
Computer Graphics & Simulation Group Department of Computer Science - University of Malta

1CGSG – Illumination

Illumination

Sandro Spina
Computer Graphics and Simulation Group

Computer Science Department
University of Malta

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

2CGSG – Illumination

Illumination ... for 3D real-time rendering

 During this module we’ll discuss the basics of illumination theory.

 We’ll go through the computations required to enable real-time

rendering of 3D scenes.

 Rendering Authenticity can be split in 2:

 Geometry

 Visual Appearance – i.e. How does light interact with the surface of the geometry.

 The closer we model light interaction with surfaces the higher the
perception of reality we are able to produce (photorealism).

 However since we are talking about real-time performance we’ll have to

make some tradeoffs.

 Module based on Akenine-Mueller’s Real-Time Rendering book

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

3CGSG – Illumination

Illumination ... models

 In practice we need to come up with two model categories

 A surface model

 A lighting model

 We’ll see that there are many surface models ...

 And even mode lighting models ...

 Local Illumination versus Global Illumination

 In this module we’ll be looking at local illumination models

however ...

 Towards the end of the course you’ll also be given a 3hr

introduction to Global Illumination and Physically Based

Modelling.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

4CGSG – Illumination

Visual (Physical) Phenomena

 If our goal is to model reality (in terms of lighting

and surfaces) then we need to understand some

physical properties (phenomena) of light.

 Light is emitted, scattered and absorbed –

 Light is emitted by the sun or other sources (flames, energy

saving bulb, etc)

 Light interacts with objects; part is absorbed, part is

scattered and propagates in new directions,

 Light is absorbed by a sensor (human eye, film, CCD in

digital cameras)

 Just look around to observe all these phenomena

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

5CGSG – Illumination

Light Sources (Directional)

 Light sources generate electromagnetic radiant energy that

travels through space.

 Different light sources exists however we can group these

sources in different clusters.

 To start, let’s create a model for light emitted by extremely
distant sources (like the sun) as directional lights.

 Directional lights have two basic properties – a direction (to
light) vector. Referred to as the light vector. And intensity of

light.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

6CGSG – Illumination

Light Sources (Intensity of ...)

 Every light source has an associate amount of illumination that it emits.

 The science of measuring light is called radiometry (you’ll have a taste

of this when doing PBR). Light is not colour but waves ... Colour is the
interpretation given by our visual system to the visible range of

frequencies.

 We can approximate the value of the intensity by measuring power
through a unit area surface (plane) perpendicular to the light vector l.

This quantity is called irradiance.

 Ultimately we view light as colour .. Hence we can directly colour light
and represent irradiance as an RGB value containing three number

representing red, green and blue.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

7CGSG – Illumination

Light Sources (Ambient)

 Even if you have just one light source in your room (or

whatever) light emitted from that light source is dispersed and
some of it bounces off the surfaces of other objects ...

 We shall not calculate this value (for now) but we shall take an
approximation to this value by specifying an ambient light.

 Ambient light essentially covers surrounding and environmental

lighting ... Without the complex computations.

 IMPORTANT: it is not a physically based value. But an

approximation.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

8CGSG – Illumination

Light hitting a surface ...

 Ok, now we know what irradiance is; which gives us a measure

of the amount of light leaving a particular light source (how
bright the source is ...)

 It is a measure of how much light is travelling in space ...

 We now need to compute the amount of light which is hitting a

surface and at a particular point on the surface.

 This is know as the surface irradiance.

 SI is equal to:

 The radiance measured perpendicular to the light vector l, multiplied by the

cosine of the angle between l and the surface normal vector n.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

9CGSG – Illumination

Light hitting a surface ... (diagram)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

10CGSG – Illumination

Geometric interpretation of the cosine factor

 This is a very important concept in the realistic simulation of

light hitting a surface ...

 Irradiance (at a point p on a surface) is:

 Proportional to the density of the rays and

 Inversely proportional to the distance d between them.

 Note that the distance between the rays on the surface is

given by: d / cos θ

 Check this out with a number of examples

 The bigger the angle the dimmer the brightness ...

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

11CGSG – Illumination

Computing irradiance on a surface ... (from one source)

 With the knowledge acquired in the previous slides we can

calculate how much irradiance is falling on every surface point p
of our 3D objects.

 Irradiance E = El cos θ

 where El is equal to the irradiance perpendicular to the light vector l

 Note that cos θ needs to be clamped to non-negative values

 Recall the dot product and its use to determine the angle

between two vectors.

 The cosine between l and n can be computed by taking their

dot product.

 Irradiance E = El max (n.l, 0)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

12CGSG – Illumination

Computing irradiance on a surface ... (from multiple sources)

 Irradiance is additive ... This means that the total irradiance

from two or more sources is simple the sum of the irradiance
quantities from each light source.

 This translates to:

Irradiance E =

 Assuming above that we have n directional lights.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

13CGSG – Illumination

Materials (or how objects appear)

 We’ve seen now how to compute the amount of irradiance falling on a

surface

 However different surfaces have different properties and we need to
model these as well in order to get visually pleasing and realistic

results.

 Object appearance is portrayed by attaching materials to models in the
scene.

 Each material is associated with a set of shaders, textures and other

properties which describe how a surface is rendered.

 These are used to simulate light interaction with the object surface.

 In this module we’ll investigate a simple material model.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

14CGSG – Illumination

Scattering and Absorption

 All light-matter interactions are a result of two phenomena

 Scattering

 Causes light to change direction.

 Happens when light encounters some form of optical
discontinuity.

 Light scattering can either be

 Reflection (out of the surface)

 Refraction (into the surface)

 Absorption

 Happens inside matter and causes some of the light to be
converted into another kind of energy and disappear.

 Reduces the amount of light

 Does not change the direction of light

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

15CGSG – Illumination

Scattering and Absorption ... (diagram)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

16CGSG – Illumination

Specular and Diffuse

 As discussed in the previous slide the light that is reflected

immediately at the surface has a different direction distribution
and colour to the light that was first partially absorbed and then

scattered back out.

 We can thus calculate these two quantities separately then add

them together.

 We refer to these two components as:

 The Diffuse Component (term) – representing light that has undergone

transmission, absorption and scattering.

 The Specular Component (term) – representing light that was reflected at

the surface

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

17CGSG – Illumination

Outgoing Light ...

 Irradiance refers to the incoming illumination ... Which we use

to calculate the outgoing light.

 We refer to outgoing light as exitance (M) which is measured

with the same units of irradiance (energy/second/unit area)

 Light-matter interactions are linear

 Meaning that if double the amount of irradiance falls on a point, existance

will double as well for a particular material.

 Leading us to define one of the properties of materials as ...

 A Ratio between Exitance and Irradiance

 An important characteristic of every material hence is the value

of the exitance divided by the irradiance.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

18CGSG – Illumination

Exitance/Irradiance Ratio

 This ratio can vary for light of different colours, so it is

represented as an RGB vector or colour, commonly called the
surface colour c.

 Surface colour is composed (in shading equations) of the two
terms we just saw namely the diffuse colour component cdiff and

specular colour component cspec.

 These terms determine important material properties. The
specular and diffuse colours of a surface depend on its

composition.

 Eg. Steel, colored plastic, gold, wood, skin, etc ...

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

19CGSG – Illumination

Directionality of Reflections

 For the diffuse component we’ll be assuming that there is no

directionality ... i.e. Light is scattered back equally in all
directions. NOTE that this is an approximation and is not

physically-based.

 On the contrary the specular terms does have significant

directionality (specular highlights) that need to be addressed.

 Unlike colour ... Specular reflections depend on the

smoothness of the surface.

 A smoother surface exhibits sharper reflections and narrow

highlights (mirror) whereas a not so smooth and rougher

surface (brushed metal, CDR, etc) shows blurry reflections and
relatively broad dim highlights.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

20CGSG – Illumination

Lambert’s Law and the Dot Product

 The dot product is heavily used in lighting calculations. Recall that

 r.s = ||r|| . ||s|| cos (b)

 Of significant importance is Lambert’s Law which states that the intensity of

illumination on a diffuse surface is proportional to the cosine of the angle between

the surface normal vector and the light source direction.

 For eg. given a source of light situated at (20, 20, 40) and the illuminated point is

(0, 10, 0) with a normal vector of [0, 1, 0]T.

 The direction of the light source respect to the surface point is defined by the

vector s: [20-0, 20-10, 40-0] = [20, 10, 40]

 Magnitude of s = || s || = = 45.826

 Therefore we have 1 X 45.826 X cos(b) = 0x20 +1x10 + 0x40

 Cos (b) = 10 / 45.826 = 0.218 This means that the light intensity at (0, 10, 0)

is 0.28 the intensity at (20,20,40)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

21CGSG – Illumination

Smoothness of material

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

22CGSG – Illumination

Types of Light Sources

 In a virtual scene many different light sources are

possible. The most common types include

 Directional Light

 Spot Light

 Point Light

 A directional light is one that comes from one particular

direction and whose distance is considered infinite.

 In nature such light does not exist but can for eg.

simulate the light (from the sun) coming in through a

window.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

23CGSG – Illumination

Types of Light Sources (ii)

 Point lights are similar to a directional lights, however a

point light fades as the distance between the source of

the light and the point being shaded (on the geometry)

increases.

 This property is referred to as distance attenuation.

 Point Lights have a position in space, a distance

attenuation factor, and they shine light in all directions.

 Examples of points lights include a candle, a bulb, etc …

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

24CGSG – Illumination

Types of Light Sources (iii)

 The third type of light simulates spot lights.

 A spot light is similar to a point light, with the difference

being that a spot light only shines in a specific direction

within a cone volume.

 The most common examples of spot lights used in games

are probably flashlights and car headlamps.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

25CGSG – Illumination

Shading

 Shading is the process of using an equation to compute

the outgoing radiance Lo (NOT exitance M) along the view

ray, v, based on material properties and light sources.

 We have already discussed material properties, light

sources and exitance. We shall now see how everything

is put in together and implemented.

 In CG there are usually three levels of computing

lighting:

 Per Primitive (Flat Shading)

 Per Vertex (Gouraud Shading)

 Per Pixel (Phong Shading)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

26CGSG – Illumination

Flat Shading

 When rendering using flat shading lighting calculations

are carried out once for the whole primitive.

 Only one normal is necessary …

 Discontinuities in shading are very apparent and does not

produce a perceptually realistic render.

 Hardly used any more with today’s hardware

performance.

 Also referred to as per-primitive shading.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

27CGSG – Illumination

Per-Vertex Shading (Gouraud)

 In per-vertex shading, lighting calculations are carried out for each

vertex in a mesh.

 Usually the results of the per-vertex light calculations are either
combined with the vertex colour, or act the colour, and their values are

interpolated across the surface of the primitive.

 The positive feature is thus that the calculations are limited to the total
number of vertices present sent down the pipeline. Using standard

lighting algorithms this is fairly cheap on today’s hardware.

 The downside however is rendering quality … which is tied directly to
the vertex count, which requires a large number of vertices to obtain

best quality. Adding more geometry however is not ideal for real-time

performance !!

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

28CGSG – Illumination

Per- Pixel Shading (Phong)

 Per-pixel lighting involves lighting calculations performed on each raster

pixel that makes up the surface.

 Since there are (usually) more pixels that make up a surface than
vertex points, this will always give a tremendous amount of quality

regardless of how many polygons and vertices are present in the scene.

 As you can imagine then … screen resolution plays an important role.

 We shall be using per-pixel shading in the examples we’ll be looking at
today.

 Per-pixel shading is carried out in the pixel shader … whereas vertex

shaders are used to calculate the colours of vertices in per-vertex
shading.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

29CGSG – Illumination

Flat vs Gouruad vs Phong

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

30CGSG – Illumination

Light Models ...

 Lighting models (used by shading models) are algorithms used to

perform lighting calculations.

 There exist many different types of lighting models addressing different
components of the lighting … we shall be looking at three of them.

 Lambert Diffuse Model: Using as we’ve seen in a preceding slide

Lambert’s law to calculate the diffuse component of lighting.

 Phong Specular Model: This model is used to calculate specular
highlights on shiny objects.

 Blinn-Phong Specular Model: This model is a variation of Phong which

provides a cheaper implementation.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

31CGSG – Illumination

Light Terms ... (i)

 Local Illumination: As opposed to global illumination which takes into

account all the lights in a scene and how light is bouncing off on all the
surface throughout the scene to calculate light falling at a surface point,

local illumination does not take into account the light that is bouncing

off all the surface.

 Emissive: used to represent how much light is given off by a surface ..
Usually denoted by the constant e

 Ambient: Light component simulating global illumination … this is

usually a constant colour used for all the objects in the scene

 Diffuse: refers to light that has reflected and scattered after hitting a

surface in many different directions. The viewing angle does not effect

how the surface looks (obviously the normal and light direction do)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

32CGSG – Illumination

Light Terms ... (ii)

 Specular: refers to light which is similar to diffuse light, but

with the exception that the lights is now reflected in the (or
near the) mirror direction of the incoming light.

 Attenuation: used to represent how light loses intensity over
distance. This value is used in light sources such as point and

spot lights. Value is usually between 0 and 1.

 Combining all these lighting terms we get a simple equation
used to try to approximate light as seen in real life …

 Light = Emissive + Ambient * (Diffuse + Specular) * Attenuation,

where Diffuse = kd * diffuse_calculation and Specular = ks *
specular_calculation. Ks and Kd are determed from the surface

material.

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

33CGSG – Illumination

Diffuse Lambert Shader

 We shall now have a look at a (pixel) shader which we’ll use to compute

diffuse component of lighting.

 We use Lambert’s Law to calculate the diffuse component, there we
need to know two vector for the calculation, namely, the normal and

light vectors.

 Recall that if the dot product between these two vectors is 1 than we
have two perpendicular vectors pointing in the same direction.

 The light would be fully illuminating this point.

 Let us define angle = dot(normal, light_dir), then:

 Diffuse = light_color * angle

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

34CGSG – Illumination

OpenGL Vertex Shader

 Varying vec3 normal;

 Varying vec3 lightVec;

 Uniform vec3 lightPos;

 Void main()

 {

Gl_position = glModelViewProjectionMatrix * gl_Vertex;

Vec4 pos = gl_ModelViewMatrix * gl_Vertex;

Normal = gl_NormalMatrix * gl_Normal;

lightVec = lightPos – pos;

 }

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

35CGSG – Illumination

OpenGL Pixel Shader

 Varying vec3 normal;

 Varying vec3 lightVec;

 Void main()

 {

 Normal = normalize(normal);

 lightVec = normalize(lightVec);

 Float diffuse = saturate(dot(normal, lightVec));

 Gl_FragColor = vec4(1, 1, 1, 1) * diffuse;

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

36CGSG – Illumination

DirectX HLSL Vertex/Pixel Shader

 float4x4 worldView : WorldView;

 float4x4 worldViewProj : WorldViewProjection;

 float4 lightPos;

 struct Vs_Input

 {

 float3 vertexPos : POSITION;

 float3 norm : NORMAL;

 float2 tex0 : TEXCOORD0;

 };

 struct Vs_Output

 {

 float4 vertexPos : POSITION;

 float3 norm : TEXCOORD0;

 float3 lightVec : TEXCOORD1;

 };

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

37CGSG – Illumination

DirectX HLSL Vertex/Pixel Shader

 struct Ps_Output

 {

 float4 color : COLOR;

 };

 Vs_Output VertexShaderEffect(Vs_Input IN)

 {

Vs_Output vs_out;

float4 Pos = mul(worldView, float4(IN.vertexPos, 1));

vs_out.vertexPos = mul(worldViewProj, float4(IN.vertexPos, 1));

vs_out.norm = mul(worldView, IN.norm);

vs_out.lightVec = lightPos.xyz - Pos.xyz;

return vs_out;

 }

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

38CGSG – Illumination

DirectX HLSL Vertex/Pixel Shader

 Ps_Output PixelShaderEffect(Vs_Output IN)

 {

Ps_Output ps_out;

float3 normal = normalize(IN.norm);

float3 lightVec = normalize(IN.lightVec);

float diffuse = saturate(dot(normal, lightVec));

ps_out.color = float4(1, 1, 1, 1) * diffuse;

return ps_out;

 }

 technique LambertDiffuse

 {

 pass Pass0

 {

VertexShader = compile vs_2_0 VertexShaderEffect();

PixelShader = compile ps_2_0 PixelShaderEffect();

 }

 }

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

39CGSG – Illumination

Reflection Vector

 A specular reflection is dependant on the view as well therefore the view vector

needs to be factored into the lighting equation for the specular term.

 We also need to calculate the reflection vector of L (the light vector) which gives

the light vector reflected off the surface normal.

 PerpNL = L – (N.L)N therefore R = L – 2 perpNL = 2 (N.L)N - L

a a

N

R

L

L – (N.L)N

Surface ..

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

40CGSG – Illumination

Phong Lighting

 As the view and the reflected light vector become more perpendicular,

the highlight becomes brighter. You can check this our on the
whiteboard!!

 As always we use the dot product to determine the angle between

these two vectors.

 This dot product is usually raised to a power to simulate surface
roughness.

 Specular = power(dot(V, R), 8)

 Note that if the diffuse value is 0 then we don’t need to calculate the

specular component.

 Final color = diffuse component + specular component

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

41CGSG – Illumination

Phong Lighting Shader - HLSL

 float4x4 worldView : WorldView;

 float4x4 worldViewProj : WorldViewProjection;

 float4 lightPos;

 float4 eyePos;

 struct Vs_Input

 {

float3 vertexPos : POSITION;

float3 norm : NORMAL;

float2 tex0 : TEXCOORD0;

 };

 struct Vs_Output

 {

 float4 vertexPos : POSITION;

 float3 norm : TEXCOORD0;

 float3 lightVec : TEXCOORD1;

 float3 viewVec : TEXCOORD2;

 };

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

42CGSG – Illumination

Phong Lighting Shader - HLSL

 struct Ps_Output

 {

float4 color : COLOR;

 };

 Vs_Output VertexShaderEffect(Vs_Input IN)

 {

Vs_Output vs_out;

float4 Pos = mul(worldView, float4(IN.vertexPos, 1));

vs_out.vertexPos = mul(worldViewProj, float4(IN.vertexPos, 1));

vs_out.norm = mul(worldView, IN.norm);

vs_out.lightVec = lightPos.xyz - Pos.xyz;

vs_out.viewVec = eyePos.xyz - Pos.xyz;

return vs_out;

 }

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

43CGSG – Illumination

Phong Lighting Shader - HLSL

 Ps_Output PixelShaderEffect(Vs_Output IN)

 {

Ps_Output ps_out;

float3 normal = normalize(IN.norm);

float3 lightVec = normalize(IN.lightVec);

float3 viewVec = normalize(IN.viewVec);

float diffuse = saturate(dot(normal, lightVec));

float3 r = normalize(2 * diffuse * normal - lightVec);

float specular = pow(saturate(dot(r, viewVec)), 8);

float4 white = float4(1, 1, 1, 1);

ps_out.color = white * diffuse + white * specular;

return ps_out;

 }

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

44CGSG – Illumination

Blinn - Phong Lighting

 The Blinn-Phong lighting model proposed by Jim Blinn, removes the

expensive (not that much on today’s hardware) vector reflection
calculation.

 Instead, in this lighting model (for specular highlights) Blinn uses the

half-vector between the light and view directions.

 This is then used in the dot product instead of the reflection vector.

 Half Vector = normalise(lightVec + viewVec)

 Specular = pow(saturate(dot(normal, halfVector)), 50);

 Not as good (and perceptually accurate) as Phong but much less

expensive to compute. Differences as still hard to notice (for eg during

a game)

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

45CGSG – Illumination

Point Light Shader (properties)

 Float4x4 World;

 Float 4x4 View;

 Float 4x4 Projection;

 Float3 AmbientLightColor = float3(.15, .15, .15);

 Float3 DiffuseColor = float3(.85, .85, .85);

 Float3 LightPosition = float3(0, 0, 0);

 Float LightColor = float3(1, 1, 1);

 Float LightAttenuation = 5000;

 Float LightFalloff = 2;

 Texture BasicTexture;

 Sampler BasixTextureSampler = sampler_state {

texture = <BasicTexture>;

 };

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

46CGSG – Illumination

Point Light Shader (structs)

Struct VertexShaderInput

{

float4 Position:POSITION0;

float2 UV:TEXCOORD0;

float3 Normal:NORMAL0;

};

Struct VertexShaderOutput

{

float4 Position:POSITION0;

float UV:TEXCOORD0;

float3 Normal:TEXCOORD1;

float4 WorldPosition:TEXCOORD2;

};

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

47CGSG – Illumination

Point Light (Vertex Shader)

VertexShaderOutput VertexShaderFunction(VertexShaderInput input)

{

VertexShaderOutput output;

Float4 worldPosition = mul(input.Position, World);

Float4 viewPosition = mul(worldPosition, View);

Output.Position = mul(viewPosition, Projection);

Output.WorldPosition = worldPosition;

Output.UV = input.UV;

Output.Normal = mul(input.Normal, World);

Return output;

}

Computer Graphics & Simulation Group Department of Computer Science - University of Malta

48CGSG – Illumination

Point Light (Pixel Shader)

Float4 PixelShaderFunction(VertexShaderOutput output) : Color0

{

Float3 diffuseColor = DiffuseColor;

If (TextureEnabled) diffuseColor *= tex2D(BasicTextureSampler, input.UV).rgb;

Float3 totalLight = float3(0, 0, 0);

Float3 totalLight += AmbientLightColor

Float lightDir = nomralize(LightPosition – input.WorldPosition);

Float diffuse = saturate(dot(normalize(input.Normal), lightDir);

Float d = distance(LightPosition, input.WorldPosition);

Float att = 1 – pow(clamp(d / LightAttenuation, 0, 1), lightFallOff);

totalLight += diffuse * att * LightColor;

Return float4(diffuseColor * totalLight, 1);

}

