
Joseph Cordina

1

Non-Blocking I/O

• To set all socket I/O as non blocking

(including the accept() call), use the

normal fcntl() function shown below.

• When reading or writing to a non-

blocking socket, if the operation is

not possible the read() and write()

calls return –1 with errno set to

EAGAIN..

#include <sys/types.h>

#include <fcntl.h>

#include <unistd.h>

int fcntl(int sockfd, F_SETFL,O_NONBLOCK);

or

int fcntl(int sockfd, F_SETFL,O_NDELAY);

returns –1 on error

Joseph Cordina

2Non-Blocking I/O

(cont)

• Many implementations vary in their
response to a non-blocking connect() and
accept() system call.

• On SunOS systems a failed non-blocking
connect() sets errno to EWOULDBLOCK,
showing such a call would normally block,
or sets errno to EINPROGRESS, showing
the connection is not yet established but
will be ready soon.

• On SunOs systems, a non-blocking
accept() sets errno to EWOULDBLOCK if
accept cannot establish a connection
immediately.

• On Linux systems in non-blocking mode, a
failed connect() always returns an error of
EINPROGRESS in errno while a failed
accept() returns an error of EAGAIN in
errno.

Joseph Cordina

3

Input Peeking

• recv() allows you to look at

incoming data without

removing it from the receive

data buffer.

• Any data peeked will still be

returned by the next read()

system call.

int recv(int sockfd, char *buff, int nbytes,

MSG_PEEK);

returns –1 on error or amount

of bytes peeked

Joseph Cordina

4

Connection Information

• Sometimes, we might want to
refresh our memory of who we
are connected to.

• getpeername() gives us the
details of the foreign part of the
socket tuple.

• addrlen needs to be set to the
size of peer and on return it will
contain the amount of data used
up in peer.

int getpeername(int sockfd, struct sockaddr *peer,

int *addrlen);

returns –1 on error

Joseph Cordina

5

I/O Multiplexing
• Sometimes we want to check if a

specific socket is available for
reading or writing from a selection
of open sockets.

• If we have several sockets open, we
can have a child for each socket
testing the availability of each socket
and then passing the data to the
parent using some form of IPC.

• Alternatively we can have the parent
polling through each socket after
setting them to non-blocking.

• A far better method is provided by
4.3BSD where a special system call
can return the status of multiple
system calls.

• Upon retrieving this status
information, one can act on the
specific available sockets.

Joseph Cordina

6

File Descriptor Masks
• These are similar to socket masks

used in sigprocmask.

• Each bit in the mask represents one of
all file descriptors possible. (ex fd=0
is bit 0, fd=1 is bit 1, etc.).

• The type fd_set is guaranteed to have
a bit for all possible file descriptors.
(it is usually implemented as an array
of int).

• Always call FD_ZERO on file
descriptor masks before using.

FD_ZERO(fd_set *set);

clears all bits in set

FD_SET(int fd, fd_set *set);

turn bit for fd on

FD_CLR(int fd , fd_set *set);

turn bit for fd off

FD_ISSET(int fd, fd_set *set);

test bit for fd (0 or 1)

Joseph Cordina

7

select()
• select()’s behavior depends on the timeout

value given:

– timeval values equal to zero make select() return

immediately. Result is 0 if no socket is available to

read or write.

– timeval values not equal to zero make select()

block until a socket descriptor is available or until

a timeout occurs (poll).

– timeout equals to NULL, makes select() block

until a socket descriptor becomes available to read

or write.

int select(int maxfdpl, fd_set *read,

fd_set *write, fd_set *exceptfd,

struct timeval *timeout);

returns number of descriptors set,

or 0 if timeout occurs

or –1 on error

struct timeval {

long tv_sec;

long tv_usec;

}

Joseph Cordina

8

select() (cont)
• If we want to ignore one of the

parameters (read, write or except),
just set these to NULL.

• maxfdpl should be set to the
maximum file descriptor number
being used + 1.

• maxfdpl can be set to FD_SETSIZE
which is the maximum possible
number assigned to file descriptors.

• After a successful return from
select() (return value larger than
zero), we can test the file descriptors
using FD_ISSET.

• If we want to check what sockets are
available to open a connection so
that accept() won’t block we can
also use select().

• A socket which has a connection
pending on it, is marked as ready for
reading.

Joseph Cordina

9

inetd

• inetd is a special background
process which waits for a
connection on several ports.

• The ports it listens on are listed
in /etc/services.

• When a connection is opened, it
forks a new child and then calls
exec to run the service. The
details of each service are listed
in /etc/inetd.conf.

• One way of implementing inetd
is to use select() which can
listen on multiple ports for a
connection.

Joseph Cordina

10

bind() addendum

• When calling bind(), we might want

the system to allocate the IP address

of the local host automatically.

• INADDR_ANY is a constant which

is allocated to the IP address of the

local host.

• For a host with multiple IP addresses

(multihomed), INADDR_ANY will

be allocated to all available

addresses resulting in a socket bound

to more than one address.

• Prior to calling bind(), a server can

use this as follows:

struct sockaddr_in serv_addr;

serv_addr.sin_addr.s_addr =

htonl(INADDR_ANY);

Joseph Cordina

11

DNS access
• gethostbyname() gives you a hostent

structure containing the network address of
the given name.

• hostname can be a hostname or an IP
address in dot format.

• On some systems, if the name cannot be
matched with an IP address,
gethostbyname() returns –1 with errno set
to HOST_NOT_FOUND.

• Returned addresses are in network byte
order.

#define <netdb.h>

struct hostent {

char *h_name; //official name of host

char **h_aliases; // alias list

int h_addrtype; //AF_INET

int h_length; // for IP = 4

char **h_addr_list; //NULL terminated

// list of addresses

};

#define h_addr h_addr_list[0] //first addr

struct hostent *gethostbyname(char *hostname);

returns NULL on error

Joseph Cordina

12

Exercises

• Build a server that communicates on a
socket and when the client sends strings
ending with the @ character, it spawns off
a child that outputs the string to screen.

• Using non-blocking I/O, build a server that
polls multiple ports for a connection and
when a client connects on one of them,
spawn off a child to deal with it.

• Modify the above server such that it
continuously outputs the number of
established connections to screen.

• Implement the second question above
using a blocking version of select().

• Make the above server exit if no
connections occur during a span of 1
minute.

• Find out the IP address of yahoo.com and
lycos.com.

