ∈ −→mon). We write
w
=⇒sysand

w
=⇒mon (wherew ∈ Σ∗) to

denote the reflexive transitive closure of−→sysand−→mon respectively.

Definition 5 The transition system semantics of the synchronous composition of a system
and monitor is defined overS×M using the rules given in Fig. 1. The rule Sync defines how
the system and monitor can take a step together, while SyncErr handles the case when the
monitor discovers an anomaly. A state (σ,m) is said to be (i)suspendedif σ = ⊙; (ii) faulty
if m= ⊗; and (iii) saneif it is not suspended unless faulty (σ = ⊙ =⇒ m= ⊗).

The set of traces generated through the synchronous composition of systemσ and mon-
itor m, written traces‖(σ,m) is defined as follows:

traces‖(σ,m) = {w | ∃(σ′,m′) · (σ,m)
w
=⇒‖ (σ′,m′)}

Example 1Consider a systemP over alphabet{a,b} and a monitorA which consumes an
alternation ofa andb events starting witha i.e.abab. . . but breaks upon receiving any other
input. The synchronous composition of the system and monitor takes a step if and only if
both the system and the monitor can take a step on the given input. Therefore, if the system

performs eventa: (P,A)
a
−→‖ (P′,A′). If systemP performs ab instead, the system would

break: (P,A)
b
−→‖ (⊙,⊗).

6 Christian Colombo et al.

Proposition 2 A sequence of actions is accepted by the synchronous composition of a sys-
tem and a monitor, if and only if it is accepted by both the monitor and the system acting

independently. Provided that m′ , ⊗, (σ,m)
w
=⇒‖ (σ′,m′), if and only ifσ

w
=⇒sysσ

′ and

m
w
=⇒monm′.

In contrast to synchronous monitoring, asynchronous monitoring enables the system and
the monitor to take steps independently of each other. The state of asynchronous monitoring
also includes an intermediate buffer between the system and the monitor so as not to lose
events emitted by the system which are not yet consumed by themonitor.

Definition 6 The asynchronous composition of a system and a monitor, is defined over
S×Σ∗τ ×M, in terms of the three rules given in Fig. 1. Rule AsyncS allows progress of the
system adding the events to the intermediate buffer, while rule AsyncM allows the monitor
to consume events from the buffer. Finally rule AsyncErr suspends the system once the
monitor detects an anomaly. Suspended, faulty and sane states are defined as in the case of
synchronous monitoring by ignoring the buffer.

The set of traces accepted by the asynchronous composition of systemσ and monitor
m, written traces9(σ,m) is defined as follows:

traces9(σ,m) = {w | ∃(σ′,w′,m′) · (σ,ε,m)
w
=⇒9 (σ′,w′,m′)}

Example 2Taking the same example as before, upon each step of the system an event is

added to the buffer — if the system starts with an eventb: (P, ε,A)
b
−→9 (P′,b,A). Subse-

quently, the system may either continue further, or the monitor can consume the event from

the buffer and fail: (P′,b,A)
τ
−→9 (P′, ε,⊗). At this stage the system can still progress further

until it is stopped by the rule AsyncErr:

(P, ε,A)
b
−→9 (P′,b,A)

τ
−→9 (P′, ε,⊗)

b
−→C (P′′,b,⊗)

τ
−→9 (⊙,b,⊗)

Proposition 3 The system can always proceed independently when asynchronously moni-
tored, adding events to the buffer, while the monitor can also proceed independently, con-

suming events from the buffer: (i) if σ
w
=⇒sysσ

′, then(σ,w′,m)
w
=⇒9 (σ′,w′w,m); and (ii) if

m
w
=⇒monm′, then(σ,ww′,m)

τ∗

=⇒9 (σ,w′,m′).

3.2 Compensation-Aware Monitoring

The main problem with asynchronous monitoring is that the system can proceed beyond
an anomaly before the monitor detects the problem and stops the system. We enrich asyn-
chronous monitoring with compensation handling so as to ‘undo’ actions which the system
has performed after an error is detected.

Definition 7 Compensation-aware monitoring semantics−→C are identical to asynchronous
monitoring rules, but include an additional rule, Comp, which performs a compensating ac-
tion for each action still lying in the buffer once the monitor detects an anomaly. The rule is
shown in Fig. 1.

The set of traces generated through the compensation-awarecomposition of systemσ
and monitorm, written tracesC(σ,m), is defined as follows:

tracesC(σ,m) = {w | ∃(σ′,m′) · (σ,ε,m)
w
=⇒C (σ′, ε,m′)}

Sane, suspended and faulty states are defined as in asynchronous monitoring.

Safer Asynchronous Runtime Monitoring Using Compensations 7

Synchronous Monitoring

Sync
σ

a
−→sysσ

′
, m

a
−→monm′

(σ,m)
a
−→‖ (σ′,m′)

m′ , ⊗ SyncErr
σ

a
−→sysσ

′
, m

a
−→mon⊗

(σ,m)
a
−→‖ (⊙,⊗)

Asynchronous Monitoring

AsyncS
σ

a
−→sysσ

′

(σ,w,m)
a
−→9 (σ′,wa,m)

AsyncM
m

a
−→monm′

(σ,aw,m)
τ
−→9 (σ,w,m′)

AsyncErr
(σ,w,⊗)

τ
−→9 (⊙,w,⊗)

σ , ⊙

Compensation-Aware Monitoring

Comp

(⊙,wa,⊗)
a
−→C (⊙,w,⊗)

Adaptive Monitoring

ReSync
(σ,ε,m)

τ
−→A (σ,m)

DeSync
(σ,m)

τ
−→A (σ,ε,m)

Fig. 1 Semantics of different monitoring schemas

Example 3Consider the previous example with:

(P, ε,A)
b
−→C (P′,b,A)

b
−→C (P′′,bb,A)

τ
−→C (P′′,b,⊗)

a
−→C (P′′′,ba,⊗)

τ
−→C (⊙,ba,⊗)

At this stage, compensation actions are executed for the actions remaining in the buffer in
reverse order:

(⊙,ba,⊗)
a
−→C (⊙,b,⊗)

b
−→C (⊙, ε,⊗)

Proposition 4 States reachable (under synchronous, asynchronous and compensation-aware
monitoring) from a sane state are themselves sane. Similarly, for suspended and faulty states.

Strings accepted by compensation-aware monitoring can be shown to follow a regular pat-
tern.

Lemma 1 For an unsuspended state(σ,ε,m), if (σ,ε,m)
w
=⇒C (⊙,v,⊗), then there exist some

w1,w2 ∈ Σ
∗ such that the following three properties hold: (i) w=τ w1vw2w2; (ii) m

w1
=⇒mon⊗;

(iii) ∃σ′′ ·σ
w1vw2
=⇒ sysσ

′′.

Similarly, for an unsuspended state(σ,ε,m), if (σ,ε,m)
w
=⇒C (σ′,v,m′) (with σ′ , ⊙),

then there exists w1 ∈ Σ∗ such that the following three properties hold: (i) w=τ w1v; (ii)

m
w1
=⇒monm′; (iii) σ

w1v
=⇒sysσ

′.

Proof The proof of the lemma is by induction on stringw.
For the base case, with w= ε, we consider the two possible cases separately:

8 Christian Colombo et al.

– Given that(σ,ε,m)
ε
=⇒C (⊙,v,⊗), it follows immediately thatσ = ⊙, v= ε and m= ⊗,

and all three statements follow immediately.

– Alternatively, if(σ,ε,m)
ε
=⇒C (σ′,v,m′), it follows immediately thatσ = σ′, v= ε and

m=m′. By taking w1 = ε, all three statements follow immediately.

Assume the property holds for a string w, we proceed to prove that it holds for a string wa.
By analysis of the transition rules, there are four possibleways in which the final transition
can be produced:

(a) Using the ruleAsyncErr: (σ,ε,m)
w
=⇒C (σ′,v,⊗)

τ
−→C (⊙,v,⊗).

(b) Using the ruleCompB: (σ,ε,m)
w
=⇒C (⊙,va,⊗)

a
−→C (⊙,v,⊗).

(c) Using the ruleAsyncS: (σ,ε,m)
w
=⇒C (σ′′,v,m′)

a
−→C (σ′,va,m′).

(d) Using the ruleAsyncM: (σ,ε,m)
w
=⇒C (σ′,av,m′′)

τ
−→C (σ′,v,m′).

The proofs of the four possibilities proceed similarly:

Possibility (a):

(σ,ε,m)
w
=⇒C (σ′,v,⊗)

τ
−→C (⊙,v,⊗)

By the inductive hypothesis, it follows that there exists w′
1 such that (i) w=τ w′1v; (ii)

m
w′1
=⇒mon⊗; (iii) σ

w′1v
=⇒sysσ

′.
We require to prove that there exist w1 and w2 such that: (i) wτ =τ w1vw2w′2; (ii)

m
w1
=⇒mon⊗; (iii) ∃σ′′ ·σ

w1vw2
=⇒ sysσ

′′.
Taking w1 = w′1 and w2 = ε, statement (i) can be proved as follows:

wτ
=τ { by statement (i) of the inductive hypothesis and=τ }

w′1v
= { by definition of compensation of strings}

w′1vεε
= { by choice of w1 and w2 }

w1vw2w2

Statement (ii) follows immediately from statement (ii) of the inductive hypothesis and the

fact that w1 =w′1. Similarly, from statement (iii) of the inductive hypothesis,σ
w′1v
=⇒sysσ

′,

it follows by definition of w1 and w2, thatσ
w1vw2
=⇒ sysσ

′′.
Possibility (b):

(σ,ε,m)
w
=⇒C (⊙,va,⊗)

a
−→C (⊙,v,⊗)

By the inductive hypothesis, it follows that there exist w′
1 and w′2 such that (i) w=τ

w′1vaw′2w′2; (ii) m
w′1
=⇒mon⊗; (iii) ∃σ′′ ·σ

w′1vaw′2
=⇒ sysσ

′′.
We require to prove that there exist w1 and w2 such that: (i) wa =τ w1vw2w2; (ii)

m
w1
=⇒mon⊗; (iii) ∃σ′′ ·σ

w1vaw2
=⇒ sysσ

′′.
Taking w1 = w′1 and w2 = aw′2, statement (i) can be proved as follows:

Safer Asynchronous Runtime Monitoring Using Compensations 9

wa
=τ { by statement (i) of the inductive hypothesis}

w′1vaw′2w′2a
= { by definition of compensation of strings}

w′1vaw′2aw′2
= { by choice of w1 and w2 }

w1vw2w2

Statement (ii) follows immediately from statement (ii) of the inductive hypothesis and the

fact that w1 = w′1. Similarly, from statement (iii) of the inductive hypothesis,σ
w′1vaw′2
=⇒ sys

σ′, it follows by definition of w1 and w2, thatσ
w1vw2
=⇒ sysσ

′.
Possibility (c):

(σ,ε,m)
w
=⇒C (σ′′,v,m′)

a
−→C (σ′,va,m′)

By the inductive hypothesis, it follows that there exist w′
1 such that (i) w=τ w′1v; (ii)

m
w′1
=⇒monm′; (iii) σ

w′1v
=⇒sysσ

′′.

We require to prove that there exist w1 such that: (i) wa=τ w1va; (ii) m
w1
=⇒monm′; (iii)

σ
w1va
=⇒sysσ

′.
Taking w1 = w′1, statement (i) can be proved as follows:

wa
=τ { by statement (i) of the inductive hypothesis}

w′1va
= { by choice of w1 }

w1va

Statement (ii) follows immediately from statement (ii) of the inductive hypothesis and the

fact that w1 =w′1. Similarly, from statement (iii) of the inductive hypothesis,σ
w′1v
=⇒sysσ

′′,

it follows by definition of w1 and the application of ruleAsyncS, thatσ
w1va
=⇒sysσ

′.
Possibility (d):

(σ,ε,m)
w
=⇒C (σ′,av,m′′)

τ
−→C (σ′,v,m′)

By the inductive hypothesis, it follows that there exists w′
1 such that (i) w=τ w′1av; (ii)

m
w′1
=⇒monm′′; (iii) σ

w′1av
=⇒sysσ

′.

We require to prove that there exist w1 such that: (i) wτ =τ w1v; (ii) m
w1
=⇒mon m′; (iii)

σ
w1v
=⇒sysσ

′.
Taking w1 = w′1a, statement (i) can be proved as follows:

wτ
=τ { by statement (i) of the inductive hypothesis}

w′1av
= { by choice of w1 }

w1v

Statement (ii) follows from statement (ii) of the inductivehypothesis, the application of
rule AsyncM , and the fact that w1 = w′1a.

10 Christian Colombo et al.

Statement (iii) follows immediately from statement (iii) of the inductive hypothesis,σ
w′1av
=⇒sys

σ′, and the fact that w1 = w′1a.

�

We can now prove that synchronous monitoring is equivalent to compensation-aware moni-
toring with perfect compensations. This result ensures thesanity of compensation triggering
as defined in the semantics.

Theorem 1 Given a sane system and monitor pair(σ,m), the set of traces produced by
synchronous monitoring is cancellation-equivalent to theset of traces produced through
compensation-aware monitoring:traces‖(σ,m) =c tracesC(σ,m).

Proof To prove thattraces‖(σ,m) ⊆c tracesC(σ,m), we note that every synchronous tran-

sition (σ′,m′)
a
−→‖ (σ′′,m′′), can be emulated in two or three steps by the compensation-

aware transitions (three are required when the monitor fails) (σ′,v,m′)
aτ∗
=⇒C (σ′′,v,m′′),

leaving the buffer intact. Using this fact, and induction on string w, one canshow that if

(σ,m)
w
=⇒‖ (σ′,m′), then (σ,ε,m)

v
=⇒C (σ′, ε,m′), with w= v−τ. Hence,traces‖(σ,m) ⊆c

tracesC(σ,m).
Proving it in the opposite direction (tracesC(σ,m) ⊆c traces‖(σ,m)) is more intricate.

By definition, if w∈ tracesC(σ,m), then(σ,ε,m)
w
=⇒C (σ′, ε,m′). We separately consider the

two cases of (i)σ′ = ⊙ and (ii)σ′ , ⊙.

– When the final state is suspended (σ′ = ⊙):

(σ,ε,m)
w
=⇒C (⊙, ε,m′)

=⇒ { by sanity of initial state and proposition 4}

(σ,ε,m)
w
=⇒C (⊙, ε,⊗)

=⇒ { by lemma 1}

∃w1,w2 ·w=τ w1w2w2∧m
w1
=⇒mon⊗

′∧∃σ′′ ·σ
w1
=⇒sysσ

′′

=⇒ { by proposition 2}

∃w1,w2 ·w=τ w1w2w2∧∃σ
′′ · (σ,m)

w1
=⇒‖ (σ′′,⊗)

=⇒ { by definition oftraces‖ }
∃w1,w2 ·w=τ w1w2w2∧w1 ∈ traces‖(σ,m)

=⇒ { by proposition 1}
∃w1 ·w=c w1∧w1 ∈ traces‖(σ,m)

– When the final state is not suspended (σ′ , ⊙):

(σ,ε,m)
w
=⇒C (σ′, ε,m′)

=⇒ { by lemma 1}

∃w1 ·w=τ w1∧m
w1
=⇒monm′∧σ

w1
=⇒sysσ

′

=⇒ { by proposition 2}

∃w1 ·w=τ w1∧ (σ,m)
w1
=⇒‖ (σ′,m′)

=⇒ { by definition oftraces‖ }
∃w1 ·w=τ w1∧w1 ∈ traces‖(σ,m)

=⇒ { by the alphabet of synchronous monitoring}
∃w1 ·w=c w1∧w1 ∈ traces‖(σ,m)

Safer Asynchronous Runtime Monitoring Using Compensations 11

Hence, in both cases it follows that:
w ∈ tracesC(σ,m) =⇒ ∃w1 ·w=c w1∧w1 ∈ traces‖(σ,m)

From which we can conclude that:
tracesC(σ,m) ⊆c traces‖(σ,m)

�

3.3 Desynchronisation and Resynchronisation

Despite compensation-awareness, in some systems it may be desirable to run monitoring
synchronously with the system for operations considered risky, only to desynchronise the
system from the monitor again once control leaves the risky operation. In this section, we
investigate a monitoring strategy which can run both synchronously or asynchronously in
a non-deterministic manner. Any heuristic used to decide when to switch between modes
corresponds to a refinement of this approach.

Definition 8 The adaptive monitoring of a system, is defined in terms of thesynchronous
and asynchronous monitoring rules and two additional ones (given in Fig. 1). Rule ReSync
allows the system to synchronise once the buffer is empty, while rule DeSync allows the
monitor to be released asynchronously. By also including the compensation rule Comp, we
obtain adaptive compensation-aware monitoring (−→AC).

The set of traces generated through the adaptive composition of systemσ and monitor
m, written traces A(σ,m), is defined as follows:

traces A(σ,m)
def
= {w | ∃σ′,w′,m′ · (σ,m)

w
=⇒A (σ′,w′,m′)∨ (σ,m)

w
=⇒A (σ′,m′)}

The traces for compensation-aware adaptive compositiontracesAC(σ,m) can be similarly
defined.

Theorem 2 Asynchronous and adaptive monitoring are observationallyindistinguishable:
traces A(σ,m) =τ traces9(σ,m).

Proof Proving thattraces9(σ,m) ⊆τ traces A(σ,m) is trivial since all the rules which can
be used to generate traces intraces9(σ,m) are also available for traces intraces A(σ,m).

Proving thattraces A(σ,m) ⊆τ traces9(σ,m) is also easy and can be done by showing
that bothReSync and DeSync do not affect traces. In fact both rules either introduce or
consume an empty buffer while adding aτ to the trace — all actions which clearly leave no
effect on traces.

�

Theorem 3 Compensation-aware adaptive monitoring is also indistinguishable from
compensation-aware monitoring up to traces:tracesAC(σ,m) =τ tracesC(σ,m).

Proof The proof is similar to that of the previous theorem. �

An immediate corollary of these results is that compensation-aware adaptive monitoring is
cancellation-equivalent to synchronous monitoring.

It is important to note that the results hold about trace equivalence. In the case of adap-
tive monitoring, we are increasing the set of diverging configurations since every state can
diverge through repeatedly desynchronising and resynchronising. One would be required to
enforce fairness constraints on desynchronising and resynchronising rules to ensure achiev-
ing progress in the monitored systems.

12 Christian Colombo et al.

4 Compensation Scopes

The compensations we have used till now in the paper undo all extra actions takenafter an
error has occurred. To avoid additional complexity arisingfrom compensation resolution,
we assumed that each action has a unique compensation, independent of its context. Two is-
sues arise from this limitation: (i) an action may be used in different ways, thus necessitating
different compensations in different parts of the program e.g. a transfer of funds can be either
a withdrawal or a deposit, for which different charges would apply when undoing; and (ii)
an action may have different compensations, depending on what occurred before or after the
action e.g. if an account has been closed after a transfer, then its compensation should not
attempt to transfer back the funds. The first issue can be handled by our framework by view-
ing the different uses as different actions with different compensations. The second is much
more involved — to solve the problem in general, and allowingthe user to program context-
sensitive compensations incurs a substantial increase in program complexity and hence the
possibility of errors. However, one scenario frequently occurring in compensations is that
actions which form part of a transaction become locked and impossible to compensate for
once it is closed. For example, an online order may be split into a series of transfers of funds
between accounts involving the buyer, the seller, the courier company and possibly differ-
ent banks. Failure during the transaction should lead to theprevious actions to be undone.
However, once the full order is processed, none of the subparts of the transaction should be
undone. To address this issue, we develop an extension of compensation-aware monitoring
to handle compensation-scoping.

To handle compensation scopes, we will allow the system to perform two special actions:
◭ to open a scope, and◮ to close the most recently opened one. These two symbols willbe
considered as part of the alphabetΣ and we will assume that the system will always produce
proper scope markers — at no point will it have produced more◮ than◭.

Definition 9 We say that a string over such an alphabet including scope markers is well-
scoped if every prefix has no more close scope markers than open scope ones. A strings is
said to be balanced, writtenbalanced(s), if it contains an equal number of open and close
scope markers, and all prefixes are well-scoped.

Example 4To illustrate the use of scopes with compensation-aware monitoring, we look
at different system traces with errors captured on prefixes by the monitor, indicating the
expected behaviour of the recovery mechanism upon error discovery:

1. If the system performedab◭ cd◮ e (with each single letter indicating an action) by the
time the monitor discovered a problem after executing action a, the compensation mech-
anism must compensate forb ◭ cd◮ e. However, the scope◭ cd◮ cannot be undone,
meaning that we will compensate by performingeb.

2. If the system has, however, performedab◭ cd by the time the monitor discovered a
problem after executing actiona, the compensation mechanism will compensate for
b◭ cd by performingdcb.

3. To look at the use of subscopes, if the system’s behaviour at the point in time when the
monitor discovers an error isab◭ cd◭ e f ◮ g, the behaviour within the subscope◭ e f ◮
will not be compensated for since the context is closed. However, the outer scope, which
is not yet closed, will allow for compensation of actionsa, b, c, d andg, depending on
the point of the tract where the error is discovered.

4. Now consider a prefix traceab◭ cd◮ e f ◭ g of the system’s behaviour the moment an
error is discovered by the monitor after consumingab◭ c. The actions left in the buffer

Safer Asynchronous Runtime Monitoring Using Compensations 13

which have to be compensated for ared ◮ e f ◭ g. Since the second scope has not been
closed, we will compensate fore f gby performinggf e. Should actiond be compensated
for? If we compensate by executingd, to reverse the system to the point of error we may
run into problems since the scope closure indicates that resources may no longer be
available. The compensation ford, should thus not be triggered, since it appeared within
a closed scope.

Definition 10 Given a trace of actionst, we definestrip(t) to be the same trace but remov-
ing away all actions occuring within a scope and any remaining open scope markers. We
definestrip(w) to be the shortest string for which there are no further reductions of the form
strip(w1 ◭ w ◮ w2) = strip(w1w2) (where◭ and◮ do not appear inw), strip(w1 ◭ w2) =
strip(w1w2) (where◮ does not appear inw2) andstrip(w1 ◮ w2) = strip(w2) (where◭ does
not appear inw1).

Stringsw andw′ are said to bescope-cancellation-equivalent, written w=sc w′, if they
reduce via compensation cancellation and scope stripping to the same string:strip(w) =c

strip(w′). As before, we define what it means for a set of strings to beincluded in set W′ up-
to-scope-cancellation,written W⊆sc W′, and setequality up-to-scope-cancellation, written
W=sc W′.

Scope stripping is well-defined and cancels with compensation:

Proposition 5 Scope strippingstrip is a well-defined function over the domain of well-
scoped strings. Furthermore, wstrip(w) =sc ε.

To handle scopes in compensations, we adopt the addition of three rules to the compensation-
aware monitoring semantics. In the first two cases, whenevera scope closure◮ is found in
the buffer, the whole scope is removed before proceeding (considering separately whether
or not the scope was opened before the error was discovered):

CloseScopeM
(⊙,w,⊗)

τ
−→SC (⊙,w′,⊗)

w= w′ ◭ w′′ ◮ with balanced(w′′)

CloseScope
(⊙,w,⊗)

τ
−→SC (⊙, ε,⊗)

w= w′ ◮, ◭ does not appear in w′

Whenever a scope open symbol◭ is found, it is simply discarded, since it represents a scope
which was opened but not closed by the time the error was identified:

CompOpenScope
(⊙,w◭,⊗)

τ
−→SC (⊙,w,⊗)

The state sanity preservation result of proposition 4, alsoholds for scope compensation-
aware monitoring.

Proposition 6 States reachable through scope compensation-aware monitoring from a sane
state are themselves sane. Similarly, for suspended and faulty states.

To prove that the modified system is still correct, we need a stronger version of lemma
1, which caters for complete contexts which will be discarded when compensations are
triggered:

14 Christian Colombo et al.

Lemma 2 For an unsuspended state(σ,ε,m), if (σ,ε,m)
w
=⇒SC (⊙,v,⊗), then there exist

some w1,w2 ∈ Σ
∗ such that the following three properties hold: (i) w=τ w1vw2strip(w2); (ii)

m
w1
=⇒mon⊗; (iii) ∃σ′′ ·σ

w1vw2
=⇒ sysσ

′′.

Similarly, for an unsuspended state(σ,ε,m), if (σ,ε,m)
w
=⇒C (σ′,v,m′) (with σ′ , ⊙),

then there exists w1 ∈ Σ∗ such that the following three properties hold: (i) w=τ w1v; (ii)

m
w1
=⇒monm′; (iii) σ

w1v
=⇒sysσ

′.
�

The proof of lemma 2 is almost identical to that of lemma 1, buttaking into account the
additional buffer reduction rules. This allows us to prove the stronger theorem stating the
correctness of scoped compensation-aware monitoring:

Theorem 4 Synchronous and compensation-aware monitoring with scopes behave in equiv-
alent manner. Given a sane system and monitor pair(σ,m):

(i) A trace accepted by synchronous monitoring is also accepted by compensation-aware
monitoring with scopes:traces‖(σ,m) ⊆sc tracesSC(σ,m).

(ii) A trace accepted by compensation-aware monitoring with scopes can be split into two
parts, the first of which is accepted by synchronous monitoring, and the second of which
is cancellation-equivalent to doing nothing:
w ∈ tracesSC(σ,m) =⇒ ∃w1, w2 ·w= w1w2∧w1 ∈ traces‖(σ,m)∧w2 =sc ε

Proof The correctness of the first part (i) follows from the fact that every synchronous tran-
sition can be emulated by two or three scoped compensation-aware rules. This ensures for-
ward language inclusion.

As in the proof of theorem 1, the proof of (ii) for(σ,ε,m)
w
=⇒SC (σ,ε,m′) takes into

consideration two cases: (a)σ′ = ⊙; and (b)σ′ , ⊙. Case (b) is identical to the proof of the
equivalent case in theorem 1. Case (a) can be proved as follows:

(σ,ε,m)
w
=⇒SC (⊙, ε,m′)

=⇒ { by sanity of initial state and proposition 6}

(σ,ε,m)
w
=⇒SC (⊙, ε,⊗)

=⇒ { by lemma 2}

∃w1,w′1 ·w=τ w1w′1strip(w′1)∧m
w1
=⇒mon⊗

′∧∃σ′′ ·σ
w1
=⇒sysσ

′′

=⇒ { by proposition 2}

∃w1,w′1 ·w=τ w1w′1strip(w′1)∧∃σ′′ · (σ,m)
w1
=⇒‖ (σ′′,⊗)

=⇒ { by definition oftraces‖ }
∃w1,w′1 ·w=τ w1w′1strip(w′1)∧w1 ∈ traces‖(σ,m)

=⇒ { adding variable w2 = w′1strip(w1) }
∃w1,w′1,w2 ·w=τ w1w2∧w2 = w′1strip(w′1)∧w1 ∈ traces‖(σ,m)

=⇒ { proposition 5}
∃w1,w2 ·w= w1w2∧w2 =sc ε∧w1 ∈ traces‖(σ,m)

This completes the proof.
�

Using this result, we can show that scoping still keeps monitoring correct up to ignoring
of scope content and compensations. The semantics given to scope compensation monitor-
ing gather the scopes in the buffer and only discard them while emptying the buffer. The

Safer Asynchronous Runtime Monitoring Using Compensations 15

advantage of this approach, is that the decision of how to handle scopes is left until the com-
pensation triggering phase. Alternatively, one could havediscarded actions in the buffer as
soon as the system closes a scope, which is less flexible, but may result in smaller buffers
being used.

5 A Compensation-Aware Monitoring Architecture

Larva [11] is a synchronous runtime verification architecture supporting DATEs [10] as
a specification language. A user wishing to monitor a system using Larva must supply a
system (a Java program) and a set of specifications in the formof a Larva script — a textual
representation of DATEs. Using the Larva compiler, the specification is transformed into
the equivalent monitoring code together with a number of aspects which extract events from
the system. Aspects are generated in AspectJ, an aspect-oriented implementation for Java,
enabling automatic code injection without directly altering the actual code of the system.
When a system is monitored by Larva generated code, the system waits for the monitor
before continuing further execution.

We propose an asynchronous compensation-aware monitoringarchitecture and imple-
mentation,cLarva, with a controlled synchronous element. IncLarva, control is continually
under the jurisdiction of the system — never of the monitor. However, the system exposes
two interfaces to the monitor: (i) an interface for the monitor to communicate the fact that a
problem has been detected and the system should stop; and (ii) an interface for the monitor
to indicate which actions should be compensated. Note that these correspond precisely to
rules AsyncErr and Comp respectively. Furthermore, the actual time of stopping andhow
the indicated actions are compensated for are decisions left up to the system.

Fig. 2 shows the four components ofcLarva and the communication links between them.
The monitor receives system events through the events player from the log, while the system
can continue unhindered. If the monitor detects a fault, it communicates with the system
so that the latter stops. Depending on the actions the systemcarried out since the actual
occurrence of the fault, the monitor indicates the actions to be compensated for.

 Monitor

 Stop

 Compensate
 System

 Events Player
 Log

Fig. 2 The asynchronous architecture with compensationscLarva.

To support switching between synchronous and asynchronousmonitoring, asynchronisa-
tion managercomponent is added as shown in Fig. 3. All connectors in the diagram are
synchronous with the system not proceeding after relaying an event until it receives control
from the manager. The following shows the logic of the synchronisation manager:

c = proceed ; set default control to proceed

16 Christian Colombo et al.

while (c != stop)

if (monitoring_mode == SYNC)

e = in_event() ; read event from system

c = out_event(e) ; forward to monitor and get its resulting state

out_control(c) ; relay control to system

else

par ; parallel execution

e1 = in_event() ; read from system

addToBuffer(e1) ; store in buffer

out_control(c) ; return control to system

with

e2 = readFromBuffer() ; read from buffer

c = out_event(e2) ; forward to monitor and get its resulting state

end

 MonitorSystem

 Manager
Events

Stop/Cont

Compensate

Events

Stop/Cont

Des Syn

Fig. 3 The asynchronous architecture with synchronisation and desynchronisation controls.

In real-life scenarios it is usually undesirable to stop a whole system if an error is found.
However, in many cases it is not difficult to delineate components of the system to ensure
that only the relevant parts of the system are stopped. For example, when a transaction is
carried out without necessary rights, it should be stopped and compensated for. Similarly, if
a user has managed to illegally login and start a session, then only user operations during
that session should be stopped and compensated for.

This approach of system decomposition into relatively independent parts can be ex-
tended further to simultaneously allow synchronous and asynchronous monitoring. This is
further discussed in the next section.

6 Extending the Architecture with Automatic Synchronisation and Desynchronisation
Heuristics

Synchronisation guarantees immediate identification and possible reparation of problems,
making it desirable for parts of the system where higher dependability is required. For in-
stance, if a particular transaction is considered high-risk, it would be desirable to synchronise
monitoring during the transaction, only to desynchronise once again when a less risky part of
the system is reached. Having an architecture which allows switching between synchronous
and asynchronous modes of monitoring requires a mechanism to appropriately select the ac-
tive mode. Although the switching between synchronous and asynchronous monitoring can
be done manually, it is much more useful to have an automatic mechanism which handles
this feature.

The issue is how to assess risk associated with particular states and actions, thus ensuring
that high risk actions are always monitored synchronously.There are various ways in which

Safer Asynchronous Runtime Monitoring Using Compensations 17

this can be achieved: (i) keep track of the activities of eachuser and use pattern matching
and statistics to deduce the risks associated with individual users; or (ii) classify transactions
according to the risk they involve, e.g. a transfer between auser’s own accounts might be
considered as safe but spending a large sum of money might not. If a transaction has an
associated high risk factor and/or is being carried out by a user tagged as risky, then one
might decide that during this action the monitor should switch to synchronous mode.

In this section, we propose possible heuristics which can beused to automate such a
mechanism, effectively determining the switching between synchronous and asynchronous
monitoring. We also discuss implementation considerations and how these heuristics can be
incorporated incLarva.

6.1 Adding Heuristics to the Monitoring Architecture

An important design issue is where to decide de/synchronisation: either within the system
itself, at the manager, or at the monitor. Leaving the decision up to the system has the ad-
vantage that the system would always be in control of the monitoring mode. On the other
hand, this would add an overhead to the system; something which the whole architecture
is meant to avoid. If heuristics are executed by the manager,both synchronised and desyn-
chronised modes are possible. However, useful informationfor deciding de/synchronisation
(such as user risk factor) might be already available withinthe monitor; making it wasteful
to recalculate at the system or manager.

In our case study we opt for a monitor-side, asynchronous de/synchronisation decision
where the heuristics are themselves implemented as monitors. This strategy avoids any du-
plication between monitors and heuristics while also avoiding the introduction of additional
overheads to the system. Although this might lead to a de/synchronisation decision to be
taken late, the problem is minimised by the scheduling strategy discussed in section 6.2.

Therefore, updating the architectural view of the system would involve adding a heuris-
tics component (to the architecture shown in Fig. 3) which isin charge of executing heuris-
tics and signalling the manager to switch between synchronous and asynchronous monitor-
ing. Such a component requires the following connections: (i) a connection to the incom-
ing system events — supplying the required information for executing heuristics; and (ii)
connections to the de/synchronisation signals entering the synchronisation manager. The
updated architecture with these modifications is shown in Fig. 4.

 Monitor

System

 Manager
Events

Stop/Cont

Compensate

Events

Stop/Cont

HeuristicsDes Syn

Fig. 4 The monitoring architecture with heuristics.

18 Christian Colombo et al.

In practice, this approach requires that the monitoring system can handle parametrised
monitoring of transactions/users. Furthermore, it requires a way of decomposing the system
into independent components which would simultaneously allow synchronous and asyn-
chronous monitoring. In the kind of financial systems we are considering (such as the case
study in the next section), such components are usually transactions or users.

In fact, the monitor-side (including the manager) typically consists of multiple parametrised
monitors, each with its own buffer, synchronisation manager and heuristics component. This
is expanded further in the following subsection.

6.2 Monitor Demultiplexing and Scheduling

Monitors incLarva are dynamically instantiated for each monitored object. Thus, a system’s
monitor is in fact composed of many sub-monitors. For example if we are monitoring a
number of properties regarding a number of transactions foreach logged-in user, then a
monitor would be created for each property, for each transaction, for each user. For this
reason, although at a high level we have shown the architecture as having one buffer, in
actual fact it has a buffer for each sub-monitor as illustrated in Fig. 5.

1. Demultiplexing

System

Des Syn

Des Syn

Events

 Manager

Compensate

Stop/Cont High−priority
synchronised
scheduling

Low−priority
risk−ordered
schedulingEvents

 Manager

Compensate

Stop/Cont Stop/Cont

Events

Stop/Cont

Events
 Heuristics

 Heuristics
 /Monitor

2. De/Synchronising 3. Monitoring/Scheduling

 /Monitor

Fig. 5 The monitoring architecture with heuristics, demultiplexing, and scheduling.

To coordinate the execution of the sub-monitors, upon the receipt of a system event, the
following steps are carried out:

1. The event is replicated to all the relevant sub-monitor buffers. For example, a transac-
tion event would be copied to all buffers pertaining to sub-monitors of that particular
transaction.

2. Subsequently, if the sub-monitor is in asynchronous mode, control is immediately passed
back to the system. Otherwise the manager first forwards the event to the heuristics and
the monitor components and waits for their response before allowing the system to pro-
ceed further.

Safer Asynchronous Runtime Monitoring Using Compensations 19

3. Given the potentially substantial number of sub-monitors, the choice of a scheduling
strategy among sub-monitors might be crucial to detect problems as early as possible. A
sensible scheduling strategy would be to associate a scheduling priority according to the
corresponding risk; the higher the risk, the higher the scheduling priority. Naturally, this
is over and above the priority that synchronised monitors should have over asynchronous
monitors; to ensure minimal disruption to the system, asynchronous monitors should
only be allowed to run when no synchronous monitors are running.

Note that by following the above steps, the priority of heuristics execution is the same as that
of the corresponding sub-monitor. Given that heuristics are normally based on the history
of system events, heuristics can in fact be implemented as monitors as discussed in the next
subsection.

6.3 Implementing Heuristics as DATEs

In practice, one expects there to be a substantial overlap between monitors and heuristics.
For example to monitor for fraudulent behaviour, one would usually try to measure how
risky a particular pattern of activities is. Such a measure can lend itself useful to decide for
or against synchronous monitoring. In this subsection we will show how DATEs can be used
for this purpose.

The following features of DATEs are particularly useful forimplementing heuristics: (i)
it is easy to integrate such heuristics withcLarva which is DATE-based; (ii) the composi-
tionality of DATEs — different heuristics can be implemented as separate DATEs and then
connected together to form a single DATE through channel communication; (iii) LarvaStat
[8] builds upon Larva, extending DATEs to support statistical properties; and (iv) it is easy
to keep track of multiple objects at a time through the dynamic mechanism which replicates
monitors — one for each object being monitored.

Using these features and considering our case study (see next section) we opt to imple-
ment the following heuristics for each user: (i) the monitoruses statistics to calculate the
risk factor depending on the series of activities which the user performs; and (ii) if the risk
factor exceeds a particular threshold, then the monitor is forced to synchronise before the
end of a scope (Note that the end of a scope can be time-based, e.g. a purchase can only be
compensated within 24 hours. In such a case the end of the scope is signalled earlier so that
there would be ample time for synchronisation and compensation if necessary).

Thus, we will split the implementation of the heuristics into the following parts: (i) a
DATE which keeps track of whether a user is currently monitored synchronously or asyn-
chronously; (ii) a DATE which keeps track of the risk factor of a user; and (iii) a DATE
which decides whether a user should be monitored synchronously or asynchronously upon
detecting a close-scope event based on the risk factor (and communicates the decision to
(i)). In what follows, we give the definition of these DATEs:

1. Fig. 6 shows the main DATE which listens on two channels:sync, signifying that the
monitor should be synchronised, andasyncto signal that the monitor need no longer
remain synchronised.
As soon as the DATE receives either of these messages (from other monitors assessing
whether it would be advisable to synchronise or switch to asynchronous mode), it relays
the change to the synchronisation manager. Note that since we would like to apply the
heuristics on a per-user basis, the DATE has to be parametrised for each user. The limi-
tation of this approach is that properties which span over multiple users have to be very

20 Christian Colombo et al.

\\setManagerMode(sync);

Sync Async

sync?

async?\\setManagerMode(async);

Fig. 6 The DATE which listens to other DATEs for messages to synchronise or desynchronise the monitor
from the system.

carefully devised as the monitor states of different users might reflect different synchro-
nisation levels. For this reason communication across DATEs should only occur through
channel communication and not through global variables.

2. The Larva framework has an extension to directly support the specification of statis-
tical properties called LarvaStat [8]. One of the case studies carried out with LarvaS-
tat involved an intrusion detection system on top of an ftp server, assessing each user,
and assigning him or her a risk factor. The risk factor was calculated using two main
techniques: (i) a Markov chain analysing the user’s commandsequence, with each ftp
command being related to a risk factor, and marking the user as suspicious if the com-
mand sequence exceeds a threshold; and (ii) the use of statistical moments for the char-
acterisation of abnormal user behaviour, monitoring each user’s download and upload
behaviour patterns, and assuming a statistically predictable pattern. Similar techniques
can be used as heuristics which increase or decrease the perceived user risk factor: for
example users who use the money for a purchase are not considered as risky, while users
who load money a number of consecutive times, perform several transfers and withdraw
the money are considered highly suspicious. This logic is encoded as a Markov chain
shown in Fig. 7(a).

risk= 3 Chain

(a) (b)

threshold = 2Threshold

closeScope\risk>threshold\sync!
revise?\risk<threshold\async!loadMoney\\risk *= 1.3

purchase\\risk *= 0.5
transfer\\risk *= 1.2

cardCreation\\risk *= 1.7

withdraw\\risk *= 2
revise!

Fig. 7 The DATEs which track the user risk factor and notifies of a risk change over channelrevise(a) and
decides whether to synchronise or desynchronise (b).

3. Fig. 7(b) illustrates the DATE which would force a monitorto synchronise (by sending a
signal to the main DATE (Fig. 6)) in case a closing scope action is detected and the risk
factor of the corresponding user is higher than the threshold. On the other hand, when
the risk goes below the threshold, the monitor is desynchronised from the system. Note
that new users are considered risky and thus their risk factor is initialised to a higher
value than the threshold. Such users are only considered safe after carrying out a pattern
of non-risky transactions.

Safer Asynchronous Runtime Monitoring Using Compensations 21

In what follows, we describe a real-life case study where DATE heuristics similar to the ones
described above have been used to prioritise the monitoringof users with high perceived
risk.

7 Case Study

We have appliedcLarva on Entropay, an online prepaid payment service offered by Ixaris
Systems Ltd2. Entropay users deposit funds through funding instruments(such as their own
personal credit card or through a bank transfer mechanism) and spend such funds through
spending instruments (such as a virtual VISA card or a Plastic Mastercard). The service is
used worldwide and thousands of transactions are processedon a daily basis.

The advantage of applying the proposed architecture to EntroPay is that the latter already
incorporates compensations in its implementation. The case study is further simplified by
the fact that properties are not monitored globally but rather on a per user or per credit
card basis. Therefore, when a problem is found with a particular user or card, only the
compensations for that particular entity need to be triggered.

The case study implementation closely follows the architecture described above with
two control connections: one with an interface for stoppingEntroPay with respect to a
particular user and another to the compensation interface of EntroPay, through which the
monitor can cause the system to execute compensations.

In what follows, we give a classification of properties whichwere monitored success-
fully and how these are compensated in case of a violation detection.

Life cycle: A lot of properties in Entropay depend on which phase of the life-cycle an entity
is in. Fig. 8 is an illustration of the user life-cycle, starting with registration and activa-
tion, allowing the user to login and logout (possibly carrying out a series of operations
in between), and finally, the possibility of freezing/unfreezing/deleting a user in case of
inactivity.

Logged

Start Reg
register

ActiveFrozen

operation

logout

freeze

unfreeze

login

activatedelete

Fig. 8 The lifecycle property.

Implicitly, such a property checks that for a user to performa particular operation and
reach a particular state, the user must be in an appropriate state. If a life cycle property
is violated, the user actions carried out after the violation are compensated and the user

2 http://www.ixaris.com

22 Christian Colombo et al.

state is corrected. For example, if a user did not login and managed to carry out a trans-
fer, then as soon as the monitor detects the violation, any ongoing user operations are
stopped and the illegal transfer is compensated.

Real-time: Several properties in Entropay, have a real-time element. For example, a user
account which is inactive for more than six months is frozen.If freezing does not take
place, then, upon detection, the monitor issues a compensation for any actions carried
out after the expected freezing and freezes the user account.

Rights: User rights are a very important aspect of Entropay’s security. A number of trans-
actions require the user to have the appropriate rights before a transaction is permitted.
If a transaction is carried out without the necessary rights, it is compensated.

Amounts: There are various limits (for security reasons) onthe frequency of certain trans-
actions and the total amount of money which these transactions constitute. If a user is
found to have carried out more transactions than allowed, then the excess transactions
are compensated. Similarly, transaction amounts which go beyond the allowed threshold
are compensated for.

The case study was successfully executed on a sanitized3 database of 300,000 users with
around a million virtual cards. A number of issues have been detected through the mon-
itoring system: (i) not all system activities were recordedconsistently; (ii) some system
state was found to be inconsistent, e.g. certain cards whichwere marked as inactive were
still found to be active; (iii) in some exceptional cases, system limits did not tally with the
overall balance of the transactions monitored.

Although the current properties being monitored on Entropay are relatively light-weight,
due to security and performance considerations, it is not desirable to run the monitor syn-
chronously when there is no clear evidence of specification violation. Users which pose little
or no risk to the system and which have been using the system for a number of years should
not suffer any service deterioration. The conciliatory approach ofcLarva would guarantee
added security with the cost of logging under normal execution while incurring overhead
only when there is convincing evidence that something is wrong.

7.1 Real-Life Traces

To demonstrate the results of our case study, in this subsection we give three anonymised4

system traces in which problems were discovered.
In the following traces, we assume that any transaction starting with > signifies nor-

mal behaviour while those starting with< represent the corresponding compensation. A
transaction with neither symbols does not have a compensation. Furthermore, a number of
transactions do not have a closing scope, meaning that they can be compensated at any
time after their occurrence. These include user login and virtual credit card creation. On the
other hand, for the rest of the compensable activities, the closing scope is time-bound. For
simplicity we assume that the time limit always occurs one hour after the completion of
the activity. This approach to scoping might seem at odds with the theory presented earlier
where scopes cannot intersect (except by inclusion). However, in practice, thecLarva would
have a monitor for each transaction and thus the scopes wouldnever intersect locally.

The following are excerpts from the system log merged with monitor actions:

3 User information was obfuscated for the purpose of this study.
4 Due to privacy considerations the data in certain fields cannot be exposed.

Safer Asynchronous Runtime Monitoring Using Compensations 23

No rights issue: After encountering traces such as the one presented below, the monitor
reported that some actions were carried out without the necessary rights. For example
a user requires a special right to be allowed to login, to create a virtual credit card and
also to load money onto the credit card. The following trace was found:

Timestamp: User: Transaction: Amount:

13:00:35 5-5-2010 user1 account registration n/a

... a monitor is dynamically created for user1 with default risk factor 3 ...

13:05:41 5-5-2010 user1 >account activation n/a

13:05:45 5-5-2010 user1 >logged in n/a

... user1 logged in without having the right ...

13:07:10 5-5-2010 user1 >created virtual credit card n/a

... risk factor for user1 increases to 5.1 ...

13:12:06 5-5-2010 user1 >loaded money onto virtual credit card £100

... risk factor for user1 increases to 6.63 ...

... monitor detects rights violation ...

... monitor initiates compensation ...

13:12:52 5-5-2010 user1 <withdraw money from virtual credit card £100

13:12:05 5-5-2010 user1 <delete virtual credit card n/a

13:12:10 5-5-2010 user1 <logged out n/a

In this trace the monitor was run asynchronously with a high priority scheduling. Once
the monitor detected the violation, the transactions whichoccurred after the illegal login
were compensated (see last three trace entries).

Late freezing of user accounts: According to the system specification, after six months of
user monetary inactivity, i.e. no transactions involving money are carried out, the user
account is frozen. Nonetheless, traces such as the following one were discovered:

Timestamp: User: Transaction: Amount:

15:00:38 8-6-2010 user2 account registration n/a

... a monitor is dynamically created for user2 with default risk factor 3 ...

15:15:31 8-6-2010 user2 >account activation n/a

15:15:33 8-6-2010 user2 >granted login, card creation rights n/a

15:15:45 8-6-2010 user2 >logged in n/a

15:35:45 8-6-2010 user2 logged out n/a

18:12:14 5-9-2010 user2 >logged in n/a

18:42:55 5-9-2010 user2 logged out n/a

... by now the account of user2 should have been frozen ...

17:52:21 8-12-2010 user2 >logged in n/a

17:55:50 8-12-2010 user2 >created virtual credit card n/a

... risk factor increases to 5.1 ...

... monitor detects unfrozen account ...

... monitor initiates compensation ...

18:00:12 8-12-2010 user2 <delete virtual credit card n/a

18:00:15 8-12-2010 user2 <logged out n/a

18:00:20 8-12-2010 user2 account frozen n/a

In the above trace, there are two compensating activities which have been suggested
by the monitor upon the time of detection (third and second trace entries from below).
The last activity is the correction which is carried out as correction after the synchro-
nisation (of the system and the monitor) is complete. Note that although the risk factor
for this user was relatively high (ensuring favourable scheduling), this could not lead to
synchronisation since no scope closes were encountered.

Excessive money loading to credit cards: The system’s business logic imposes limits on the
amount of money which can be loaded onto a virtual credit cardeach day, each week
and each month. However, two traces similar to the followingwere discovered where
the limit for user3for a day was £2000.

Timestamp: User: Transaction: Amount:

... risk factor for user3 is 1.6 ...

11:05:15 7-10-2010 user3 >logged in n/a

11:12:16 7-10-2010 user3 >loaded money onto virtual credit card £1000

24 Christian Colombo et al.

... risk factor for user3 increases to 2.08 ...

11:25:44 7-10-2010 user3 logged out n/a

... monitor synchronises at 12:13:20

13:15:35 7-10-2010 user3 >logged in n/a

... user3 attempts to load £1500 onto virtual credit card ...

... risk factor for user3 increases to 2.704 ...

... monitor detects violation and stops the activity ...

In this case, the risk associated withuser3exceeded the threshold and thus upon the
closing scope of the money load, the monitor was synchronised. Note that for this reason
the system was immediately stopped when attempting to allowthe user to load money
which exceeded the limit.

Notwithstanding rigorous testing, unexpected behaviour still occurs in complex systems
such as Entropay. Although the issues detected and shown in the above traces are minor
issues, having monitors in place with automated compensating mechanisms has thus been
shown to provide an extra security layer to the benefit of the business and the clients.

8 Related Work

In principle, any algorithm used for synchronous monitoring can be used for asynchronous
monitoring as long as all the information available at runtime is still available asynchronously
to the monitor through some form of buffer. The inverse, however, is not always true because
monitoring algorithms such as [21] require that the complete trace is available at the time of
checking. In our case, this was not an option since our monitor has to support desynchroni-
sation and resynchronisation at any time during the processing of the trace.

There are numerous algorithms and tools [1,2,7,13,14,18,21,22] which support asyn-
chronous monitoring — sometimes also known as trace checking or offline monitoring. A
number of these tools and algorithms [1,2,7,21] support only asynchrony unlike our ap-
proach which supports both synchronous and asynchronous approaches. Furthermore, al-
though a number of approaches [13,14,18,22] support both synchronous and asynchronous
monitoring, no monitoring approach of which we are aware is able to switch between syn-
chronous and asynchronous monitoring during a single execution.

Although the idea of using rollbacks (or perfect compensations) as a means of synchro-
nisation might be new in the area of runtime verification, this is not the case other areas,
such as distributed games [12,19,20]. The problem of distributed games is to minimise the
effects on the playing experience due to network latencies. Twogeneral approaches taken
are pessimistic and optimistic synchronisation mechanisms. The former waits for all parties
to be ready before anyone can progress while the latter allows each party to progress and
resolve any conflicts later through rollbacks.

The problem which we have addressed in this work is a variant of the distributed game
problem with two players: the system and the monitor. In a similar fashion to game syn-
chronisation algorithms, the system rolls-back (or compensates) to revert to a state which is
consistent with the monitor.

9 Conclusions and Future Work

Notwithstanding the rigorous testing which critical system undergo, problems still arise par-
ticularly due to the unpredictable environment under whichsuch systems operate. This sce-
nario motivates the need for monitoring such systems duringnormal use where the occur-
rence of an error might imply serious repercussions. However, the problem with monitoring

Safer Asynchronous Runtime Monitoring Using Compensations 25

is that it adds overhead to the system which might already be under pressure during peak
hours of usage. This motivates the use of asynchronous monitoring which minimises the
overhead to logging system events. The problem with asynchronous monitoring is that upon
the detection of a problem, it might be too late to take any corrective measures. Adaptive
compensation-aware monitoring is a conciliatory approachwhich allows the monitoring
architecture to switch between synchronous and asynchronous monitoring, using compen-
sations to restore the system state in case an error is detected late.

In this paper we extended compensation-aware monitoring tohandle scopes such that
when a compensation terminates, it is no longer compensable. Furthermore, we have ex-
tended the architecture to include heuristics which are able to automatically steer the moni-
toring system from synchrony to asynchrony and vice-versa.As a heuristic example we have
demonstrated the use of perceived user risk for switching tomonitor synchrony upon scope
closure detection.

A significant limitation of our work is the assumption that compensations are associ-
ated to individual actions. Apart from the fact that this might not always be the case, this
approach is highly inflexible as one cannot simultaneously compensate for several actions.
In the future, we aim to lift this limitation by introducing amore structured approach to
compensation handling.

Another possible direction for future work is to support compensating monitoring which
is not constrained to compensate only for buffered actions. This can be useful for example
in the case of fraud detection where violation can be detected late even when monitoring
synchronously, and in which case one may desire to undo certain actions which took place
before the violation.

References

1. J. H. Andrews and Y. Zhang. General test result checking with log file analysis.IEEE Transactions on
Software Engineering, 29(7):634–648, 2003.

2. H. Barringer, A. Groce, K. Havelund, and M. Smith. An entry point for formal methods: Specification
and analysis of event logs. InFormal Methods in Aerospace (FMA). Electronic Proceedings in Theoret-
ical Computer Science (EPTCS), 2009.

3. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations in flow composi-
tion languages. InPrinciples of Programming Languages (POPL), pages 209–220. ACM, 2005.

4. M. J. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling long-running
business transactions. InCOORDINATION, volume 2949 ofLecture Notes in Computer Science, pages
87–104, 2004.

5. M. J. Butler, C. A. R. Hoare, and C. Ferreira. A trace semantics for long-running transactions. In25
Years Communicating Sequential Processes, volume 3525 ofLecture Notes in Computer Science, pages
133–150. Springer, 2004.

6. L. Caires, C. Ferreira, and H. T. Vieira. A process calculus analysis of compensations. InTrustworthy
Global Computing (TGC), volume 5474 ofLecture Notes in Computer Science. Springer, 2008.

7. F. Chang and J. Ren. Validating system properties exhibited in execution traces. InAutomated Software
Engineering (ASE), pages 517–520. ACM, 2007.

8. C. Colombo, A. Gauci, and G. J. Pace. Larvastat: Monitoringof statistical properties. InRuntime
Verification (RV), volume 6418 ofLecture Notes in Computer Science, pages 480–484. Springer, 2010.

9. C. Colombo, G. J. Pace, and P. Abela. Compensation-aware runtime monitoring. InRuntime Verification
(RV), volume 6418 ofLecture Notes in Computer Science, pages 214–228. Springer, 2010.

10. C. Colombo, G. J. Pace, and G. Schneider. Dynamic event-based runtime monitoring of real-time and
contextual properties. InFormal Methods for Industrial Critical Systems (FMICS), volume 5596 of
Lecture Notes in Computer Science, pages 135–149. Springer, 2008.

11. C. Colombo, G. J. Pace, and G. Schneider. Larva — safer monitoring of real-time java programs (tool
paper). InSoftware Engineering and Formal Methods (SEFM), pages 33–37. IEEE, 2009.

12. E. Cronin, A. Kurc, B. Filstrup, and S. Jamin. An efficient synchronization mechanism for mirrored
game architectures.Multimedia Tools and Applications, 23(1):7–30, 2004.

26 Christian Colombo et al.

13. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B. Sipma, S. Mehrotra,
and Z. Manna. Lola: Runtime monitoring of synchronous systems.In Temporal Representation and
Reasoning (TIME). IEEE, 2005.

14. S. A. Ezust and G. V. Bochmann. An automatic trace analysis tool generator for estelle specifications.
In Applications, technologies, architectures, and protocols for computer communication (SIGCOMM),
pages 175–184. ACM, 1995.

15. H. Garcia-Molina and K. Salem. Sagas. InSIGMOD international conference on Management of data,
pages 249–259. ACM, 1987.

16. J. Gray. The transaction concept: Virtues and limitations (invited paper). InVery Large Data Bases,
pages 144–154. VLDB Endowment, 1981.

17. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: A calculus for service oriented com-
puting. InService-Oriented Computing (ICSOC), volume 4294 ofLecture Notes in Computer Science,
pages 327–338. Springer, 2006.

18. K. Havelund and G. Roşu. Synthesizing monitors for safety properties. InTools and Algorithms for the
Construction and Analysis of Systems, pages 342–356. Springer, 2002.

19. D. Jefferson. Virtual time. InInternational Conference on Parallel Processing (ICPP), pages 384–394.
IEEE, 1983.

20. M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and timewarp: consistency for replicated
continuous applications.IEEE Transactions on Multimedia, 6(1):47–57, 2004.

21. G. Roşu and K. Havelund. Synthesizing dynamic programmingalgorithms from linear temporal logic
formulae. Technical report, RIACS, 2001.

22. G. Roşu and K. Havelund. Rewriting-based techniques for runtime verification. Automated Software
Engineering, 12(2):151–197, 2005.

23. C. Vaz, C. Ferreira, and A. Ravara. Dynamic recovering of long running transactions.Trustworthy
Global Computing (TGC), 5474:201–215, 2009.

