
A Monitoring Tool for a Branching-Time Logic?

Duncan Paul Attard and Adrian Francalanza

CS, ICT, University of Malta, Malta
{duncan.attard.01,adrian.francalanza}@um.edu.mt

Abstract. We present the implementation of an experimental tool that
automatically synthesises monitors from specifications written in mHML,
a monitorable subset of the branching-time logic µHML. The synthesis
algorithm is compositional wrt. the structure of the formula and follows
closely a synthesis procedure that has been shown to be correct. We dis-
cuss how this compositionality facilitates a translation into concurrent
Erlang monitors, where each individual (sub)monitor is an actor that au-
tonomously analyses individual parts of the source specification formula
while still guaranteeing the correctness of the overall monitoring process.

1 Introduction

Runtime Verification (RV) is a lightweight verification technique that compares
the execution of a system against correctness specifications. Despite its advan-
tages, this technique has limited expressivity and cannot be used to verify ar-
bitrary specifications such as (general) liveness properties [6]. These limits are
further explored in [3] wrt. the branching-time domain for a logic called µHML,
describing properties about the computational graph of programs. The work iden-
tifies a syntactic logical subset called mHML, and shows it to be monitorable
and maximally-expressive wrt. the constraints of runtime monitoring.

This paper discusses the implementation of a prototype tool that builds on
the results of [3]. A pleasant byproduct of these results is the specification of a
synthesis procedure that generates correct monitor descriptions from formulas
written in mHML. Our tool investigates the implementability of this synthesis
procedure, instantiating it to generate executable monitors for a specific general-
purpose programming language. This instantiation follows closely the procedure
described in [3], thereby giving us higher assurances that the generated exe-
cutable monitors are indeed correct. Furthermore, we exploit the compositional
structure of the procedure in [3] and refine the synthesis so as to enable it to
produce concurrent monitors wherein (sub)monitors autonomously analyse in-
dividual parts of the global specification formula while still guaranteeing the
correctness of the overall monitoring process. Through our tool, we show how
these concurrent components can be naturally mapped to Erlang [2] actors that
monitor a running system with minimal instrumentation efforts.

? This work was partly supported by the project “TheoFoMon: Theoretical Founda-
tions for Monitorability” (nr.163406-051) of the Icelandic Research Fund.

Monitorable Logic Syntax

θ, ϑ ∈ sHML ::= tt | ff | [α]θ | θ∧ϑ | maxX.θ | X
π,$ ∈ cHML ::= tt | ff | 〈α〉π | π∨$ | minX.π | X

Monitor Syntax and Semantics

m ∈Mon ::= v | α.m | m1 +m2 | recx.m | x v ∈ Verd ::= end | no | yes

v
α−−→ v α.m

α−−→ m recx.m
τ−−→ m[recx.m/x]

m1
µ−−→ m′

1

m1 +m2
µ−−→ m′

1

Monitor synthesis

LffM def
= no LttM def

= yes LXM def
= x

L[α]ψM def
=

{
α.LψM if LψM 6= yes

yes otherwise
L〈α〉ψM def

=

{
α.LψM if LψM 6= no

no otherwise

Lψ1∧ψ2M
def
=


Lψ1M if Lψ2M=yes

Lψ2M if Lψ1M=yes

Lψ1M + Lψ2M otherwise

Lψ1∨ψ2M
def
=


Lψ1M if Lψ2M=no

Lψ2M if Lψ1M=no

Lψ1M + Lψ2M otherwise

LmaxX.ψM def
=

{
recx.LψM if LψM 6= yes

yes otherwise
LminX.ψM def

=

{
recx.LψM if LψM 6= no

no otherwise

Fig. 1. The logic mHML, the monitor syntax, and compositional synthesis function.

This paper is structured as follows. Sec. 2 reviews the logic and synthesis
procedure from [3]. Subsequently, Sec. 3 presents changes by which this synthe-
sis procedure can achieve higher detection coverage. The challenges encountered
while implementing a synthesis procedure that follows closely the formal descrip-
tion developed in Sec. 3, are discussed in Sec. 4. Finally, Sec. 5 concludes and
briefly reviews related work.

2 Preliminaries

The syntax of ψ ∈ mHML, a monitorable subset of µHML, is given in Fig. 1.
It consists of two syntactic classes, sHML, describing invariant properties, and
cHML, describing properties that hold eventually after a finite number of events.
The logical formula [α]θ states that for all system executions producing event
α (possibly none), the subsequent system state must then satisfy θ, whereas the
formula 〈α〉π states that there exists a system execution with event α whereby
the subsequent state then satisfies π. E.g., [α]ff describes systems that cannot
produce event α, whereas 〈α〉tt describes systems that can produce event α.
maxX.θ and minX.π resp. denote maximal and minimal fixpoints for recursive

formulas; these act as binders for X in θ (resp. π), where we work up to α-
conversion of bound variables while assuming recursive formulas to be guarded.

Monitors are expressed as a standard process calculus where m
α−−→ m′ de-

notes a monitor in state m observing event α and transitioning to state m′. The
action τ denotes internal transitions while µ ranges over α and τ . For instance,

m1 +m2 denotes an external choice where m1 +m2
µ−−→ m′ if either m1

µ−−→ m′

or m2
µ−−→ m′ (Fig. 1 omits the symmetric rule). The only novelty is the use

of verdicts v: persistent states that do not change when events are analysed,
modelling the irrevocability of a verdict v (see [3] for details).

The synthesis function L−M from mHML formulas to monitors is also given
in Fig. 1. Although the function covers both sHML and cHML, the syntactic
constraints of mHML mean that synthesis for a formula ψ uses at most the first
row (i.e., the logical constructs common to sHML and cHML) and then either
the first column (in the case of sHML) or the second column (in case of cHML).
It is worth noting that the monitor synthesis function is compositional wrt. the
structure of the formula, e.g., the monitor for ψ1∧ψ2 is defined in terms of the
submonitors for the subformulas ψ1 and ψ2. Finally, we highlight the fact that
conditional cases used in the synthesis of conjunctions, disjunctions, necessity
and possibility formulas, and maximal and minimal fixpoints are necessary to
handle logically equivalent formulas and generate correct monitors.

Example 1. The sHML formula ϕ1 describes the property stating that “after
any sequence of service requests (req) and responses (ans), a request is never
followed by two consecutive responses”, i.e., subformula [ans][ans]ff. The synthesis
function in Fig. 1 translates ϕ1 into the monitor process m1.

ϕ1 = maxX.
(
[req]([ans]X∧[ans][ans]ff)

)
m1 = recx.

(
req.(ans.x+ ans.ans.no)

)
ϕ2 = minX.

(
〈ping〉X∨〈cls〉tt∨(minY.ff∨〈cls〉ff)

)
m2 = recx.

(
ping.x+ cls.yes

)
The cHML formula ϕ2 describes a property where after a (finite) sequence
of ping events, the system closes a channel connection cls. The subformula
minY.ff∨〈cls〉ff is semantically equivalent to ff; accordingly the side conditions
in Fig. 1 take this into consideration when synthesising monitor m2. �

Note that although the synthesis employs both acceptance and rejection ver-
dicts, it only generates uni-verdict monitors that only produce acceptances or
rejections, never both; [3] shows that this is essential for monitor correctness.

3 Refining the Monitor Synthesis

The first step towards implementing our tool involved refining the existing syn-
thesis function to improve monitor detections. Specifically, there are cases where
the synthesis function in Fig. 1 produces monitors with non-deterministic be-
haviour. For instance, monitor m1 of Ex. 1 may exhibit the following behaviour:

recx.req.
(
ans.x+ ans.ans.no

) τ−→ · req−−→ ans.m1 + ans.ans.no

at which point, upon analysing action ans, it may non-deterministically transi-
tion to either m1 or ans.no. The latter case can raise a rejection if it receives
another ans event but the former case, i.e., m1, does not — this results in a
missed detection. Although this behaviour suffices for the theoretical results re-
quired in [3], it is not ideal from a practical standpoint. The problem stems from
a limitation in the choice construct semantics, m1 +m2, which forces a selection
between submonitor m1 or m2 upon the receipt of an event.

We solve this problem by replacing external choice constructs with a parallel
monitor composition construct, m1×m2 that allows both submonitors to process
the event without excluding one another. The semantics of the new combinator
is defined by the following rules (again we omit symmetric cases):

m1
α−−→ m′

1 m2
α−−→ m′

2

m1 ×m2
α−−→ m′

1 ×m′
2

m1
α−−→ m′

1 m2 6
α−−→ m2 6

τ−−→
m1 ×m2

α−−→ m′
1

m2
τ−−→ m′

2

m1 ×m2
τ−−→ m1 ×m′

2 v ×m τ−−→ v

The first rule states that both monitors proceed in lockstep if they can process
the same action. The second rule states that if only one monitor can process the
action and the other is stuck (i.e., it can neither analyse action α, nor transition
internally using τ), then the able monitor transitions while terminating the stuck
monitor. Otherwise, the monitor is allowed to transition silently by the third rule.
The last rule terminates parallel monitors once a verdict is reached.

We define a second synthesis function J−K by structural induction on the
formula. Most cases are identical to those of L−M in Fig. 1 with the exception of
the two cases below, substituting the choice construct for the parallel construct:

Jψ1∧ψ2K
def
=


Jψ1K if Jψ2K=yes

Jψ2K if Jψ1K=yes

Jψ1K× Jψ2K otherwise

Jψ1∨ψ2K
def
=


Jψ1K if Jψ2K=no

Jψ2K if Jψ1K=no

Jψ1K× Jψ2K otherwise

The two monitor synthesis functions correspond in the sense of Thm. 1. In [3],
verdicts are associated with logic satisfactions and violations, and thus Thm. 1
suffices to show that the new synthesis is still correct.

Theorem 1. For all ψ ∈ mHML, LmM α1−−→ . . .
αn−−→ v iff JmK α1−−→ . . .

αn−−→ v.

Proof. By induction on the strucure of ψ. Most cases are immediate because the
resp. translations correspond. In the case of ψ1∧ψ2 where the synthesis yields
Lψ1M + Lψ2M, a verdict is reached only if Lψ1M

α1−−→ . . .
αn−−→ v or Lψ2M

α1−−→
. . .

αn−−→ v. By I.H. we obtain Jψ1K
α1−−→ . . .

αn−−→ v (or Jψ2K
α1−−→ . . .

αn−−→ v)

which suffices to show that Jψ1K × Jψ2K
α1−−→ . . .

αn−−→ v. A dual argument can
be constructed for the implication in the opposite direction.

Example 2. For ψ1 in Ex. 1, we now only have the following monitor behaviour:

recx.req.
(
ans.x× ans.ans.no

) τ−→ · req−→ ans.m1 × ans.ans.no
ans−−→ m1 × ans.no

ans−−→ no

�

4 Implementation

We implement a RV tool which analyses the correctness of concurrent programs
developed in Erlang. Actions, in the form of Erlang trace events, consist of two
types: outputs i ! d and inputs i ? d, where i corresponds to process (i.e., actor)
identifiers (PID), and d denotes the data payload associated with the action in
the form of Erlang data values (e.g., PID, lists, tuples, atoms, etc.). Specifica-
tions, defined as instantiations of mHML terms, make use of action patterns
which possess the same structure as that of the aforementioned actions, but
may also employ variables (alphanumeric identifiers starting with an uppercase
letter) in place of values; these are then bound to values when pattern-matched
to actions at runtime. Action patterns require us to synthesise a slightly more
general form of monitors with the following behaviour: if a pattern e matches a
trace event action α, thereby binding a variable list to values from α (denoted
as σ), the monitor evolves to the continuation m, substituting the variables in
m for the values bound by pattern e (denoted by mσ); otherwise it transitions
to the terminated process end.

match(e, α) = σ

e.m
α−−→ mσ

match(e, α) = ⊥
e.m

α−−→ end

mHML formulas are synthesised into Erlang code, following closely the syn-
thesis function discussed in Sec. 3. In particular, we exploit the inherent con-
currency features offered by Erlang together with the modular structure of the
synthesis to translate submonitors into independent concurrent actors [2] that
execute in parallel. An important deviation from the semantics of parallel com-
position specified in Sec. 3 is that actors execute asynchronously to one another.
For instance, one submonitor may be analysing the second action event whereas
another may forge ahead to a stage where it is analysing the fourth event. The
moment a verdict is reached by any submonitor actor, all others are terminated,
and said verdict is used to declare the final monitoring outcome. This alterna-
tive semantics still corresponds to the one given in Sec. 3 for three main reasons:
(i) monitors are univerdict, and there is no risk that one verdict is reached before
another thereby invalidating or contradicting it; (ii) processing is local to each
submonitor and independent of the processing carried out by other submoni-
tors; (iii) verdicts are irrevocable and monitors can terminate once an outcome
is reached, safe in the knowledge that verdicts, once announced, cannot change.

Monitor recursion unfolding, similar to the work in [4], constitutes another
minor departure from the semantics in Sec. 3, as the implementation uses a
process environment that maps recursion variables to monitor terms. Erlang
code for monitor recx.m is evaluated by running the code corresponding to the
(potentially open) term m (where x is free in m) in an environment with the
map x 7→ m.

Fig. 2 outlines the compilation steps required to transform a formula script
file (script.hml) into a corresponding Erlang source code monitor implementa-
tion (monitor.erl). To be able to adhere the compositional synthesis of Sec. 3

detectErLITE compiler

parser synthesis

script.hml

monitor.erl
Erlang

compiler

formula.erl

launcher.erl

target system

beam files

...

monitor.beam

formula.beam

launcher.beam

Fig. 2. The monitor synthesis process pipeline.

the tool had to overcome an obstacle attributed to pattern bindings. Specifically,
in formulas such as [e]ψ or 〈e〉ψ, subformula ψ may contain free (value) variables
bound by the pattern e. For instance, in [Srv ? {req, Clt}][Clt ! ans]ff, the
Erlang monitor code for the subformula [Clt ! ans]ff would contain the free
variable Clt bound by the preceding pattern Srv ? {req, Clt}. Since Erlang does
not support dynamic scoping [2], the synthesis cannot simply generate open func-
tions whose free variables are then bound dynamically at the program location
where the function is used. To circumvent this issue, the synthesis generates
an uninterpreted source code string composed using the util:format() string
manipulation function. Compilation is then handled normally (using the static
scoping of the completed monitor source code) via the standard Erlang compiler.

The tool itself, written in Erlang, is organised into two main modules. The
synthesis in Fig. 2 is carried out by the function synth in module compiler.erl.
This relies on generic monitor constructs implemented as function macros inside
the module formula.erl (Fig. 2). Table 1 outlines the mapping for two of these
constructs. Parallel composition is encoded by spawning two parallel actors (lines
2 - 3) followed by forking trace events to these actors for independent processing
(line 4). Action prefixing for pattern e is encoded by generating a pattern-and-
continuation specific function ActMatcher that takes a trace event Act, pattern-
matches it with the translation of pattern e (line 8) and executes the continuation

Monitor construct formula module code

Jψ1K× Jψ2K
1 mon_and(Psi1, Psi2) ->

2 fun(Env) -> Pid1 = spawn_link(fun() -> Psi1(Env) end),

3 Pid2 = spawn_link(fun() -> Psi2(Env) end),

4 fork(Pid1, Pid2)

5 end.

e.JψK

6 mon_nec(ActMatcher) ->

7 fun(Env) ->

8 receive Act -> Psi = ActMatcher(Act),

9 Psi(Env) end

10 end.

Table 1. The Monitor constructs and the corresponding Erlang code (excerpt).

Synthesis subcase compiler module function

Jψ1∧ψ2K
def
=

Jψ1K if Jψ2K=yes

Jψ2K if Jψ1K=yes

Jψ1K× Jψ2K otherwise

1 synth({and_op, Psi1, Psi2}) ->

2 case {synth(Psi1), synth(Psi2)} of

3 {{Tag, Mon}, {yes, _}} -> {Tag, Mon};

4 {{yes, _}, {Tag, Mon}} -> {Tag, Mon};

5 {{Tag1, Mon1}, {Tag2, Mon2}} ->

6 {join_tag(Tag1, Tag2),

7 util:format("mon_and(~s,~s)", [Mon1, Mon2])}

8 end;

J[e]ψK def
={

e.JψK if JψK 6= yes

yes otherwise

9 synth({nec, Pat, Phi}) ->

10 case synth(Phi) of

11 {yes, _} -> {yes, "mon_tt()"};

12 {Tag, Mon} ->

13 Fun = util:format(

14 "fun(Act) -> case Act of ~s -> ~s;

15 _ -> mon_id() end end", [pat_to_str(Pat), Mon]),

16 {join_tag(nec, Tag),

17 util:format("mon_nec(~s)", [Fun])}

18 end;

Table 2. The monitor synthesis function cases and corresponding compiler functions.

monitor returned by ActMatcher in case of a successful match (line 9). Note that
the execution of a monitor always takes a map environment Env as argument.

The function synth in module compiler.erl consumes the formula parse-
tree (encoded as Erlang tuples), generates the Erlang source code string of the
respective monitor and writes it to monitor.erl. Table 2 outlines the tight cor-
respondence between this compilation and the synthesis function of Sec. 3. To
encode the branching cases of the synthesis function, the compilation returns
a tuple where the first element is a tag ranging over yes, no and any, and the
second element, the monitor source code string. The correspondence is evident
for Jψ1∧ψ2K, where the code on line 7 performs the necessary string process-
ing and calls the function mon and presented in Table 1. For formula J[e]ψK,
the translation inserts directly the function corresponding to ActMatcher (lines
13 - 15) alluded to in Table 1 — this is passed as an argument to mon nec from
formula.erl (line 17), thereby addressing the aforementioned limitation asso-
ciated with open functions and dynamic scoping. Pattern Pat is extracted from
the parse tree (line 9), while the continuation monitor source code string Mon is
synthesised from the subtree of Phi (line 10). See Apps. A.4 for an example.

The tool instruments the generated monitors to run with the system in asyn-
chronous fashion, using the native tracing functionality provided by the Erlang
Virtual Machine (EVM). Erlang directives instruct the EVM to report events of
interest from the system execution to a tracer actor executing in parallel; this in
turn forwards said events to the monitor (also executing in parallel). Crucially,
this type of instrumentation requires no changes to the monitor source code (or
the target system binaries) increasing confidence of its correctness. In the tool,

compiled monitor files together with their dependencies (e.g., formula.erl) are
placed alongside other system binary files. Instrumentation is then handled by
a third module, launcher.erl, tasked with the responsibility of launching the
system and corresponding monitors in tandem.

The initial distribution of the tool is available from https://bitbucket.

org/duncanatt/detecter-lite, and requires a working installation of Erlang.

5 Conclusion

We discuss the implementation of a tool that synthesises and instruments asyn-
chronous monitors from specifications written in mHML, a monitorable subset
of the logic µHML. The implementation follows very closely a correct monitor
synthesis specification described in [3]. This tight correspondence gives us high
assurances that the executable monitors generated by our tool are also correct.

Discussion and Related work: Monitors form part of the trusted computing base
of a system and generally, their correctness is sine qua non [5]. Despite its im-
portance, tools prioritising this aspect often prove correctness for a high level
abstraction of the monitor but do not put much effort towards showing that the
resp. monitor implementation corresponds to this abstraction. To our knowledge,
the closest work that attempts to bridge this correctness gap is [4], wherein the
authors formalise an operational semantics of a subset of the target language and
then show monitor correctness within this formalised language subset. Their tool
shares a number of common aspects with our work (e.g., they also synthesise
subsets of µHML, use Erlang as a target language and also asynchronous in-
strumentation), but differs in a few main aspects: (i) we consider a substantially
larger syntactic monitorable subset of µHML (e.g., we can specify positive prop-
erties such as “the system can perform action α”); (ii) our notion of monitor
correctness is formalised in terms of a language agnostic abstraction — a process
calculus; (iii) we consider action patterns, which complicate the modularity of
the synthesis process. In other related work, [1] explores synchronous monitor
instrumentations within a similar setting to ours; this requires changes to the
monitor and system code, which can potentially affect correctness.

References

1. I. Cassar and A. Francalanza. On Synchronous and Asynchronous Monitor Instru-
mentation for Actor-based Systems. In FOCLASA, pages 54–68, 2014.

2. F. Cesarini and S. Thompson. Erlang Programming. O’Reilly, 2009.
3. A. Francalanza, L. Aceto, and A. Ingólfsdóttir. On Verifying Hennessy-Milner Logic

with Recursion at Runtime. In Runtime Verification, pages 71–86, 2015.
4. A. Francalanza and A. Seychell. Synthesising Correct Concurrent Runtime Moni-

tors. Formal Methods in System Design, 46(3):226–261, 2015.
5. J. Laurent, A. Goodloe, and L. Pike. Assuring the Guardians. In Runtime Verifi-

cation, pages 87–101, 2015.
6. Z. Manna and A. Pnueli. Completing the Temporal Picture. Theoretical Computer

Science, 83(1):97–130, 1991.

A Appendix

In this appendix, we go through the steps required to monitor an existing system
using the tool extended in this paper. We start by creating a rudimentary system
by borrowing code from the tool distribution itself. Following this, we specify a
simple correctness property using sHML, and apply it to the system just created.

A.1 Creating the Target System

Since we do not have a test system available for this tutorial, we will quickly
create one by copying the plus one.erl server module to serve this purpose.
This will enable us to set up a client-server system which suffices to demonstrate
runtime monitoring using our tool. Though this example is fairly basic, it em-
bodies the essence of how the tool should be applied; more complex properties
follow the same instructions outlined in this tutorial.

Remark 1. The current prototype implementation of the tool supports the in-
strumentation of a single monitor inside the target system. As the tool’s compila-
tion and synthesis processes were developed with extensibility in mind, the steps
presented below remain valid once it is enhanced to support multiple monitors.

The material presented in this appendix assumes that Erlang has been set
up correctly. In addition, it also assumes that GNU make is installed on the host
system: OSX users can acquire make by installing the XCode Command Line
Tools; Windows users can install the MinGW suite of tools. Although Linux is
used, the steps below can be replicated on any other operating system.

Setting up the Erlang project To make the development of Erlang applica-
tions straightforward, we have created a generic makefile which we use in this
guide. The following make targets are provided:

– all: Compiles the Erlang project;
– clean: Removes the Erlang .beam and temporary files;
– init: Creates the standard Erlang project structure;
– docs: Compiles the HTML documentation from Erlang source files using

EDoc;
– instrument: Synthesises and instruments the monitors into the target sys-

tem, given the HML script, target system binary directory and application
entry point.

We start by creating the target application directory which for the sake of
this example, we name, example:

duncan@term:/$ mkdir example

Navigate into the newly created example directory and download the latest
version of the aforementioned makefile using wget:

duncan@term:/$ cd example
duncan@term:/example$ wget https://bitbucket.org/duncanatt/detecter-lite\

/raw/detecter-lite-1.0/Makefile

Once the makefile is downloaded, we create the standard Erlang directory
structure using the init target:

duncan@term:/example$ make init
duncan@term:/example$ ls -l
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 include
-rw-rw-r-- 1 duncan duncan 5463 May 15 16:53 Makefile
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 src
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 test

Instead of writing an Erlang server ourselves, we reuse the plus one.erl

module included in the tool’s distribution. If you have not yet downloaded
it, refer to the instructions provided at https://bitbucket.org/duncanatt/

detecter-lite. For simplicity, we assume that the tool is set up in the same
directory as our example project directory. The plus one server and its depen-
dencies should then be copied into the src and include directories as shown
below; this results in the directory tree in Fig. 3a.

duncan@term:/example$ cd src
duncan@term:/example/src$ cp ../../detecter-lite/test/plus_one.erl .
duncan@term:/example/src$ cp ../../detecter-lite/src/mon/log.erl .
duncan@term:/example/src$ cd ../include/
duncan@term:/example/include$ cp ../../detecter-lite/include/* .

Once all files are copied in place, the whole project can be built by invoking
make:

duncan@term:/example/include$ cd ..
duncan@term:/example$ make

Compiling Erlang source file: src/log.erl to ebin/log.beam
Compiling Erlang source file: src/plus_one.erl to ebin/plus_one.beam

>-------------------------------<
Build completed successfully!

>-------------------------------<

Running and Testing the Server With the build now complete, it is time
to launch and test the plus one server. As we have not developed a complete
application, but only the server part of it, testing will be conducted using the
Erlang shell in place of a full client implementation. The plus one server and
shell can be launched from the terminal as follows:

example

include

log.hrl

macros.hrl

Makefile

src

log.erl

plus one.erl

test

(a) The example project direc-
tory tree before compilation.

example

ebin

formula.beam

launcher.beam

log.beam

main mon.beam

plus one.beam

prop.beam

include

log.hrl

macros.hrl

Makefile

src

log.erl

plus one.erl

test

(b) The example project directory
tree after compilation and instru-
mentation.

1 duncan@term:/example$ erl -pa ebin -eval "plus_one:start(eql)"
2

3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]
4 [<0.2.0> - plus_one:22] - Started PLUS ONE server with initial value ‘0’ and mode ‘eql’.
5 Eshell V7.2 (abort with Ĝ)
6 1> _

The plus one server has been purposefully started in equal mode (using the
start up flag eql); this simulates incorrect behaviour whereby client requests
sent to the server are not incremented but merely echoed back as is. This serves
us later when we verify for the safety property in Apps. A.2.

For now, confirm that the server started up successfully by ensuring that the
plus one start up log (line 4) shows up in the terminal. Once loaded, the server

can be tested by submitting requests to it using the Erlang ! (send) operator
(line 7):

7 1> plus_one ! {request, self(), 1}.
8

9 [<0.33.0> - plus_one:41] - Received request with value ‘1’.
10 [<0.33.0> - plus_one:46] - Sending response with value ‘{result,1}’, Current cnt ‘1’.
11 {request,<0.36.0>,1}
12 2> _

The request sent to the plus one server identified with the registered process
name “plus one” follows the format: {request, PID, Number }, where PID is the
Erlang Process Identifier of the sender actor (in this case, the Erlang shell), and
Number is the actual data payload, i.e., the number which the client wishes to
increment. Note that Erlang shell commands must terminate with the period
symbol, otherwise these will not be processed.

As seen from the above logs, the plus one server receives the number ‘1’ as
payload, and replies back with a response of ‘1’ (lines 9 - 10). A correct imple-
mentation of the plus one server ought to have replied with a value of ‘2’, which
corresponds to the client’s request being incremented by ‘1’. To view the server’s
response from the Erlang shell and verify that an incorrect response has been
indeed sent back, invoke the flush() function to empty the shell’s mailbox (line
13).

13 2> flush().
14 Shell got {result,1}
15 ok
16 3> _

Now that we have confirmed that the server is working (incorrectly) as in-
tended, the Erlang shell can be closed by typing “q().” at the terminal. In the
next section we explore how the erroneous behaviour of the plus one server can
be detected using a recursive safety property specified in sHML.

A.2 Instrumenting the Target System

We are now in a position to generate a simple monitor that verifies for the safety
property: “the server’s response cannot be equal to the client’s request sent to it”.
The monitor synthesised from this property should detect violating behaviour
in the plus one server introduced in the preceding section.

Specifying the Safety Property Properties using our tool are specified in
plain text files that are processed by the tool to produce monitors in the form
of Erlang code. These, together with their dependencies, are compiled to Erlang
.beam files and copied into the target system’s binary directory. The compiler
also generates a launcher module which bootstraps the system together with

the synthesised monitor. Once both are executing concurrently, the system pro-
ceeds as usual, while the monitor continually observes the system’s behaviour
expressed in terms of the messages exchanged between it and its environment.
Upon detecting a violation, the monitor flags it accordingly and terminates.

The safety property above can be specified by opening any plain text editor
and pasting the following sHML, saving it as prop.hml:

max(‘X’,
[Server ? {request, Client, Request}][Client ! {result, Request}] ff
&&
[Server ? {request, Client, Request}][Client ! {result, Result}] ‘X’)

Alternatively, it can be done using the terminal like so:

duncan@term:/example$ echo -e "max(‘X’,\n\
[Server ? {request, Client, Request}][Client ! {result, Request}] ff\n\
&&\n\
[Server ? {request, Client, Request}][Client ! {result, Result}] ‘X’)" > prop.hml

Either approach should result in the creation of the HML file prop.hml

located in the example directory.
The expression above uses a conjunction (&&) construct to state the possible

behaviours that are to be expected by the system. The violating behaviour stated
by [Server ? {request, Client, Request }][Client ! {result, Request }] ff
specifies that a violation ought to be flagged if the server receives a request from
Client with a numeric payload of Request, and sends back to Client that very
same Request value. The recursive (non-violating) behaviour expressed through
[Server ? {request, Client, Request }][Client ! {result, Result }] ‘X’ st-
ates that the monitor ought to recurse if the server receives a request from Client
with a numeric payload of Request and sends back to the same Client a different
value Result.

The term different in this context is taken to mean any value, not just the
successor or predecessor of the value in Request. This is perfectly acceptable since
we are only interested in cases where the plus one server sends back the same
value in Request back to Client. It is important to take note of the differences
between the contents of Request and Result which are attributed to the values
to which these variables bind to while the trace event is being processed. Also
observe the recursion construct max(‘X’, ...), referenced by variable ‘X’ in the
right operand of the conjunction.

Synthesising the Monitor The monitor corresponding to the script created
above is synthesised using the instrument target from the application makefile,
as shown below:

duncan@term:/example$ cd ../detecter-lite
duncan@term:/detecter-lite$ make instrument hml="../example/prop.hml"\

app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[eql]}"

The command line arguments of instrument stand for the following:

– hml: The relative or absolute path of the plain text file containing the cor-
rectness property to be synthesised;

– app-bin-dir: The target application’s binary directory base;
– MFA: The target application’s entry point function in the form of a {Module,

Function, [Arguments]} tuple, where we specified the plus one module’s
start function passing eql as the argument, as done previously in Apps. A.1.

The resulting instrumented system results in the project depicted in Fig. 3b.
Note that the original target system binaries remain untouched, and the previous
plus one server can still be run with no monitoring applied to it.

Running the Monitored System The instrumented target system can now
be run using the launcher module generated by the tool as follows:

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"
2

3 Erlang/OTP 18 [erts-7.2] [smp:4:4] [async-threads:10] [kernel-poll:false]
4 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].
5 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial value ‘0’ and mode ‘eql’.
6

7 [<0.33.0> - main_mon:24] - System to be monitored started.
8 Eshell V7.2 (abort with Ĝ)
9 [<0.34.0> - main_mon:62] - Resolved procs [].

10 [<0.40.0> - formula:152] - mon_max adding var ‘X’ to formula env.
11 [<0.40.0> - formula:91] - mon_and spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.
12 [<0.34.0> - main_mon:84] - Starting main monitor loop.
13 1> _

Different to the logs already seen in the previous execution of the plus one

server, we note that now, both the target system under observation, as well as the
monitor for it are running in parallel. Observe that the “conjunction monitor”
mon and (PID 〈0.40.0〉) has already spawned its two submonitors, as announced
by the log in line 11. Like before, the system can now be tested using the same
request sent from the Erlang shell (line 14):

14 1> plus_one ! {request, self(), 1}.
15

16 [<0.35.0> - plus_one:41] - Received request with value ‘1’.
17 [<0.41.0> - formula:120] - mon_nec evaluating action:
18 {recv,<0.35.0>,{request,<0.38.0>,1}}.
19 [<0.42.0> - formula:120] - mon_nec evaluating action:
20 {recv,<0.35.0>,{request,<0.38.0>,1}}.
21 [<0.35.0> - plus_one:46] - Sending response with value ‘{result,1}’, Current cnt ‘1’.
22

23 {request,<0.38.0>,1}
24 [<0.41.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{result,1}}.
25 [<0.42.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{result,1}}.
26 [<0.41.0> - formula:67] - mon_ff matched ‘ff’ action.
27 [<0.42.0> - formula:180] - mon_var retrieving var ‘X’ from formula env and recursing.
28 [<0.34.0> - main_mon:113] -
29

30 Main monitor/tracer received ‘ff’ - *** Violation detected! ***
31

32 2> _

As may be gleaned from the logs above, once the trace event for {request,
self(), 1} is raised by the Erlang tracing mechanism, both left (PID 〈0.41.0〉)
and right (PID 〈0.42.0〉) submonitors immediately acquire it from the top “con-
junction monitor” (lines 17 - 19). Next, the plus one server computes the result
and sends it back to the Erlang shell; this causes the second trace event to be
raised, and likewise, is processed by both submonitors (lines 24 - 25). At this
point, note that while the right sub-monitor tries to unfold the next computa-
tion (line 27), the left sub-monitor flags a violation verdict ff (line 26), which
is noted by the main monitor. As the existence of a single detection suffices for
the main monitor to be able to yield a global verdict, the monitor terminates
accordingly with ff (line 30).

Running the Correct Server Recall that we intentionally launched the
plus one server using the eql flag in order to demonstrate how the monitor
handles violations. We now re-instrument the server and initialise it with the
correct behaviour flag: lim, as shown in line 6. Note that the only difference in
the instrument command lies only in the MFA tuple that starts the server:

duncan@term:/detecter-lite$ make instrument hml="../example/prop.hml"\
app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[lim]}"

The plus one server should now behave correctly and increment the numeric
payloads contained in requests sent to it by the Erlang shell.

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"
2

3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]
4

5 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].
6 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial value ‘0’ and mode ‘lim’.
7 [<0.33.0> - main_mon:24] - System to be monitored started.
8 Eshell V7.2 (abort with Ĝ)
9 [<0.34.0> - main_mon:62] - Resolved procs [].

10 [<0.40.0> - formula:152] - mon_max adding var ‘X’ to formula environment.
11 [<0.40.0> - formula:91] - mon_and spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.
12 [<0.34.0> - main_mon:84] - Starting main monitor loop.
13 1> _

What happens if we try to send the same {request, self(), 1} request to
the plus one server, as done in line 14?

14 1> plus_one ! {request, self(), 1}.
15 [<0.35.0> - plus_one:41] - Received request with value ‘1’.
16

17 [<0.41.0> - formula:120] - mon_nec evaluating action:
18 {recv,<0.35.0>,{request,<0.38.0>,1}}.
19 [<0.42.0> - formula:120] - mon_nec evaluating action:
20 {recv,<0.35.0>,{request,<0.38.0>,1}}.
21 [<0.35.0> - plus_one:46] - Sending response with value ‘{result,2}’, Current cnt ‘1’.
22 {request,<0.38.0>,1}
23 [<0.41.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{result,2}}.
24 [<0.42.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{result,2}}.
25 [<0.41.0> - formula:59] - mon_id no match.
26 [<0.42.0> - formula:180] - mon_var retrieving var ‘X’ from formula env and recursing.
27 [<0.42.0> - formula:91] - mon_and spawned processes ‘<0.44.0>’ and ‘<0.45.0>’.
28 2> _

Contrary to the previous run, no violations are flagged, despite the fact that
the exact same trace events are raised by the Erlang tracing mechanism. The
difference lies only in the processing of the last event (i.e., {result, 2}) which
causes the left sub-monitor to terminate due to a pattern mismatch (line 25),
and the right sub-monitor to unfold recursively in preparation for the next trace
events (line 26).

A.3 Co-safety Properties

The monitor synthesised previously from the safety property in Apps. A.2, flags
a violation whenever the server does not increment the numeric payload in the
client’s request. We saw that when a correct working server (started with the
lim flag) was monitored using this same monitor, no violations were flagged.

In this example, we consider a simple co-safety property with which the
positive behaviour of the plus one server can be ascertained. The lim flag used
to start the server in Apps. A.2 imposes a limit on the number of request-response
exchanges, essentially making it a finite server. After this limit is attained, the
server accepts no subsequent client requests. We devise the co-safety property
“the server’s process limit is finally reached” to verify for this desired behaviour,
and specify it in cHML as follows:

min(‘X’,
/Server ? {request, _, _}\/Client ! {stop, limit_reached}\tt
||
/Server ? {request, _, _}\/Client ! {result, _}\ ‘X’)

Note that since we do not care about the values of bound variables (as op-
posed to the earlier safety property), the wildcard binder is used in the above
specification; although binds with any value, it retains none. As done previously,
we re-instrument the plus one server system using the new cHML specification:

duncan@term:/detecter-lite$ make instrument hml="../example/prop2.hml"\
app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[lim]}"

The monitor resulting from the specification file prop2.hml is again launched
in tandem with the target system like so:

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"
2

3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]
4

5 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].
6 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial value ‘0’ and mode ‘lim’.
7 [<0.33.0> - main_mon:24] - System to be monitored started.
8 Eshell V7.2 (abort with Ĝ)
9 [<0.34.0> - main_mon:62] - Resolved procs [].

10 [<0.40.0> - formula:166] - mon_min adding var ‘X’ to formula env.
11 [<0.40.0> - formula:106] - mon_or spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.
12 [<0.34.0> - main_mon:84] - Starting main monitor loop.
13 1> _

The behaviour of the monitor follows that of the one already seen earlier in
Apps. A.2: the “disjunction monitor” mon or (PID 〈0.40.0〉) spawns its left (PID
〈0.41.0〉) and right (PID 〈0.42.0〉) submonitors upon starting, in preparation for
incoming trace events (line 11). Once a sufficiently high number of client requests
(1000 in our example, line 14) are sent, the server reaches its request-response
limit of 100, and consequently, the monitor flags the property satisfaction ac-
cordingly using tt (line 31). Note that this time, instead of sending the numeric
payload directly, we make use of the plus one:request/1 function (line 14).

14 1> lists:foreach(fun(N) -> plus_one:request(N) end, lists:seq(1, 1000)).
15 ...
16 ...
17 [<0.240.0> - formula:106] - mon_or spawned processes ‘<0.241.0>’ and ‘<0.242.0>’.
18

19 [<0.241.0> - formula:136] - mon_pos evaluating action:
20 {recv,<0.35.0>,{request,<0.38.0>,101}}.
21 [<0.242.0> - formula:136] - mon_pos evaluating action:
22 {recv,<0.35.0>,{request,<0.38.0>,101}}.
23 [<0.241.0> - formula:136] - mon_pos evaluating action:
24 {send,<0.38.0>,{stop,limit_reached}}.
25 [<0.242.0> - formula:136] - mon_pos evaluating action:
26 {send,<0.38.0>,{stop,limit_reached}}.
27 [<0.241.0> - formula:76] - mon_tt matched ‘tt’ action.
28 [<0.242.0> - formula:59] - mon_id no match.
29 [17/5/2016 20:03:25, INFO - <0.34.0> - main_mon:110] -
30

31 Main monitor/tracer received ‘tt’ - *** Satisfaction detected! ***
32

33 2> _

A.4 Correct Property Synthesis

We present a final example aimed at showcasing the generation of correct moni-
tors from mHML formulas according to the synthesis function refined in Sec. 3.
Consider the sHML formula below:

[Server ? {request, Client, Request}][Client ! {result, Request}] ff
&&
[Server ? {request, Client, Request}][Client ! {result, Request}] tt

This specifies that the “the server’s response cannot be equal to the client’s
request sent to it”, and also that “the server’s response can be equal to the
client’s request sent to it”. By virtue of the side conditions of the refined monitor
synthesis function in Sec. 3, these cases are appropriately handled and in this
particular instance, the right operand of the conjunction && (equating to tt) is
removed altogether from the generated Erlang monitor, finally resulting in the
following:

formula:mon_nec(fun(Act) ->
case Act of
{recv, Server, {request, Client, Request}} ->
formula:mon_nec(fun(Act1) ->
case Act1 of
{send, Client, {result, Request}} -> formula:mon_ff();
_ -> formula:mon_id()

end
end);

_ -> formula:mon_id()
end

end)

An exhaustive test suite, compiler tests.erl located in the EUnit tests

directory within the distribution of our tool considers and tests all the possible
side conditions handled by the refined synthesis function in Sec. 3. The inter-
ested reader is encouraged to explore these tests in order to appreciate the inner
workings of the monitor generation process.

A.5 Trying Out Other Properties

This hands-on guide provided the general workflow that can be adopted when
specifying properties and instrumenting the corresponding monitors into existing
system implementations. Our approach is advantageous for two main reasons:

1. Instrumentation relies only on the application’s binary files, and requires no
access to the system source code. This stems from the fact that the collection
of trace events employs exclusively the native tracing functionality provided
by Erlang.

2. The synthesis process places the compiled monitor files and their dependen-
cies alongside the original target system binary files, leaving these untouched.
This makes it possible to run both the uninstrumented and instrumented
versions of the target system either by invoking it directly or through the
launcher module respectively.

As seen throughout this appendix, employing a non-intrusive instrumentation
mechanism makes the monitoring effort quite lightweight. In addition, the fact
that the target system binaries are not modified makes it possible for our tool
to be applied to (commercial) software with licenses and/or support agreements
that explicitly forbid the modification of binary code.

We invite the reader to experiment with the other safety and co-safety
properties located in the mhml tests.erl module included with the distribu-
tion of the tool. Comments and suggestions are welcome, and can be directed
to us through the project’s Jira page at https://bitbucket.org/duncanatt/

detecter-lite/issues.

