
WICT PROCEEDINGS, NOVEMBER 2009 1

Statistics and Runtime Verification

Andrew Gauci
Dept. Of Computer Science

University Of Malta
agau0006@um.edu.mt

Gordon J. Pace
Dept. of Computer Science

University of Malta
gordon.pace@um.edu.mt

Christian Colombo
Dept. of Computer Science

University of Malta
christian.colombo@um.edu.mt

Abstract

The importance of correctness of systems is be-
coming more crucial as computers control more of
our everyday activities. Various approaches have been
advocated and used for the verification of such cor-
rectness, with one of the more promising ones being
runtime verification. One important issue in runtime
verification is the logic used to specify properties,
since this influences both the overheads induced by
the monitors, and the applicability of the approach
to a particular domain. In this paper we propose
techniques for the expression and runtime monitoring
of statistical properties, enabling easier manipulation
and expression of non-functional requirements. The
logic is developed as an extension of the existing
runtime verification tool LARVA, and has been applied
to an ftp server implementation, adding a new layer of
probabilistic intrusion detection and system profiling.

Index Terms

runtime verification, computational statistics, secu-
rity, intrusion detection, anomaly-based detection

1. Introduction

Ever since the inception of software development,
there has been the need for guarantees of a sys-
tem’s correctness. Moreover, as computer systems in-
fluence our lives in more frequent and crucial ways,
the need for reliable software rapidly grows. Such
guarantees can be provided through software verifi-
cation, by ensuring that the system implementation
corresponds to its specification, with the ultimate goal
being a guarantee of the absence of bugs. Traditional
techniques used include testing and model checking.
However, given the intractability of verifying each

possible system trace, and the lack of coverage implied
by testing, an increasingly used approach is that of
runtime verification, whose concern is the dynamic
verification of the currently executing system trace.
Runtime verification can be considered as an extension
to testing with augmented guarantees through the use
of more powerful specification languages.

One important issue in runtime verification is that of
the logic used to specify properties. This influences the
computational complexity of the monitors, and hence
the overheads induced. It also influences how effective
the approach can be used in particular domains. For in-
stance, using a logic enabling reasoning about discrete
time can be effective in a synchronous system setting,
whereas it could be challenging to express properties
of systems with real-time constraints. In this paper, we
explore the use of statistical properties within a runtime
verification setting. The advantages and applications
of such an approach are various — e.g. it is often
better to watch for indicators of impending failure than
to wait, and statistics allow for the straightforward
specification of non-functional requirements, including
specifications related to performance and reliability.
Areas of application of a statistical runtime monitoring
framework include performance profiling, intrusion
detection, user modeling and quality of service, all of
which benefit from the availability of such functional-
ity.

We also investigate the use of the approach by im-
plementing the logic through the runtime verification
framework LARVA, an event-based runtime verification
tool and logic for monitoring temporal and contex-
tual properties. In this paper we give an overview
of the resulting system LarvaStat, an extension to
LARVA with statistical capabilities. These capabilities
are introduced (to LARVA) as an additional statistical
framework running on top of the current logic, and
whose goals concisely are (i) the collection of a
wide variety of statistics over runtime executions, in a

2 WICT PROCEEDINGS, NOVEMBER 2009

manner which is intuitive and straightforward, and (ii)
the fruitful integration of the runtime verification and
statistical frameworks into one augmented framework,
whose overall expressivity, applicability and suitability
is greater than the sum of its constituent parts.

Section 2 introduces runtime verification, the tool
LARVA, and also the issue of incrementally computable
statistics. Section 3 presents LarvaStat, an event-based
runtime verification tool extending LARVA with sta-
tistical capabilities. Section 4 presents a comprehen-
sive case study implemented using LarvaStat, which
defines a probabilistic intrusion detection system and
integrated system profiler. Section 5 discusses alternate
solutions for the collection of statistics over runtime
executions, and also compares LarvaStat with current
solutions. Section 6 concludes the paper and offers
pointers to possible future work.

2. Background

Runtime verification [2], [5] is a dynamic software
verification technique which verifies that the system
trace generated at runtime by the currently executing
system adheres to the system specification, and is
summarised below.

The above process admits multiple issues, the first of
which is the choice of language for the expression of
the system properties. Such languages are either logic
based (such as duration calculus [3]) or automaton
based (such as timed automata [1]). In general, no
language is best, and the choice of language often
depends on multiple factors such as the application
domain and the required expressivity demanded by the
system properties.

With the system properties expressed through a
suitable logic, the next step is the actual verification
that the system adheres to the specified properties. This
verification is executed at runtime through an oracle/-
monitor, encapsulating the specified system properties,
which is running in parallel with the underlying system
and observing its behaviour. A resulting crucial issue
is the fact that this monitor consumes resources (both
computational as well as memory) otherwise available
to the system. This system overhead induced by the
monitor may result in the alteration of the system
behaviour itself, which implies that any monitor im-
plementation should consume as little resources as

possible. However, note that in general a tradeoff
between logic expressivity and system overhead exists.

Another issue is that of instrumentation, which
refers to the integration of the monitor with the un-
derlying system, thus giving the monitor access to
the required system information for verification to
occur. Finally, an interesting issue worth mentioning
is reparation. Whereas certain languages are content
with simply identifying correct (or incorrect) system
behaviour, others go one step further by specifying
reparatory action in order to steer the system back to
an acceptable state.

LARVA [6], standing for Logical Automata for
Runtime Verification and Analysis, is an automaton-
based logic and tool for runtime verification. Based on
Dynamic Automata with Timers and Events (DATEs)
as the underlying mathematical framework, LARVA
listens to events within the underlying system and
allows for the expression of (a) temporal properties
dealing with (i) consequentiality (Event A must occur
before B), (ii) real time properties (Event A must occur
at most twice every five minutes), and (b) contextual
properties with the possibility of monitoring objects
either globally or grouped according to their context
(by monitoring each account instance, ensure that
every account must belong to a registered user). The
defined core LARVA constructs include the property
(specified through automaton-based DATEs), the timer
(for real-time requirements), channel (used for automa-
ton communication), the event (specifying any event of
interest within the underlying system) and finally the
foreach construct used for context specification.

The evaluation of statistics over runtime executions
poses a dilemma, since whereas the computation of
certain statistics are computationally expensive and
potentially operate on a large data set, we require
any monitor which executes such valuations to be as
lightweight as possible. However, it turns out that a
certain class of useful statistics can be characterised
using an efficiently executable evaluation strategy, also
known as incrementally computable statistics [7] de-
fined below.

Definition 2.1: Given a sequence 〈 s1, s2, ..., sn 〉,
initial statistical valuation v0, incrementally com-
putable statistic α, characterised by function f(a,b),
where a is a new valuation added to the statistic’s input
value set, and b is the current statistic valuation, the
final valuation v resulting by the application of α to
〈 s1, s2, ..., sn 〉 is

v = f(sn, f(sn−1, ..., f(s1, v0)))

In other words, an incrementally computable statistic

GAUCI et al.: STATISTICS AND RUNTIME VERIFICATION 3

evaluates its new valuation using only the current
valuation and the new value added to the data set.
Example statistics which can be evaluated in an online
incrementally computable fashion are the average, sum
as well as the count. Taking the example of the sum, its
initial valuation and characterising function are defined
as v0 = 0, and f(a,b) = a + b. It is hence clear
that incrementally computable statistics are efficiently
computable, since all they require is the storage of
the current valuation and the execution of the char-
acterising function. However, not all statistics admit
an incrementally computable characterisation, such as
the median, histograms and modes [9]. In such cases,
their evaluation needs to be handled with care using
more intelligent ways, such as through randomised and
approximation algorithms [9].

3. Statistics for Runtime Verification

The following section presents an event-based sta-
tistical framework augmented on top of the LARVA
runtime verification framework. This statistical frame-
work allows for the expression of the required statis-
tics through three core constructs; the point statis-
tic, interval statistic, and the statistical event. More-
over, there exists a tight binding between frameworks,
whereby properties defined within the runtime verifi-
cation framework have access to statistical valuations
and can listen to events generated within the statisti-
cal framework, and statistical constructs are allowed
access to the constructs (such as timers, channels
and events) defined within the runtime verification
framework.

3.1. The Point Statistic

The primary basic statistical construct in our frame-
work is that of the point statistic, which keeps track of
its current valuation, listens to events and updates its
valuation accordingly. Take the example of a statistic
keeping count of bad login attempts. Certainly we
require a running valuation storing the count of at-
tempted bad logins up to that instant, which is incre-
mented each time another unsuccessful login occurs.
This logic can be extended to a variety of statistics
(such as the maximum, minimum and the average),
and hence a point statistic is defined through (i) the
current statistic valuation (and its corresponding type),
(ii) a point of interest, entailing the triggering event
expression as well as a boolean condition (allowing for
the differentiation between events), and (iii) a statistic
update executed each time the associated point of

interest is triggered, updating the statistic valuation as
required.

3.2. The Interval Statistic

Sometimes point statistics is only to be executed on
a subsequence of the whole event trace, which gives
rise to the notion of an interval statistic. If for example
we require the byte count sent during a given stream
connection, the only event sequence of interest lies
between the opening and the closing of the connection.
Consequently, an interval statistic augments the point
statistic with the notion of an interval, implying that
an interval statistic is characterised through (i) the
current statistical valuation, (ii) a point of interest, (iii)
a statistic update, and (iv) an interval. Intervals form
an expressive backbone of the statistical framework,
and admit either a static or dynamic nature.

The opening and closing of static intervals are
characterised by fixed points within the event trace,
whereby we present two variations.

The event interval (above) is the first static interval
variation, whereby the opening and closing of the in-
terval are characterised by an interval point of interest,
which is essentially a point of interest and an additional
action execution (used for initialisation or finalisation
purposes). Given such an interval characterisation, an
event interval statistic executes the internally defined
point statistic between the interval opening and closing.
Continuing from the previous example evaluating the
byte count, the opening and closing interval points of
interest characterise the start and closing of the stream
connection, and the internal point statistic counts the
bytes sent within this duration.

The second static interval variation is the duration
interval (below), and is in fact a specialisation of
the previous interval. In essence, whereas the opening
interval characterisation remains identical (to before),
the interval closes a duration T time units after the
interval opening, as described below.

4 WICT PROCEEDINGS, NOVEMBER 2009

An example duration interval statistic is the down-
load count for the first thirty minutes since user login.

Dynamic intervals are somewhat different than their
static equivalent, whereby dynamic intervals essen-
tially “move” with time without any fixed interval
opening or closing. Practical applications for dynamic
intervals include the definition of statistics such as
the largest file downloaded within the last hour, or
the network throughput for the last minute. The time
interval is the single dynamic interval variant defined
within the statistical framework, and is defined below.

Hence, a time interval is defined through (i) the time
window duration T, and (ii) an interval updating action,
executed periodically in order to keep the statistic
valuation in line with the dynamic interval semantics.
In other words, whereas the execution of static intervals
solely require the listening of events, dynamic inter-
vals require an updating mechanism distinct from any
system execution. This is provided through polling,
whereby a lightweight updating action is executed
every δ (much smaller than T) time units so as to
update the interval in accordance to its dynamic se-
mantics, thus simulating a “moving” interval. However,
this implies that simulating dynamic intervals can be
computationally expensive, as well as the fact that
statistics using dynamic intervals admit an outdated
valuation by at most δ time units. Alternate methods
for simulating dynamic intervals more efficiently are
currently being explored.

3.3. The Statistical Event

Since we build our approach on a model working
with events, we package all statistical results in a

special form of event — the statistical event — an
event carrying the latest statistical valuation, which is
generated each time a statistic valuation is updated.
This enables statistical events to be listened to by
properties and other statistics alike, and allows for
considerable flexibility within the framework.

The first scenario allows for statistic valuations —
possibly representing non-functional requirements —
to affect system behaviour (for example, if the bad
login count valuation goes above the set threshold of
three, an attempted intrusion is detected and the user
is blacklisted), whereas the second scenario allows for
the expression of multilayered statistics. Multilayered
statistics essentially allow for the combination of
multiple statistics (a sequential chaining of statistics),
and allows for the expression of statistics such as the
maximum average, or the least variance.

A crucial issue worth mentioning is that of overlap-
ping intervals, whereby certain statistics are interested
in select intervals of the event trace, which however
overlap in time. Such situations are especially common
in multithreaded systems, and an example statistic ad-
mitting such an issue is the counting of bytes sent over
multiple concurrent stream connections. This implies
the requirement of a mechanism which distinguishes
between intervals, in such a manner whereby each
event of interest (to the statistic) occurring within the
underlying system is associated with a unique (from
the possible overlapping) interval. The solution to the
issue of overlapping intervals is presented through the
association of context with each possible overlapping
interval. In other words, analogously to the use of
context within LARVA, each interval statistic admitting
an overlapping interval is associated with an object
acting as its context, such that this object is used as a
determiner regarding the interval instance affected by
an event occurrence.

Although the evaluation of non-incrementally com-
putable statistics is potentially inefficient, we require
our statistical framework to be general, capable of
evaluating a wide variety of statistics. Hence, both
the point and interval statistic are augmented with the
possibility of declaring additional variables as required
for the evaluation of non-incrementally computable
statistics. However, it is the user’s responsibility to
ensure that any additional constructs do not imply an
exponential requirement of computational and memory
resources by the statistic.

The statistical framework also defines additional
functionality permitting control over the act of
statistics collection itself. Hence, statistics can be
paused, resumed, updated, manipulated and also reset.

GAUCI et al.: STATISTICS AND RUNTIME VERIFICATION 5

4. Case Study

We have investigated the use of LarvaStat by imple-
menting a probabilistic intrusion detection system and
integrated system profiler applied over a third party
Java ftpd server implementation 1. This resulting moni-
tor is to implement two components, these being (i) the
observation and quantification of system performance,
and (ii) the observation of user behaviour, attempting
to characterise incorrect as well as abnormal user
behaviour. Moreover, given that the monitoring of
users is expensive, we develop a mechanism which
probabilistically chooses which user sessions to moni-
tor. This choice depends on two factors, these being the
system load as well as the user risk factor (discussed
below). Hence, given a high risk user, and/or the ftpd
server being under a small load, the user in question
will probably be monitored.
• System Profiler: The system performance pro-

filing component follows the assumption that the
ftpd server’s performance is tightly bound to the
bandwidth usage, as well as the number of logged
in users.

• Intrusion Detection System: The second com-
ponent implements an intrusion detection system,
and is based on the statistical anomaly detection
techniques presented in [8]. Hence, the intrusion
detection system comprises two further compo-
nents. The first component involves a markov
chain analysing the event sequence executed by
the user. Each action is associated with a risk
factor, and hence if the chain of events is deemed
too risky or plain illegal, the user is deemed to be
malicious. The markov chain is simulated using
a point statistic keeping count of the event se-
quence risk by multiplying the current risk factor
with that associated with the previously executed
action. The second component involves the use
of statistical moments, more specifically the user
average behaviour as well as the variance, for the
characterisation of abnormal user behaviour. In
essence, if the user adheres to a statistically pre-
dictable acceptable behaviour, only to suddenly
start placing considerable stress on the system is
an indication of intrusion.

Full details of the case study can be found in [10].
The full implementation of the specified logic entails
the specification of twenty statistics, all of which are

1. Available under the GNU General Public Licence at
http://www.anomic.de/AnomicFTPServer/index.html

incrementally computable in nature. Through the case
study prototype, it is encouraging that a comprehensive
non-trivial implementation has not only been expressed
through LarvaStat, but also implemented without alter-
ing a single line of the original ftpd server code. This
offers potential with respect to pluggability, whereby
whole security policies can effectively be plugged in
or out without altering the original system, leading
to better separation of concerns and an increase in
modularity.

5. Related Work

Although runtime verification has received consid-
erable attention in recent years, it is perhaps surprising
that there is a lack of research into the augmenta-
tion of runtime verification with statistical capabilities,
especially given the theoretical and practical appli-
cations. We identify three existing approaches to the
field, with the first approach presented in [9] solely
focused on the collection of statistics over runtime
executions. Through the extension of linear temporal
logic [4], this approach presents a framework which is
said to evaluate queries on individual trace positions
(experiments), and combine multiple evaluations using
aggregate statistics.

Lola [7] is another approach, and presents a func-
tional stream computation language allowing for the
expression of past and future specifications, numeri-
cal queries as well as guaranteeing bounded memory
requirements.

EAGLE [2] is a third approach offering a language
independent tool and rule based logic. Although parsi-
monious in its construct definitions, the defined logic is
sufficiently expressive to encode multiple formalisms
such as interval logics, finite state automata, extended
regular expressions and even logics for the expression
of statistical properties.

It is immediately apparent that our approach is
somewhat different than current approaches. Firstly,
(to our knowledge) our approach is the first attempt
at collecting statistics over runtime executions us-
ing an automata-based formalism (all three alternate
approaches are logic-based). Also, LarvaStat inte-
grates real-time with statistics collection, thus allowing
for the specification of significant class of statistical
queries otherwise not expressible (such as the count
of user downloads within the last hour). Moreover,
although [9] introduces the application of statistics
collection over system trace intervals, we extend this
notion through the introduction of dynamic intervals.
Finally, and perhaps most crucially, whereas alternate
approaches are perhaps rather non-trivial in nature,

6 WICT PROCEEDINGS, NOVEMBER 2009

we believe our approach to be the most intuitive
approach yet, whereby collecting potentially complex
statistics boils down to a few lines of code. On the
other hand, Lola [7] offers functionality not present in
LarvaStat, namely the guarantee of bounded memory
requirements (given that Lola cannot express non-
incrementally computable statistics), as well as its
encoding of future and past time logics.

6. Conclusions and Future Work

We have presented LarvaStat, an extension to the
LARVA runtime verification tool and logic with sta-
tistical capabilities. The presented logic is concise
and intuitive, yet sufficiently expressive to express
a wide variety of statistics. In fact, the presented
framework is also to our knowledge one of the first
approaches augmenting statistics collection with real
time functionality, while also presenting innovative
concepts such as dynamic intervals. Moreover, the
presented case study is particularly encouraging, since
not only did it exemplify the need for the augmentation
of runtime verification with statistical capabilities, but
also justified LarvaStat by showing that the presented
framework is applicable to a wide variety of non-
trivial scenarios. For more information see [10], where
the presented framework is formally analysed and an
operational semantics specified, as well as specifying
a language and associated compiler for the expression
and implementation of the motivated framework.

Three core issues are identified for further study. The
first issue regards the development of a probabilistic
framework on top of the statistical framework. This
framework should allow for the expression of proper-
ties such as “property X should be adhered to 80% of
the time” or “check property X for 80% of the time”.
The second issue regards the further in depth character-
isation of intervals, placing emphasis on dynamic in-
tervals (which currently can be computationally costly
and are executed in inexact fashion due to polling), as
well as the application of intervals beyond statistical
requirements within runtime verification. The final
issue worth further analysis is the system overhead
induced by the presented statistical framework, with
plans for further framework optimisation.

References

[1] Rajeev Alur and David L. Dill. A theory of timed
automata. Theoretical Computer Science, 126:183–235,
1994.

[2] Howard Barringer, Allen Goldberg, Klaus Havelund,
and Koushik Sen. Rule-based runtime verification.
pages 44–57. Springer, 2004.

[3] Zhou Chaochen, C.A.R Hoare, and Anders P.Ravn. A
calculus of durations. Oxford University Computing
Laboratory, Programming Research Group, 1991.

[4] Edmund M. Clarke, Orna Grumberg, and Doron Peled.
Model Checking. The MIT Press, The MIT Press
Massachusetts Insititute Of Technology Cambridge,
Massachusetts 02142, 1999.

[5] Séverine Colin and Leonardo Mariani. Run-time veri-
fication. In Model-Based Testing of Reactive Systems,
pages 525–555. Springer, 2004.

[6] Christian Colombo. Practical runtime monitoring with
impact guarantees of java programs with real-time
constraints. Master’s thesis, University of Malta, 2008.

[7] Ben D’Angelo, Sriram Sankaranarayanan, César
Sánchez, Will Robinson, Bernd Finkbeiner, Henny B.
Sipma, Sandeep Mehrotra, and Zohar Manna. Lola:
Runtime monitoring of synchronous systems. In 12th
International Symposium on Temporal Representation
and Reasoning (TIME’05), pages 166–174. IEEE Com-
puter Society Press, June 2005.

[8] Dorothy E. Denning. An intrusion-detection model.
IEEE Transactions on Software Engineering, 13:222–
232, 1987.

[9] Bernd Finkbeiner, Sriram Sankaranarayanan, and
Henny B. Sipma. Collecting statistics over runtime
executions. In In Proceedings of Runtime Verification
(RV’02) [1], pages 36–55. Elsevier, 2002.

[10] Andrew Gauci. Statistics and runtime verification.
University Of Malta, 2009.

