
1

Kristian Guillaumier, 2003 90

Windows Resources
• An executable file, may use a number of resources such

as:
– Icons,
– Bitmaps,
– Strings,
– Any other binary data.

• The resources are embedded (linked) in the executable
file.

• The resources are defined using a resource script file.
• The script file is compiled using the Windows resource

compiler tool rc.exe.

Kristian Guillaumier, 2003 91

The Resource Script File

• A resource script file is a text file with the RC
extension.

• For example:
MyIcon ICON my.ico
MyCursor CURSOR my.cur
MyBitmap BITMAP my.bmp

• When the file is compiled, the result is emmitted
to a file with the RES extension that may be
linked to your application.

2

Kristian Guillaumier, 2003 92

Example: Loading an Icon

• When creating a window class we had:
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);

• IDI_APPLICATION is a constant telling Windows
to use the default Windows icon for windows
derived from this class.

• If we want to use an icon specified in a resource
file, we use:
wc.hIcon = LoadIcon(NULL, “MyIcon”);

Kristian Guillaumier, 2003 93

Loading Bitmaps and Cursors
HBITMAP LoadBitmap(HINSTANCE hInstance,

LPCTSTR lpBitmapName);

HCURSOR LoadCursor(HINSTANCE hInstance,
LPCTSTR lpCursorName);

3

Kristian Guillaumier, 2003 94

Creating Menus (Resource File)
#include "Resource.h"

MyMenu MENU
{

POPUP "&File"
{
MENUITEM "&New", IDM_FILENEW
MENUITEM "&Open...", IDM_FILEOPEN
MENUITEM SEPARATOR
MENUITEM "E&xit", IDM_FILEEXIT

}
POPUP "&Help"
{
MENUITEM "&About", IDM_ABOUT

}
}

Kristian Guillaumier, 2003 95

Creating Menus (Resource.h)
• Here we define the constants used by our

resource file:

#define IDM_FILENEW 1000
#define IDM_FILEOPEN 1001
#define IDM_FILEEXIT 1002
#define IDM_ABOUT 1003

• By conventions menu item constants start with
IDM_ (For icons it is IDI_, etc…)

4

Kristian Guillaumier, 2003 96

Using the Menu
• Now, when creating the window class, we specify the

resource name for the menu:

wc.lpszMenuName = “MyMenu”;

• The menu events are handled in the WM_COMMAND
message send to the callback.

• The wParam value of the message will tell us, the ID of
the menu item clicked (i.e. match against the IDM_XXX
constants).

• Actually the LoWord of wParam tells us the ID, by the
HiWord is zero if the message comes from a menu.

Kristian Guillaumier, 2003 97

Using Accelerators (1)
• An accelerator table must be defined in the resource file. Like:

MyAccelTable ACCELERATORS
BEGIN

“^C", IDDCLEAR ; control C
“K”, IDDCLEAR ; shift k
"k", IDDELLIPSE, ALT ; alt k
98, IDDRECT, ASCII ; b
66, IDDSTAR, ASCII ; B (shift b)
"g", IDDRECT ; g
"G", IDDSTAR ; G (shift G)
VK_F1, IDDCLEAR, VIRTKEY ; F1
VK_F1, IDDSTAR, CONTROL, VIRTKEY ; control F1
VK_F1, IDDELLIPSE, SHIFT, VIRTKEY ; shift F1
VK_F1, IDDRECT, ALT, VIRTKEY ; alt F1
VK_F2, IDDCLEAR, ALT, SHIFT, VIRTKEY ; alt shift F2
VK_F2, IDDSTAR, CONTROL, SHIFT, VIRTKEY ; ctrl shift F2

END

5

Kristian Guillaumier, 2003 98

Using Accelerators (2)
• To load the accelerator table from the resource file, use:

HACCEL LoadAccelerators(HINSTANCE hInstance,
LPCTSTR lpTableName);

• The normal window message loop was:

while(GetMessage(&Msg, NULL, 0, 0) > 0)
{
TranslateMessage(&Msg);
DispatchMessage(&Msg);

}

Kristian Guillaumier, 2003 99

Using Accelerators (3)
• To handle accelerators, it must be modified to:

while(GetMessage(&Msg, NULL, 0, 0) > 0)
{

if (TranslateAccelerator(hWnd, hAccel, Msg) == 0)
{
TranslateMessage(&Msg);
DispatchMessage(&Msg);

}
}

• In other words, the normal Translate/DispatchMessage
calls must not be mage if a accelerator was translated
(see TranslateAccelerator on MSDN).

6

Kristian Guillaumier, 2003 100

Using Accelerators (4)
• Again, the fact that an accelerator was pressed, is

detected in the WM_COMMAND part of the callback.
• As usual, the LoWord of wParam will tell us the ID of the

accelerator pressed, and the HiWord will be 1 so we can
distinguish it from a menu item click.

• Note:
– This means that the constant used to identify a menu and the

constant to identify an accelerator may be the same. We can
have a menu item “Save” and the combination “CTRL+S”
handled by the same piece of code!

Kristian Guillaumier, 2003 101

Dialogs
• Another resource can be a windows dialog.
• It is likely that you will use the dialog editor to

create the dialogs rather than write the script
manually.

• To create the dialog in your application you will
call the CreateDialog API call.

• This function
– Returns the hWnd of the dialog window.
– You also specify (apart from others) the pointer to the

callback function of the dialog.

7

Kristian Guillaumier, 2003 102

The Dialog Editor

Kristian Guillaumier, 2003 103

The Dialog Callback

• The prototype of the dialog callback is the same
as the prototype of a “normal” windows callback.

• The messages are different.
• For example, when the dialog is created, we use

the WM_INITDIALOG message rather than
WM_CREATE.

• You should check out the MSDN entry for
CreateDialog for more details.

8

Kristian Guillaumier, 2003 104

What is COM?
• COM – Component Object Model.
• Platform Independent.
• Object Oriented.
• Binary Component Format.
• COM is a STANDARD specifying how objects

are accessed and how they interact with other
objects.

• The only requirements for a language to support
com is the ability to create and manipulate
pointers and calling functions through pointers.

Kristian Guillaumier, 2003 105

More COM

• A software component is made up of:
– Object Data (Variables/Properties).
– Data manipulated by a number of functions.

• The set (list) of functions is called the interface.
• These functions are implemented as methods.
• COM specifies that the only way to call a

function is through a pointer to the interface.
• In COM there are a number of interfaces that

must be implemented by all components.

9

Kristian Guillaumier, 2003 106

Interfaces
• An interface is usually thought of as a contract

specifying a group of related function prototypes:
– Their name, return types and arguments.

• No implementation is associated with an
interface.

• For example if we have an IQueue interface (by
convention interface names start with the letter I)
that defines the functions:
– Enqueue
– Dequeue

Kristian Guillaumier, 2003 107

Accessing the Component

• An instance of an interface is a pointer to an
array of function pointers.

• Each interface is assigned a Globally Unique
Identifier (GUID).

• Note that one object may have multiple
interfaces.

• COM interfaces are immutable – you cannot
change the interface once it is assigned a GUID.

10

Kristian Guillaumier, 2003 108

Registering COM Components
• The Windows Registry is a global system database for

the OS.
• When a component is registered the GUID and the

actual COM EXE or DLL are saved in the registry.
• Whenever we need to access a component (which we

identify by the GUID), the registry is consulted to resolve
the GUID into the COM EXE or DLL required.

• The component will be loaded in-process or out-of-
process as required.

Kristian Guillaumier, 2003 109

COM Clients and Servers

• A COM Client is the actual software that gets
the interface pointer to an object and calls the
methods.

• A COM Server where the interface
implementations actually exist. The client gets a
pointer to the interface to call the functions.

• There are 2 types of servers:
– In-process: Implemented as DLLs.
– Out-of-process: Implemented as EXEs. The process

can be run on a different machine.

