
Joseph Cordina

1

IPC

• Inter Process Communication allows

different processes to communicate

between themselves.

• So far processes could communicate

using fork/child inheritance, passing

arguments in exec() calls, through the

file system and using signals.

• There are further structures which

allow processes to communicate more

efficiently and with more ease (??).

msgqueues

semaphores

shared memory

IPC

Pipes

System V IPC

Sockets and Streams

half duplex

full duplex

UNIX TCP/IP

Unnamed: Pipes
Named: FIFOs

Named: FIFOsUnnamed: Stream P

Joseph Cordina

2

IPC (cont)
• IPC structures provide different

flavors of communication.

• Some can only be used between
related processes (fork/child). These
are the unnamed structures.

• Named structures can be used by
anyone having access rights.

• System V IPC structures follow the
same access protocol, but some extra
form of initial communication is
necessary for the processes to use
them.

• Different implementations might
support one type of IPC and not
another. Also some structures are
handled differently between
implementations.

Joseph Cordina

3

½ Duplex Unnamed

Pipes

• These are the oldest and most widely

implemented version of IPC.

• Date can only flow in one direction.

• Pipes must be used in related

processes since their identifier is the

file descriptor.

#include <unistd.h>

int pipe(int fd[2]);

return –1 on error

• pipe() creates a pipe and places 2 file

descriptors inside fd. fd[0] is opened

for reading and fd[1] is opened for

writing.

• Pipes work in a FIFO fashion thus the

output to fd[1] is the input to fd[0].

Joseph Cordina

4

Pipes (cont)

• fstat() returns st_mode of FIFO
which can be tested by the
S_ISFIFO(mode_t st_mode) macro.

• We use normal read(), write() and
close() operations to access pipes.

• If we read from a pipe whose write
end has been closed, read() returns 0,
showing an end of file.

• If we write to a pipe whose read end
has been closed, write() returns –1
with errno set to EPIPE. Also before
write returns, the signal SIGPIPE is
generated.

• The constant PIPE_BUF gives the
maximum amount of bytes that can be
written in one go without interleaving
between different writers.

Joseph Cordina

5

Pipes (cont)

• Within one process, a pipe is useless.

• Yet we normally fork() a child
process and then close one side in
the parent and close the other side in
the child.

Ex: int fd[2];

pipe[fd];

if (fork()==0) // child

close(fd[0]);

else // parent

close(fd[1]);

Process
fd[0] fd[1]

After calling pipe()

Parent Child
fd[0] fd[1]

Joseph Cordina

6

FIFO’s: named Pipes
• FIFO’s are just like normal files but

they behave like pipes with a
pathname.

• FIFO’s are full duplex and more
than one process can open a FIFO.

• Other unrelated processes can access
FIFO’s using the normal open, read,
write and close system calls.

• To remove a FIFO file, call unlink().

• Normal access file permissions
apply. The stat() function returns the
type as FIFO like pipes. In ‘ls’ they
are marked with ‘p’.

• If we write to a FIFO which no
process has opened for reading,
SIGPIPE is generated.

• When no writer exists, a read()
returns a 0 for end of file.

Joseph Cordina

7

FIFO’s (cont)
• mode in mkfifo() is the same as mode

in open() for file access permissions.

• The constant O_NONBLOCK can
be passed to open() in the oflag
argument.

• If O_NONBLOCK is not specified,
the open blocks until there exists a
two way connection.

• If O_NONBLOCK is specified, an
open for read-only returns
immediately. An open for write-only
returns with error –1 and errno
ENXIO unless another process has
opened the FIFO for reading.

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

returns –1 on error

Joseph Cordina

8

Stream pipes

• Some implementations actually

implement standard pipes as bi-

directional, others implement

them as uni-directional.

– See pages 478-479 of Stevens to

know how to implement

unnamed, bi-directional pipes

(aka. stream pipes) for specific

implementations (s_pipe). Just

note the differences not the

meaning of socketpair().

Joseph Cordina

9

Pipes and FIFO’s

Addendum

• When issuing a read() call to a pipe or a

FIFO in which no data is currently present,

the process will block until such data could

be read.

• To avoid the process from blocking, we

can set the O_NONBLOCK flag and then

read() will immediately return –1 with

errno set to EAGAIN, whenever no data is

available on the pipe or FIFO.

• For FIFO files, we can specify

O_NONBLOCK in the open() command

and for pipes we can set it using fcntl().

#include <sys/types.h>

#include <fcntl.h>

#include <unistd.h>

int fcntl(fd,F_SETFL,O_NONBLOCK);

return –1 on error

Joseph Cordina

10

Exercises

• Implement a consumer and

producer using pipes.

• Now implement the consumer

and producer using a FIFO.

• Make a process which passes

numbers to another process

terminated by the –1 value and

let the child return back the

results using two pipes. You

have made a client server

program !!

