
1

Kristian Guillaumier, 2003 38

Dynamic Link Libraries
• You can think of a DLL as a module containing a set of

autonomous functions.
• Each process has and address space (portion of

memory allocated to it).
• For functions in a DLL to be used in a program

(process), the contents of the DLL must be loaded in the
caller’s address space:
– Load time linking.
– Run-time linking.

• When linked in the address space of the process, all DLL
global variables and functions become part of the
process code (a global variable in a DLL is global to the
calling process). HeapCreate, HeapAlloc, HeapFree
example.

Kristian Guillaumier, 2003 39

Implicit Linking
• When a program is compiled you specify a LIB file to the

linker (or it is automatically done for you).
• The LIB file contains a list of functions in the DLL.
• The linker will then embed information in the EXE to

indicate the names of the DLLs required by your
program.

• When Windows loads the EXE file, it will search for the
DLLs required. Windows looks for DLLs in order:
– The folder where the EXE lives.
– The current directory of the process.
– The windows system or system32 folder.
– The windows folder.
– The folders listed in your PATH environment variable.

2

Kristian Guillaumier, 2003 40

Explicit Linking

• A process can explicitly link to a DLL using the
LoadLibrary(dll_file_name) API call.

• This function locate the DLL, map it into the
process address space and return the virtual
memory address where the DLL was mapped
(HINST).

• See LoadLibraryEx for a variation of the above.

Kristian Guillaumier, 2003 41

Usage Counts
• When your process loads a DLL for the first time, it

actually loads it and sets its usage count by 1.
• If your process loads a DLL for the second time, it is

NOT reloaded but the usage count is incremented again.
• A FreeLibrary call decrements this usage count. When

the usage count reaches 0 it is unmapped from the
process space.

• DLL usage counts are maintained on a per-process
basis.

3

Kristian Guillaumier, 2003 42

DLL Entry Points

• Just like an application has a main function, a
DLL has it’s equivalent. It is called DLLMain.

• In C:
BOOL WINAPI DllMain(HINSTANCE hInst, DWORD dReason, DWORD

dReserved)

{

}

• In PB:
FUCNTION DLLMAIN(BYVAL hInstance&, BYVAL Reason&, _

BYVAL Reserved&) _
EXPORT AS LONG

Kristian Guillaumier, 2003 43

Anatomy of DLLMain (1)
FUNCTION DllMain(BYVAL hInstance AS LONG, BYVAL Reason AS LONG, BYVAL Reserved AS LONG)

EXPORT AS LONG

SELECT CASE Reason
CASE %DLL_PROCESS_ATTACH

MSGBOX "%DLL_PROCESS_ATTACH"
DllMain= 1
EXIT FUNCTION

CASE %DLL_PROCESS_DETACH
MSGBOX "%DLL_PROCESS_DETACH"
EXIT FUNCTION

CASE %DLL_THREAD_ATTACH
MSGBOX "%DLL_THREAD_ATTACH"
EXIT FUNCTION

CASE %DLL_THREAD_DETACH
MSGBOX "%DLL_THREAD_DETACH"
EXIT FUNCTION

END SELECT
END FUNCTION

4

Kristian Guillaumier, 2003 44

Anatomy of DLLMain (2)
• The main purpose of the select/switch statement

in DllMain is to provide a place for per-process
or per-thread initialisation or clean up.

• When a DLL is mapped into a process address
space the Reason is DLL_PROCESS_ATTACH.

• When a DLL is unmapped from a process
address space we have DLL_PROCESS_DETACH.

• Note: The TerminateProcess API call, will NOT
call the DllMain function resulting in the detach
block never executing.

Kristian Guillaumier, 2003 45

Anatomy of DLLMain (3)

• When a thread is created in a process, Windows
examines all the mapped DLLs and calls their
DllMain function with a DLL_THREAD_ATTACH
reason. After all the DllMains have been
called, the thread function will execute. This
Reason is not executed if the thread is the
primary thread of the process.

• When a thread terminates, the DllMains of the
mapped DLLs are called with the
DLL_THREAD_DETACH reason.

5

Kristian Guillaumier, 2003 46

Reality Check (1) - Overview

• Creating a DLL in PowerBASIC or C and running
it from Visual Basic.

• Problem:
– Create a DLL with one function called Hello.
– The function takes 1 string argument called name.

The argument is taken by reference (not by value).
– The function returns after changing the value of name

to “Hello “ & name.

Kristian Guillaumier, 2003 47

Reality Check (2) - VB

Private Declare Function Hello Lib "hello.dll" (ByVal Name_ As String) As Long

Private Sub Command1_Click()
Dim a As String
a = Text1.Text & Space(255) ' Alloc enough space to the string.
Hello a

MsgBox Trim(a)
End Sub

Note:
VB requires ByRef

string arguments as
they are universally

understood to be
declared as ByVal.

This is an issue
related to type

conversion.

Be careful.

6

Kristian Guillaumier, 2003 48

Reality Check (3) - PB
#Compile Dll
#Include "win32api.inc"

Function DllMain(ByVal hInstance As Long, _
ByVal Reason As Long, _
ByVal Reserved As Long) _
Export As Long

Select Case Reason
Case %DLL_PROCESS_ATTACH

DllMain = 1
Exit Function

Case %DLL_PROCESS_DETACH
Exit Function

Case %DLL_THREAD_ATTACH
Exit Function

Case %DLL_THREAD_DETACH
Exit Function

End Select

End Function

Function Hello Alias "Hello" (ByRef Name_ As Asciiz) Export As Long
Name_ = "Hello " & Name_
Function = 1

End Function

Kristian Guillaumier, 2003 49

Dynamic Memory
• In general, to dynamically allocate memory under Win32,

you should use:
– HeapCreate
– HeapAlloc
– HeapFree
– HeapDestroy

• Reserves space in the virtual address space of the
process.

• If created in a DLL, the spaces is still in the process.
• Best used when around 3Mb to 4Mb of memory are

required.

7

Kristian Guillaumier, 2003 50

Linked List Example (1)
#Include "win32api.inc"

Type TItem
Value As Long
NextItem As TItem Ptr
PrevItem As TItem Ptr

End Type

Global hHeap As Long
Global Head As TItem Ptr
Global Tail As TItem Ptr

Kristian Guillaumier, 2003 51

Linked List Example (2)
Function PbMain
hHeap = HeapCreate(%NULL, 1000000, 0)

If hHeap = %NULL Then
Print "HeapCreate Failed."
Exit Function

End If

Head = %NULL
Tail = %NULL

Enqueue 1
Enqueue 2
Enqueue 3
Enqueue 4
Dequeue
Enqueue 5
Enqueue 6
Dequeue

PrintAll

HeapDestroy hHeap

WaitKey$
End Function

8

Kristian Guillaumier, 2003 52

Linked List Example (3)
Function Enqueue(ByVal Value As Long) As Long
Local NewItem As TItem Ptr
NewItem = HeapAlloc(hHeap, %NULL, SizeOf(TItem))

If NewItem = %NULL Then
Print "HeapAlloc Failed."
Function = 0
Exit Function

End If

@NewItem.Value = Value
@NewItem.NextItem = %NULL
@NewItem.PrevItem = Tail

If Head = %NULL Then
Print "Enqueuing first item at: ", NewItem
Head = NewItem
Tail = NewItem

Else
Print "Enqueuing item at: ", NewItem
@Tail.NextItem = NewItem
Tail = NewItem

End If

Function = 1
End Function

Kristian Guillaumier, 2003 53

Linked List Example (4)
Function Dequeue As Long
If Tail = %NULL Then

? "List is empty"
Function = 0
Exit Function

End If

Dim Result As Long, Temp As Long
Result = @Tail.Value
Temp = @Tail.PrevItem

Print "Dequeuing item at:", Tail
HeapFree hHeap, %NULL, Tail

Tail = Temp
If Tail = %NULL Then

Head = %NULL
Else

@Tail.NextItem = %NULL
End If

Print "New tail at:", Tail

Function = Result
End Function

9

Kristian Guillaumier, 2003 54

Linked List Example (5)
Sub PrintAll
Print
Print "List Items:"

Dim Current As TItem Ptr
Current = Head

While Current <> %NULL
Print @Current.Value
Current = @Current.NextItem

Wend
End Sub

Kristian Guillaumier, 2003 55

Other Memory Allocation
Techniques
• GlobalAlloc, GlobalFree

– Slower than Heap equivalents. Provided for
compatibility.

• VirtualAlloc, VirtualFree
– Memory in the process virtual address space.

10

Kristian Guillaumier, 2003 56

GDI

• Graphics Device Interface.
• Device Contexts

– You are not allows to ‘touch’ physical video memory.
– A DC is a memory structure associated with a device

(e.g. the screen or printer).
– For screens a DC is associated with the display area

of a window.
– All drawing functions (lince, circles, etc…) are invoked

on a DC.

Kristian Guillaumier, 2003 57

WM_Paint

• WM_Paint is a special message sent to your
callback instructing you that a portion (or all) of a
window (the DC actually) needs to be repainted.
– A hidden portion if the window is made visible.
– Resizing.
– Scrolling.
– Programmatically invalidating a portion of the screen

(e.g. InvalidateRect).
• The default window proc will just paint the basic

window background, border, etc…

11

Kristian Guillaumier, 2003 58

More WM_Paint
• Your program must know (and be able) to draw all it needs on the

screen.
• However, sometimes only a small portion of the screen would

require a repaint (e.g. closing a message box).
• The portion of the window that needs to be repainted is called an

invalid area.

Case WM_PAINT
hDC = BeginPaint(hWnd, PS)
...
EndPaint(hWnd, PS)
Return 0

Kristian Guillaumier, 2003 59

BeginPaint/EndPaint (1)
• BeginPaint is usually the first API call in a WM_Paint

message.
• BeginPaint also populates a tagPAINTSTRUCT structure

with details of the invalid area that needs repainting.
• It returns the device context of the window that needs

repainting.
• A BeginPaint is always accompanied by a call to

EndPaint.
• EndPaint (amongst other things) will tell windows that

the invalid area has been handled.

12

Kristian Guillaumier, 2003 60

BeginPaint/EndPaint (2)
• You should never do this:

Case WM_Paint
Return 0

• This would never validate the area and you program will continue
sending WM_Paints forever.

Case WM_Paint
hDC = BeginPaint(hWnd, PS)
MoveToEx hDC, 10, 10, oldPoint
LineTo hDC, 100, 100
EndPaint hWnd, PS

Kristian Guillaumier, 2003 61

The Paint Structure
• Windows maintains a paint info structure for each

window, populated and passed to you following a call to
BeginPaint.

• The important fields in the structure are:
– BOOL fErase: Tells you whether or not windows has erased the

background (with the default windows background) or whether
you need to handle the background manually.

– RECT rcPaint: The coordinates of the invalud rectangle/area.

• In some cases you can completely ignore the rcPaint
values and just redraw the whole client area. However if
you are concerned about performance you should use it
to avoid unnecessary drawing.

13

Kristian Guillaumier, 2003 62

Drawing Example 1
Function MyProc (ByVal hWnd As Long, ByVal wMsg As Long, _

ByVal wParam As Long, ByVal lParam As Long)
As Long

Dim hDC As Long

Select Case wMsg
Case %WM_LBUTTONDOWN

hDC = GetDC(hWnd)
TextOut hDC, 20, 20, "Hello World!", 12

Case Else
Function = DefWindowProc(hWnd, wMsg, wParam, lParam)

End Select

End Function

Kristian Guillaumier, 2003 63

Drawing Example 1

14

Kristian Guillaumier, 2003 64

Drawing Example 2
Function MyProc (ByVal hWnd As Long, ByVal wMsg As Long, _

ByVal wParam As Long, ByVal lParam As Long) As Long

Dim hDC As Long
Dim PS As PAINTSTRUCT

Select Case wMsg
Case %WM_PAINT
hDC = BeginPaint(hWnd, PS)
TextOut hDC, 20, 20, "Hello World!", 12
EndPaint hWnd, PS

Case Else
Function = DefWindowProc(hWnd, wMsg, wParam, lParam)

End Select

End Function

Kristian Guillaumier, 2003 65

Drawing Example 3
Case %WM_PAINT

hDC = BeginPaint(hWnd, PS)

Dim r As RECT
GetClientRect hWnd, r
r.nLeft = r.nLeft + 10
r.nTop = r.nTop + 10
r.nRight = r.nRight - 10
r.nBottom = r.nBottom - 10

Dim hBrush As Long
hBrush = CreateSolidBrush(RGB(255,0,0))

FillRect hDC, r, hBrush

DeleteObject hBrush

EndPaint hWnd, PS

15

Kristian Guillaumier, 2003 66

Mouse Messages

• Click messages:
– WM_LBUTTONDOWN
– WM_LBUTTONUP
– WM_LBUTTONDBLCLK
– WM_RBUTTONDOWN
– WM_RBUTTONUP
– WM_RBUTTONDBLCLK

• Tracking mouse movement:
– WM_MOUSEMOVE

Kristian Guillaumier, 2003 67

WM_MOUSEMOVE
• You can mask the wParam against these values

to get extra info:
– MK_CONTROL: CTRL key is pressed.
– MK_LBUTTON: Left button is down.
– MK_MBUTTON: Middle button is down.
– MK_RBUTTON: Right button is down.
– MK_SHIFT: Shift key is down.

• The coordinates are in the low and high words of
the lParam:
– X = LoWord(lParam)
– Y = HiWord(lParam)

16

Kristian Guillaumier, 2003 68

Mouse Movement Example
Case %WM_MOUSEMOVE

Dim x As Long, y As Long
Dim NewCaption As Asciiz*64

x = LoWrd(lParam)
y = HiWrd(lParam)

NewCaption = "Mouse at " & _
Str$(x) & "," & Str$(y)

SetWindowText hWnd, NewCaption

Kristian Guillaumier, 2003 69

Mouse Movement Example

17

Kristian Guillaumier, 2003 70

Timers

• You can associate a number of timers with a
window.

• These timers will fire a WM_TIMER message or
call a function each time a number of
milliseconds have elapsed.

• API Calls
– SetTimer
– KillTimer

Kristian Guillaumier, 2003 71

SetTimer/KillTimer
• SetTimer takes the following arguments:

– hWnd: The handle of the window to associate the timer with.
– nIDEvent: A long integer unique to each timer (so you can

distinguish which timer fired).
– uElapse: The elapse time of the timer.
– lpTimerFunc: A pointer the function that will be called then the

timer fires. If this value is NULL, the system will post a
WM_TIMER message to your callback instead.

• KillTimer arguments:
– hWnd: same as above.
– uIDEvent: same as above.

18

Kristian Guillaumier, 2003 72

Timer Example 1
Case %WM_CREATE

SetTimer hWnd, 101, 500, 0
TmrToggle = 0

Case %WM_TIMER

If wParam = 101 Then
If TmrToggle = 0 Then
SetWindowText hWnd, "Tick"

Else
SetWindowText hWnd, "Tock"

End If

TmrToggle = Not TmrToggle
End If

Case %WM_CLOSE
KillTimer hWnd, 101
PostQuitMessage 0

Kristian Guillaumier, 2003 73

Timer Example 1

19

Kristian Guillaumier, 2003 74

Timer Example 2
Function TimerProc (ByVal hWnd As Long, ByVal wMsg As Long, _

ByVal wParam As Long, ByVal lParam As Long) As Long

If TmrToggle = 0 Then
SetWindowText hWnd, "Tick"

Else
SetWindowText hWnd, "Tock"

End If

TmrToggle = Not TmrToggle
End Function

...

Case %WM_CREATE
SetTimer hWnd, 101, 500, CodePtr(TimerProc)
TmrToggle = 0

Case %WM_CLOSE
KillTimer hWnd, 101
PostQuitMessage 0

