
1

Kristian Guillaumier, 2003 1

Windows Programming
CSA2040

Kristian Guillaumier
http://www.cs.um.edu.mt/~kguil

kguil@cs.um.edu.mt

Kristian Guillaumier, 2003 2

Getting Started
• Examples are in C and/or PowerBASIC. It will be trivial

to port from and to different languages.
• All the examples in the “Petzold” book are available

ported to PowerBASIC. You can get them from:
http://www.powerbasic.com/files/pub/pbwin/Petzold.zip

• You can download the Borland C/C++ Compiler Version
5.5 for free from:
http://www.borland.com/products/downloads/download_cbuilder.html

• There is a good WIN32 tutorial at:
http://www.winprog.org/tutorial/ - a number of examples
here are borrowed from this site.

• www.allapi.net is cool.
• msdn.microsoft.com is the definitive resource.

2

Kristian Guillaumier, 2003 3

Recommended Books

• Programming Windows, The Definitive Guide
to the Win32 API by Charles Petzold, 5th
edition, Microsoft Press, ISBN: 157231995X.

• Windows Programming with C++ by Henning
Hansen, Addison Wesley Professional, ISBN:
0201758814.

Kristian Guillaumier, 2003 4

Getting Started
• Programming Windows, requires you to understand the

services offered by the WIN32 Application Programming
Interface (API).

• The API consists of a number of DLLs containing
common Windows functions.
– Kernel32.dll
– GDI32.dll
– User32.dll
– …

• To access the API functions, constant declarations and
types you will need to “wrap” them in your code. In C this
is already available in “windows.h” and in PowerBASIC,
this is available in “WIN32API.INC”.

3

Kristian Guillaumier, 2003 5

WIN32 Hello World
#include <windows.h>

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
MessageBox(NULL, “Hello World!”,

“My Caption”, MB_OK);
return 0;

}

Kristian Guillaumier, 2003 6

What’s Going On? (1)
• windows.h contains the declarations of

functions and constants such as MessageBox,
MB_OK, HINSTANCE and LPSTR.

• WinMain is the equivalent of the main()
functions in C – it is the starting point of a
Windows application:
– hInstance: Handle/pointer to the EXE in memory.
– hPrevInstance: Always NULL – Never used.
– lpCmdLine: Pointer to the command line string.
– nCmdShow: an integer determining whether the

window will be visible/hidden/…

4

Kristian Guillaumier, 2003 7

What’s Going On? (2)
• The hInstance handle is used as the pointer to

the EXE in memory so it is useful to locate
resources such as images and icons in the
program.

• In C, the WINAPI calling convention before the
WinMain function is equivalent to _stdcall. In
some languages such as PB it is not necessary.

• The WIN32 header file defines a number of
types such as LPSTR (this is exactly equivalent
to char*).

Kristian Guillaumier, 2003 8

More Windows

• We will now see how to create a simple window
like:

5

Kristian Guillaumier, 2003 9

General Structure (1)
If the message is:
 A DOUBLE CLICK:
 Do this...
 A CLICK:
 Do this...
 ...

WINMAIN FUNCTION

Create a "Window Class"

Create the window from the
Class

Show it (Optionally)

Loop thru the Message Loop
until the window is closed.

Return and get out!

W
he

n
we

ge
t a

 m
es

sa
ge

,

"d
isp

at
ch

" i
t t

o
th

e

"c
all

ba
ck

" f
un

ct
io

n.

Kristian Guillaumier, 2003 10

The Window Class
• A Window Class is NOT related to Object Oriented

Software.
• In Windows everything is more or less a Window

(including a button, combo box, …). The type of window
is determined by it’s class.

• A Window Class is a special structure (WNDCLASS)
that is populated to specify the general properties of the
window (e.g. it’s icon, background colour, cursor, …).

• One of the most important properties is the definition of
the Callback function (more on this later).

• Once a class has been created it is “Registered”.

6

Kristian Guillaumier, 2003 11

Creating the Window
• Once a class structure has been populated and

registered, a window is created based on it.
• To create the window, the CreateWindow function is

used (There is a variant called CreateWindowEx).
• Some arguments, CreateWindow takes are:

– The class name to base this window on.
– The text in the title bar.
– The type of window (e.g. borderless, tool window, …)
– The x,y coordinate of the top-left corner – in pixels.
– The width and height of the window – in pixels.
– …

Kristian Guillaumier, 2003 12

Showing the Window (1)

• The CreateWindow function returns a
handle/pointer to the window just created. The
window is not yet visible.

• The window will be referred to it using its handle.
• To show the window, the ShowWindow API call

is used. ShowWindow takes 2 arguments:
– The handle of the window to show/hide.
– An integer constant determining whether to show/hide

the window.

7

Kristian Guillaumier, 2003 13

Showing the Window (2)
• The show command can be:

– SW_HIDE - Hides the window and activates another window.
– SW_MAXIMIZE - Maximizes the specified window.
– SW_MINIMIZE - Minimizes the specified window and activates

the next top-level window in the Z order.
– SW_RESTORE - Activates and displays the window. If the

window is minimized or maximized, Windows restores it to its
original size and position. An application should specify this flag
when restoring a minimized window.

– SW_SHOW - Activates the window and displays it in its current
size and position.

– …
• Usually after a call to ShowWindow, another call to

UpdateWindow is made. This call basically makes sure
the window is displayed correctly.

Kristian Guillaumier, 2003 14

The Message Loop (1)
• A windows program has a special “message queue”.
• Whenever something happens to the window a message

is placed in its queue. For example, if the window is
clicked a “click” message is placed on its queue.

• We will use a while loop to retrieve messages from this
queue and send them to the callback function for
processing.

• Each message is defined by an integer constant. For
example the WM_CREATE message is sent to the
window when it is created. It is more-or-less equivalent
to the Form_Load event in Visual Basic.

8

Kristian Guillaumier, 2003 15

The Message Loop (2)
• Each message can be accompanied by some

parameters. For example a mouse move message would
be accompanied by the corresponding x and y mouse
coordinates.

• These parameters are sent together with the message to
the callback function.

• You can have a maximum of 2 parameters. These are
called wParam and lParam. They are both long integers
(signed 32-bit).

• Note that wParam and lParam being long integers may
be pointers to whole data structures.

Kristian Guillaumier, 2003 16

The Real Thing (1)
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,

int nCmdShow)
{

WNDCLASSEX wc;
HWND hwnd;
MSG Msg;

//Step 1: Registering the Window Class
wc.cbSize = sizeof(WNDCLASSEX);
wc.style = 0;
wc.lpfnWndProc = WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wc.lpszMenuName = NULL;
wc.lpszClassName = g_szClassName;
wc.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if(!RegisterClassEx(&wc))
{
MessageBox(NULL, "Window Registration Failed!", "Error!", MB_ICONEXCLAMATION | MB_OK);
return 0;

}

Prepare the Window
Class

Register the Class

Tell the Class which
function will act as the

Callback

9

Kristian Guillaumier, 2003 17

The Real Thing (2)
// Step 2: Creating the Window
hwnd = CreateWindowEx(WS_EX_CLIENTEDGE,

g_szClassName,
"The title of my window",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
240, 120, NULL, NULL,
hInstance, NULL);

if (hwnd == NULL)
{

MessageBox(NULL, "Window Creation Failed!", "Error!",
MB_ICONEXCLAMATION | MB_OK);

return 0;
}
ShowWindow(hwnd, nCmdShow);

UpdateWindow(hwnd);

// Step 3: The Message Loop
while(GetMessage(&Msg, NULL, 0, 0) > 0)
{

TranslateMessage(&Msg);
DispatchMessage(&Msg);

}
return Msg.wParam;

}

Create the Window

Show It

Loop Thru the
Messages the Window

Receives and send
them to the callback

function,

Kristian Guillaumier, 2003 18

The Real Thing (3)
// Step 4: the Window Procedure
LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

switch (msg)
{

case WM_CLOSE:
DestroyWindow(hwnd);

break;
case WM_DESTROY:

PostQuitMessage(0);

break;
default:

return DefWindowProc(hwnd, msg, wParam, lParam);
}

return 0;
}

Select which Message

WE CHOOSE
to Handle

Those we do not
handle ourselves, we’ll

ask Windows to
process!

10

Kristian Guillaumier, 2003 19

Processes (1)
• Sometimes defined as an

instance of a running
program.

• You can check the
processes running on
your machine in Task
Manager:

Kristian Guillaumier, 2003 20

Processes (2)
• In Win32 each process owns a 4-GB address

space.
• IMPORTANT: a process on its own does not

execute anything. For execution a process
requires at least on thread.

• A process without threads is automatically
destroyed.

• When a Win32 process is created, a Primary
Thread is automatically created for you.

• The primary thread can then create others.

11

Kristian Guillaumier, 2003 21

Running Multiple Threads
1. Windows will allocate

timeslices (quantums) of
CPU time for each
thread to execute.

2. Round-Robin scheduling
is used (note that
threads can have
different and changing
priorities).

3. This gives the illusion
that things are executing
concurrently.

CPU

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Kristian Guillaumier, 2003 22

Environment Variables (1)
• Each process is assigned an Environment Block.
• An environment block is simply a portion of allocated

memory (owned by the process), containing strings like:

VarName1=VarValue1\0
VarName2=VarValue2\0
...
VarNameN=VarValueN\0
\0

12

Kristian Guillaumier, 2003 23

Environment Variables (2)
• In special cases, environment variables may be

used to pass special global parameters to an
application.

• In Windows 9X, these variables are set in a
special file called autoexec.bat which is parsed
when Windows is started. In Windows
NT/2000/XP these values can be set from My
Computer Properties.

• Values may be read and written using:
– GetEnvironmentVariable
– SetEnvironmentVariable

Kristian Guillaumier, 2003 24

Current Drive and Directory
• The Current Drive of the Current Directory is the

default path where Windows looks for files when you try
to access them without supplying a fully qualified
filename.

• For example if you call the CreateFile API call to create
a file, if you do not specify the full path, the file will be
created in the current directory.

• The current drive/directory is maintained on a per
process basis. So all threads in the process will use the
same values.

• You can obtain or change the current directories using
the following API calls:
– GetCurrentDirectory
– SetCurrentDirectory

13

Kristian Guillaumier, 2003 25

Creating Processes (1)
• A process is created when your application is started.
• Note that WinMain isn’t really called by the operating

system. Instead, it is “expanded” by the compiler.
• Processes are created using the CreateProcess API call

(see msdn.microsoft.com for details regarding the
function parameters)

• Then the function is called, a process is not actually
created. Instead,
– A small data structure is initialised containing statistical info

regarding the process.
– 4-GB of virtual address space is created.
– The code and data for the process and associated DLLs are

loaded in the address space.

Kristian Guillaumier, 2003 26

Creating Processes (2)

• Next, a thread is created for the process. This
will be the primary thread.

• This thread will eventually run your WinMain
function.

• A process can terminate in the following ways:
– A thread calls the ExitProcess API call.
– A thread in another process calles

TerminateProcess (not very nice).
– All threads in the process complete.

14

Kristian Guillaumier, 2003 27

Process Termination (1)
• A process will terminate when a thread in the process

calls ExitProcess.
• ExitProcess is usually automatically called by the

primary thread immediately after your WinMain function
has completed.

• A separate process can terminate another one by calling
TerminateProcess.

• Except in special cases this is discouraged because:
– When a process terminates properly, all attached DLLs are

notified.
– Using TerminateProcess, this does not happen.

Kristian Guillaumier, 2003 28

Threads
• Threads must “live” within the context of a process.
• A thread is basically a unit of execution within a

process.
• Example: Background printing in Word for Windows.
• On a single processor, threads give the illusion that

things are happening concurrently.
• Although threads are “cool” and very useful, there

are a number of problems associated with them.

15

Kristian Guillaumier, 2003 29

Thread Issues (1)

• Consider the following scenario:
– A user clicks the print button on a Word Processor.
– The print thread started executing – repaginating,

rendering the page, sending to printer, etc…
– The user can start editing the document when the

above is happening.
– Global Variables:

Kristian Guillaumier, 2003 30

Thread Issues (2)
Global Counter As Long

Function Calc

... {b is 16, x is 1}

Counter = Sqrt(b)

Counter = Counter + x*2

Return Counter

End Function

Function Calc

... {b is 4, x is 3}

Counter = Sqrt(b)

Counter = Counter + x*2

Return Counter

End Function

Co
nt

ex
t S

wi
tch

16

Kristian Guillaumier, 2003 31

Thread Properties
• Each thread has it’s own stack for local variables, etc…
• This stack is allocated from the address space of the

main process.
• Static and global variables are shared by all threads in

the process.
• Each thread has it’s set of CPU registers. A special

Context structure holds the state of these registers
when the thread was last executing.

• This structure is probably the only CPU-specific structure
in the API.

Kristian Guillaumier, 2003 32

Thread Termination

• A thread can terminate in 3 ways:
– The thread calls the ExitThread API call to terminate

itself.
– Another thread within the same process calls

TerminateThread (passing the handle to the thread to
terminate) – Webserver monitor thread example.

– The process “owning” all the threads exits.

17

Kristian Guillaumier, 2003 33

Thread Scheduling (1)
• A preemptive operating system must have some defined

algorithm for determining when a thread runs and for how
long.

• Each thread has a priority ranging from 0 to 31. A thread with
priority zero is a special thread used for “memory cleanup”.
One system thread has this priority level and no other thread
can be assigned this priority.

• The scheduler assigns each priority 31 thread to a CPU to
execute.

• Once all priority 31 threads are given a timeslice, another
timeslice to each of the priority 31 threads is given.

• This continues until there are no remaining priority 31 threads.
Then all priority 30 threads are processed in the same way…
and so on.

Kristian Guillaumier, 2003 34

Thread Scheduling (2)

• Using this technique low priority threads may
suffer from a condition known as Starvation.

• Also, if a priority 5 thread is running and there is
a thread with a higher priority waiting to be
serviced, the priority 5 thread is immediately
suspended for the system to service the higher
priority one (even if it is in the middle of a
timeslice).

18

Kristian Guillaumier, 2003 35

Assigning Priorities (1)
• When a process is created, it is assigned one of 4

priority levels:
– Idle: Level 4
– Normal: Level 8
– High: Level 13
– Real time: Level 24

• Any thread created in the process will be given that
priority as a default.

• The Normal priority level is the one most commonly
used.

• The normal priority class is special – it can be “boosted”
depending on whether it is a foreground window or not.

Kristian Guillaumier, 2003 36

Assigning Priorities (2)
• In Windows NT a “boosted” priority is given a bigger

timeslice.
• In Windows 9X a “boosted” priority increases the thread

priority value by 1 – A “boosted” normal thread has a
priority of 8+1=9.

• Real time priority should almost never be used. Even the
processes/threads handling the CTRL+ALT+DEL
buttons, background disk flushing, mouse and keyboard
get a lower priority. This may cause system instability.

• Process “base” priorities can be changed at runtime
using the (Get/Set)PriorityClass API functions.

19

Kristian Guillaumier, 2003 37

Assigning Priorities (3)
• When a thread is created, it is given the priority of the

process (base priority).
• You can change the thread’s priority relative to the base

priority using the SetThreadPriority API call.
– Lowest = Base - 2
– Below Normal = Base - 1
– Normal = Base
– Above Normal = Base + 1
– Highest = Base + 2
– Critical = 15, except if the process is real time. Then the priority

becomes 31.

Kristian Guillaumier, 2003 38

Dynamic Link Libraries
• You can think of a DLL as a module containing a set of

autonomous functions.
• Each process has and address space (portion of

memory allocated to it).
• For functions in a DLL to be used in a program

(process), the contents of the DLL must be loaded in the
caller’s address space:
– Load time linking.
– Run-time linking.

• When linked in the address space of the process, all DLL
global variables and functions become part of the
process code (a global variable in a DLL is global to the
calling process). HeapCreate, HeapAlloc, HeapFree
example.

20

Kristian Guillaumier, 2003 39

Implicit Linking
• When a program is compiled you specify a LIB file to the

linker (or it is automatically done for you).
• The LIB file contains a list of functions in the DLL.
• The linker will then embed information in the EXE to

indicate the names of the DLLs required by your
program.

• When Windows loads the EXE file, it will search for the
DLLs required. Windows looks for DLLs in order:
– The folder where the EXE lives.
– The current directory of the process.
– The windows system or system32 folder.
– The windows folder.
– The folders listed in your PATH environment variable.

Kristian Guillaumier, 2003 40

Explicit Linking

• A process can explicitly link to a DLL using the
LoadLibrary(dll_file_name) API call.

• This function locate the DLL, map it into the
process address space and return the virtual
memory address where the DLL was mapped
(HINST).

• See LoadLibraryEx for a variation of the above.

21

Kristian Guillaumier, 2003 41

Usage Counts
• When your process loads a DLL for the first time, it

actually loads it and sets its usage count by 1.
• If your process loads a DLL for the second time, it is

NOT reloaded but the usage count is incremented again.
• A FreeLibrary call decrements this usage count. When

the usage count reaches 0 it is unmapped from the
process space.

• DLL usage counts are maintained on a per-process
basis.

Kristian Guillaumier, 2003 42

DLL Entry Points

• Just like an application has a main function, a
DLL has it’s equivalent. It is called DLLMain.

• In C:
BOOL WINAPI DllMain(HINSTANCE hInst, DWORD dReason, DWORD

dReserved)

{

}

• In PB:
FUCNTION DLLMAIN(BYVAL hInstance&, BYVAL Reason&, _

BYVAL Reserved&) _
EXPORT AS LONG

22

Kristian Guillaumier, 2003 43

Anatomy of DLLMain (1)
FUNCTION DllMain(BYVAL hInstance AS LONG, BYVAL Reason AS LONG, BYVAL Reserved AS LONG)

EXPORT AS LONG

SELECT CASE Reason
CASE %DLL_PROCESS_ATTACH

MSGBOX "%DLL_PROCESS_ATTACH"
DllMain= 1
EXIT FUNCTION

CASE %DLL_PROCESS_DETACH
MSGBOX "%DLL_PROCESS_DETACH"
EXIT FUNCTION

CASE %DLL_THREAD_ATTACH
MSGBOX "%DLL_THREAD_ATTACH"
EXIT FUNCTION

CASE %DLL_THREAD_DETACH
MSGBOX "%DLL_THREAD_DETACH"
EXIT FUNCTION

END SELECT
END FUNCTION

Kristian Guillaumier, 2003 44

Anatomy of DLLMain (2)
• The main purpose of the select/switch statement

in DllMain is to provide a place for per-process
or per-thread initialisation or clean up.

• When a DLL is mapped into a process address
space the Reason is DLL_PROCESS_ATTACH.

• When a DLL is unmapped from a process
address space we have DLL_PROCESS_DETACH.

• Note: The TerminateProcess API call, will NOT
call the DllMain function resulting in the detach
block never executing.

23

Kristian Guillaumier, 2003 45

Anatomy of DLLMain (3)

• When a thread is created in a process, Windows
examines all the mapped DLLs and calls their
DllMain function with a DLL_THREAD_ATTACH
reason. After all the DllMains have been
called, the thread function will execute. This
Reason is not executed if the thread is the
primary thread of the process.

• When a thread terminates, the DllMains of the
mapped DLLs are called with the
DLL_THREAD_DETACH reason.

Kristian Guillaumier, 2003 46

Reality Check (1) - Overview

• Creating a DLL in PowerBASIC or C and running
it from Visual Basic.

• Problem:
– Create a DLL with one function called Hello.
– The function takes 1 string argument called name.

The argument is taken by reference (not by value).
– The function returns after changing the value of name

to “Hello “ & name.

24

Kristian Guillaumier, 2003 47

Reality Check (2) - VB

Private Declare Function Hello Lib "hello.dll" (ByVal Name_ As String) As Long

Private Sub Command1_Click()
Dim a As String
a = Text1.Text & Space(255) ' Alloc enough space to the string.
Hello a

MsgBox Trim(a)
End Sub

Note:
VB requires ByRef

string arguments as
they are universally

understood to be
declared as ByVal.

This is an issue
related to type

conversion.

Be careful.

Kristian Guillaumier, 2003 48

Reality Check (3) - PB
#Compile Dll
#Include "win32api.inc"

Function DllMain(ByVal hInstance As Long, _
ByVal Reason As Long, _
ByVal Reserved As Long) _
Export As Long

Select Case Reason
Case %DLL_PROCESS_ATTACH

DllMain = 1
Exit Function

Case %DLL_PROCESS_DETACH
Exit Function

Case %DLL_THREAD_ATTACH
Exit Function

Case %DLL_THREAD_DETACH
Exit Function

End Select

End Function

Function Hello Alias "Hello" (ByRef Name_ As Asciiz) Export As Long
Name_ = "Hello " & Name_
Function = 1

End Function

25

Kristian Guillaumier, 2003 49

Dynamic Memory
• In general, to dynamically allocate memory under Win32,

you should use:
– HeapCreate
– HeapAlloc
– HeapFree
– HeapDestroy

• Reserves space in the virtual address space of the
process.

• If created in a DLL, the spaces is still in the process.
• Best used when around 3Mb to 4Mb of memory are

required.

Kristian Guillaumier, 2003 50

Linked List Example (1)
#Include "win32api.inc"

Type TItem
Value As Long
NextItem As TItem Ptr
PrevItem As TItem Ptr

End Type

Global hHeap As Long
Global Head As TItem Ptr
Global Tail As TItem Ptr

26

Kristian Guillaumier, 2003 51

Linked List Example (2)
Function PbMain
hHeap = HeapCreate(%NULL, 1000000, 0)

If hHeap = %NULL Then
Print "HeapCreate Failed."
Exit Function

End If

Head = %NULL
Tail = %NULL

Enqueue 1
Enqueue 2
Enqueue 3
Enqueue 4
Dequeue
Enqueue 5
Enqueue 6
Dequeue

PrintAll

HeapDestroy hHeap

WaitKey$
End Function

Kristian Guillaumier, 2003 52

Linked List Example (3)
Function Enqueue(ByVal Value As Long) As Long
Local NewItem As TItem Ptr
NewItem = HeapAlloc(hHeap, %NULL, SizeOf(TItem))

If NewItem = %NULL Then
Print "HeapAlloc Failed."
Function = 0
Exit Function

End If

@NewItem.Value = Value
@NewItem.NextItem = %NULL
@NewItem.PrevItem = Tail

If Head = %NULL Then
Print "Enqueuing first item at: ", NewItem
Head = NewItem
Tail = NewItem

Else
Print "Enqueuing item at: ", NewItem
@Tail.NextItem = NewItem
Tail = NewItem

End If

Function = 1
End Function

27

Kristian Guillaumier, 2003 53

Linked List Example (4)
Function Dequeue As Long
If Tail = %NULL Then

? "List is empty"
Function = 0
Exit Function

End If

Dim Result As Long, Temp As Long
Result = @Tail.Value
Temp = @Tail.PrevItem

Print "Dequeuing item at:", Tail
HeapFree hHeap, %NULL, Tail

Tail = Temp
If Tail = %NULL Then

Head = %NULL
Else

@Tail.NextItem = %NULL
End If

Print "New tail at:", Tail

Function = Result
End Function

Kristian Guillaumier, 2003 54

Linked List Example (5)
Sub PrintAll
Print
Print "List Items:"

Dim Current As TItem Ptr
Current = Head

While Current <> %NULL
Print @Current.Value
Current = @Current.NextItem

Wend
End Sub

28

Kristian Guillaumier, 2003 55

Other Memory Allocation
Techniques
• GlobalAlloc, GlobalFree

– Slower than Heap equivalents. Provided for
compatibility.

• VirtualAlloc, VirtualFree
– Memory in the process virtual address space.

Kristian Guillaumier, 2003 56

GDI

• Graphics Device Interface.
• Device Contexts

– You are not allows to ‘touch’ physical video memory.
– A DC is a memory structure associated with a device

(e.g. the screen or printer).
– For screens a DC is associated with the display area

of a window.
– All drawing functions (lince, circles, etc…) are invoked

on a DC.

29

Kristian Guillaumier, 2003 57

WM_Paint

• WM_Paint is a special message sent to your
callback instructing you that a portion (or all) of a
window (the DC actually) needs to be repainted.
– A hidden portion if the window is made visible.
– Resizing.
– Scrolling.
– Programmatically invalidating a portion of the screen

(e.g. InvalidateRect).
• The default window proc will just paint the basic

window background, border, etc…

Kristian Guillaumier, 2003 58

More WM_Paint
• Your program must know (and be able) to draw all it needs on the

screen.
• However, sometimes only a small portion of the screen would

require a repaint (e.g. closing a message box).
• The portion of the window that needs to be repainted is called an

invalid area.

Case WM_PAINT
hDC = BeginPaint(hWnd, PS)
...
EndPaint(hWnd, PS)
Return 0

30

Kristian Guillaumier, 2003 59

BeginPaint/EndPaint (1)
• BeginPaint is usually the first API call in a WM_Paint

message.
• BeginPaint also populates a tagPAINTSTRUCT structure

with details of the invalid area that needs repainting.
• It returns the device context of the window that needs

repainting.
• A BeginPaint is always accompanied by a call to

EndPaint.
• EndPaint (amongst other things) will tell windows that

the invalid area has been handled.

Kristian Guillaumier, 2003 60

BeginPaint/EndPaint (2)
• You should never do this:

Case WM_Paint
Return 0

• This would never validate the area and you program will continue
sending WM_Paints forever.

Case WM_Paint
hDC = BeginPaint(hWnd, PS)
MoveToEx hDC, 10, 10, oldPoint
LineTo hDC, 100, 100
EndPaint hWnd, PS

31

Kristian Guillaumier, 2003 61

The Paint Structure
• Windows maintains a paint info structure for each

window, populated and passed to you following a call to
BeginPaint.

• The important fields in the structure are:
– BOOL fErase: Tells you whether or not windows has erased the

background (with the default windows background) or whether
you need to handle the background manually.

– RECT rcPaint: The coordinates of the invalud rectangle/area.

• In some cases you can completely ignore the rcPaint
values and just redraw the whole client area. However if
you are concerned about performance you should use it
to avoid unnecessary drawing.

Kristian Guillaumier, 2003 62

Drawing Example 1
Function MyProc (ByVal hWnd As Long, ByVal wMsg As Long, _

ByVal wParam As Long, ByVal lParam As Long)
As Long

Dim hDC As Long

Select Case wMsg
Case %WM_LBUTTONDOWN

hDC = GetDC(hWnd)
TextOut hDC, 20, 20, "Hello World!", 12

Case Else
Function = DefWindowProc(hWnd, wMsg, wParam, lParam)

End Select

End Function

32

Kristian Guillaumier, 2003 63

Drawing Example 1

Kristian Guillaumier, 2003 64

Drawing Example 2
Function MyProc (ByVal hWnd As Long, ByVal wMsg As Long, _

ByVal wParam As Long, ByVal lParam As Long) As Long

Dim hDC As Long
Dim PS As PAINTSTRUCT

Select Case wMsg
Case %WM_PAINT
hDC = BeginPaint(hWnd, PS)
TextOut hDC, 20, 20, "Hello World!", 12
EndPaint hWnd, PS

Case Else
Function = DefWindowProc(hWnd, wMsg, wParam, lParam)

End Select

End Function

33

Kristian Guillaumier, 2003 65

Drawing Example 3
Case %WM_PAINT

hDC = BeginPaint(hWnd, PS)

Dim r As RECT
GetClientRect hWnd, r
r.nLeft = r.nLeft + 10
r.nTop = r.nTop + 10
r.nRight = r.nRight - 10
r.nBottom = r.nBottom - 10

Dim hBrush As Long
hBrush = CreateSolidBrush(RGB(255,0,0))

FillRect hDC, r, hBrush

DeleteObject hBrush

EndPaint hWnd, PS

Kristian Guillaumier, 2003 66

Mouse Messages

• Click messages:
– WM_LBUTTONDOWN
– WM_LBUTTONUP
– WM_LBUTTONDBLCLK
– WM_RBUTTONDOWN
– WM_RBUTTONUP
– WM_RBUTTONDBLCLK

• Tracking mouse movement:
– WM_MOUSEMOVE

34

Kristian Guillaumier, 2003 67

WM_MOUSEMOVE
• You can mask the wParam against these values

to get extra info:
– MK_CONTROL: CTRL key is pressed.
– MK_LBUTTON: Left button is down.
– MK_MBUTTON: Middle button is down.
– MK_RBUTTON: Right button is down.
– MK_SHIFT: Shift key is down.

• The coordinates are in the low and high words of
the lParam:
– X = LoWord(lParam)
– Y = HiWord(lParam)

Kristian Guillaumier, 2003 68

Mouse Movement Example
Case %WM_MOUSEMOVE

Dim x As Long, y As Long
Dim NewCaption As Asciiz*64

x = LoWrd(lParam)
y = HiWrd(lParam)

NewCaption = "Mouse at " & _
Str$(x) & "," & Str$(y)

SetWindowText hWnd, NewCaption

35

Kristian Guillaumier, 2003 69

Mouse Movement Example

Kristian Guillaumier, 2003 70

Timers

• You can associate a number of timers with a
window.

• These timers will fire a WM_TIMER message or
call a function each time a number of
milliseconds have elapsed.

• API Calls
– SetTimer
– KillTimer

36

Kristian Guillaumier, 2003 71

SetTimer/KillTimer
• SetTimer takes the following arguments:

– hWnd: The handle of the window to associate the timer with.
– nIDEvent: A long integer unique to each timer (so you can

distinguish which timer fired).
– uElapse: The elapse time of the timer.
– lpTimerFunc: A pointer the function that will be called then the

timer fires. If this value is NULL, the system will post a
WM_TIMER message to your callback instead.

• KillTimer arguments:
– hWnd: same as above.
– uIDEvent: same as above.

Kristian Guillaumier, 2003 72

Timer Example 1
Case %WM_CREATE

SetTimer hWnd, 101, 500, 0
TmrToggle = 0

Case %WM_TIMER

If wParam = 101 Then
If TmrToggle = 0 Then
SetWindowText hWnd, "Tick"

Else
SetWindowText hWnd, "Tock"

End If

TmrToggle = Not TmrToggle
End If

Case %WM_CLOSE
KillTimer hWnd, 101
PostQuitMessage 0

37

Kristian Guillaumier, 2003 73

Timer Example 1

Kristian Guillaumier, 2003 74

Timer Example 2
Function TimerProc (ByVal hWnd As Long, ByVal wMsg As Long, _

ByVal wParam As Long, ByVal lParam As Long) As Long

If TmrToggle = 0 Then
SetWindowText hWnd, "Tick"

Else
SetWindowText hWnd, "Tock"

End If

TmrToggle = Not TmrToggle
End Function

...

Case %WM_CREATE
SetTimer hWnd, 101, 500, CodePtr(TimerProc)
TmrToggle = 0

Case %WM_CLOSE
KillTimer hWnd, 101
PostQuitMessage 0

38

Kristian Guillaumier, 2003 75

Notes on Winsock (1)
• An API used for TCP/IP to communicate with Windows applications.
• winsock.dll, wsock32.dll

Application using Winsock

winsock.dll/wsock32.dll

TCP/IP

Modem

Network

Kristian Guillaumier, 2003 76

Notes on Winsock (2)
• A socket is a network connection between two

computers.
• To create a socket, you will need:

– The IP address of the computer you are connecting to.
– The Port you want to connect to.

• You can check out:
– http://world.std.com/~jimf/papers/sockets/winsock.html
– http://www.district86.k12.il.us/central/activities/computerclub/Tutorials/W

insock/Index.htm

39

Kristian Guillaumier, 2003 77

Font Lingo (1)

• Type face: a font design.
• Type family: a group of fonts belonging to the

same type face but include italics, bold, etc…
variants.

• Serif:
• Sans-Serif:

Kristian Guillaumier, 2003 78

Font Lingo (2)
• Fixed-width font (mono spaced):

courier new
wwwwwww
iiiiiii

• Proportional-width font:
times new roman
wwwwwww
iiiiiii

• Point – a unit to measure the size of a font. a point is approximately
1/72 th of an inch.

• Point size – the height of a font measured in points.
• Weight – the darkness of a font (how bold it is).

40

Kristian Guillaumier, 2003 79

Font Families in Windows

No font family info is known or does not matter when creating
the font.

Dontcare

Looks like handwriting. E.g. Script.Script

Proportional font without serifs. E.g. Arial.Swiss

Proportional font with serifs. E.g. Times New Roman.Roman

Mono spaced with or without serifs. E.g. Courier New.Modern

Novelty fonts. E.g. Old English.Decorative

Kristian Guillaumier, 2003 80

Font Technologies
• Raster: Bitmapped fonts, designed for a specific

resolution of a device.
• Vector: Uses scalable lines and curves. This

makes them resolution independent.
• TrueType: Similar to Vector fonts but optimised

for fast drawing speed.
• OpenType: Similar to TrueType but shape

definitions may contain PostScript data too.

41

Kristian Guillaumier, 2003 81

Character Sets
• Each font has a specific character set.
• A character set defines which shapes/printable

characters (letters, punctuation, symbols, etc…)
are defined in the font.

• Each character is identified by a number.
• Most character sets are supersets of ASCII

(retaining the meanings for the fonts numbered
from 32 to 127).

Kristian Guillaumier, 2003 82

Common Character Sets (1)
• The Windows character set – very similar to the ASCII

set from 32 up to 255. The first character is conveniently
the space/blank.

• The above character sets uses 1 byte to represent a
character (i.e. 2^8=255 chars). This is enough for most
western languages including diacriticals. Eastern
languages are not catered for so the Unicode standard
was adopted that uses 16 bits to identify a character.

42

Kristian Guillaumier, 2003 83

Common Character Sets (2)
• The OEM character set is the font used in full

screen text mode/console applications.
Characters 32 to 255 are similar to ASCII and
the Windows character set but the lower 32
characters are used for custom symbols (see
http://www.ascii-table.org/).

• The Symbol character set is a font containing
symbols (e.g. math symbols).

• Vendor Specific.

Kristian Guillaumier, 2003 84

Mapping Modes
• In Windows, mapping modes define how values

describing the sizes of objects are interpreted. For
example:

• To select a mapping mode for a device context, you use
the SetMapMode API call.

1/1440 of an inchMM_TWIPS

1 pixelMM_TEXT

0.001 inchesMM_HIENGLISH

0.001 millimetersMM_HIMETRIC

Each unit is equivalent to…Mapping Modes (not all)

43

Kristian Guillaumier, 2003 85

CreateFont
• A font instance may be created using the CreateFont GDI function.
• Arguments to the function include:

– The desired height of the font,
– The average width of the font,
– Weight,
– …
– Face name.

• Usually the height parameter is passed in Point Sizes and the width is set to 0 for the font engine
to automatically choose the best value.

• The function however does not expect the height value in point sizes but in logical units
depending on the current mapping mode.

• To use point sizes, IF you are in the MM_TEXT mapping mode you can use the following
expression to convert the desired point size to logical units:

MulDiv(PointSize, GetDeviceCaps(hDC, LOGPIXELSY), 72) * -1

• Muldiv divides two 32-bit numbers and divides the resulting 64-bit number by another 32-bit
number.

Kristian Guillaumier, 2003 86

Printing Text

• Once the font has been created, it is selected as
the default font of the device context using the
SelectObject API call.

• Now a function like TextOut can be called to
draw text in that font on the specified DC.

• Once we are ready from the font, it’s memory is
freed using DeleteObject.

44

Kristian Guillaumier, 2003 87

Using Controls
• As mentioned earlier on, a lot of basic Windows controls

are windows themselves. It is no surprise that these
controls are created using the CreateWindow API call.

• However, in this case we would use predefined windows
class names. Some include:
– BUTTON
– COMBOBOX
– EDIT
– LISTBOX
– STATIC (a label)

Kristian Guillaumier, 2003 88

Creating a Button
hwndButton = CreateWindow(“BUTTON”,

“OK”,
<button styles>,
...
hWnd, // parent window
101, // Control ID
...

• Button styles include:
– BS_PUSHBUTTON (normal button)
– BS_DEFPUSHBUTTON (like above but has a heavy border and

responds to the enter key even if not focused)
– WS_CHILD is used to tell Windows that the button is the child of a

container window.

45

Kristian Guillaumier, 2003 89

Handling Controls in the Callback

• When a button event occurs (like a click) the parent
window receives a WM_COMMAND message.

• The LoWord of the wParam tells us the ID of the control
that generated the command message.

• The HiWord of the wParam tells us the notification
message for the control (e.g. BN_CLICKED if a button is
clicked).

• The lParam contains the window handle of the control.

Kristian Guillaumier, 2003 90

Windows Resources
• An executable file, may use a number of resources such

as:
– Icons,
– Bitmaps,
– Strings,
– Any other binary data.

• The resources are embedded (linked) in the executable
file.

• The resources are defined using a resource script file.
• The script file is compiled using the Windows resource

compiler tool rc.exe.

46

Kristian Guillaumier, 2003 91

The Resource Script File

• A resource script file is a text file with the RC
extension.

• For example:
MyIcon ICON my.ico
MyCursor CURSOR my.cur
MyBitmap BITMAP my.bmp

• When the file is compiled, the result is emmitted
to a file with the RES extension that may be
linked to your application.

Kristian Guillaumier, 2003 92

Example: Loading an Icon

• When creating a window class we had:
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);

• IDI_APPLICATION is a constant telling Windows
to use the default Windows icon for windows
derived from this class.

• If we want to use an icon specified in a resource
file, we use:
wc.hIcon = LoadIcon(NULL, “MyIcon”);

47

Kristian Guillaumier, 2003 93

Loading Bitmaps and Cursors
HBITMAP LoadBitmap(HINSTANCE hInstance,

LPCTSTR lpBitmapName);

HCURSOR LoadCursor(HINSTANCE hInstance,
LPCTSTR lpCursorName);

Kristian Guillaumier, 2003 94

Creating Menus (Resource File)
#include "Resource.h"

MyMenu MENU
{

POPUP "&File"
{
MENUITEM "&New", IDM_FILENEW
MENUITEM "&Open...", IDM_FILEOPEN
MENUITEM SEPARATOR
MENUITEM "E&xit", IDM_FILEEXIT

}
POPUP "&Help"
{
MENUITEM "&About", IDM_ABOUT

}
}

48

Kristian Guillaumier, 2003 95

Creating Menus (Resource.h)
• Here we define the constants used by our

resource file:

#define IDM_FILENEW 1000
#define IDM_FILEOPEN 1001
#define IDM_FILEEXIT 1002
#define IDM_ABOUT 1003

• By conventions menu item constants start with
IDM_ (For icons it is IDI_, etc…)

Kristian Guillaumier, 2003 96

Using the Menu
• Now, when creating the window class, we specify the

resource name for the menu:

wc.lpszMenuName = “MyMenu”;

• The menu events are handled in the WM_COMMAND
message send to the callback.

• The wParam value of the message will tell us, the ID of
the menu item clicked (i.e. match against the IDM_XXX
constants).

• Actually the LoWord of wParam tells us the ID, by the
HiWord is zero if the message comes from a menu.

49

Kristian Guillaumier, 2003 97

Using Accelerators (1)
• An accelerator table must be defined in the resource file. Like:

MyAccelTable ACCELERATORS
BEGIN

“^C", IDDCLEAR ; control C
“K”, IDDCLEAR ; shift k
"k", IDDELLIPSE, ALT ; alt k
98, IDDRECT, ASCII ; b
66, IDDSTAR, ASCII ; B (shift b)
"g", IDDRECT ; g
"G", IDDSTAR ; G (shift G)
VK_F1, IDDCLEAR, VIRTKEY ; F1
VK_F1, IDDSTAR, CONTROL, VIRTKEY ; control F1
VK_F1, IDDELLIPSE, SHIFT, VIRTKEY ; shift F1
VK_F1, IDDRECT, ALT, VIRTKEY ; alt F1
VK_F2, IDDCLEAR, ALT, SHIFT, VIRTKEY ; alt shift F2
VK_F2, IDDSTAR, CONTROL, SHIFT, VIRTKEY ; ctrl shift F2

END

Kristian Guillaumier, 2003 98

Using Accelerators (2)
• To load the accelerator table from the resource file, use:

HACCEL LoadAccelerators(HINSTANCE hInstance,
LPCTSTR lpTableName);

• The normal window message loop was:

while(GetMessage(&Msg, NULL, 0, 0) > 0)
{
TranslateMessage(&Msg);
DispatchMessage(&Msg);

}

50

Kristian Guillaumier, 2003 99

Using Accelerators (3)
• To handle accelerators, it must be modified to:

while(GetMessage(&Msg, NULL, 0, 0) > 0)
{

if (TranslateAccelerator(hWnd, hAccel, Msg) == 0)
{
TranslateMessage(&Msg);
DispatchMessage(&Msg);

}
}

• In other words, the normal Translate/DispatchMessage
calls must not be mage if a accelerator was translated
(see TranslateAccelerator on MSDN).

Kristian Guillaumier, 2003 100

Using Accelerators (4)
• Again, the fact that an accelerator was pressed, is

detected in the WM_COMMAND part of the callback.
• As usual, the LoWord of wParam will tell us the ID of the

accelerator pressed, and the HiWord will be 1 so we can
distinguish it from a menu item click.

• Note:
– This means that the constant used to identify a menu and the

constant to identify an accelerator may be the same. We can
have a menu item “Save” and the combination “CTRL+S”
handled by the same piece of code!

51

Kristian Guillaumier, 2003 101

Dialogs
• Another resource can be a windows dialog.
• It is likely that you will use the dialog editor to

create the dialogs rather than write the script
manually.

• To create the dialog in your application you will
call the CreateDialog API call.

• This function
– Returns the hWnd of the dialog window.
– You also specify (apart from others) the pointer to the

callback function of the dialog.

Kristian Guillaumier, 2003 102

The Dialog Editor

52

Kristian Guillaumier, 2003 103

The Dialog Callback

• The prototype of the dialog callback is the same
as the prototype of a “normal” windows callback.

• The messages are different.
• For example, when the dialog is created, we use

the WM_INITDIALOG message rather than
WM_CREATE.

• You should check out the MSDN entry for
CreateDialog for more details.

Kristian Guillaumier, 2003 104

What is COM?
• COM – Component Object Model.
• Platform Independent.
• Object Oriented.
• Binary Component Format.
• COM is a STANDARD specifying how objects

are accessed and how they interact with other
objects.

• The only requirements for a language to support
com is the ability to create and manipulate
pointers and calling functions through pointers.

53

Kristian Guillaumier, 2003 105

More COM

• A software component is made up of:
– Object Data (Variables/Properties).
– Data manipulated by a number of functions.

• The set (list) of functions is called the interface.
• These functions are implemented as methods.
• COM specifies that the only way to call a

function is through a pointer to the interface.
• In COM there are a number of interfaces that

must be implemented by all components.

Kristian Guillaumier, 2003 106

Interfaces
• An interface is usually thought of as a contract

specifying a group of related function prototypes:
– Their name, return types and arguments.

• No implementation is associated with an
interface.

• For example if we have an IQueue interface (by
convention interface names start with the letter I)
that defines the functions:
– Enqueue
– Dequeue

54

Kristian Guillaumier, 2003 107

Accessing the Component

• An instance of an interface is a pointer to an
array of function pointers.

• Each interface is assigned a Globally Unique
Identifier (GUID).

• Note that one object may have multiple
interfaces.

• COM interfaces are immutable – you cannot
change the interface once it is assigned a GUID.

Kristian Guillaumier, 2003 108

Registering COM Components
• The Windows Registry is a global system database for

the OS.
• When a component is registered the GUID and the

actual COM EXE or DLL are saved in the registry.
• Whenever we need to access a component (which we

identify by the GUID), the registry is consulted to resolve
the GUID into the COM EXE or DLL required.

• The component will be loaded in-process or out-of-
process as required.

55

Kristian Guillaumier, 2003 109

COM Clients and Servers

• A COM Client is the actual software that gets
the interface pointer to an object and calls the
methods.

• A COM Server where the interface
implementations actually exist. The client gets a
pointer to the interface to call the functions.

• There are 2 types of servers:
– In-process: Implemented as DLLs.
– Out-of-process: Implemented as EXEs. The process

can be run on a different machine.

