
University of Malta
Department of Computer Science and A.I.

Achieving Gigabit Performance
on Programmable Ethernet
Network Interface Cards

Submitted in partial fulfillment of the requirements for the degree of

B.Sc. I.T. (Hons.)

by

Wallace Wadge

June 2001

Abstract

The shift from Fast Ethernet (100Mbit/s) to Gigabit Ethernet (1000Mbit/s) did

not result in the expected ten-fold increase in bandwidth at the application level.

In this dissertation we make use of programmable Ethernet network cards running

at gigabit speeds to identify present bottlenecks. Furthermore, we investigate the

performance of the PCI bus and the throughput “on-the-line” when using different

frame sizes. The PCI bus was identified as a major bottleneck. We also propose

two new techniques aimed at boosting application performance to near-gigabit levels

whilst maintaining full compatibility with existing systems. The proposed techniques

were implemented and yielded an 80% point-to-point transfer rate benefit whilst

utilizing the existing Ethernet standard framework.

i

Acknowledgments

I would firstly like to express my gratitude to Dr. Kevin Vella whose patience,

perseverance and supervision made this project possible. I am also indebted to Mr.

Joseph Cordina for his constant feedback and insights as well as the Computer Science

and A.I. Department for providing all the necessary hardware.

On a more personal note I would like to thank my uncle Vincent as well as my

parents for their support throughout the years. Lastly, a word of thanks goes out

to my girlfriend Antonella, for her constant encouragement throughout the entire

project.

ii

Contents

1 Introduction 1

1.1 Aims and objectives . 1

1.2 Structure of document . 2

2 Survey 3

2.1 Conventional Network Cards . 3

2.2 Problems with conventional NICs . 5

2.3 Recent Work . 7

2.3.1 Myrinet . 8

2.3.2 GigaPM . 9

2.3.3 U-Net . 10

2.3.4 Virtual Interface Architecture 10

2.3.5 Bulk transfer protocols . 12

2.3.6 Speculative Defragmentation 13

3 Background 14

3.1 The Peripheral Component Interconnect (PCI) Bus 16

3.1.1 Programmed Input/Output (PIO) 18

3.1.2 Direct Memory Access (DMA) 18

3.2 Ethernet background . 19

3.2.1 Frame format . 19

3.2.2 Flow Control . 21

3.3 The Alteon Tigon NIC . 22

iii

3.3.1 Communicating with the Tigon 24

3.3.2 NIC Features . 25

4 Analysis of Potential Bottlenecks 27

4.1 A note about Timings . 29

4.2 Theoretical Limits . 30

4.2.1 The Jumbo Frames Debate . 33

4.3 Determining line speed . 36

4.4 PCI Bus . 39

4.4.1 Host to NIC . 41

4.4.2 NIC to Host . 42

4.5 Host transmission . 45

4.5.1 Testing transmission from a host source 46

4.5.2 Testing host reception from a NIC source 50

4.5.3 Measuring Host to Host performance 51

5 Packet Fragmentation and Coalescing 56

5.1 Packet Fragmentation . 57

5.1.1 Results . 57

5.1.2 The Pitfalls . 60

5.1.3 Future Work . 61

5.2 Packet Coalescing . 62

5.2.1 Results . 63

5.3 Host Fragmentation to Host Coalescing 66

5.3.1 Pitfalls . 67

6 Conclusion 68

6.1 Results and achievements . 68

6.2 Future work . 69

6.3 Final remarks . 69

iv

A Data Obtained 70

A.1 NIC to Host . 70

A.2 NIC to Host (with coalescing) . 72

A.3 Host to Host (standard firmware) . 74

A.4 NIC to Host PCI test . 76

A.5 Host to NIC PCI test . 78

A.6 Host Split to Host Coalesced . 80

A.7 Host Std. to Host Coalesced . 82

A.8 Host to NIC . 84

A.9 Ethernet Theoretical Limits . 86

A.10 Host Split to NIC . 88

A.11 NIC to NIC . 90

v

List of Figures

2.1 The VI Interface . 11

3.1 A typical PCI configuration . 17

3.2 Ethernet Frame Format . 20

4.1 Maximum Theoretical Ethernet bandwidth 31

4.2 Maximum Theoretical Ethernet bandwidth (Detail) 31

4.3 Extended (Jumbo) Ethernet Frames vs. Standard Ethernet 33

4.4 Frame sizes analysis . 35

4.5 NIC to NIC Unidirectional . 37

4.6 NIC to NIC UniDirectional (detail) 38

4.7 NIC to NIC (Theoretical vs. Obtained) 38

4.8 Host to NIC PCI UniDirectional . 41

4.9 Host to NIC UniDirectional (detail) 43

4.10 NIC to Host UniDirectional . 44

4.11 NIC to Host UniDirectional (detail) 45

4.12 Testing standard firmware (TX) . 46

4.13 Host transmitting, NIC receiver benchmarking 47

4.14 Host transmitting, NIC receiver benchmarking (detail) 48

4.15 Host transmitting, NIC receiver benchmarking vs. PCI performance . 48

4.16 Bandwidth difference between Host transmit and DMA performance . 49

4.17 Testing standard firmware (RX) . 50

4.18 NIC to Host using standard firmware 51

4.19 NIC to Host using standard firmware (detail) 52

vi

4.20 NIC to Host using standard firmware (detail) vs. PCI Performance . 52

4.21 Host to Host Unidirectional transfer 53

4.22 Host to Host Unidirectional vs PCI performance 54

4.23 Summary of results (1.5K payloads) 55

4.24 Summary of results (9k payloads) . 55

5.1 Packet Fragmentation Block diagram 57

5.2 Packet Fragmentation results . 59

5.3 Packet Fragmentation results (detail) 59

5.4 Packet Fragmentation vs Host to NIC 60

5.5 Packet Fragmentation vs Host to NIC (detail) 61

5.6 Packet Coalescing . 64

5.7 Packet Coalescing vs PCI performance 64

5.8 Bandwidth loss when compared to PCI performance 65

5.9 Host to Host with Packet Coalescing 65

5.10 Host Split to Host Coalescing (block diagram) 66

5.11 Host with Packet Fragmentation to Host with Packet Coalescing (using

standard 1.5k packets throughout) 67

vii

List of Tables

4.1 Ethernet Theoretical Maximum Effeciency 32

4.2 Line Speed throughput for different payload sizes 36

4.3 Latency and bandwidth of different Burst length transfers. 39

4.4 Host to NIC UniDirectional (fragment) 42

4.5 NIC to Host (fragment) . 43

4.6 Host transmitter, card receiver (fragment) 46

4.7 Host to host (fragment) . 53

5.1 Fragmentation results . 60

viii

Chapter 1

Introduction

In recent years line throughput has been increased and Gigabit Ethernet has been

standardised, yet the expected performance is not being achieved at the application

level. Typical Gigabit Ethernet network interface cards, which should be delivering

up to 1 billion bits per second, end up providing processes with less than half that

rate (around 409 Mbps on Linux-based systems [Weba], less on Windows platforms).

Furthermore, these results were achieved using full CPU host loading, which implies

that the host system is left with little time for further processing. As bandwidth

demands are on the increase, it is evident that this situation can only degenerate

further.

1.1 Aims and objectives

In this dissertation, we take a look at each step involved in transferring data from one

host machine to another and attempt to locate the main bottlenecks involved in both

packet transmission and reception. By making use of special programmable network

interface cards, various scenarios, such as transmitting data utilising larger payloads

than usual, are simulated. We investigate the following key areas:

NIC to NIC linespeed Firmware reprogramming allows us to accurately verify

if current hardware is able to match the expected theoretical results. The effect of

1

utilising payloads of different lengths is also investigated.

Host to NIC interaction The PCI bus is used whenever data is transmitted or

received from the network. One of our aims is to verify the bus’s performance by

stress testing it with different transaction lengths (from just a few bytes right up to

64k). Both PCI transfer directions are investigated.

Packet processing overheads Another of our aims is to benchmark and poten-

tially reduce the amount of processing involved in transferring data from one host

machine to another.

Our major objective is to improve throughput at the application level while main-

taining compatibility with existing Ethernet standards. This is achieved by introduc-

ing two new techniques, packet fragmentation and packet coalescing, for the transmit-

ting and receiving side respectively.

1.2 Structure of document

This dissertation is organised as follows. In Chapter 2 we take a look at how a typical

NIC works as well as present some recent work aimed at resolving some of the key

problem areas. In Chapter 3 we give an overview of all the tools which were utilised

in the dissertation while in Chapter 4 we present our benchmarks and analysis of each

communication component. Chapter 5 augments the results obtained by describing

two new techniques aimed at boosting performance. We conclude in Chapter 6 by

highlighting our major results and presenting possible future work.

2

Chapter 2

Survey

In this chapter we first take a look at how a conventional Network Interface Card

(NIC) works in the context of a typical host setup running over the TCP/IP protocol

(see [Pos81]). We also take a look at the problems surrounding the usual implemen-

tation schemes and summarise recent work aimed at solving some key problem areas.

By “conventional network interface cards” we imply the cheap, off-the-shelf, kind

commonly found in many offices. These are characterised by having little on-board

intelligence and rely mostly on the host to provide many of the necessary functions.

2.1 Conventional Network Cards

When a conventional network card receives a complete unit of data from the network

(that is, a packet) and is ready to forward it to the computer’s bus, it generates

a hardware interrupt. This leads to the network interrupt handler routine being

called to encapsulate the packet in some structure. It also enqueues it in the IP

queue (or some similar queue, depending on the underlying protocol) and posts a

software interrupt. The software interrupt has a higher priority than any user process;

therefore, whenever a user process is interrupted by a packet arrival, the protocol

processing for that packet occurs before control returns to the running user process.

However, software interrupts have a lower priority than hardware interrupts. This

3

means that the hardware can interrupt the processing of earlier packets.

When packets are transmitted over the network, they may be sent along different

routes; thus, at the receiving end, these packets may be received in the wrong order.

The IP protocol first reassembles all these fragments and then calls the UDP or TCP’s

input function (as appropriate). Finally, the packet is queued on the socket queue of

the socket that is bound to the packet’s destination port.

When a process wishes to send some data across a network, the following steps

occur. First, the data is written to a socket (via a system call) to the appropriate

buffers. This stage already incurs a performance penalty as a context switch be-

tween user and kernel modes occurs. These buffers are then further processed by

the underlying protocols such as UDP and TCP and placed on the network driver’s

interface queue. Packets queued in the interface queue are then removed and trans-

mitted in the context of the network interface’s interrupt handler. For stream sockets

such as TCP, these buffers are queued in the socket’s outgoing socket queue and

TCP’s output function is called. Depending on the arguments to the send call and

the state of the TCP connection, TCP makes a logical copy of all, some or none of

the queued buffers; then processes them for transmission and calls IP’s output func-

tion. Depending on the underlying hardware, the TCP routines may need to split

the data up into smaller packets. Many techniques have been proposed to eliminate

this copying stage since it has been found to be one of the biggest sources of inef-

ficiency. The resulting packets are then transmitted or queued on the interface queue.

As can be evidenced, the NIC performs a very small part of the work required,

most of the effort is left to the host to handle. From a hardware point of view, the

conventional system is ideal since, without the need to process packets beyond the

Ethernet perspective, there is little circuitry involved. However, there are quite a

number of (serious) performance issues, all of which are amplified as speeds increase.

4

2.2 Problems with conventional NICs

In this section we shall highlight some problems arising out of conventional NIC and

OS designs.

Inappropriate resource accounting The reception of a packet results in an in-

terrupt being generated. However, the time taken to handle this packet may not

necessarily be taken from the application that is waiting for the data. In other words,

it may be perfectly possible for a network user to grab a large chunk of processing

time from other users, irrespective of the user’s priority. This is unfair since the

penalty in performance is at times not attributed to the process waiting for data to

be received or transmitted.

Lack of load shedding The need often arises to reject or drop a packet; this would

be the case, for example, in the case of a receiver overload. Under a conventional

system, packet rejection can only occur after some resources have been consumed.

Lack of traffic separation Incoming traffic designated for one application can

lead to a delay and loss of packets for another application.

Interrupt handling The whole system is interrupt driven. Interrupts are quite

costly in terms of performance since they result in a mode switch between kernel

mode and user mode as well as increased context switching. Packets are typically

copied one at a time from the NIC to the host, thus another important measure here

is how quickly the data is transferred. A standard Ethernet packet can be up to 1514

bytes long (excluding the 4 byte CRC at the end). Assuming that each I/O bus cycle

can transfer 4 or 8 bytes at a time (depending whether the underlying PCI bus is 32

or 64 bit wide) that would mean that it would take between 190 and 379 bus cycles to

transfer the data from one place to another. During this time, the running processes

in the host are completely blocked.

5

Eager receiver processing High interrupt priority is given to the capture and

storage of packets in main memory while the lowest is given to the applications

waiting for the data. Under high network load a host may very well end up using

all of its processing time to process incoming packets, only to discard them a short

while later. Unfortunately, by the time it discards them, a considerable amount of

processing time has already been lost.

This scenario (known as receiver livelock) can occur since the earlier receiving pro-

cesses have a higher priority than later stages. Thus, under heavy load, the consumer

process, that is, the process waiting for the data, might find itself continuously inter-

rupted to handle the new incoming packets. Above certain thresholds, more packets

are produced than consumed so socket and IP queues start to fill up. Eventually, the

queues fill up so all newly received packets end up being discarded – but only after

more CPU time has been invested in them. The end result is a host machine doing

nothing except discarding incoming packets. This effect can be exploited by denial

of service (DoS) attacks whereby a server is flooded by rouge packets starving the

host from further work. At the Ethernet level, flow control may aid in controlling

this effect.

Checksum calculation overheads Research carried out by Alteon [Webc] indi-

cates that many systems spend as much as 15% of their time just calculating check-

sums for each transmitted packet.

Buffer alignment Since not all transfers are exactly aligned to 32 or 64-bit bound-

aries, conventional adaptors usually place the burden on the host to align the buffers

prior to data transfer. This is time consuming and further hurts system performance.

Multiple memory copies The running user application must explicitly perform a

system call in order to retrieve the data received from the network. This has the effect

of copying the internally queued data to the application’s address space and finally

de-allocating the memory reserved for the copy. Memory to memory copies are done

when transferring packets from the NIC to the host, when packets are re-ordered for

6

the IP and TCP layers and when the payload is finally copied from the TCP protocol

layer in kernel space to user space.

All this overhead adds up resulting in CPU utilization rates of up to 90% on the

receiver side [GCY].

2.3 Recent Work

Although hardware designers have been placing considerable effort in achieving ever

higher peak bandwidths on raw data streams, little concern has been given to the

host-side where higher level functions are provided.

Much of the recent research has focused on reducing messaging latency and over-

heads. The main motivation of these abstractions has always been to reduce or

eliminate kernel access in sending and receiving messages to and from the network

as well as avoiding memory to memory data copies. With the emergence of new pro-

grammable hardware, more and more of the functions usually reserved for the kernel

are being transferred either to user-space or else to the hardware itself.

Programmable hardware of the like we see today were not available until a rel-

atively short while ago. Nevertheless, in [BDHR95] we see efforts being directed to

reduce kernel access. In their work, the TCP functions were divided into two parts:

the demultiplexing functions remained in the kernel while the rest of the protocol

moved into user space via a library linked to the application. While a performance

gain was noted, the kernel was still heavily involved and thus many bottlenecks re-

mained.

7

2.3.1 Myrinet

The arrival of ATM brought a new concept to the network world: job offloading.

Myrinet was one of the earliest to exploit a system allowing user-level processes to

directly access the underlying hardware thus bypassing the operating system ker-

nel [BCF+95]. Myrinet’s life was made simpler since its ATM backbone ensured

reliability at the hardware level. Myrinet was actually a complete hardware and soft-

ware solution with the host interface containing many of the features found in the

newer programmable NICs including the availability of a DMA engine to move data

between the host and the NIC.

A software layer, referred to as the Myrinet Control Program, was provided to

allow user process to either use the standard TCP/UDP system calls or else use

Myrinet’s own “streamlined” API. Where it really stands out from earlier work is the

way it makes use of external hardware to do some of the necessary processing which is

usually left for the host to handle. For example, when it receives a request to transmit

a packet of data onto the network, Myrinet invokes the DMA engines to transmit the

necessary data and, in operating systems which allow it, off-loads the computation

of the IP checksum to the hardware. Myrinet’s introduction to the networking world

also proved that achieving near gigabit rates was possible on the existing PCI bus.

A common problem with existing network cards is that hardware designers assume

a flat view of the system memory and ignore a key feature in most OSs: page swap-

ping. An application is usually not aware that a particular memory page is swapped

out and back again since that is done transparently by the OS; however this causes

problems for user-level networks. For example when effecting DMA transfers, the

DMA engines of the NIC card expects a physical memory address to start transfers.

However, the OS may decide to swap the page out during the same time the NIC is

busy transferring data. Furthermore, while a process makes use of virtual addressing,

the NIC uses the actual physical memory address since it obviously has no knowl-

edge of the OS layer. To circumvent this problem, Myrinet allocates a number of

8

non-swappable pages at boot-time and expects user processes to manage it via kernel

primitives.

This last issue has been further investigated by [TOHI]. The authors argue that

if each message transfer involves pin-down1 and release kernel primitives, message

transfer bandwidth decreases since primitives are computationally expensive. The

user-level library of PM builds on Myrinet by making the pinned-down memory area

reusable by requiring memory to be registered prior to use.

2.3.2 GigaPM

In [STH+99] a mechanism to minimize the latency and maximize bandwidth between

the host and the network adapter was designed. As in Myrinet, the authors assume

and make use of a programmable network card with it’s own dedicated processor.

GigaPM builds on the work of PM and Myrinet described above by creating a system

of message descriptors. Unlike earlier systems, these descriptors are stored and ma-

nipulated directly by the NIC (the Essential Communications PCI Gigabit Ethernet

NIC in their case). GigaPM makes use of PM’s pin-down techniques and Myrinet’s

design philosophy but shifts more of the necessary work on the NIC by sending mes-

sages in the form of descriptors while letting the NIC poll for any changes. This

has the effect of not involving the kernel at any stage. GigaPM also defines a new

type in order to let TCP/IP and other protocols co-exist with it. Interestingly, the

Acenic Tigon NIC has been designed from the ground up to support this method of

communication (more details on how the Acenic Tigon is designed will be given in

Chapter 3). Unlike Myrinet, GigaPM does not assume reliable message transfer at the

hardware level so issues such as to where error detection and correction occurs remain.

1The communication buffer area is reserved as a special virtual address area whose physical area

is never paged out. This is known as pinned down cache.

9

2.3.3 U-Net

As several research papers have pointed out, eliminating the kernel from the send

and receive paths requires that message multiplexing and demultiplexing has to be

performed somewhere else in hardware or in software in order to enforce protection

boundaries. U-Net [vEBBV95] tries to consolidate much of the work done by Myrinet,

PM, and GigaPE as well as move the multiplexing and demultiplexing routines di-

rectly onto the network interface. It also moves all buffer management and protocol

processing to user-level. This gives the illusion that each process owns the network

interface. U-Net not only provides multiplexing of the network interface among all

processes accessing the network, but also enforces protection boundaries and resource

limits. A user-level process has all the control of the network card it can get with the

exception of the source and destination addresses as well as buffer resources. Without

this protection, a process may easily disrupt the whole host system by specifying a

destination buffer address which was not reserved for its use. Unlike normal pro-

cesses, the underlying hardware is not kept in check by any protection boundaries

and is free to overwrite any part of the hosts’ memory. U-Net is composed of three

main building blocks – segments of memory to store message data, message queues

to hold descriptors for messages that have been received or that are to be sent and

endpoints which are used for control. As in GigaPM, when a process needs to send

a packet to the network, it adds a message descriptor to the appropriate queue and

waits for the NIC to eventually pick up the data and transmit it.

2.3.4 Virtual Interface Architecture

Hindered by all the different proprietary solutions, a new standard is being promoted.

Currently supported by more than a hundred industry organizations (including Com-

paq, Intel and Microsoft), this standard, known as the Virtual Interface Architecture

or VIA [DRM+98], broadly defines the way a process and the network interface hard-

ware should communicate. The VIA is closely related to the U-Net design, borrowing

10

Figure 2.1: The VI Interface

many of its design features by providing each process a protected, directly accessible

interface to the network hardware. The tasks of multiplexing and de-multiplexing and

data scheduling (normally performed by the OS kernel and driver) are also moved

onto the hardware itself. The VIA standard does not assume hardware reliability

(that is, it can be implemented on both ATM, Ethernet and other platforms). The

standard only expects NICs to support unreliable delivery, that is, a send request

will be processed exactly once and corrupted transfers are detected at the receiving

end (but retransmission of lost packets is not required). In other words, all that is

required is that if the NIC detects an invalid packet, it has to mark the frame as bad

by switching on the appropriate status bits.

The VI Architecture is comprised of four basic components: Virtual Interfaces,

Completion Queues, VI Providers, and VI Consumers (see Figure 2.1). The VI

Provider is composed of a physical network adapter and a software kernel agent.

The VI Consumer is generally composed of an application program and an operating

system communication facility. The virtual interface is the mechanism that allows

the VI consumer to directly perform the data transfer operations. All communication

takes place in the context of completion queues with doorbells used to signal each

11

other. This is the tried-and-tested model used by U-Net and the Acenic Tigon NIC

whereby processes add descriptors to a queue and the NIC picks them up and process

them.

The VIA specification requires that processes identify the memory to be used for

data transfer by registering it. This memory registration scheme allows processes to

re-use the assigned memory by locking down the memory pages to avoid the OS from

paging the memory segment out to disk, while avoiding the performance overheads

of repetitive locking and unlocking.

The VIA specification is intended to be implemented in an environment where

multiple processes make use of one or more NICs installed in a system and thus a

good part of the specification describes methods to safely run multiple virtual inter-

faces together.

In this dissertation we are concerned with getting the highest point-to-point data

transfer rate between two hosts and we always assume a single interface card used

exclusively by a single process.

2.3.5 Bulk transfer protocols

Despite the attempts by the above models to achieve zero-copy handling, a last de-

fragmenting step was still necessary to separate the headers from the data. Some

researchers took the assumption that when receiving multiple packets, the destina-

tion host can optimistically expect that the next packet to be received is the next

packet in the transfer [CZ89]. They thus devised special protocols coupled with page

remapping techniques (to avoid memory copies). However, while the TCP/IP and

blast protocols can co-exist, they do not interact; in other words, it requires a user-

process to be aware of such facilities and make use of them. Not surprisingly, though

blast techniques are actually more than a decade old, none of them have made it to

the mainstream API.

12

2.3.6 Speculative Defragmentation

On a more interesting note, [CKS00] proposed a system whereby the driver assumes

that packets will arrive in order and generates no less than six DMA descriptors

per packet to separate the headers from the payloads immediately (since the system

always works within a memory page of data, which is around 4K). Though, the

technique on its own gives very little performance benefit, when coupled with page

remapping into user space, they were able to show that a large performance benefit

could be obtained as the last defragmenting copy was avoided. However, the method

has three main drawbacks. Firstly, since the DMA descriptors at the receving end

are pre-fabricated, a non-ordered arrival of packets results in some work being done

to reorder the payloads. The authors argue that the best case scenario, that is, when

all packets arrive in order, is the most common scenario. Furthermore they show that

when this occurs the performance loss when this occurs is not that high. This may

be true on a low number of switches but may not necessarily be true on more highly

connected clusters. On a worse note, the fact that the driver is doing additional work

on the host side can only mean that the CPU utilization rate increases. No figures

were available to contrast the standard protocol with their methods. Furthermore,

DMA startup costs have been shown to be expensive and the system uses no less

than six DMA descriptors of which half of them are only a few bytes long (more

specificially, the 14 byte Ethernet header) while the rest transfer a maximum of 1500

bytes each. In Chapter 4 we show that DMA performance is highly dependant on the

number of bytes transferred.

13

Chapter 3

Background

The shift from text-based services, such as e-mail, to bandwidth intensive applica-

tions, such as real-time audio and video, as well as an increased reliance on distributed

databases scattered around a network has resulted in ever increasing demands being

placed upon existing network systems. From the simple requirements of a few years

ago, an increasing number of enterprises are now demanding high-volume, low-latency

transmission of terabytes of data, distributed over a multitude of platforms and ac-

cessed by potentially thousands of users at one time. From its humble beginnings over

30 years ago and facing stiff competition from other cabling technologies, Ethernet has

survived to become the most popular networking technology for local area networks

today. Ethernet has survived for so long chiefly due to its very low cost, reliability

and ease of deployment. Originally conceived as a small internal project to share a

printer in a small office (a novel idea at the time), Ethernet has grown to become the

de-facto standard for cheaply connecting two systems together. Initially, Ethernet

systems could provide up to 10 Mbps of raw line speed which was more than enough

for the demands at the time (this system was known as 10BASE-T). As demands

grew, 10BASE-T gave way to Fast Ethernet (100BASE-T), which could, theoreti-

cally, transmit at 100 Mbps. Fast Ethernet used the same cabling as 10BASE-T,

while everything else – the packet format and length, error control, and management

information – remained the same. Its scalability ensured its quick adoption. Ini-

tially, Fast Ethernet was used for backbones while existing 10BASE-T systems were

14

retained for the workstations. As demands grew, more and more desktop systems

required this high level of throughput hence triggering the need for yet another band-

width upgrade, at least at the backbone level. Thus, once again, the requirement

for higher throughput led to the development of what we now call Gigabit Ethernet.

Work is already underway to standardise the next evolutionary step — 10-Gigabit

Ethernet, which should push Gigabit Ethernet’s theoretical 1 billion bits per second

to even higher levels.

Until recently, it could be assumed that network speeds would be far slower than

CPU and bus speeds. However, LAN network speeds have been increasing at a faster

rate than CPU and bus speeds. While great efforts have been made to ensure that

data could physically move from one end-point to another at the fastest possible rate,

much less emphasis has been placed at the receiving ends, the host systems process-

ing the data. It has always been assumed that the problems already evident when

10BASE-T (10 Mbps) Ethernet first appeared on the market would diminish as host

processors got faster. This, as we shall be seeing, was not to be the case with the

end result being a system failing to meet user expectations. Ethernet operates as a

“best-effort” data delivery system. To keep the complexity and cost of a LAN to a

reasonable level, no guarantee of reliable data delivery is made. While the bit error

rate of a LAN channel is carefully engineered to produce a system that normally de-

livers data extremely well, errors can still occur. A burst of electrical noise may occur

somewhere in a cabling system, for example, corrupting the data in a frame and caus-

ing it to be dropped. Or a LAN channel may become overloaded for some period of

time, which in the case of Ethernet can cause 16 collisions to occur on a transmission

attempt, leading to a dropped frame, which is why higher protocol layers of network

software are designed to recover from errors. It is up to the high-level protocol that

is sending data over the network to make sure that the data is correctly received at

the destination computer. High-level network protocols can do this by establishing a

reliable data transport service using sequence numbers and acknowledgment mecha-

nisms in the packets that they send over the LAN (for example, via the use of the

TCP protocol). This transport service is normally performed by the host system

15

itself, which implies that sending information from one endpoint to another requires

considerable host assistance.

Reliable data delivery (and consequently, host loading) is not the only issue present

here. Existing hardware designs may lead to bottlenecks further up in the commu-

nication chain. For example, interrupt handling may work well for lightly loaded

systems, but under a heavy load, a system might find itself completely flooded by

such interrupt requests.

In this chapter we discuss the tools available to us to aid in understanding how

our results were produced. We shall be giving a brief overview of the PCI bus, the

Ethernet frame format and our main tool, the Acenic Tigon NIC.

3.1 The Peripheral Component Interconnect (PCI)

Bus

The Acenic Tigon NIC uses the PCI bus for all communication between the host and

itself, that is, the PCI bus is used to transfer data from the hosts’ memory to the NIC

and vice-versa. First released in 1992, the PCI bus was designed to solve many of

the problems with older architectures, while at the same time delivering a substantial

increase in processing speed.

The PCI specificication [Gro] originated as a signal-level hardware specification

and thus board vendors are free to devise their own implementations. As a result, ac-

tual implementations of the PCI standard vary widely. A test of our systems showed

a maximum bandwidth difference of more than 200Mbits/s between different imple-

mentations of the specification. This is probably due to the manufacturers’ rush to

market, whereby some ISA designs were ported to the PCI bus in an effort to min-

16

Figure 3.1: A typical PCI configuration

imise costs.

The original PCI specification was defined to run at 33Mhz with 32 bits trans-

ferred per cycle. Provisions have however been made to run the bus at 66Mhz and up

to 64 bits transferred per cycle. Such systems are already making their appearance

on high-end servers. Nevertheless, the 33Mhz/32-bit versions are by far the most

commonly available chipsets available and we therefore decided to implement and

test our dissertation on such a configuration.

Given that our chipsets run at 33Mhz with 32 bits transferred each time (4 bytes),

then the maximum bandwidth from the host to the NIC (or vice versa) we can ever

hope to achieve is :

(33× 106)cycles/s×
32bits

8
= 132000000 bytes = 125.89MB/s.

Of course this implies the best case scenario with the chipsets complying perfectly

to the specification (by achieving the expected transfer rates) with just one interface

card utilizing the bus during that time. Later on we shall be testing the peak perfor-

mance on our testbed systems and compare it to the maximum theoretical throughput

17

possible.

The PCI component and add-in card interface is processor independent. This

means that the PCI Local Bus can be optimized for I/O functions since it does not

require any processing on the host CPU. This is important for it means that we can

move data between the memory subsystem and the interface cards without involv-

ing the host CPU at all. There are, however, two supported modes of transferring

information between two endpoints, PIO and DMA, both of which we describe below.

3.1.1 Programmed Input/Output (PIO)

In PIO, the host processor is set up to move every byte by explicit load and store

instructions to memory or I/O mapped addresses. In other words, an application or

the hardware itself invokes the processor to execute a loop where a byte, word or

double word is transferred each time, according to the instructions used. From the

hardware point of view, this is a very simple implementation for it does not require

a great deal of hardware complexity, however PIO transfers suffer from two major

drawbacks. Firstly, the maximum bandwidth possibly obtained is lower than the

DMA counterpart. This occurs because PIO requires the CPU to first check for the

availability of the data, then read the data, and then write the data thus reducing the

maximum possible bandwidth (trivially, the possible bandwidth speed is dependant

on the CPU speed). Secondly, since PIO uses the host CPU this implies that, for

the duration of the transfer, running processes will be starved of all CPU time. To

its credit, PIO transfers result in lower latencies than other systems such as DMA or

Bus Master DMA.

3.1.2 Direct Memory Access (DMA)

DMA is another way to transfer data to and from interface cards or memory loca-

tions. There are two ways a DMA can operate:

18

CPU-based DMA A DMA controller (often on a PC’s motherboard) seizes the

bus periodically (for example, once for every 16-bit transfer) to read data from the

adapter, then seizes it again to write it to memory (therefore requiring two bus

cycles per transfer). This reduces costs since individual interface cards need not

implement DMA logic onto the boards themselves. However, since two cycles are

needed, performance tends to drop.

Bus Master DMA Overall, this is a faster data transfer technique than standard

CPU-based DMA. The peripheral writes the data from its memory directly to the

PC’s memory in one bus cycle (reducing the load on the bus), rather than the usual

two-step process. This technique requires interfacing with the memory controller re-

quiring some additional circuitry. Often, a NIC adapter will do its transfer as the

data is received so no, or little, on-board adapter memory is required, hence reduc-

ing costs. Bus master DMA is faster than standard DMA, since the CPU does not

even need to load the DMA registers (for example, with the source and destination

addresses) to set up each transfer.

For smaller transfers, the time taken to set up all the DMA controller registers

may be longer than the time saved by using DMA, so in this case using PIO may be

faster than DMA.

The most important consideration to keep in mind here is the fact that the setup

time required to start a DMA transfer is constant irrespective of the number of bytes

transferred.

3.2 Ethernet background

3.2.1 Frame format

One of the reasons why Ethernet has caught on so quickly is due to its simplicity in

design. The frame can be broadly described as having a header, a payload and a trailer.

19

The header describes the length of the payload as well as the source and destination

addresses. The actual data to be used by the receiver is called the payload and

may theoretically be up to 64k bytes long, however the Ethernet standard dictates

that the payload length be between 46 and 1500 bytes long. At the end of the

payload, a calculated CRC (on the header and payload or on the payload only) is

added. This is used by the receiver at the other end to determine whether the frame’s

integrity was maintained or not. The Alteon Tigon NIC used in this dissertation

can be programmed to automatically append such a value to all outgoing frames

automatically. The preamble and postamble are of no relevance to us for they are

used by the hardware to determine the start and end of a frame (they are just known

simple patterns for easy hardware detection).

Bits 64 48 48 16 32 8

Content Preamble Destination Source Type/ Data CRC Postamble

Address Address Field payload

Figure 3.2: Ethernet Frame Format

The most important observation to be drawn here is that the Ethernet header has

a constant size, that is, irrespective of the payload’s length, the header will always

be exactly 14 bytes long. This means that smaller packets have more overhead than

larger ones, since the ratio of overhead is proportionally higher to the amount of

data passed. As a result, the data throughput on the line decreases. However, small

packets have a reduced chance of retransmission, better response time, and are less

likely to contain errors. On the other hand, larger packet sizes have a better ratio

of overhead to data, which increases throughput; yet, buffer and transmission delays

and the resulting retransmissions can act to degrade throughput. We can summarise

this as follows:

20

As the payload length increases, the overall overhead costs decrease,

at the expense of larger latencies and an increased chance of packet

corruption.

3.2.2 Flow Control

When a device is receiving information at a fast rate it may very well end up unable to

cope with the influx of data. This can happen, for example, when the NIC is unable

to shuttle the received frames to the host fast enough, as in the case of a slow bus.

Eventually, when the receiver’s buffers fill up, the NIC would have no option but to

drop incoming frames leading to the higher level protocols to request retransmission.

To avoid or minimise this scenario, a way was devised to signal the sender to pause

transmission for a short while.

Half Duplex Flow Control A non-standard but popular scheme called Back-

pressure is used in half-duplex links. In this scheme, when a half duplex device is not

able to handle the amount of data received from an end station, it pretends that a

collision has occurred. Thus all devices on the shared LAN would have to backoff,

and then try to retransmit over and over again until the receiver was ready to accept

the new frames.

Full Duplex Flow Control Since there are no collisions in full-duplex, a differ-

ent scheme for implementing flow control on a full duplex link was necessary. The

solution was to make use of special control frames, pause and resume, to signal the

sender to stop sending for a while or resume retransmission respectively.

If a NIC waits until its buffers are full prior to sending flow control frames it would

be perfectly possible for frames to be lost. This can occur because by the time the

control frame reaches the sender, additional frames may have been sent already. The

solution is to define threshold levels as to when a signal should be sent out. Of course

21

this technique does not guarantee that no frames would be lost; this would be the

case, for example, where the flow control packets never make it to their destination.

The Tigon does not automatically send out flow control packets since that is a job left

for the firmware to handle by setting the appropriate pause/resume threshold levels.

3.3 The Alteon Tigon NIC

In this section we describe the Alteon Networks Gigabit Ethernet NIC (or Tigon for

short), which is the NIC we used for our implementation.

The NIC is built to the PCI specification supporting both bus widths (32 bit

and 64 bit) as well as both bus speeds (33Mhz and 66Mhz). The card detects the

appropriate bus type automatically but in our case, this is always the 33Mhz/32-bit

variety.

The Tigon does not run an in-built fixed programme like other ROM based NICs.

Instead, the software required to control the Tigon is downloaded to the adapter dur-

ing the initialization process (this is done without the need of some special firmware

loading utility and without the need of PROM swapping). In order not to confuse it

with the host driver, this software is referred to as the firmware. At each debugging

cycle we therefore download the latest revision of the firmware onto the Tigon and

instruct the NIC to execute it.

Alteon Networks used to provide the source code of the distributed firmware for

the NIC in an open source format (at time of writing this is no longer the case since

the Tigon has been sold to 3COM). Since we will be making changes to the firmware,

in this document we refer to the supplied firmware as the standard firmware to distin-

guish it from ours. It is up to the firmware to control most of the hardware, including

two independent DMA engines (for transmitting and receiving), MAC hardware and

even controlling the traffic and link LEDs. This alone makes the Tigon extremely

flexible as regards to what it can do for it can always be “upgraded” by modifying

its firmware.

22

The Tigon contains two on-board RISC-based processors. The processors can be

used for any function including parsing buffer descriptors and controlling the DMA

hardware.

The Tigon also features two, completely independent DMA channels, one used

exclusively for host memory reads while the other is reserved for host memory writes.

The maximum number of bytes the hardware can transfer in a single DMA operation

is 64kb. The Tigon NIC available provides 1Mb of memory which must also include

the firmware and various data structures, leaving approximately 800kb of buffer space

for transmission and reception.

External communication is via the Gigabit Ethernet MAC on a fibre channel

(though at time of writing copper versions were also in the pipeline). The MAC is

able to support both the existing 10/100 modes as well as the new 1000Mbit standard.

Interrupts are never generated automatically from the hardware. Again, firmware

has complete control on when to generate an interrupt to the host, if at all desired.

The firmware may opt to coalesce interrupts until a number of packets are received

and then generate a single interrupt. However, in our firmware we completely mask

out interrupt generation relying on polling instead. The embedded processors follow

the event model rather than an interrupt model. This implies that the host is never

interrupted from the task currently running. The firmware is helped by consider-

able hardware assistance in running this model via the provision of special hardware

instructions.

The Tigon also contains a programmable timer which can be controlled by the

firmware to provide time-outs, interrupts and any other function in which it not be

suitable to rely on software spin loops. In our implementation we also make use of

this timer in order to get time values for some of our benchmarks. This is necessary

since if we were to rely on the host to keep track of the time elapsed, the delay in

waiting for the completion signal from the NIC would lead to inaccurate results.

23

3.3.1 Communicating with the Tigon

The primary way the host and the NIC communicate is via the use of a series of

shared1 rings. There are two indices (producer and consumer) that control the oper-

ation of each ring. The producer adds the elements to the ring and increments the

producer index while the consumer removes elements from the ring and increments

the consumer index. When the producer and consumer indices are equal, the ring is

empty; otherwise if the producer is one behind the consumer, the ring is full.

Whether the NIC is the consumer or the producer depends on the operation being

carried out. For example, when the host wishes to send a frame onto the network,

the following steps occur:

1. The host creates a frame in host memory

2. The host creates a buffer descriptor in the TX ring that describes the frame

3. The host updates the Send Producer and writes it into a mailbox (a doorbell

whose value may be significant) in a shared memory region.

4. The mailbox triggers an event in the NIC. The producer is thus checked and

the NIC starts working on the ring, DMA-ing the frames from the host to the

NIC and out on the network.

In this case the host performs the producer tasks while the NIC “consumes” the

new descriptors. For the receiving side, a similar ring mechanism is used. The NIC

also performs some other minor tasks such as informing the host that the frame has

been consumed and so on but these have been omitted from the above list for clarity.

There are two other kinds of ring available: the command ring and the event ring.

The command ring is used by the host to instruct the NIC to perform some specific

task such as instructing it to halt either of its internal processors. The event ring

on the other hand is used by the NIC to inform the host of non-transmission-related

1Hardware ensures that host memory updates are reflected in the NIC and vice-versa

24

events such as to inform the host that the firmware is up and running. The NIC

is also responsible for updating statistics such as the number of frames transmitted,

received and so on. However, in order to avoid our benchmarks from being affected

by statistics transfers, we switch the feature off. At a lower level, memory can be

shared between the NIC and the host, with the hardware reflecting memory writes

transparently. This is also the way the firmware is downloaded upon initialization.

3.3.2 NIC Features

The Tigon also has a number of useful features which we exploit to improve perfor-

mance:

Mailboxes are a common technique to facilitate communication between host pro-

cessors and adapters. Any value written to the mailbox locations has the effect of

triggering events on the embedded processor. This is useful, for example, for a host

to inform the NIC about changes in the consumer and producer indices.

Buffer Alignment Since not all DMA transfers are aligned to 32 or 64 bit boun-

teries, many adapters place the burden onto the host to align the buffers prior to data

transfer. The Tigon includes logic to permit data to be transferred from any host

address to any byte offset of the Tigon’s internal memory.

Checksum Offloading The NIC can do complete hardware-based checksum cal-

culation for both transmitted and received frames. This checksum offload feature

also allows full checksum calculation for IP, TCP and UDP packets. According to

Alteon Networks [Webb], performing TCP/IP checksum in adapter hardware instead

of using server CPU cycles saves around 2.3 server CPU cycles for every byte of data.

The DMA engines can also be configured to calculate a TCP-style checksum while

effecting transfers and store the result. Unfortunately, due to inherent hardware bugs,

the second internal processor is programmed to take over this function normally

25

performed by the hardware. Throughout our implementation therefore, we always

assume the availability of one internal processor rather than two.

26

Chapter 4

Analysis of Potential Bottlenecks

Prior to discussing each component in turn, we summarise the entire communication

cycle so as to place each key area in context.

A normal application usually makes use of operating system calls to handle both

input and output routines. Depending on the underlying protocol, the operating sys-

tem’s communication routines would then wrap the data into Ethernet packets and

transfer each one to the NIC for transmission. At the receiving end the NIC would,

upon reception of a packet, generate an interrupt to signal the OS to transfer the

packet from its buffers to main memory. The OS finally unwraps the packet’s header

and trailer and presents it to the application as a stream of data.

In our case we shall completely bypass the operating system and operate directly

from user-space relying on the OS merely to set the link up. Instead of interrupts, we

shall be using the U-Net model [vEBBV95] by writing descriptors in specific places

in memory and rely on doorbells (mailboxes) to signal the presence of new descrip-

tors. We will not be dealing with higher level protocols such as TCP since most of

the techniques described hereunder will equally apply to it. We also make use of a

special kernel level driver named “consequetive” (sic) to pin-down memory at boot-

time forcing the OS to exclude the area from its virtual memory mechanisms. The

dissertation comprises modifying the existing firmware to perform some benchmarks

as well as provide additional functionality.

27

There are actually four distinct programmes we require, each performing a specific

task. These are:

Host software on the sender side In tests that require it, the host software

grabs a chunk of the pinned-down memory and constructs the packets directly in it.

Unlike an application making use of the OS routines, the host is also responsible for

creating the packets in the right Ethernet format. In other words, to send a packet the

application has to first allocate a chunk of contiguous memory. The packet header is

written with the appropriate fields and a descriptor for the packet is constructed. The

final step is to ring the NIC’s doorbell by writing the appropriate producer index in

its mailbox. The sender is rarely involved in benchmarking since there is no accurate

way of determining when the packet has been physically sent out onto the network

by the NIC.

NIC firmware on the sender side When the host adds a send descriptor and

rings the doorbell, the NIC receives an event which eventually calls up the appropriate

function in the firmware. The firmware is then responsible for starting the DMA

engines to transfer the packet from host memory to a specific location onto the on-

board memory and enqueue the local address and length onto the MAC queue. In

some of our tests we modify the standard firmware to provide additional functionality.

NIC firmware on the receiver side When the NIC receives a packet, it first

checks for available buffer space on the on-board memory. If memory is available, the

NIC looks into the receive ring in order to obtain the next buffer descriptor. This

buffer descriptor is created by the host to indicate to the NIC where, in host memory,

it may place the incoming frames. The NIC then signals to the host that it may

process another frame and the cycle starts again. In some of our tests, we extend the

standard firmware to perform some additional tasks.

28

Host software on the receiver side Like the sender, all packet handling is done

by the user-process without involving the OS at any stage with the exception of the

initial set-up. This software also contains the necessary benchmarking routines. Re-

ceiving data from the NIC involves the host allocating enough contiguous space in

host memory, sending a descriptor to the NIC to inform it of the location and length

of the available memory chunk and finally getting back information from the NIC in

another ring.

We can thus identify three potential bottlenecks:

• The transmission of a packet from the host sender onto the NIC,

• The physical transmission of the packet from one NIC to another, and

• The copying of the packet from the NIC back onto the host.

As in every pipeline, the slowest link in the chain will define the maximum through-

put which can be obtained. We shall be investigating each area in turn.

4.1 A note about Timings

Most of the results presented hereunder are expressed as a measure of the bandwidth

obtained. To time the results we have used one of the following two methods:

Timing directly from the NIC In this setup, the NIC’s on-board timer is used

to provide the necessary timing functionality by simply comparing the initial timer

value to the value at the end of the test. This timer has the advantage of being

unaffected by any external events such as interrupts or power management features.

This timer has a 1µs resolution, but fluctuates slightly with changes in the NIC’s

on-board temperature.

Host timing Whenever the host is set to receive packets, the host measures the time

elapsed by sampling the number of CPU clock cycles via the Time Stamp Counter

29

(TSC) register. This register keeps track of the number of CPU cycles since the last

boot and has a nanosecond resolution. Since the interpretation of this value depends

on the CPU’s speed, an initial test is performed in order to determine the number of

CPU cyles per second. Unfortunately, this has to be done via the use of the hardware

timer chip which has a finite resolution, and the smallest value by which it can be

incremented does not usually divide equally. A sample measurement showed that

this timer varied by no more than ± 0.15% though results show that the bias tends

towards the -0.15%.

4.2 Theoretical Limits

The first step in any scientific investigation is to determine the expected results since

this would serve as a baseline for all our other results. We therefore first calculate the

maximum bandwidth we can ever hope to attain. The Ethernet frame format shown

in Figure 3.2 reveals that, for any payload length, the total frame length will be equal

to the payload length added to the header, trailer and preamble lengths. An 11-byte

long interpacket gap is also “transmitted” between one frame and the next. Our true

frame therefore contains the following components:

Header Payload Length CRC Preamble IPG

14 46-1500 4 9 11

This implies that, in order to obtain the true frame length, we have to add 38

bytes to whichever payload length we choose.

An analysis of the calculations reveals that our 1 Gbit/sec limit can theoretically

be reached without the need of very large packets. This is important because Eth-

ernet error detection techniques put an upper limit on frame size. When a frame is

transmitted, the sender computes a 4-byte value derived mathematically from all the

other bits in the frame. At the receiving end, this number is computed again and the

packet is discarded if the computed value does not tally with the received CRC value.

30

0

200

400

600

800

1000

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload length (bytes)

Ethernet Theoretical Maximum

Figure 4.1: Maximum Theoretical Ethernet bandwidth

550

600

650

700

750

800

850

900

950

1000

0 2000 4000 6000 8000 10000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload length (bytes)

Ethernet Theoretical Maximum

Figure 4.2: Maximum Theoretical Ethernet bandwidth (Detail)

31

This error checking detects bit errors with a very high probability, but as the frame

size increases, the probability of undetected errors per frame may increase. Due to

the nature of the CRC algorithm, the probability of undetected errors is the same for

frame sizes between 376 and 11,455 bytes. Thus to maintain the same bit error rate

accuracy as standard Ethernet, frames should ideally not exceed 11455 bytes. Taking

a closer look, one can see that, with smaller payloads, the maximum bandwidth drops

dramatically, and this can be problematic since some applications make heavy use of

them.

There are two more important observations to be derived. Firstly, the maxi-

mum bandwidth possible using standard 1500-byte Ethernet packets can never exceed

975.26 Mbits/sec. Secondly, at the cost of increased latency, the maximum bandwidth

which may be obtained by larger packets is little more than the bandwidth obtained

for standard packets. In Table 4.1 we present some of our calculated values. Note

that we quote the value for a 1498-byte payload rather than the 1500-byte maximum.

This is intentional for comparison with some of the results we will be presenting later

on.

True Frame size Real Payload Theoretical Max Efficiency

792 754 952.0202

1048 1010 963.7405

1536 1498 975.2604

3048 3010 987.5328

4560 4522 991.6667

6072 6034 993.7418

7584 7546 994.9895

9096 9058 995.8223

Table 4.1: Ethernet Theoretical Maximum Effeciency

32

Figure 4.3: Extended (Jumbo) Ethernet Frames vs. Standard Ethernet Frames

(source: Alteon Networks [Weba])

4.2.1 The Jumbo Frames Debate

We have shown that, theoretically speaking, there should be little performance ben-

efit in increasing the payload size from the standard 1500-byte. However research

conducted by Alteon Networks [Weba] indicated that by increasing the payload size

from the standard 1500 bytes to 9000 bytes, a great performance benefit could be

obtained, both in terms of throughput as well as CPU utilization rates (see Figure

4.3).

Alteon give a number of reasons why such a benefit is obtained. Firstly, the

transmission of an 8000-byte long payload implies that the entire payload would fit

exactly in two memory “pages”. Rather than wasting a considerable time in moving

data around, the OS would be able to simply remap the appropriate pages without

33

the need of copying the data word by word. In contrast, the equivalent amount of

data sent using maximum length 1518 byte Ethernet frames requires six host copy

operations and thus three times the host CPU cycles. As we have noted previously,

as the payload gets larger, the header of each packet takes up proportionally less

overhead cost. For example, parsing and building the packet header takes the same

amount of time for a large packet as a small one. This means that not only is the

host CPU left with more processing time, but also there is less bandwidth “wastage”

on the line. Another reason given by Alteon as to why throughput would improve is

the fact that some popular applications such as the network file system (NFS) used

predominantly by UNIX OSes use a large datagram (8400 bytes in this case). An

increase in frame size would thus mean that a single NFS datagram would fit in a

single Ethernet packet.

There are, however, a number of disadvantages regarding such a change. The

chief problem is that all intermediatory routers between two endpoints supporting

extended frame sizes must also be configured to support larger payloads. If they are

not, the router interfacing with a 1500-byte-only router may end up fragmenting all

incoming packets to the standard 1.5k length, greatly increasing the load on both the

router as well as the receiver, which has to re-assemble all the packets. Worse still, if

the DONT_FRAGMENT bit is set in an IP header, the router would have no option but to

drop the entire frame. In such a scenario, the router would send a message back to

the sender informing the IP protocol stack to throttle back by sending packets with

a lower MTU. With a great number of routers already in place, such a change would

not mean a trivial upgrade scenario to the Ethernet industry. This is problematic

since one of the chief aims of Gigabit Ethernet has always been to keep Ethernet

as scalable as possible while changing as little as possible from the original format.

Alteon Networks suggest partitioning the systems from the ones able to support the

extended frame format from the ones which do not.

The graph shown in Figure 4.4 is from a study [KCT98] of traffic on the Inter-

netMCI backbone in 1998. It shows the distribution of packet sizes flowing over a

34

Figure 4.4: Frame sizes analysis

particular backbone OC3 link. There is clearly a wall at 1500 bytes (the Ethernet

limit), but there is also traffic up to the 4000 byte FDDI MTU. However note that

while the number of packets larger than 1500 bytes appears small, more than 50% of

the bytes were carried by such packets because of their larger size. Also, the above

traffic was limited by FDDI interfaces (thus the 4000 byte limit). Many high perfor-

mance flows have been achieved over ATM WAN’s offering 9180 byte MTU payloads.

Still, the IEEE is opposed to changing the established standard any time soon. We

shall be keeping this debate very much in mind during the next trials by specifically

comparing the two payload sizes in all our results.

35

4.3 Determining line speed

Having determined what should theoretically be achieved using frames of different

payload lengths, our next step is to find out if the hardware is able to support the same

throughput levels. The theoretical calculations do not include the costs of transferring

the data from the host onto the NIC, nor do they take into consideration the time

taken for all the other routines such as buffer handling. This poses a problem since

we normally expect the host to construct and ultimately receive all Ethernet packets.

Fortunately however, the firmware gives us the flexibility to control the hardware

extensively. We therefore modify the firmware in such a way as to construct packets

in the NIC itself and enqueue them onto the MAC interface as fast as possible.

The firmware only fills up the appropriate header bytes (given once by the host)

without bothering about the payload since its contents is entirely irrelevant to this

exercise. A quick look at the technical manuals also confirmed that the MAC should

be able to transmit packets out on the line up to the full 64k size (including headers).

We thus set the firmware to send out packets at the fastest speed possible, using

different packet sizes for each test cycle. The NIC also updates its statistics itself by

incrementing the number of packets sent out on the network. Every second or so, the

host software reads the elapsed time directly from the NIC’s timer and calculates the

actual bandwidth obtained. After taking a number of readings, the results shown in

Figure 4.5 were obtained.

Payload length (bytes) Bandwidth (Mbits/sec)

1498 975.4466

9054 995.8126

Table 4.2: Line Speed throughput for different payload sizes

Again we note that speedup is pronounced with relatively small payloads, but

then tallies off at around 10k bytes (for a closer analysis, see Figure 4.6). Recall

that there are no overheads related to shuttling data from the host to the NIC.

Furthermore, since the Tigon employs a queue of pending transmit (and receive)

36

0

200

400

600

800

1000

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload Size (bytes)

NIC to NIC UniDirectional

Figure 4.5: NIC to NIC UniDirectional transfer. All frames are generated by the NIC

itself.

operations, the MAC should be kept continually busy without waiting for more data.

When we compare it to the theoretical maximum we find a very pleasing state of

affairs. Figure 4.7 clearly shows that the actual results obtained fit perfectly with

our expected results. This implies that the hardware is able to cope well at Gigabit

speeds, at least from the transmission point of view.

So far we have determined that :

• Large packets are not necessary for Gigabit line speeds to be obtained.

• The hardware can exactly mirror the results obtained by the theoretical maxima.

• The use of standard 1500-byte packets should give us a maximum bandwidth

of 975Mbits/sec.

• A firmware has now been developed which sends out packets as fast as we can.

This will aid us in other investigations.

37

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload Size (bytes)

NIC to NIC UniDirectional

Figure 4.6: NIC to NIC UniDirectional (detail)

0

200

400

600

800

1000

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload Size (bytes)

NIC to NIC UniDirectional (Theoretical vs. Actual)

Actual
Theoretical

Figure 4.7: NIC to NIC (Theoretical vs. Obtained)

38

4.4 PCI Bus

The 975 Mbit/s seems a far cry from the 409 Mbits quoted by Alteon (see Figure 4.3).

This seems odd for we were able to obtain almost the same throughput with standard

frames as in larger ones. We thus turn our attention to the next potential bottleneck,

the PCI bus. Recall that in §3.1 we have calculated that the maximum transfer speed

utilizing a 33Mhz/32-bit PCI bus is 125.89 MB/sec. However, this theoretical speed

does not take into account the cost of setting up the transfer transaction. Depending

on the underlying chipset, the PCI bus may be optimized to perform better in certain

transfer directions (that is, sending from the hosts’ memory to the interface card may

take longer than receiving data from the interface card to the host or vice-versa).

In PCI systems, there is a tradeoff between the desire to achieve low latency and

the desire to achieve high bandwidth. High throughput is achieved by allowing devices

to use long burst transfers. Low latency is achieved by reducing the maximum burst

transfer length. Table 4.3, taken from the PCI bus specification [Gro], illustrates the

effect of using different burst lengths.

Data Bytes Total Latency Timer Bandwidth Latency

Phases Transferred clocks (clocks) (MB/S) (us)

8 32 16 14 60 .48

16 64 24 22 80 .72

32 128 40 38 96 1.20

64 256 72 70 107 2.16

Table 4.3: Latency and bandwidth of different Burst length transfers.

Data Phases number of data phases completed during transaction

Bytes Transferred total number of bytes transferred during transaction (assuming

32-bit transfers)

39

Total Clocks total number of clocks used to complete the transfer

total clocks = 8 + (n-1) + 1 (Idle time on bus)

Latency Timer Latency Timer value in clocks such that the Latency Timer expires

in next to last data phase

latency timer = total clocks - 2

Bandwidth calculated bandwidth in MB/s

bandwidth = bytes transferred / (total clocks * 30 ns)

Latency latency in microseconds introduced by transaction

latency = total clocks * 30 ns

The calculations clearly show that as the burst length increases the amount of

data transferred increases. The longer the transaction (more data phases) the more

efficiently the bus is being used. However, this increase in efficiency comes at the

expense of larger buffers.

Since the Tigon allows us to control the DMA engines directly, we make use of

this feature to benchmark the PCI bus. Any host accesses during this test may

interrupt the burst transfer, so all timing is done directly by the NIC with the host

only reading the elapsed time after sleeping for a number of seconds, long enough for

the test to complete. To perform the tests, we extend the firmware to accept two new

commands: TG_DO_SEND_TEST and TG_DO_RECV_TEST. These instruct the firmware to

either commence the host to NIC DMA test or the NIC to host test.

When the host wishes to commence one of the above tests it inserts this command

into the NIC’s command ring together with two other parameters — the DMA transfer

size and the number of packets to transfer. Since the test is only commenced when we

give the explicit command, we may safely utilize our code together with the existing

firmware. When the firmware receives one of these commands, it starts filling up all

40

available DMA descriptors1 with the right transfer size parameter. When the NIC

finishes each DMA, an event is triggered which eventually leads to a specific function

being called. We modify this function so as to either insert new descriptors or else

store the final timer result. This result is subtracted from an initial timer value and

returned to the host via the event ring.

4.4.1 Host to NIC

In this test we are not concerned with Ethernet packet processing or transmission.

All we set out to do is to test the performance of the PCI bus since this will determine

if it is a factor in throughput loss.

200

300

400

500

600

700

800

900

1000

1100

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Transaction Size (bytes)

Host to NIC UniDirectional PCI Test

Figure 4.8: Host to NIC PCI UniDirectional

Upon a casual review of our results (see Figure 4.8 and Figure 4.9), it would seem

that our near-gigabit goal can be obtained despite utilizing the slowest PCI bus va-

1Like send and receive descriptors, the NIC maintains a queue of pending DMA operations

41

riety. However a closer inspection reveals a gloomier picture.

Transfer size Bandwidth

(bytes) (Mbits/sec)

512 676.6545

768 766.6503

1024 818.2435

1512 891.9083

9072 1028.2341

Table 4.4: Host to NIC UniDirectional (fragment)

It is clear that, at smaller sized transfers, the cost of setting up the DMA trans-

actions over the PCI bus plays plays a profound effect on the maximum bandwidth

which may be obtained. At this point, the claim by Alteon that by extending the

payload length a good performance benefit could be obtained, starts making sense.

This test shows that, just for moving data between the host and the NIC and without

even performing any kind of Ethernet packet processing, there is already a notable

137 Mbit/s difference between the standard frame sizes and the extended ones.

This test performs DMA transfers at the highest possible rate by ensuring that the

DMA engines are always kept busy. We obviously expect that in normal transmission

from the host this rate should drop. Still, we now have a new upper limit, reducing

the possible 975 Mbit/s we obtained in the first test to an 891 Mbit/s maximum.

The next test measures the performance of doing the reverse, that is, transferring

data from the NIC to the host.

4.4.2 NIC to Host

The rationale for this test is very similar to the one used by the Host to NIC test. As

before, the host only makes one communication attempt with the NIC (to order the

42

200

300

400

500

600

700

800

900

1000

1100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Transaction Size (bytes)

Host to NIC UniDirectional PCI Test

Figure 4.9: Host to NIC UniDirectional (detail)

Transfer size Bandwidth

(byte) (Mbits/sec)

1512 665.6390

9072 922.8537

Table 4.5: NIC to Host (fragment)

NIC to commence the test). This is necessary to avoid interrupting the DMA bursts.

Again we are presented with a similar picture whereby smaller transaction sizes

suffer from a serious overhead penalty. One should also note that, just by using the

larger 9000-byte frame size, an improvement of over 38.6% could be obtained.

43

0

200

400

600

800

1000

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Transaction Size (bytes)

NIC to Host UniDirectional

Figure 4.10: NIC to Host UniDirectional

So far we have determined that

• While large packets are not necessary for high line speeds, larger DMA transfers

offer increased throughput.

• The issue of using larger frame sizes seems justified so far, in terms of perfor-

mance.

• The maximum, host to host, bandwidth we can obtain on our machines using

1.5k payloads is 891 Mbits/s in the transmit direction and 665 Mbits/sec in the

receive direction.

• The maximum DMA bandwidth obtained is greatly dependant on the number

of bytes transferred with each transaction

44

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Transaction Size (bytes)

NIC to Host UniDirectional

Figure 4.11: NIC to Host UniDirectional (detail)

4.5 Host transmission

The next logical step is to investigate the rate at which our host can transmit packets

onto the network, in other words, we will be investigating the maximum bandwidth

we can obtain by using the standard firmware and the host as the source of the trans-

mitted packets. Since reception and transmission involve two differing mechanisms,

we will be investigating each area in turn. Furthermore, since we are relying on dif-

ferent stages in the communication cycle (that is, the hosts’ construction of packets,

the copying of data onto the NIC, transmission, and so on) we shall be dividing this

test into two stages. Firstly, we shall set up the NIC to either generate packets with

the receiver transferring all received packets onto the host; or alternately we shall set

the NIC to receive the packets originating from a host.

We can do this kind of test with the certainty that any bottlenecks, if present,

are originating from the host to NIC interaction. We can be sure of this because we

have already determined (in §4.3), that the physical transmission step runs at the

maximum throughput possible. Once we determine the maximum transfer rate of

45

Figure 4.12: Testing standard firmware (TX)

both sender and receiver we would then be able to proceed to next step; that of host

to host transmission.

4.5.1 Testing transmission from a host source

In this test, we shall be testing the maximum throughput we can obtain when using

the standard firmware and using the host as the source for all our packets and the

NIC as our receiver (see Figure 4.12). We already have the firmware for fast reception

of frames for it was used in §4.3. As for the sender, the host is the only provider of

packets. However, since we want to exclusively test the maximum throughput possible

when utilizing the standard firmware, we only ever create an Ethernet packet once

and transmit it repetitively for a number of seconds. Even before commencing the

test we already know the maximum bandwidth we can ever hope to obtain, since

this was found out in the PCI (DMA) test in §4.4. Without further ado, we hereby

present our results.

Transfer size (bytes) Bandwidth (Mbits/sec)

1498 808.9748

9058 995.8060

Table 4.6: Host transmitter, card receiver

It is evident that a clear pattern is emerging here. In all tests we have performed

46

0

200

400

600

800

1000

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload Size (bytes)

Host to NIC

Figure 4.13: Host transmitting with the NIC benchmarking at the other end.

so far, we have seen a good speedup as we increase the total frame size, only to level

off beyond a certain threshold (around 10k). When we compare the results of using

the standard 1.5k packets with the extended frames we can again reconfirm that the

extended frame size gives a performance benefit of over 186 Mbits/s. This is shown

in more detail in Figure 4.14

A more interesting analysis can be found in figures 4.15 and 4.16 whereby we

compare the performance of the bandwidth obtained with the throughput of the our

PCI bus (which we found out earlier). Note that the difference between the two graphs

in Figure 4.15 reflects the extra work performed by the NIC in order to process the

packets to send them out on the network. Also note that at 1000 Mbits/s, the host

to NIC graph suddenly levels off since the transmission limit has been reached. This

contrasts with the PCI throughput obtained whereby a further performance boost is

registered.

In Figure 4.16 we highlight the difference in bandwidth between the performance

of the PCI bus and the bandwidth received and plot each point. Note that, with small

47

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload Size (bytes)

Host to NIC Detail (Uni)

Figure 4.14: Host transmitting, NIC receiver benchmarking (detail)

100

200

300

400

500

600

700

800

900

1000

1100

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload Size (bytes)

Host to NIC vs. PCI throughput

Host to NIC
PCI performance

Figure 4.15: Host transmitting, NIC receiver benchmarking vs. PCI performance

48

20

40

60

80

100

120

140

160

180

200

220

240

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload Size (bytes)

B/W difference bt. PCI performance and host transfers

Figure 4.16: Bandwidth difference between Host transmit and DMA performance

packets, the NIC is tied up processing many packets with the end result being that

the host is forced to enqueue packets at a slower rate. As the packet length increases,

a balance is reached with the NIC coping well with all the packets received leading to

a drop in performance of just 30Mbit/s. Unsurprisingly, this “ideal” packet size lies

in the 7-10k range. As the packet size is further increased, the PCI performance con-

tinues to increase, but, as can be evidenced in Figure 4.16, the performance speedup

levels off since the Ethernet transmission limit has been reached.

In transmission, when compared to the PCI throughput and when

the NIC is using standard firmware, approximately 32Mbits/sec is lost

when processing extended frames and around 83Mbits/s when process-

ing standard 1.5k frames.

49

4.5.2 Testing host reception from a NIC source

Insofar we have determined that our maximum transmission rate using standard 1.5k

packets was set at 975 Mbits/sec. This was subsequently revised downwards to 891

Mbits/sec when the PCI throughput was taken into account and revised downwards

again to 808 Mbits/sec for normal firmware to process packets and send them out on

the network.

The next step is to check the other end of the message cycle. We want to deter-

mine how fast the NIC’s standard firmware is able to process packets and send them

to the host. We want to make sure that we receive packets as fast as possible for, if

the sender’s rate drops below what we can achieve, our results will be distorted. This

problem has already been solved efficiently before and we therefore adopt the same

solution by making use of the firmware we utilised in §4.3 when testing the NIC to

NIC line speed. Figure 4.17 makes this clearer.

Figure 4.17: Testing standard firmware (RX)

An analysis of results reveals a picture somewhat similar to the one presented

above, only more dramatic, since more work is done on the receiver side than on the

sender side. The detail on Figure 4.19 highlights the big throughput difference be-

tween the standard 1.5k packets, where performance drops to a dismal 537 Mbits/sec,

and the extended frames which manage 893 Mbits/sec.

50

550

600

650

700

750

800

850

900

950

1000

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload length (bytes)

NIC to Host (std fw., UniDirectional)

Figure 4.18: NIC to Host using standard firmware

Figure 4.20 highlights an important fact we have already noticed before — per-

formance is greatly dependant on the underlying PCI bus speed. Notice how the two

graphs almost mirror each other, the difference between them representing the extra

work required to process the packets. Also note that at smaller packets, the drop in

performance is substantial as the NIC has to process a large number of packets.

4.5.3 Measuring Host to Host performance

At this point we are in a position to test out the complete message cycle, that is,

transmission from one host to the next. Obviously since we are benchmarking the

time taken for a packet to arrive at it’s destination, all timings will be performed by

the receiving host.

Here we should point out that the other host under test is able to cope well with

the throughputs generated. We give one final result, that of comparing the bandwidth

obtained to the PCI throughput.

51

550

600

650

700

750

800

850

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload length (bytes)

NIC to Host (std fw., UniDirectional)

Figure 4.19: NIC to Host using standard firmware (detail)

550

600

650

700

750

800

850

900

950

1000

10000 20000 30000 40000 50000 60000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload length (bytes)

NIC to Host (std fw., UniDirectional, Detail)

NIC to Host (std. fw., Uni)
PCI throughput

Figure 4.20: NIC to Host using standard firmware (detail) vs. PCI Performance

52

500

550

600

650

700

750

800

850

900

950

1000

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload Size (bytes)

Host to Host Uni

Figure 4.21: Host to Host Unidirectional transfer

Payload size (bytes) Bandwidth (Mbits/sec)

1498 537.9818

9058 892.5703

Table 4.7: Host to host (fragment)

Once again note that the throughput we obtain is highly dependant on our PCI

performance. We are now in a position to state that one of the major reasons why

throughput drops so significantly when utilizing small packets is due to the perfor-

mance of the underlying PCI bus.

Figures 4.23 and 4.24 summarize our results so far.

53

400

500

600

700

800

900

1000

1100

10000 20000 30000 40000 50000 60000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload Size (bytes)

Host to Host vs PCI performance

Standard Ethernet

Host to Host
PCI NIC to Host
PCI Host to NIC

Figure 4.22: Host to Host Unidirectional vs PCI performance

Conclusions so far:

• Line speed is affected by packet size, but serious performance loss only show up

when the payload lengths are small.

• DMA startup costs are expensive and affect PCI performance

• Extended (Jumbo) packets offer improved performance since PCI throughput

is better when larger transactions are involved.

54

Figure 4.23: Summary of results (1.5K payloads)

Figure 4.24: Summary of results (9k payloads)

55

Chapter 5

Packet Fragmentation and

Coalescing

In the previous chapter we have identified the PCI as being the chief bottleneck in the

communication cycle. We have also acknowledged that the standard packet length on

the physical transmission part still gains a respectable throughput. In this chapter

we demonstrate two techniques which, when applied, maintain the compatibility of

existing systems by using 1.5k payloads while at the same time taking advantage of

the higher throughput offered by larger PCI transfers.

The usual practice in all NICs is to perform a DMA request for every packet re-

ceived or sent. For example, when the NIC receives a 1.5k packet it first stores it in

its onboard buffers and then issues a DMA request of the same size to transfer the

packet received to the host. It is at this stage that throughput drops dramatically

because the MAC is forced to wait for the DMA request to complete.

We propose two techniques for the transmitting and receiving side which we call

packet fragmentation and packet coalescing respectively; both of which we describe

below.

56

5.1 Packet Fragmentation

Recall that in order for a packet to be successfully transmitted and received at the

other end, all that is required is a valid Ethernet header followed by a number of bytes

representing a payload. Normally, a host issues a single DMA request for a single

frame. With packet fragmentation, the host issues a larger DMA request containing a

number of packets inside it. The firmware then “breaks up” the packets and enqueues

them onto the MAC queue for transmission. Figure 5.1 makes this setup clearer.

Figure 5.1: Packet Fragmentation Block diagram

Each send descriptor contains a type field which is used to signal some conditions

to the NIC. By defining a new type, we make it possible for our customized firmware

to work alongside the existing standard one. In other words, applications or drivers

aware of the feature can make use of it while the rest can still use the standard

routines as usual.

5.1.1 Results

Apart from the single host to NIC DMA transfer, the NIC does not perform any

other memory copies whatsoever. This is crucial, since memory to memory copies

are sure to incur performance penalties. Unfortunately, the Tigon’s MAC requires

57

that each Ethernet packet starts on a doubleword boundary1. This means that, in

order to avoid memory to memory copies and without further hardware support, we

enforce this restriction onto the host; that is, we assume that the host always uses

payload lengths exactly divisible by 8. This is the reason why we have used frame

lengths of 1512 bytes (that is, a 1498 byte payload) in all our earlier tests. What

we have thus achieved is the ability to optionally transfer up to 43 packets in one go

(since the maximum DMA length is set at 64k) to take advantage of the higher PCI

throughput while using the standard 1.5k frames across the network.

Algorithm 1 Fragmentation Algorithm (minor details omitted)

if send descriptor has our type bit set then

n← (packet length/fragment size)

p← (packet location)

for i = 0 to n− 1 do

address← (p + (i∗fragment size))

Enqueue onto MAC a descriptor of length fragment size starting at address

end for

end if

In theory, a performance benefit should be obtained, but how well does it perform

in practice? Take a look at the figures below. In Figure 5.2 we can see a very marked

improvement with a rapid speedup throughout. After just 5 fragments, Ethernet’s

theoretical limit has been reached (remember that we are sending out 1.5k packets

on the line) so the bandwidth obtained suddenly levels off.

When we calculate the actual DMA transferred and plot the results together with

what we obtained when testing out Host to NIC transfers, we find another near-perfect

match (see Figure 5.4).

Once again we are in a position to shuttle packets out onto the network at the

maximum possible rate. However, the receiver is still subject to throughput loss. We

will be investigating a different kind of technique to tackle this problem in Section 5.2.

18 bytes since the Tigon internally uses a 64-bit memory bus

58

800

820

840

860

880

900

920

940

960

980

0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

No of Fragments

Host Split to NIC

Theoretical Max
Packet fragmentation

Figure 5.2: Packet Fragmentation results

800

820

840

860

880

900

920

940

960

980

0 2 4 6 8 10

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

No of Fragments

Host Split to NIC

Theoretical Max
Packet fragmentation

Figure 5.3: Packet Fragmentation results (detail)

59

Number of Payload Bandwidth

Fragments (bytes) (Mbits/sec)

1 1498 808.3237

2 2996 892.7797

3 4494 940.0449

4 5992 966.2615

5 7490 975.2454

Table 5.1: Fragmentation results

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload length (bytes)

Host Split to NIC

Theoretical Max
Packet fragmentation

Host to NIC

Figure 5.4: Packet Fragmentation vs Host to NIC

5.1.2 The Pitfalls

Despite the big improvement in performance, there are some drawbacks. Firstly, the

host is bound to perform extra work to construct each packet and make sure that each

fragment starts on a double-word boundary. Secondly, this model assumes a single-

process scenario. Ideally, if there are a number of processes each trying to transmit

60

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload length (bytes)

Host Split to NIC

Theoretical Max
Packet fragmentation

Host to NIC

Figure 5.5: Packet Fragmentation vs Host to NIC (detail)

a single 1.5k packet, it would be more efficient to group the packets together and

perform the transfer once. This implies the need of synchronization at some point,

with all the ramifications that brings about. However this is an issue which affects

extended frame users too.

5.1.3 Future Work

The requirement to align packets on doubleword boundaries is hardware enforced and

there is little which can be done to avoid it.

What can be improved is the offloading of copying the headers when the desti-

nation address is the same. Currently, if a host wishes to send, say, 42 packets to

the same destination, it has to copy the header repetitively. Ideally, the host would

be able to transfer a large block of data with the firmware inserting the headers at

the appropriate places. The Systems Software Research Group (SSRG) is currently

researching ways of avoiding this step efficiently2.

2For more information regarding SSRG, a locally set up group, visit www.cs.um.edu.mt/∼ssrg

61

Finally we may also extend the firmware to fragment frames based on the length

of the underlying Ethernet packet rather than use the fixed 1498 byte value as we

currently do.

Packet fragmentation enables a host to achieve the maximum possible

transmission throughput while utilizing standard Ethernet packets

5.2 Packet Coalescing

With the new fragmenting technique, we are now presented with a scenario whereby

the only bottleneck in achieving near-Gigabit speeds lies on the receiver side, or more

specifically, the transfer of packets from the NIC to the host.

Recall that in the packet fragmentation technique we have made use of a large

DMA transfer to transport a number of packets. In this packet coalescing technique

we delay transfers from the NIC to the host until a host-specified number of packets

have been coalesced. Normally, when the host constructs the usual receive descrip-

tors, it allocates just enough space for a standard or extended packet to be received.

In this technique, the host allocates enough space for a number of packets. It also

sets a special flag in the descriptor which is used to signal to the firmware that the

next few packets are to be coalesced. As before, this system allows this technique to

coexist with the standard routines.

When packets start being received, the NIC starts looking at available descriptors.

If the descriptor contains our flag, the firmware updates all the usual pointers but

does not immediately start DMA-ing the received frame to the host. For each received

packet, the remaining length of the original buffer descriptor is updated to reflect the

new packet. When there is no more space to accommodate any further packets, the

NIC issues the single DMA transfer which may contain a maximum of 42 packets (if

all the packets are 1.5k bytes long). The host then picks up each packet just as if it

62

had received them one by one.

Since we cannot predict how many packets are to be received, the NIC may end

up waiting indefinitely for more packets prior to moving the packets already wait-

ing to be transferred. For example if the host specifies that 42 fragments are to be

coalesced and the NIC receives just 4 fragments, the host may never receive the 4

packets received since the NIC would still be waiting for the next packets to arrive.

To circumvent this problem and also to let the host control latency, when a packet is

received, the onboard timer is set to trigger a short while later. If this alarm expires

and the NIC is still waiting, the firmware transfers the currently coalesced packets

and the whole process starts again. Since each received packet resets the timer, the

host can control the maximum time it is prepared to wait for more packets to arrive

after the last one has been received.

5.2.1 Results

Take a look at Figure 5.6. Even if we do not coalesce many packets, we are still able

to reach the Ethernet theoretical limit.

In Figure 5.8 we compare our results with the PCI performance, in other words,

we show the extra work done by the firmware. Notice that, with small packets, the

firmware keeps waiting for the DMA operations to be complete. As we coalesce more

and more packets, the NIC performs large DMA transfers so the performance loss

drops down to around 40 Mbits/sec. Beyond the 20k mark one can see a gradual rise

again. This is because the Ethernet limit has been reached but the PCI is still able

to transfer data at a faster rate. Also note that since the usual host machine under

test is not able to achieve high PCI rates (for the NIC to host side), the graphs shown

in figures 5.7 and 5.8 plot PCI benchmarks of the second host machine used in our

tests.

The nicest thing about this system is that it does not enforce any constraints on

the sender. In other words, so long as the sender complies with the Ethernet standard,

the receiver is able to register a performance boost. In Figure 5.9 we demonstrate

63

500

550

600

650

700

750

800

850

900

950

1000

0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

No of Fragments Coalesced

NIC to Host with Coalescing Packet Technique (Uni)

NIC to Host
Ethernet Theoretical Max

Figure 5.6: Packet Coalescing

500

600

700

800

900

1000

1100

10000 20000 30000 40000 50000 60000

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Payload length (bytes)

NIC to Host Coalesce (Uni)

DMAed bytes with Coalescing
Ethernet Theoretical Max

PCI Performance

Figure 5.7: Packet Coalescing vs PCI performance

64

20

40

60

80

100

120

140

160

0 10000 20000 30000 40000 50000 60000 70000

B
an

dw
id

th
 d

iff
er

en
ce

 (
M

bi
ts

/s
ec

)

Payload length (bytes)

Overhead of receiving packets using Coalescing technique w.r.t. PCI performance

Figure 5.8: Bandwidth loss when compared to PCI performance

500

550

600

650

700

750

800

850

0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Fragments Coalesced

Host to Host using Fragment Coalescing (Uni)

Host to Host Coalescing
Sender Host to Card (Max at 1.5k using std. fw.)

Figure 5.9: Host to Host with Packet Coalescing

65

how the receiver, gains such a performance benefit despite the presence of a slow

transmitting host. In this setup, the host at the sender side is set to transmit a stream

of 1.5k packets using the standard firmware while we switch on packet coalescing on

the receiver side.

5.3 Host Fragmentation to Host Coalescing

It is now appropriate to try out both techniques described in this chapter to perform

host to host transfers. In this test, we vary the number of split fragments at the sender

side and the number of packets coalesced at the other end each time measuring the

performance obtained. In this scenario, both hosts are able to communicate with the

NIC using any DMA length while leaving it up to the NIC to communicate between

one endpoint and the next using the standard 1.5k packets (see Figure 5.10).

Figure 5.10: Host Split to Host Coalescing (block diagram)

An analysis of the results obtained confirm that, without compromising the 1.5k-

per-packet standard, the theoretical limit has still been reached (see Figure 5.11).

66

500

550

600

650

700

750

800

850

900

950

1000

0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 (

M
bi

ts
/s

ec
)

Packets Split/Coalesced

Host with Packet Fragmentation to Host with Packet Coalescing Throughput (Uni)

Fragments split/coalesced
Ethernet Theoretical Max

Figure 5.11: Host with Packet Fragmentation to Host with Packet Coalescing (using

standard 1.5k packets throughout)

5.3.1 Pitfalls

When the MAC receives a frame from the network, it stores the packet to the on-board

memory in the following format:

Unused Doubleword

Packet data with CRC

padded to doubleword boundary

The host will thus end up receiving all combined packets in this format. Though

this does not a problem in terms of processing, it is still not an ideal scenario for the

host still has to waste some time to “defragment” the packets by stripping away the

Ethernet headers. The SSRG is currently researching ways of avoiding this step.

67

Chapter 6

Conclusion

6.1 Results and achievements

This dissertation identifies the PCI as a major bottleneck. While packet-processing

overheads are not insignificant, the performance loss is minimal when compared to the

loss caused by moving small chunks of data from the hosts’ memory onto the NIC (or

vice-versa). Usually a lot of emphasis is placed on the maximum achievable bandwidth

using the largest payloads possible. Unfortunately, small message transfers occur more

frequently in every day applications. Indeed, even remote file systems, which are

normally categorised as bulk transfer systems, depend heavily on the performance of

small messages. A week-long trace of all NFS traffic on the departmental CS fileserver

at UC Berkeley has shown that the vast majority of the messages is under 200 bytes

in size and that these messages account for roughly half the bits sent [ACP95].

Furthermore, we have shown that the effect of extending the payload length not

only creates compatibility problems, but also registers a considerable performance

boost (at the physical line level). We have also shown that by utilising two rather

simple techniques, performance at the application level could be boosted considerably

without requiring radical changes in existing systems. Indeed, the whole operation is

transparent from the rest of the networks’ point of view.

68

6.2 Future work

Both packet fragmentation and packet coalescing techniques require host assistance

thus involving some further host loading. The current implementation still requires

the host to defragment packets by stripping away their headers if it needs to access

the payload as a long stream of data. Some techniques, such as page remapping,

have been developed which, if integrated with this system, would yield a further

performance benefit. Better hardware support is needed for some of these operations

to be offloaded to the NIC. For example, the embedded Alteon NIC CPUs only run at

66Mhz, which is not enough to maintain gigabit speeds if memory to memory copying

on the NIC itself is involved.

6.3 Final remarks

In this dissertation we have identified key bottlenecks, we have experimented with

different payloads and frame sizes, we have offloaded tasks to the NIC and improved

throughput at the application level by a considerable 80%. However, we feel that

while considerable progress has already achieved in shifting tasks traditionally re-

served for the host onto the NIC, we believe that more research is required before the

host ceases to be the major bottleneck.

69

Appendix A

Data Obtained

A.1 NIC to Host

Time (us) Payload length Packets sent Throughput (Mbits/s) PCI diff.

1506841 1498 69350 551.5449 114.0942

1197733 3010 34675 697.1287 107.5819

1032317 4522 23116 810.0655 43.0724

997948 6034 17337 838.6125 42.2689

966029 7546 13870 866.7485 42.9106

938764 9058 11558 892.1720 30.6817

925443 10570 9907 905.2269 26.7957

911958 12082 8668 918.6982 23.5970

905342 13594 7705 925.5443 22.3508

898472 15106 6935 932.7846 21.0338

892375 16618 6304 939.1556 20.2146

888580 18130 5779 943.2872 17.1445

883033 19642 5334 949.1870 15.1542

879771 21154 4953 952.7549 14.7454

877336 22666 4623 955.4827 13.8126

873950 24178 4334 959.2078 12.1783

70

874130 25690 4079 959.0291 14.5494

870288 27202 3852 963.1947 12.4632

869585 28714 3650 964.1942 13.2196

867305 30226 3467 966.6131 11.3230

866038 31738 3302 968.0765 10.8409

865542 33250 3152 968.6786 12.0457

863773 34762 3015 970.6942 10.7465

863695 36274 2889 970.6722 11.4916

861517 37786 2774 973.3376 9.7370

861034 39298 2668 974.1503 8.9244

860926 40810 2569 974.2151 9.3559

859046 42322 2476 975.8665 9.8385

859355 43834 2391 975.6815 10.1347

857150 45346 2311 978.0748 8.6468

857274 46858 2237 978.1829 8.8515

856461 48370 2167 979.0782 8.7120

855678 49882 2101 979.8273 8.7446

855215 51394 2039 980.2669 7.9943

854256 52906 1981 981.5024 7.3521

855328 54418 1926 980.2936 9.2822

853602 55930 1874 982.3109 7.3799

853195 57442 1825 982.9561 7.0590

853736 58954 1778 982.2260 8.3775

852329 60466 1733 983.5411 7.4913

852446 61978 1691 983.5677 7.8927

851862 63490 1651 984.4035 7.0220

851563 65002 1612 984.3849 7.2455

71

A.2 NIC to Host (with coalescing)

Fragments coal. DMA length Payload (bytes) Bandwidth (Mbits/s)

1 1528 1498 530.8730

2 3056 3026 729.5356

3 4584 4554 810.2943

4 6112 6082 864.3500

5 7640 7610 895.3905

6 9168 9138 910.2290

7 10696 10666 928.9378

8 12224 12194 942.1483

9 13752 13722 947.3481

10 15280 15250 957.6750

11 16808 16778 964.3128

12 18336 18306 966.9150

13 19864 19834 973.4926

14 21392 21362 973.2046

15 22920 22890 973.7392

16 24448 24418 973.6922

17 25976 25946 975.1328

18 27504 27474 972.8670

19 29032 29002 974.2240

20 30560 30530 974.8811

21 32088 32058 974.1133

22 33616 33586 974.3269

23 35144 35114 974.4069

24 36672 36642 971.6794

25 38200 38170 974.9438

26 39728 39698 973.4572

72

27 41256 41226 973.2530

28 42784 42754 974.9948

29 44312 44282 974.2124

30 45840 45810 973.0523

31 47368 47338 972.5685

32 48896 48866 974.9424

33 50424 50394 974.4197

34 51952 51922 974.5686

35 53480 53450 975.0556

36 55008 54978 974.4631

37 56536 56506 974.5088

38 58064 58034 973.6479

39 59592 59562 974.2476

40 61120 61090 973.1490

41 62648 62618 973.5851

42 64176 64146 974.3659

73

A.3 Host to Host (standard firmware)

Time (us) Payload (bytes) Pkts. Transferred Bandwidth (Mbits/s)

1544830 1498 69350 537.9818

1182456 3010 34675 706.1354

1033133 4522 23116 809.4257

985829 6034 17337 848.9217

958313 7546 13870 873.7272

938345 9058 11558 892.5703

925534 10570 9907 905.1379

914232 12082 8668 916.4131

907480 13594 7705 923.3638

898600 15106 6935 932.6518

893522 16618 6304 937.9500

894587 18130 5779 936.9532

890404 19642 5334 941.3294

886917 21154 4953 945.0784

888057 22666 4623 943.9477

884815 24178 4334 947.4293

888988 25690 4079 943.0004

883471 27202 3852 948.8221

882270 28714 3650 950.3313

880430 30226 3467 952.2033

882367 31738 3302 950.1613

879329 33250 3152 953.4907

880093 34762 3015 952.6941

878311 36274 2889 954.5192

877475 37786 2774 955.6362

877794 39298 2667 955.1924

74

877099 40810 2568 955.8791

877742 42322 2476 955.0804

876613 43834 2391 956.4731

875430 45346 2311 957.6515

876547 46858 2237 956.6752

875336 48370 2167 957.9662

874356 49882 2101 958.8962

875621 51394 2039 957.4221

874542 52906 1981 958.7353

873694 54418 1926 959.6867

874468 55930 1874 958.8716

873818 57442 1825 959.7573

873185 58954 1778 960.3483

873829 60466 1733 959.3417

872442 61978 1691 961.0248

873172 63490 1651 960.3788

872257 65002 1612 961.0307

75

A.4 NIC to Host PCI test

Time (us) Bytes/transaction Transactions Bandwidth (Mbits/s)

6143465 128 819200 136.5452

4386357 192 546133 191.2430

3376714 256 409600 248.4252

2459962 384 273066 341.0048

2080587 512 204800 403.1847

1706780 768 136533 491.4862

1434085 1024 102400 584.9450

1260229 1512 69350 665.6390

1042434 3024 34675 804.7105

983233 4536 23116 853.1380

952266 6048 17337 880.8814

922167 7560 13870 909.6591

908956 9072 11558 922.8537

900027 10584 9907 932.0226

890151 12096 8668 942.2952

884905 13608 7705 947.8951

879473 15120 6935 953.8185

874308 16632 6304 959.3702

873392 18144 5779 960.4318

869776 19656 5334 964.3412

866936 21168 4953 967.5003

865368 22680 4623 969.2953

863493 24192 4334 971.3860

861536 25704 4079 973.5785

859613 27216 3852 975.6579

858242 28728 3650 977.4138

76

857660 30240 3467 977.9361

856825 31752 3302 978.9173

855271 33264 3152 980.7243

854659 34776 3015 981.4407

853919 36288 2889 982.1637

853300 37800 2774 983.0747

852771 39312 2667 983.5710

851595 40824 2568 984.8440

850753 42336 2476 985.7050

850792 43848 2391 985.8162

849901 45360 2311 986.7216

849840 46872 2237 987.0344

849153 48384 2167 987.7902

848347 49896 2101 988.5719

848528 51408 2039 988.2612

848129 52920 1981 988.8545

847523 54432 1926 989.5758

847449 55944 1874 989.6908

847318 57456 1825 990.0151

846717 58968 1778 990.6035

846082 60480 1733 991.0325

845851 61992 1691 991.4604

846015 63504 1651 991.4255

845523 65016 1612 991.6304

77

A.5 Host to NIC PCI test

Time (us) Bytes/transaction Transactions Bandwidth (Mbits/s)

2913763 128 819200 287.8960

2014973 192 546133 416.3134

1703553 256 409600 492.4184

1383601 384 273066 606.2866

1239718 512 204800 676.6545

1094187 768 136533 766.6503

1025197 1024 102400 818.2435

940520 1512 69350 891.9083

880712 3024 34675 952.4766

848649 4536 23116 988.4339

833154 6048 17337 1006.8168

825607 7560 13870 1016.0495

815800 9072 11558 1028.2341

812367 10584 9907 1032.5943

809670 12096 8668 1035.9591

809529 13608 7705 1036.1545

804583 15120 6935 1042.5992

802795 16632 6304 1044.8309

805500 18144 5779 1041.3823

802625 19656 5334 1045.0221

801625 21168 4953 1046.3257

800625 22680 4623 1047.6779

801973 24192 4334 1045.9018

798459 25704 4079 1050.4897

797995 27216 3852 1050.9944

797732 28728 3650 1051.5532

78

798039 30240 3467 1050.9971

796416 31752 3302 1053.1692

796035 33264 3152 1053.7037

797456 34776 3015 1051.8413

796308 36288 2889 1053.2209

796142 37800 2774 1053.6532

795741 39312 2667 1054.0626

796543 40824 2568 1052.9102

794770 42336 2476 1055.1373

794777 43848 2391 1055.2954

795381 45360 2311 1054.3572

794884 46872 2237 1055.2751

794035 48384 2167 1056.3577

793610 49896 2101 1056.7558

794534 51408 2039 1055.4203

794081 52920 1981 1056.1595

794001 54432 1926 1056.2811

793818 55944 1874 1056.5551

794457 57456 1825 1055.8880

793401 58968 1778 1057.1714

793073 60480 1733 1057.2731

793048 61992 1691 1057.4742

793388 63504 1651 1057.1887

792540 65016 1612 1057.9231

79

A.6 Host Split to Host Coalesced

Time (us) Packets transmitted Bandwidth (Mbits/s) Fragments split/coal

1105781 50001 542.7031 1

810132 50002 740.7716 2

737483 50001 813.7283 3

697217 50004 860.7748 4

669753 50005 896.0897 5

657591 50004 912.6445 6

644253 50001 931.4831 7

639550 50008 938.4643 8

635004 50004 945.1071 9

630001 50010 952.7267 10

629597 50006 953.2619 11

621389 50004 965.8150 12

615952 50011 974.4766 13

615773 50008 974.7014 14

615773 50010 974.7403 15

615786 50016 974.8368 16

615873 50014 974.6601 17

615778 50004 974.6155 18

615740 50008 974.7537 19

615903 50020 974.7295 20

615679 50001 974.7137 21

615742 50006 974.7116 22

615812 50002 974.5228 23

615884 50016 974.6816 24

615971 50025 974.7193 25

615968 50024 974.7046 26

80

615730 50004 974.6915 27

615791 50008 974.6729 28

616005 50025 974.6655 29

615822 50010 974.6628 30

615752 50003 974.6372 31

615827 50016 974.7719 32

616077 50028 974.6101 33

615906 50014 974.6079 34

615741 50015 974.8885 35

615776 50004 974.6187 36

616030 50024 974.6065 37

615847 50008 974.5843 38

616200 50037 974.5908 39

616252 50040 974.5670 40

616012 50020 974.5571 41

616041 50022 974.5502 42

81

A.7 Host Std. to Host Coalesced

Time (us) Pkts recvd Bandwidth (Mbits/s) Pkts Coalesced

1105980 50001 541.7928 1

819898 50002 730.8518 2

749216 50001 799.7853 3

742125 50004 807.4757 4

742283 50005 807.32 5

742017 50005 807.6094 6

741517 50004 808.1378 7

741966 50001 807.6003 8

741451 50004 808.2098 9

741166 50005 808.5367 10

741048 50004 808.6493 11

740985 50001 808.6695 12

741079 50008 808.6801 13

741071 50004 808.6242 14

741044 50010 808.7506 15

741502 50006 808.1865 16

741529 50004 808.1247 17

741730 50011 808.0189 18

741705 50008 807.9976 19

740948 50010 808.8554 20

741109 50016 808.7768 21

741364 50014 808.4663 22

741621 50004 808.0245 23

740837 50008 808.9443 24

742003 50020 807.8669 25

741531 50001 808.0741 26

82

741571 50006 808.1113 27

742178 50002 807.3858 28

741309 50016 808.5586 29

741049 50025 808.9878 30

741901 50024 808.0426 31

740786 50004 808.9353 32

740885 50008 808.8919 33

741035 50025 809.0031 34

741589 50010 808.1563 35

742034 50003 807.5586 36

740956 50016 808.9438 37

741154 50028 808.9217 38

740881 50014 808.9933 39

741231 50015 808.6275 40

741722 50004 807.9145 41

741802 50024 808.1504 42

NB: The sender’s limit is 810Mbits/s

83

A.8 Host to NIC

Payload (bytes) Bandwidth (Mbits/s)

178 198.2333

242 263.1979

370 458.2524

498 532.2221

754 641.8731

1010 726.1357

1498 808.9748

3010 899.7057

4522 946.0275

6034 972.9891

7546 985.3899

9058 995.8060

10570 996.4021

12082 996.8564

13594 997.1970

15106 997.4704

16618 997.6984

18130 997.8942

19642 998.0601

21154 998.1880

22666 998.3062

24178 998.3915

25690 998.5202

27202 998.5820

28714 998.6515

30226 998.7379

84

31738 998.7503

33250 998.8605

34762 998.8734

36274 998.9327

37786 998.9936

39298 999.0100

40810 999.0111

42322 999.0833

43834 999.0752

45346 999.1527

46858 999.1981

48370 999.1510

49882 999.2401

51394 999.2180

52906 999.2409

54418 999.3099

55930 999.3222

57442 999.2461

58954 999.3071

60466 999.2489

61978 999.2930

63490 999.3459

65002 999.3187

85

A.9 Ethernet Theoretical Limits

True Frame Real True Frames/s True Payload Theoretical Max

size (bytes) Payload bits/s Efficiency

88 50 1420454.55 568181818.2 568.1818

152 114 822368.42 750000000 750.0000

216 178 578703.70 824074074.1 824.0741

280 242 446428.57 864285714.3 864.2857

408 370 306372.55 906862745.1 906.8627

536 498 233208.96 929104477.6 929.1045

792 754 157828.28 952020202 952.0202

1048 1010 119274.81 963740458 963.7405

1536 1498 81380.21 975260416.7 975.2604

3048 3010 41010.50 987532808.4 987.5328

4560 4522 27412.28 991666666.7 991.6667

6072 6034 20586.30 993741765.5 993.7418

7584 7546 16482.07 994989451.5 994.9895

9096 9058 13742.30 995822339.5 995.8223

10608 10570 11783.56 996417797.9 996.4178

12120 12082 10313.53 996864686.5 996.8647

13632 13594 9169.60 997212441.3 997.2124

15144 15106 8254.09 997490755.4 997.4908

16656 16618 7504.80 997718539.9 997.7185

18168 18130 6880.23 997908410.4 997.9084

19680 19642 6351.63 998069105.7 998.0691

21192 21154 5898.45 998206870.5 998.2069

22704 22666 5505.64 998326286.1 998.3263

24216 24178 5161.88 998430789.6 998.4308

25728 25690 4858.52 998523010 998.5230

86

27240 27202 4588.84 998604992.7 998.6050

28752 28714 4347.52 998678352.8 998.6784

30264 30226 4130.32 998744382.8 998.7444

31776 31738 3933.79 998804128.9 998.8041

33288 33250 3755.11 998858447.5 998.8584

34800 34762 3591.95 998908046 998.9080

36312 36274 3442.39 998953514 998.9535

37824 37786 3304.78 998995346.9 998.9953

39336 39298 3177.75 999033963.8 999.0340

40848 40810 3060.13 999069721.9 999.0697

42360 42322 2950.90 999102927.3 999.1029

43872 43834 2849.20 999133843.9 999.1338

45384 45346 2754.27 999162700.5 999.1627

46896 46858 2665.47 999189696.3 999.1897

48408 48370 2582.22 999215005.8 999.2150

49920 49882 2504.01 999238782.1 999.2388

51432 51394 2430.39 999261160.4 999.2612

52944 52906 2360.99 999282260.5 999.2823

54456 54418 2295.43 999302188.9 999.3022

55968 55930 2233.42 999321040.6 999.3210

57480 57442 2174.67 999338900.5 999.3389

58992 58954 2118.93 999355844.9 999.3558

60504 60466 2065.98 999371942.4 999.3719

62016 61978 2015.61 999387254.9 999.3873

63528 63490 1967.64 999401838.6 999.4018

65040 65002 1921.89 999415744.2 999.4157

87

A.10 Host Split to NIC

Fragments Payload length (bytes) Bandwidth (Mbits/s)

1 1498 808.3237

2 2996 892.7797

3 4494 940.0449

4 5992 966.2615

5 7490 975.2454

6 8988 975.2455

7 10486 975.2118

8 11984 975.2454

9 13482 975.2448

10 14980 975.2461

11 16478 975.2453

12 17976 975.2454

13 19474 975.2455

14 20972 975.2454

15 22470 975.2452

16 23968 975.2455

17 25466 975.2308

18 26964 975.2454

19 28462 975.2461

20 29960 975.2454

21 31458 975.2459

22 32956 975.2453

23 34454 975.2460

24 35952 975.2234

25 37450 975.2400

26 38948 975.2378

88

27 40446 975.2374

28 41944 975.2456

29 43442 975.2455

30 44940 975.2457

31 46438 975.2454

32 47936 975.2304

33 49434 975.2282

34 50932 975.2276

35 52430 975.2434

36 53928 975.2440

37 55426 975.2423

38 56924 975.2415

39 58422 975.2017

40 59920 975.2142

41 61418 975.2098

42 62916 975.2349

43 64414 975.2344

89

A.11 NIC to NIC

Timer val Frame Size (bytes) Packets sent Bandwidth (Mbits/s)

2709957 192 613078 568.8786

8769610 256 3033435 772.5793

14829265 384 5358235 907.0045

20888919 512 7140903 929.1458

26948571 768 8478011 952.1119

33008226 1024 9395515 963.8328

39067880 1512 10080084 975.4466

45127535 3024 10532455 987.5721

51187189 4536 10767229 991.6517

57246843 6048 10926443 993.7336

63306497 7560 11047042 994.9814

69366152 9072 11144150 995.8126

75425806 10584 11225445 996.4082

81485459 12096 11295364 996.8581

87545114 13608 11356705 997.2162

93604767 15120 11411344 997.4956

99664419 16632 11460604 997.7163

1.06E+08 18144 11505449 997.9038

1.12E+08 19656 11546607 998.0728

1.18E+08 21168 11584638 998.1908

1.24E+08 22680 11619983 998.3304

1.3E+08 24192 11652998 998.4314

1.36E+08 25704 11683971 998.5179

1.42E+08 27216 11713139 998.5914

1.48E+08 28728 11740702 998.6901

1.54E+08 30240 11766827 998.7481

90

1.6E+08 31752 11791656 998.7797

1.66E+08 33264 11815313 998.8496

1.72E+08 34776 11837903 998.8899

2746154 36288 212784 999.0145

8805807 37800 233504 998.9839

14865467 39312 253402 999.0512

20925114 40824 272539 999.0862

26984768 42336 290972 999.0910

33044422 43848 308750 999.0907

39104076 45360 325919 999.1416

45163730 46872 342519 999.1994

51223384 48384 358587 999.1804

57283038 49896 374155 999.2774

63342692 51408 389254 999.1972

69402346 52920 403911 999.2579

75462002 54432 418152 999.3658

81521653 55944 431998 999.3103

87581306 57456 445473 999.2979

93640960 58968 458594 999.3569

99700615 60480 471381 999.3149

1.06E+08 61992 483849 999.3635

1.12E+08 63504 496014 999.4020

1.18E+08 65016 507891 999.4141

91

Bibliography

[ACP95] T. Anderson, D. Culler, and D. Patterson. A case for now (networks of

workstations, 1995.

[BCF+95] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,

J. N. Seizovic, and Wen-King Su. Myrinet: A gigabit-per-second Local

Area Network. IEEE Micro, 15(1):29–36, 1995.

[BDHR95] T. Braun, C. Diot, A. Hoglander, and V. Roca. An Experimental User

level implementation of TCP. Technical Report, INRIA Sophia Antipolis,

France, (2650), 1995.

[CKS00] Felix Rauch Christian Kurmann, Michel Muller and Thomas Stricker.

Speculative defragmentation — a technique to improve the communica-

tion software efficiency for gigabit ethernet. In Proc. 9th IEEE Symp.

High Performance Distr. Comp., pages 131–138, August 2000.

[CZ89] John. B. Carter and Willy Zwaenepoel. Optimistic implementation of

bulk data transfer protocols. In Proc. 1989 ACM SIGMETRICS and

PERFORMANCE ’89: International Conference on Measurement and

Modeling of Computer Systems, pages 61–69, Berkeley, CA, 23-26 1989.

ACM Press.

[DRM+98] Dave Dunning, Greg Regnier, Gary McAlpine, Don Cameron, Bill Shu-

bert, Frank Berry, Anne Marie Merritt, Ed Gronke, and Chris Dodd.

The virtual interface architecture. IEEE Micro, 18(2):66–??, /1998.

92

[GCY] Andrew Gallatin, Jeff Chase, and Ken Yocum. Trapeze/IP: TCP/IP at

near-gigabit speeds. pages 109–120.

[Gro] PCI Special Interest Group. Pci local bus specification.

[KCT98] Y. Miller K. Claffy and K. Thompson. The nature of the beast: Recent

trac measurements from an internet backbone, 1998.

[Pos81] Jon B. Postel. Transmission Control Protocol. Technical Report 793,

SRI International, 1981.

[STH+99] S. Sumimoto, H. Tezuka, A. Hori, H. Harada, T. Takahashi, and

Y. Ishikawa. The design and evaluation of high performance commu-

nication using a gigabit ethernet, 1999.

[TOHI] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down cache:

A virtual memory management technique for zero-copy communication.

pages 308–315.

[vEBBV95] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-level

network interface of parallel and distributed computing, 1995.

[Weba] Alteon Websystems. Extended frame sizes for next generation ethernets

- a white paper.

[Webb] Alteon Websystems. Next generation adapter design and optimization

for gigabit ethernet.

[Webc] Alteon Websystems. Tigon/pci ethernet controller documentation.

93

