
Joseph Cordina

1

Signal Masks

• Sometimes we need to block 
some signals, so that critical 
sections are not interrupted.

• Every process maintains a 
signal mask telling which 
signals are blocked.

• If a signal type is blocked, and 
signals of this type are received, 
they are suspended until process 
termination or until the signal 
type is unblocked.

• Signal masks are stored in the 
data type sigset_t.



Joseph Cordina

2

Signal Masks

• The above are used to set the set
value, not to set the process 
signal mask.

• Call sigemptyset() or sigfillset() 
at least once.

• sigset_t is guaranteed to be able 
to hold all signals supported by 
the UNIX implementation.

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

return 0 if OK, -1 on error

int sigismember(const sigset_t *set, int signo);

returns 1 if true, 0 if false



Joseph Cordina

3

Signal Masks (cont)

• sigpending() tells us what 

signals are blocked and 

currently pending.

• The list of signals is returned 

inside set.

• Use sigismember() to find out 

what signals are present in set.

#include <signal.h>

int sigpending(sigset_t *set);

returns 0 if OK, -1 on error



Joseph Cordina

4

Masking Signals

• If oset is non-NULL, the old signal 
mask is returned in it.

• set defines the signals we want to 
block or unblock.

• If there are any pending signals, and 
we unblock it with sigprocmask(),
one of these signals is received 
before sigprocmask() returns.

#include <signal.h>

int sigprocmask(int how, const sigset_t *set,

sigset_t *oset);

returns 0 if OK, -1 on error

SIG_BLOCK (union)

SIG_UNBLOCK (intersection)

SIG_SETMASK (equality)

how values



Joseph Cordina

5

Critical Sections

• Blocking signals makes sure 

that critical section are executed 

atomically.

• Yet what if we want to wait for 

a signal after unblocking the 

signal mask.

– Calling pause() could make 

process wait forever!!

Setup signal mask

Call sigprocmask() to block signals

/* critical section */

Call sigprocmask() to unblock signals

Signals will be handled, etc.



Joseph Cordina

6

sigsuspend()

• sigsuspend() execution:

1. Sets the signal mask to sigmask.

2. Then it calls the pause() 

function.

3. If pause() returns, the signal 

mask to set back to its original 

value.

• All the above steps are 

guaranteed to be performed 

atomically and we thus get no 

lost signals.

#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

returns –1 with errno set to EINTR



Joseph Cordina

7

sigaction()

• A more modern version of signal().

• sa_mask specify the additional 
signals to block if the sa_handler is 
a user defined signal handler.

• Not all sa_flags values are 
implemented.

#include <signal.h>

int sigaction(int signo, const struct sigaction *act,

const struct sigaction *oset);

returns –1 on error

struct sigaction {

void (*sa_handler)();

sigset_t sa_mask;

int sa_flags;

};

SA_NOCLDSTOP

SA_RESTART

SA_ONSTACK

SA_NODEFER

SA_RESETHAND

SA_SIGINFO

Values for sa_flags



Joseph Cordina

8

Exercises

• Protect a section of your 

program from being interrupted 

by signals.

• Disable the CTRL-C keyboard 

termination signal for a critical 

section.

• Send signals to terminate 

children processes and reap 

their termination status. See that 

no signal is lost.

• Re-implement sleep() using

sigsuspend().


