iy

Signal Masks

Sometimes we need to block
some signals, so that critical
sections are not interrupted.

Every process maintains a
signal mask telling which
signals are blocked.

If a signal type 1s blocked, and
signals of this type are received,
they are suspended until process
termination or until the signal
type 1s unblocked.

Signal masks are stored in the
data type sigset t.




L Signal Masks

#include <signal.h>

int sigemptyset(sigset t *set);

int sigfillset(sigset t *set);

int sigaddset(sigset t *set, int signo);

int sigdelset(sigset t *set, int signo);
return 0 1f OK, -1 on error

int sigismember(const sigset t *set, int signo);
returns 1 1f true, O 1f false

 The above are used to set the set
value, not to set the process
signal mask.

» Call sigemptyset() or sigfillset()
at least once.

» sigset t1s guaranteed to be able
to hold all signals supported by
., the UNIX implementation. @

Joseph Cordina




iy Signal Masks (cont)

#include <signal.h>
int sigpending(sigset t *set);
returns 0 1f OK, -1 on error

» sigpending() tells us what
signals are blocked and
currently pending.

* The list of signals 1s returned
inside set.

» Use sigismember() to find out
what signals are present 1n set.

Joseph Cordina

3




il

Masking Signals

#include <signal.h>

int sigprocmask(int how, const sigset t *set,
sigset t *oset);
returns 0 1f OK, -1 on error

how values

SIG BLOCK (union)
SIG UNBLOCK (intersection)
SIG SETMASK (equality)

If oset 1s non-NULL, the old signal
mask 1s returned 1n 1t.

set defines the signals we want to
block or unblock.

If there are any pending signals, and
we unblock 1t with sigprocmask(),
one of these signals 1s received
before sigprocmask() returns.

Joseph Cordina




iy

Critical Sections

Setup signal mask

Call sigprocmask() to block signals
/* critical section */

Call sigprocmask() to unblock signals
Signals will be handled, etc.

Blocking signals makes sure
that critical section are executed
atomically.

Yet what 1f we want to wait for
a signal after unblocking the
signal mask.

— Calling pause() could make
process wait forever!!

Joseph Cordina




il

sigsuspend()

#include <signal.h>
int sigsuspend(const sigset t *sigmask);
returns —1 with errno set to EINTR

* sigsuspend() execution:
Sets the signal mask to sigmask.

Then it calls the pause()
function.

. If pause() returns, the signal
mask to set back to 1ts original
value.

All the above steps are
guaranteed to be performed

atomically and we thus get no
lost signals.

Joseph Cordina




i sigaction()

#include <signal.h>
int sigaction(int signo, const struct sigaction *act,
const struct sigaction *oset);
returns —1 on error

Values for sa_flags
SA NOCLDSTOP
SA RESTART
SA ONSTACK

. SA NODEFER

J; SA RESETHAND

SA SIGINFO

struct sigaction {
void (*sa handler)();
sigset t sa mask;
int sa_flags;

A more modern version of signal().

sa_mask specify the additional
signals to block if the sa handler 1s
a user defined signal handler.

Not all sa flags values are
implemented.

Joseph Cordina




il

Exercises

Protect a section of your
program from being interrupted
by signals.

Disable the CTRL-C keyboard
termination signal for a critical
section.

Send signals to terminate
children processes and reap
their termination status. See that
no signal 1s lost.

Re-implement sleep() using
sigsuspend|().

Joseph Cordina




