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Abstract. Runtime enforcement is a dynamic analysis technique that instruments a
monitor with a system in order to ensure its correctness as specified by some property.
This paper explores bidirectional enforcement strategies for properties describing the input
and output behaviour of a system. We develop an operational framework for bidirectional
enforcement and use it to study the enforceability of the safety fragment of Hennessy-Milner
logic with recursion (sHML). We provide an automated synthesis function that generates
correct monitors from sHML formulas, and show that this logic is enforceable via a specific
type of bidirectional enforcement monitors called action disabling monitors.
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1. Introduction

Runtime enforcement (RE) [LBW05, FFM08] is a dynamic verification technique that
uses monitors to analyse the runtime behaviour of a system-under-scrutiny (SuS) and
transform it in order to conform to some correctness specification. The earliest work in
RE [LBW05, LBW09, Sak09, BM11a, KT12] models the behaviour of the SuS as a trace of
abstract actions (e.g., α, β, . . . ∈ Act). Importantly, it assumes that the monitor can either
suppress or replace any of these (abstract) actions and, whenever possible, insert additional
actions into the trace.

This work has been used as a basis to implement unidirectional enforcement approaches
[KAB+17, FFM12, ACFI18, Av11] that monitor the outputted trace of actions emitted by
the SuS as illustrated by Figure 1(a). In this setup, the monitor is instrumented with the
SuS to form a composite system (represented by the dashed enclosure in Figure 1) and is
tasked with transforming the output behaviour of the SuS to ensure its correctness. For
instance, an erroneous output β of the SuS is intercepted by the monitor and transformed
into β′, to stop the error from propagating to the surrounding environment.

Despite its merits, unidirectional enforcement disregards the fact that not all events
originate from the SuS. For instance, protocol specifications describing the interaction of
communicating computational entities include input actions, instigated by the environment
in addition to output actions originating from the SuS. Arguably, these properties are
harder to enforce. Since inputs are instigated by the environment, the SuS possesses only
partial control over them and the capabilities to prevent or divert such actions can be
curtailed. Moreover, in such a bidirectional setting, the properties to be enforced tend to be
of a first-order nature [ACFI18, HRTZ18], describing relationships between the respective
payload carried by input and output events. This means that even when the (monitored)
SuS can control when certain inputs can be supplied (e.g., by opening a communication
port, or by reading a record from a database etc.), the environment still has control over the
provided payload.

Broadly, there are two approaches to enforce bidirectional properties at runtime. Several
bodies of work employ two monitors attached at the output side of each (diadic) interacting
party [BCD+17, JGP16, CBD+12, ?]. As shown in Figure 1(b), the extra monitor is attached
to the environment to analyse its outputs before they are passed on as inputs to the SuS.
While this approach is effective, it assumes that a monitor can actually be attached to the
environment (which is often inaccessible).

By contrast, Figure 1(c) presents a less explored bidirectional enforcement approach
where the monitor analyses the entire behaviour of the SuS without the need to instrument
the environment. The main downside of this alternative setup is that it enjoys limited
control over the SuS’s inputs. As we already argued, the monitor may be unable to enforce
a property that could be violated by an input action with an invalid payload value. In other
cases, the monitor might need to adopt a different enforcement strategy to the ones that are
conventionally used for enforcing output behaviour in a unidirectional one.

This paper explores how existing monitor transformations—namely, suppressions, in-
sertions and replacements—can be repurposed to work for bidirectional enforcement, i.e.,
the setup in Figure 1(c). Since inputs and outputs must be enforced differently, we find
it essential to distinguish between the monitor’s transformations and their resulting effect
on the visible behaviour of the composite system. This permits us to study the enforce-
ability of properties defined via a safety subset of the well-studied branching-time logic
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Figure 1. Enforcement instrumentation setups.

µHML [RH97, AILS07, Lar90] (a reformulation of the modal µ-calculus [Koz83]), called
sHML. A crucial aspect of our investigation is the synthesis function that maps the declarative
safety µHML specifications to algorithmic monitors that enforce properties concerning both
the input and output behaviour of the SuS. Since monitors are part of the trusted computing
base, it was imperative that we ensure that all synthesised monitors are correct [?, Fra21].
Our contributions are:

(i) A general instrumentation framework for bidirectional enforcement (Figure 4) that is
parametrisable by any system whose behaviour can be modelled as a labelled transition
system. The framework subsumes the one presented in previous work [ACFI18] and
differentiates between the enforcement of input and output actions.

(ii) A novel formalisation describing what it means for a monitor to adequately enforce
a property in a bidirectional setting (Definitions 4.1 and 4.9). These definitions are
parametrisable with respect to an instrumentation relation, an instance of which is
given by our enforcement framework of Figure 4.

(iii) A new result showing that the subclass of disabling monitors, Definition 3.1 (the
counterpart to suppression monitors in unidirectional enforcement), suffices to bidi-
rectionally enforce safety properties expressed as µHML formulas (Theorem 5.5).
A by-product of this result is a synthesis function (Definition 5.3) that generates a
disabling monitor from such safety formulas.

(iv) A preliminary investigation on the notion of monitor optimality (Definition 6.3). Our
proposed definition assesses the level of intrusiveness of the monitor and guides in
the search for the least intrusive one. We evaluate our monitor synthesis function of
Definition 5.3 in terms of this optimality measure, Theorem 6.12.

This article is the extended version of the paper titled “On Bidirectional Runtime Enforce-
ment” that appeared at FORTE 2021 [ACFI21]. In addition to the material presented in
the conference version, this version contains extended examples, the proofs of the main
results and new material on monitor optimality. The related work section has also been
considerably expanded.

2. Preliminaries

The Model. We assume a countably infinite set of communication ports a, b, c∈Port, a set
of values v, w∈Val, and partition the set of actions Act into
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Syntax

φ,ψ ∈ sHML ::= tt (truth) | ff (falsehood) |
∧

i∈I φi (conjunction)

| [p, c]φ (necessity) | maxX.φ (greatest fp.) | X (fp. variable)

Semantics

Jtt, ρK def

= Sys

Jff, ρK def

= ∅

JX, ρK def

= ρ(X)

J
∧
i∈I

φi, ρK
def

=
⋂
i∈I

Jφi, ρK

JmaxX.φ, ρK def

=
⋃{

S | S ⊆ Jφ, ρ[X 7→ S]K
}

J [p, c]φ, ρK def

=
{
s | ∀α, r, σ · (s α

=⇒ r and match(p, α)=σ and cσ⇓ true) implies r∈ Jφσ, ρK
}

Figure 2. The syntax and semantics for sHML, the safety fragment of the
branching-time logic µHML [Lar90].

• inputs, a?v ∈ iAct e.g., denoting an input by the system from the environment on port a
carrying payload v; and

• outputs, a!v ∈oAct originating from the system to the interacting environment on port a
carrying payload v

where Act = iAct∪oAct. Systems are described as labelled transition systems (LTSs);
these are triples ⟨Sys,Act ∪ {τ} ,→⟩ consisting of a set of system states, s, r, q ∈Sys, a
set of visible actions, α, β ∈Act, along with a distinguished silent action τ /∈Act (where

µ∈Act∪ {τ}), and a transition relation, −→ ⊆ (Sys×(Act∪{τ})×Sys). We write s
µ−→ r

in lieu of (s, µ, r) ∈→, and s
α
==⇒ r to denote weak transitions representing s(

τ−→)∗· α−→ r

where r is called the α-derivative of s. For convenience, we use the syntax of the regular
fragment of value-passing CCS [HL96] to concisely describe LTSs. Traces t, u ∈ Act∗ range

over (finite) sequences of visible actions. We write s
t
=⇒ r to denote a sequence of weak

transitions s
α1==⇒ . . .

αn===⇒ r where t = α1 . . . αn for some n ≥ 0; when t= ε, s
ε
=⇒ r means

s
τ−→*r. Additionally, we represent system runs as explicit traces that include τ -actions,

tτ , uτ ∈ (Act∪ {τ})∗ and write s
µ1...µn−−−−−→ r to denote a sequence of strong transitions

s
µ1−−→ . . .

µn−−→ r. The function sys(tτ ) returns a system that produces exclusively the
sequence of actions defined by tτ , modulo the data carried by input actions in tτ that cannot
be controlled by the receiving process. For instance, sys(a?3.τ.a!5) produces the process
a?x.τ.a!5.nil. We consider states in our system LTS modulo the classic notion of strong
bisimilarity [HL96, San11] and write s ∼ r when states s and r are bisimilar.

The Logic. The behavioral properties we consider are described using sHML [AI99, FAI17],
a subset of the value passing µHML [RH97, HL95] that uses symbolic actions of the form
(p,c) consisting of an action pattern p and a condition c. Symbolic actions facilitate reasoning
about LTSs with infinitely many actions (e.g., inputs or outputs carrying data from infinite
domains). They abstract over concrete actions using data variables x, y, z ∈ DVar that
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occur free in the constraint c or as binders in the pattern p. Patterns are subdivided into
input (x)?(y) and output (x)!(y) patterns where (x) binds the information about the port
on which the interaction has occurred, whereas (y) binds the payload; bv(p) denotes the
set of binding variables in p whereas fv(c) represents the set of free variables in condition
c. We assume a (partial) matching function match(p, α) that (when successful) returns the
(smallest) substitution σ : DVar ⇀ (Port ∪Val), mapping bound variables in p to the
corresponding values in α; by replacing every occurrence (x) in p with σ(x) we get the
matched action α. The filtering condition, c, is evaluated wrt. the substitution returned by
successful matches, written as cσ⇓v where v ∈ {true, false}.

Whenever a symbolic action (p, c) is closed, i.e., fv(c)⊆bv(p), it denotes the set

of actions J(p, c)K def

= { α ∃σ ·match(p, α)=σ and cσ⇓ true }. For example, we can have
J
(
(x)!(y), (x = a ∨ x = b) ∧ y ≥ 3

)
K = {a!3, b!3, a!4, b!4, a!5, b!5, a!6, b!6, . . .}. Following

standard (concrete) value-passing LTS semantics [MPW92, HL96], our systems have no
control over the data values supplied via inputs. Accordingly, we assume a well-formedness
constraint where the condition c of an input symbolic action, ((x)?(y),c), cannot restrict
the values of binder y, i.e., y /∈ fv(c). As a shorthand, whenever a condition in a symbolic
action equates a bound variable to a specific value we embed the equated value within the
pattern, e.g., ((x)!(y), x= a ∧ y=3), ((x)?(y),x= a) and ((x)?(y),x= z) become (a!3,true),
(a?(y),true) and (z?(y),true) resp.; we also elide true conditions, and occasionally just write
(a!3) and (a?(y)) in lieu of (a!3,true) and (a?(y),true) when the meaning of this shorthand
can be inferred from the context.

Figure 2 presents the sHML syntax for some countable set of logical variables X,Y ∈
LVar. The construct

∧
i∈I φi describes a compound conjunction, φ1∧ . . .∧φn, where I =

{1, .., n} is a finite set of indices. The syntax also permits recursive properties using greatest
fixpoints, maxX.φ, which bind free occurrences of X in φ. The central construct is the
(symbolic) universal modal operator, [p, c]φ, where the binders bv(p) bind the free data
variables in c and φ. We occasionally use the notation ( ) to denote “don’t care” binders in
the pattern p, whose bound values are not referenced in c and φ. We also assume that all
fixpoint variables, X, are guarded by modal operators.

Formulas in sHML are interpreted over the system powerset domain where S∈P(Sys).
The semantic definition of Figure 2, Jφ, ρK, is given for both open and closed formulas. It
employs a valuation from logical variables to sets of states, ρ ∈ (LVar → P(Sys)), which
permits an inductive definition on the structure of the formulas; ρ′ = ρ[X 7→ S] denotes a
valuation where ρ′(X) = S and ρ′(Y ) = ρ(Y ) for all other Y ̸= X. The only non-standard
case is that for the universal modality formula, [p, c]φ, which is satisfied by any system that
either cannot perform an action α that matches p while satisfying condition c, or for any
such matching action α with substitution σ, its derivative state satisfies the continuation
φσ. We consider formulas modulo associativity and commutativity of ∧, and unless stated
explicitly, we assume closed formulas, i.e., without free logical and data variables. Since the
interpretation of a closed φ is independent of the valuation ρ we write JφK in lieu of Jφ, ρK. A
system s satisfies formula φ whenever s∈ JφK, and a formula φ is satisfiable, when JφK ̸= ∅.

We find it convenient to define the function after, describing how an sHML formula
evolves in reaction to an action µ. Note that, for the case φ = [p, c]ψ, the formula returns ψσ
when µ matches successfully the symbolic action (p, c) with σ, and tt otherwise, to signify a
trivial satisfaction.
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Definition 2.1. We define the function after : (sHML×Act∪{τ})→ sHML as:

after(φ, α)
def

=


φ if φ∈

{
tt,ff

}
after(φ′{φ/X}, α) if φ=maxX.φ′∧

i∈I after(φi, α) if φ=
∧

i∈I φi

ψσ if φ= [p, c]ψ and ∃σ·(match(p, α)=σ ∧ cσ⇓ true)
tt if φ= [p, c]ψ and ∄σ·(match(p, α)=σ ∧ cσ⇓ true)

after(φ, τ)
def

= φ ■

We abuse notation and lift the after function to (explicit) traces in the obvious way,
i.e., after(φ, tτ ) is equal to after(after(φ, µ), uτ ) when tτ = µuτ and to φ when tτ = ε. Our
definition of after is justified vis-a-vis the semantics of Figure 2 via Proposition 2.3; it will
play a role later on when defining our notion of enforcement in Section 4.

Remark 2.2. The function after is well-defined due to our assumption that formulas are
guarded, guaranteeing that φ′{φ/X} has fewer top level occurrences of greatest fixpoint
operators than maxX.φ′. ■

Proposition 2.3. For every system state s, formula φ and action α, if s∈ JφK and s
α
==⇒s′

then s′ ∈ Jafter(φ, α)K.

Example 2.4. The safety property φ1 repeatedly requires that every input request that
is made on a port that is not b, cannot be followed by another input on the same port in
succession. However, following this input it allows a single output answer on the same port
in response, followed by the logging of the serviced request by outputting a notification
on a dedicated port b. We note how the channel name bound to x is used to constrain
sub-modalities. Similarly, values bound to y1 and y2 are later referenced in condition
y3=(log, y1, y2).

φ1
def

= maxX.[((x)?(y1), x̸=b)]([(x?( ))]ff ∧ [(x!(y2))]φ
′
1)

φ′
1

def

= ([(x!( ))]ff ∧ [(b!(y3), y3=(log, y1, y2))]X)

Consider the systems sa, sb and sc:

sa
def

= recX.((a?x.y := ans(x).a!y.b!(log, x, y).X) + scls)

(where scls
def

= (b?z.if z=cls then nil else X))

sb
def

= recX.((a?x.y := ans(x).a!y.(a!y.b!(log, x, y).sa + b!(log, x, y).X)) + scls)

sc
def

= a?y.sa

The system sa implements a request-response server that repeatedly inputs values (for some
domain Val) on port a, a?x, for which it internally computes an answer and assigns it to
the data variable y, y := ans(x). Subsequently, it outputs the answer on port a in response
to each request, a!y, and then logs the serviced request pair of values by outputting the
triple (log, x, y) on port b, b!(log, x, y). It terminates whenever it receives a close request cls
from port b, i.e., b?z when z= cls. Systems sb and sc are similar to sa but define additional
behaviour: sc requires a startup input, a?y, before behaving as sa, whereas sb occasionally
provides a redundant (underlined) answer prior to logging a serviced request.

Using the semantics of Figure 2, one can verify that the first system satisfies our
correctness property φ1, i.e., sa ∈ Jφ1K. However the second system sb does not satisfy
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modified output
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default input
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Figure 3. Disabling, enabling and adapting bidirectional runtime enforce-
ment via suppressions, insertions and replacements.

this property because it can inadvertently answer twice a request, i.e., sb /∈ Jφ1K since we

have sb
a?v1.a!ans(v1).a!ans(v1)
===============⇒ (for some value v1). Analogously, the third system sc violates

property φ1 because it can accept two consecutive inputs on port a (without answering the

preliminary request first), i.e., sc /∈ Jφ1K since sc
a?v1.a?v2=======⇒ (for any pair of values v1 and

v2). ■

3. A Bidirectional Enforcement Model

Bidirectional enforcement seeks to transform the entire (visible) behaviour of the SuS in
terms of output actions (instigated by the SuS itself, which in turn controls the payload values
being communicated) and input actions (originating from the interacting environment which
chooses the payload values); this contrasts with unidirectional approaches that only modify
output traces. In this richer setting, it helps to differentiate between the transformations
performed by the monitor (i.e., insertions, suppressions and replacements), and the way they
can be used to affect the resulting behaviour of the composite system. In particular, we say
that:

• an action that can be performed by the SuS has been disabled when it is no longer visible
in the resulting composite system (consisting of the SuS and the monitor);

• an action is enabled when the composite system can execute it while the SuS cannot;
• an action is adapted when either its payload differs from that of the composite system, or
when the action is rerouted through a different port.

We argue that implementing action enabling, disabling and adaptation differs according
to whether the action is an input or an output; see Figure 3. Enforcing actions instigated by
the SuS—such as outputs—is more straightforward. Figure 3(a), (b) and (c) resp. state
that disabling an output can be achieved by suppressing it, adapting an output amounts to
replacing the payload or redirecting it to a different port, whereas output enabling can be
attained via an insertion. However, enforcing actions instigated by the environment such as
inputs is harder. In Figure 3(d), we propose to disable an input by concealing the input port.
Since this may block the SuS from progressing, the instrumented monitor may additionally
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Syntax

m,n ∈ Trn ::= (p, c, p′).m |
∑

i∈I mi (I is a finite index set) | recX.m | X

Dynamics

eSel
mj

γ▶γ′
−−−→ nj∑

i∈I mi
γ▶γ′
−−−→ nj

j∈I eRec
m{recX.m/X} γ▶γ′

−−−→ n

recX.m
γ▶γ′
−−−→ n

eTrn
match(p, γ) = σ cσ ⇓ true γ′=πσ

(p, c, π).m
γ▶γ′
−−−→ mσ

Instrumentation

biTrnO
s

b!w−−−→ s′ m
(b!w)▶(a!v)−−−−−−−→ n

m[s]
a!v−−→ n[s′]

biTrnI
m

(a?v)▶(b?w)−−−−−−−→ n s
b?w−−−→ s′

m[s]
a?v−−−→ n[s′]

biDisO
s

a!v−−→ s′ m
(a!v)▶•−−−−−→ n

m[s]
τ−→ n[s′]

biDisI
m

•▶(a?v)−−−−−→ n s
a?v−−−→ s′

m[s]
τ−→ n[s′]

biEnO
m

•▶(a!v)−−−−−→ n

m[s]
a!v−−→ n[s]

biEnI
m

(a?v)▶•−−−−−→ n

m[s]
a?v−−−→ n[s]

biAsy
s

τ−→ s′

m[s]
τ−→ m[s′]

biDef
s

a!v−−→ s′ m ̸a!v−−→ ∀ b∈Port, w∈Val ·m ̸•▶b!w−−−−→

m[s]
a!v−−→ id[s′]

Figure 4. A bidirectional instrumentation model for enforcement monitors.

insert a default input to unblock the system waiting to input on the channel used for the
insertion, Figure 3(e), in cases where the environment fails to provide the corresponding
output. Input adaptation, Figure 3(f), is also attained via a replacement, albeit applied in
the opposite direction to the output case. Inputs can also be enabled whenever the SuS is
unable to carry them out, Figure 3(g), by having the monitor accept the input in question
and then suppress it. Note that, from the perspective of the environment, the input would
still be effected.

Figure 4 presents an operational model for the bidirectional instrumentation proposal of
Figure 3 in terms of (symbolic) transducers. A variant of these transducers was originally
introduced in [ACFI18] for unidirectional enforcement. Transducers, m,n∈Trn, are moni-
tors that define symbolic transformation triples, (p,c,π), consisting of an action pattern p,
condition c, and a transformation action π. Conceptually, the action pattern and condition
determine the range of system (input or output) actions upon which the transformation
should be applied, while the transformation action specifies the transformation that should
be applied. The symbolic transformation pattern p is an extended version of those definable
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in symbolic actions, that may also include •; when p= •, it means that the monitor can act
independently from the system to insert the action specified by the transformation action.
Transformation actions are possibly open actions (i.e., actions with possibly free variable
such as x?v or a!x) or the special action •; the latter represents the suppression of the action
specified by p. We assume a well-formedness constraint where, for every (p, c, π).m, p and
π cannot both be •, and when neither is, they are of the same type i.e., an input (resp.
output) pattern and action. Examples of well-formed symbolic transformations are:

• (•, true, a?v), inserting an input on port a with value v;
• ((x)!(y), y ≥ 5, •), suppressing an output action carrying a payload that is greater or equal
to 5; and

• ((x)!(y), x = b, a!y), redirecting (i.e., adapting) outputs on port b carrying the payload y
(learnt dynamically at runtime) to port a.

The monitor transition rules in Figure 4 assume closed terms, i.e., every transformation-
prefix transducer of the form (p, c, π).m must obey the closure constraint stating that(
fv(c)∪ fv(π)∪ fv(m)

)
⊆bv(p). A similar closure requirement is assumed for recursion

variables X and recX.m. Each transformation-prefix transducer yields an LTS with labels of

the form γ▶γ′, where γ, γ′ ∈ (Act∪{•}). Intuitively, transition m γ▶γ′
−−−→ n denotes the way

that a transducer in state m transforms the action γ into γ′ while transitioning to state n.
The transducer action α▶β represents the replacement of α by β, α▶α denotes the identity
transformation, whereas α▶• and •▶α respectively denote the suppression and insertion
transformations of action α. The key transition rule in Figure 4 is eTrn. It states that the
transformation-prefix transducer (p, c, π).m transforms action γ into a (potentially) different
action γ′ and reduces to state mσ, whenever γ matches pattern p, i.e., match(p, γ)=σ, and
satisfies condition c, i.e., cσ ⇓ true. Action γ′ results from instantiating the free variables in π
as specified by σ, i.e., γ′=πσ. The remaining rules for selection (eSel) and recursion (eRec)

are standard. We employ the shorthand notation m ̸γ−→ to mean ∄γ′,m′ such that m
γ▶γ′
−−−→m.

Moreover, for the semantics of Figure 4, we can encode the identity transducer/monitor, id,
as follows

id
def

= recY.((x)!(y), true, x!y).Y + ((x)?(y), true, x?y).Y. (3.1)

When instrumented with any arbitrary system, the identity monitor id leaves its behaviour
unchanged. As a shorthand notation, we write (p, c).m instead of (p, c, π).m when all the
binding occurrences (x) in p correspond to free occurrences x in π, thus denoting an identity
transformation. Similarly, we elide c whenever c = true.

The first contribution of this work lies in the new instrumentation relation of Figure 4,
linking the behaviour of the SuS s with that of a monitor m: the term m[s] denotes their
composition as a monitored system. Crucially, the instrumentation rules in Figure 4 give us
a semantics in terms of an LTS over the actions Act∪{τ}, in line with the LTS semantics
of the SuS. Following Figure 3(b), rule biTrnO states that if the SuS transitions with an
output b!w to s′ and the transducer can replace it with a!v and transition to n, the adapted
output can be externalised so that the composite system m[s] transitions over a!v to n[s′].
Rule biDisO states that if s performs an output a!v that the monitor can suppress, the
instrumentation withholds this output and the composite system silently transitions; this
amounts to action disabling as outlined in Figure 3(a). Rule biEnO is dual, and it enables
the output a!v on the SuS as outlined in Figure 3(c): it augments the composite system m[s]
with an output a!v whenever m can insert a!v, independently of the behaviour of s. Rules
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biDisO, biTrnO and biEnO therefore correspond to items (a), (b) and (c) in Figure 3
respectively.

Rule biDef is analogous to standard rules for premature monitor termination [Fra21,
FAI17, Fra17, AAFI18a], and accounts for underspecification of transformations. We,
however, restrict defaulting (termination) to output actions performed by the SuS exclusively,
i.e., a monitor only defaults to id when it cannot react to or enable a system output. By
forbidding the monitor from defaulting upon unspecified inputs, the monitor is able to block
them from becoming part of the composite system’s behaviour. Hence, any input that the

monitor is unable to react to, i.e., m ̸a?v▶γ−−−−→, is considered as being invalid and blocked by
default. This technique is thus used to implement Figure 3(d). To avoid disabling valid
inputs unnecessarily, the monitor must therefore explicitly define symbolic transformations
that cover all the valid inputs of the SuS. Note, that rule biAsy still allows the SuS to
silently transition independently of m. Following Figure 3(f), rule biTrnI adapts inputs,
provided the SuS can accept the adapted input. Similarly, rule biEnI enables an input on a
port a as described in Figure 3(g): the composite system accepts the input while suppressing
it from the SuS. Rule biDisI allows the monitor to generate a default input value v and
forward it to the SuS on a port a, thereby unblocking it whenever the environment is unable
to provide the corresponding output on channel a (carrying v); from the environment’s
perspective, the composite system silently transitions to some state, following Figure 3(e).
It is worth comparing rule biDisI with the other instrumentation rule biEnO discussed
earlier, since they both handle outputs inserted by the monitor. In the case of rule biEnO,
whenever the monitor inserts an output to be consumed by the environment, this is expressed
at the level of the composite system as an external output (see conclusion of rule biEnO)
since, in our LTS, the actions represent the interaction between the (composite) system and
the environment. Contrastingly, whenever the monitor inserts an output to be input by
the SuS, then this is expressed at the level of the composite system as a silent action (see
conclusion of rule biDisI) since no interaction occurs between the (composite) system and
the environment. We conclude our discussion of the instrumenation rules in Figure 4 by
remarking that rules biDisI, biTrnI and biEnI respectively implement items (e), (f) and
(g) of Figure 3.

Definition 3.1. We call disabling monitors/transducers those monitors that only perform
disabling actions. The same applies to enabling and adapting monitors/transducers. ■

Example 3.2. Consider the following action disabling transducer md, that repeatedly
disables every output performed by the system via the branch (( )!( ), •).Y . In addition, it
limits inputs to those on port b via the input branch (b?( )).Y ; inputs on other ports are
disabled since none of the relevant instrumentation rules in Figure 4 can be applied.

md
def

= recY.(b?( )).Y + (( )!( ), •).Y
Recall the two systems below from Example 2.4:

sb
def

= recX.((a?x.y := ans(x).a!y.(a!y.b!(log, x, y).sa + b!(log, x, y).X)) + scls)

sc
def

= a?y.sa

where

sa
def

= recX.((a?x.y := ans(x).a!y.b!(log, x, y).X) + scls) and

scls
def

= (b?z.if z=cls then nil else X)
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When instrumented with the system sc, monitor md blocks its initial input, i.e., we have

md[sc] ̸α−→ for any α. In the case of sb, the composite system md[sb] can only input requests

on port b, such as the termination request md[sb]
b?cls−−−→ md[nil].

mdt
def

= recX.(((x)?(y1), x̸=b).(((x1)?( ), x1 ̸= x).id+(x!(y2)).m
′
dt)+ (b?( )).id)

m′
dt

def

= (x!( ),•).md + (( )?( )).id+ (b!(y3), y3=(log, y1, y2)).X

By defining branch (b?( )).id, the more elaborate monitor mdt (above) allows the SuS to
immediately input on port b (possibly carrying a termination request). At the same time,
the branch prefixed by ((x)?(y1), x̸=b) permits the SuS to input the first request via any
port x ̸= b, subsequently blocking inputs on the same port x (without deterring inputs on
other ports) via the input branch ((x1)?( ), x1 ̸= x).id. In conjunction to this branch, mdt

defines another branch (x!(y2)).m
′
dt to allow outputs on the port bound to variable x. The

continuation monitor m′
dt then defines the suppression branch (x!( ),•).md by which it

disables any redundant response that is output following the first one. Since it also defines
branches (b!(y3), y3=(log, y1, y2)).X and (( )?( )).id, it does not affect log events or further
inputs that occur immediately after the first response.

When instrumented with system sc from Example 2.4, mdt allows the composite system
to perform the first input but then blocks the second one, permitting only input requests on
channel b, e.g.,

mdt[sc]
a?v−−→ · b?cls−−−→ id[nil].

It also disables the first redundant response of system sb while transitioning to md, which
proceeds to suppress every subsequent output (including log actions) while blocking every
other port except b, i.e.,

mdt[sb]
a?v−−−→ · a!w

===⇒ · τ−→ md[b!(log, v, w).sa]
τ−→ md[sa] ̸a?v−−−→

(for every port a where a̸=b and any value v). Rule iDef allows it to default when handling
unspecified outputs, e.g., for system b!(log, v, w).sa the composite system can still perform
the logging output, i.e.,

mdt[b!(log, v, w).sa]
b!(log,v,w)−−−−−−→ id[sa].

Consider one further monitor, defined below:

mdet
def

= recX.(((x)?(y1), x̸=b).m′
det + (b?( )).id)

m′
det

def

= recY1.(•, x?vdef).Y1 + (x!(y2)).m
′′
det + ((x1)?( ), x1 ̸= x).id

m′′
det

def

= recY2.
(
(x!( ), x ̸= b,•).Y2+(b!(y3), y3=(log, y1, y2)).X+(( )?( )).id

)
Monitor mdet (above) behaves similarly to mdt but instead employs a loop of suppressions
(underlined in m′′

det) to disable further responses until a log or termination input is made.
When composed with sb, it permits the log action to go through:

mdet[sb]
a?v−−−→ · a!w

===⇒ · τ−→ m′′
det[b!(log, v, w).sb]

b!(log,v,w)−−−−−−−→ mdet[sb].

mdet also defines a branch prefixed by the insertion transformation (•, x?vdef) (underlined
in m′

det) where vdef is a default input domain value. This permits the instrumentation
to silently unblock the SuS when this is waiting for a request following an unanswered
one. In fact, when instrumented with sc, mdet not only forbids invalid input requests,
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but it also (internally) unblocks sc by supplying the required input via the added in-
sertion branch. This allows the composite system to proceed, as shown below (where

s′a
def

= y := ans(vdef).a!y.b!(log, vdef, y).sa):

mdet[sc]
a?v−−−→ recY.((•, a?vdef).Y + (a!(y2)).m

′′
det + (b?( )).id)[sa]

τ−−−→ recY.((•, a?vdef).Y + (a!(y2)).m
′′
det + (b?( )).id)[s′a]

a!ans(vdef).b!(log,vdef,y)
===============⇒ mdet[sa] ■

Although in this paper we mainly focus on action disabling monitors, using our model
one can also define action enabling and adaptation monitors.

Example 3.3. Consider now the transducers me and ma below:

me
def

= ((x)?(y), x̸=b, •).(•, x!ans(y)).(•, b!(log, y, ans(y))).id

ma
def

= recX.(b?(y), a?y).X + (a!(y), b!y).X.

Once instrumented, me first uses a suppression to enable an input on any port x ̸= b (but
then gets discarded). It then automates a response by inserting an answer followed by a
log action. Concretely, when composed with the systems r∈{sb, sc} from Example 2.4
(restated in Example 3.2), the execution of the composite system can only start as follows,
for some channel name c ̸= b, values v and w= ans(v):

me[r]
c?v−−→ (•, c!w).(•, b!(log, v, w)).id[r] c!w

==⇒ (•, b!(log, v, w)).id[r] b!(log,v,w)−−−−−−→ id[r].

By contrast, ma uses action adaptation to redirect the inputs and outputs from the SuS
through port b: it allows the composite system to exclusively input values on port b
forwarding them to the SuS on port a, and dually allowing outputs from the SuS on port a
to reroute them to port b. As a result, from an external viewpoint, the resulting composite
system can only be seen to communicate on port b with its environment. For instance, for
the systems sc and sb restated earlier, we can observe the following behaviour:

ma[sc]
b?v1−−−→ ma[sa]

b?v2.b!w2.b!(log,v2,w2)
==============⇒ ma[sa] and

ma[sb]
b?v1.b!w1.b!(log,v1,w1)
==============⇒ ma[sb]. ■

4. Enforcement

We are concerned with extending the enforceability result obtained in prior work [ACFI18]
to the extended setting of bidirectional enforcement. The enforceability of a logic rests on
the relationship between the semantic behaviour specified by the logic on the one hand,
and the ability of the operational mechanism (that of Section 3 in this case) to enforce the
specified behaviour on the other. This is captured by the predicate “(monitor) m adequately
enforces (property) φ” in Definition 4.1 below. In fact, the definitions of formula and logic
enforceability in Definition 4.1 are parametric with respect to the precise meaning of such a
predicate. In what follows, we will explore the design space for formalising this predicate.

Definition 4.1 (Enforceability [ACFI18]). A formula φ is enforceable iff there exists a
transducer m such that m adequately enforces φ. A logic L is enforceable iff every formula
φ∈L is enforceable. ■
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Since we have limited control over the SuS that a monitor is composed with, “m
adequately enforces φ” should hold for any (instrumentable) system. In [ACFI18] we
stipulate that any notion of adequate enforcement should at least entail soundness.

Definition 4.2 (Sound Enforcement [ACFI18]). Monitor m soundly enforces a formula
φ, denoted as senf(m,φ), iff, whenever φ is satisfiable, i.e., JφK ̸= ∅, then for every state
s∈Sys, it is the case that m[s]∈ JφK. ■

Example 4.3. Although showing that a monitor soundly enforces a formula should consider
all systems, we give an intuition based on sa, sb, sc for formula φ1 from Example 2.4
(restated below) where sa ∈ Jφ1K (hence Jφ1K ̸= ∅) and sb, sc /∈ Jφ1K.

φ1
def

= maxX.[((x)?(y1), x̸=b)]([(x?( ))]ff ∧ [(x!(y2))]φ
′
1)

φ′
1

def

= ([(x!( ))]ff ∧ [(b!(y3), y3=(log, y1, y2))]X)

Recall the transducers me, ma, md, mdt and mdet from Examples 3.2 and 3.3, restated
below:

me
def

= ((x)?(y), x̸=b, •).(•, x!ans(y)).(•, b!(log, y, ans(y))).id

ma
def

= recX.(b?(y), a?y).X + (a!(y), b!y).X

md
def

= recY.(b?( )).Y + (( )!( ), •).Y

mdt
def

= recX.(((x)?(y1), x̸=b).(((x1)?( ), x1 ̸= x).id+(x!(y2)).m
′
dt)+ (b?( )).id)

mdet
def

= recX.(((x)?(y1), x̸=b).m′
det + (b?( )).id)

where

m′
dt

def

= (x!( ),•).md + (( )?( )).id+ (b!(y3), y3=(log, y1, y2)).X

m′
det

def

= recY1.(•, x?vdef).Y1 + (x!(y2)).m
′′
det + ((x1)?( ), x1 ̸= x).id

m′′
det

def

= recY2.
(
(x!( ), x ̸= b,•).Y2+(b!(y3), y3=(log, y1, y2)).X+(( )?( )).id

)
When assessing their soundness in relation to the property φ1, we have that:

• me is unsound for φ1. When composed with sb, the resulting monitored system produces
two consecutive output replies (namely those underlined in the trace t1e below), thus
meaning that the composite system violates the property in question, i.e., me[sb]/∈Jφ1K.
More concretely, we have

me[sb]
t1e==⇒ id[sb] where t1e

def

= c?v1.c!ans(v1).b!(log, v1, ans(v1)).a?v2.a!w2.a!w2.

Similarly, the system sc instrumented with the transducerme also violates property φ1, i.e.,
me[sc] /∈ Jφ1K, since the me[sc] executes the erroneous trace with two consecutive inputs
on port a (underlined), c?v1.c!ans(v1).b!(log, v1, ans(v1)).a?w2.a?w3. This demonstrates
that me[sc] can still input two consecutive requests on port a (underlined). Either one of
these counterexamples disproves senf(me, φ1).

• Monitor ma turns out to be sound for φ1 because once instrumented, the resulting compos-
ite system is adapted to only interact on port b. In fact, we have {ma[sa],ma[sb],ma[sc]} ⊆
Jφ1K. The other monitors md, mdt and mdet are also sound for φ1. Whereas, monitor
md prevents the violation of φ1 by also blocking all input ports except b, the transducers
mdt and mdet achieve the same goal by disabling the invalid consecutive requests and
answers that occur on any port except b. ■
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By itself, sound enforcement is a weak criterion because it does not regulate the extent
to which enforcement is applied. More specifically, although md from Example 3.2 is sound,
it needlessly modifies the behaviour of sa even though sa satisfies φ1: by blocking the initial
input of sa, md causes it to block indefinitely. The requirement that a monitor should not
modify the behaviour of a system that satisfies the property being enforced can be formalised
using a transparency criterion.

Definition 4.4 (Transparent Enforcement [ACFI18]). A monitor m transparently enforces
a formula φ, tenf(m,φ), iff for all s ∈ Sys, s∈JφK implies m[s] ∼ s.

Example 4.5. As argued earlier, sa suffices to disprove tenf(md, φ1). Monitor ma from
Example 3.3 also breaches Definition 4.4: although sa ∈ Jφ1K, we have ma[sa ]̸∼sa since for

any value v and w, sa
a?v−−−→ but for any value v we can never have ma[sa]

a?v−−−→. By contrast,
monitors mdt and mdet turn out to satisfy Definition 4.4, since they only intervene when it
becomes apparent that a violation will occur. For instance, they only disable inputs on a
specific port, as a precaution, following an unanswered request on the same port, and they
only disable the redundant responses that are produced after the first response to a request.
■

It turns out that, by some measures, Definition 4.4 is still a relatively weak requirement
since it only limits transparency requirements to well-behaved systems, i.e., those that satisfy
the property in question, and disregards enforcement behaviour for systems that violate this
property. For instance, consider monitor mdt from Example 3.2 (restated in Example 4.3)
and system sb from Example 2.4 (restated in Example 3.2). At runtime, sb can exhibit the
following invalid behaviour:

sb
t1==⇒ b!(log, v, w).sa where t1

def

= a?v.a!w.a!w for some appropriate pair of values v, w.

In order to rectify this violating behaviour wrt. formula φ1, it suffices to use a monitor
that disables one of the responses in t1, i.e., a!w. Following this disabling, no further
modifications are required since the SuS reaches a state that does not violate the remainder
of the formula φ1, i.e., b!(log, v, w).sa∈Jafter(φ1, t

′
1)K where t′1

def

= a?v.a!w. However, when
instrumented with mdt, this monitor does not only disable the invalid response, namely

mdt[sb]
a?v.a!w.
======⇒ md[b!(log, v, w).sa], but subsequently disables every other action by reach-

ing md, md[b!(log, v, w).sa]
τ−→ md[sa]. To this end, we introduce the novel requirement of

eventual transparency.

Definition 4.6 (Eventually Transparent Enforcement). Monitor m enforces property φ in
an eventually transparent way, evtenf(m,φ), iff for all systems s, s′, traces t and monitors

m′, m[s]
t
=⇒ m′[s′] and s′ ∈ Jafter(φ, t)K imply m′[s′] ∼ s′. ■

Example 4.7. We have already argued why mdt (restated in Example 4.3) does not adhere
to eventual transparency via the counterexample sb. This is not the case for mdet (also
restated in Example 4.3). Although the universal quantification over all systems and traces
make it hard to prove this property, we get an intuition of why this is the case from the
system sb. More concretely, when

mdet[sb]
a?v1.a!w1=======⇒ · τ−→ m′′

det[b!(log, v1, w1).sa]
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we have

b!(log, v1, w1).sa ∈ Jafter(φ1, a?v1.a!w1)K

since

after(φ1, a?v1.a!w1) = ([((x3)!( ), x3=a)]ff ∧ [((x4)!(y3), x4=b ∧ y3=(log, v1, w1))]φ1)

and, moreover, m′′
det[b!(log, v1, w1).sa] ∼ b!(log, v1, w1).sa. ■

Corollary 4.8. For all monitors m ∈ Trn and properties φ ∈ sHML, evtenf(m,φ) implies
tenf(m,φ).

Along with Definition 4.2 (soundness), Definition 4.6 (eventual transparency) makes
up our definition for “m (adequately) enforces φ”. From Corollary 4.8, it follows that is
definition is stricter than the one given in [ACFI18].

Definition 4.9 (Adequate Enforcement). A monitor m (adequately) enforces property
φ, denoted as enf(n, φ), iff it adheres to (i) soundness, Definition 4.2, and (ii) eventual
transparency, Definition 4.6. ■

5. Synthesising Action Disabling Monitors

Although Definition 4.1 (instantiated with Definition 4.9) enables us to rule out erroneous
monitors that purport to enforce a property, the universal quantifications over all systems
in Definitions 4.2 and 4.6 make it difficult to prove that a monitor does indeed enforce a
property correctly in a bidirectional setting (disproving, however, is easier). Establishing
that a formula is enforceable, Definition 4.9, involves a further existential quantification
over a monitor that enforces it correctly; put differently, in order to show that a formula
is not enforceable, amounts to another universal quantification, this time over all possible
monitors. Moreover, establishing the enforceability of a logic entails yet another universal
quantification, on all the formulas in the logic. In many cases (including ours), the sets of
systems, monitors and formulas are infinite.

We address these problems through an automated synthesis procedure that produces
an enforcement monitor from a safety µHML formula, expressed in a syntactic fragment
of sHML. This fragment, called sHMLnf, has already been used to establish enforce-
ability results in a uni-directional setting [ACFI18] and is the source logic employed by
the tool detectEr1[AAA+21, AAA+22, AEF+22] used to verify the correctness of con-
current systems written in Erlang [AAFI21] and Elixir [BAF21]; it also coincides with
sHML in the regular setting [AAF+20]. We show that the synthesised monitors are cor-
rect, according to Definition 4.9. For a unidirectional setting, it has been shown that
monitors that only administer omissions are expressive enough to enforce safety proper-
ties [LBW05, FFM12, vHRF17, ACFI18]. Analogously, for our bidirectional case, we restrict
ourselves to action disabling monitors and show that they can enforce any property expressed
in terms of this sHML fragment.

Our synthesis procedure is compositional, meaning that the monitor synthesis of a
composite formula is defined in terms of the enforcement monitors generated from its
constituent sub-formulas. Compositionality simplifies substantially our correctness analysis
of the generated monitors (e.g., we can use standard inductive proof techniques). The choice

1https://duncanatt.github.io/detecter/
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of the logical fragment, i.e., sHMLnf, facilitates this compositional definition. An automated
procedure to translate an sHML formula with symbolic actions where the scope of the data
binders is limited to the immediate symbolic action condition, into a corresponding sHMLnf

one (with the same semantic meaning) is given in [ACFI18, AAF+20].

Definition 5.1 (sHML normal form). The set of normalised sHML formulas is generated
by the following grammar (where2 |I| ≥ 1):

φ,ψ ∈ sHMLnf ::= tt | ff |
∧

i∈I [pi, ci]φi | X | maxX.φ .

In addition, sHMLnf formulas are required to satisfy the following conditions:

(1) Every branch in
∧

i∈I [pi, ci]φi, must be disjoint, i.e., for every i, j ∈ I, i ̸= j implies
J(pi, ci)K∩ J(pj , cj)K = ∅.

(2) For every maxX.φ we have X ∈ fv(φ). ■

In a (closed) sHMLnf formula, the basic terms tt and ff can never appear unguarded
unless they are at the top level (e.g., we can never have φ∧ff or maxX0. . . .maxXn.ff). Modal
operators are combined with conjunctions into one construct

∧
i∈I [pi, ci]φi that is written as

[p0, c0]φ0∧ . . .∧[pn, cn]φn when I =
{
0, . . . , n

}
and simply as [p0, c0]φ when | I | = 1. The

conjunct modal guards must also be disjoint so that at most one necessity guard can satisfy
any particular visible action. Along with these restrictions, we still assume that sHMLnf

fixpoint variables are guarded, and that for every ((x)?(y), c), y /∈ fv(c).

Example 5.2. The formula φ3 defines a recursive property stating that an input on port a
(carrying any value) cannot be followed by an output with value of 4 (on any port), and
that this continues to hold if the subsequent output is made on port a with a value that is
not equal to 3 (in which cases, the formula recurses)

φ3
def

= maxX.[((x1)?(y1), x1=a)]

(
[((x2)!(y2), x2=a ∧ y2 ̸=3)]X

∧ [((x3)!(y3), y3=4)]ff

)
φ3 is not an sHMLnf formula since its conjunction is not disjoint (e.g., the action a!4 satisfies
both branches). Still, we can reformulate φ3 as φ′

3 ∈ sHMLnf:

φ′
3

def

= maxX.[((x1)?(y1), x1=a)]

(
[((x4)!(y4), x4=a ∧ y4 ̸=4 ∧ y4 ̸=3)]X

∧ [((x4)!(y4), x4=a ∧ y4=4)]ff

)
where x4 and y4 are fresh variables. ■

Our monitor synthesis function in Definition 5.3 converts an sHMLnf formula φ into a
transducer m. This conversion also requires information regarding the input ports employed
by the SuS, as this is used to add the necessary insertion branches to silently unblock the SuS
at runtime; this prevents the monitor from unnecessarily blocking the resulting composite
system. . The synthesis function must therefore be supplied with this information in the
form of a finite set of input ports Π⊂Port, which then relays this information to the
resulting monitor. It also assumes a default value vdef for the payload data domain.

2Recall that from Figure 2, I always denotes a finite set of indices which is crucial for a synthesis process
to terminate.
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Definition 5.3. The synthesis function L− M : sHMLnf×Pfin(Port)→Trn is defined in-
ductively as:

LX,Π M def

= X

L tt,Π M def

= id

Lff,Π M def

= id

LmaxX.φ,Π M def

= recX.Lφ,Π M

Lφ=
∧
i∈ I

[(pi, ci)]φi,Π M def

= recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if φi=ff
(pi, ci).Lφi,Π M otherwise

)
+ def(φ)

where dis(p, c,m,Π)
def

=

{
(p, c, •).m if p = (x)!(y)∑
b∈Π

(•, c{b/x}, b?vdef).m if p = (x)?(y)

and

def(
∧
i∈ I

[((xi)?(yi), ci)]φi∧ψ)
def

=

 (( )?( )).id when I=∅
((x)?(y),

∧
i∈I
(¬ci{x/xi, y/yi})).id otherwise

where ψ has no conjuncts starting with an input modality, variables x and y are fresh, and
vdef is a default value. ■

The definition above assumes a bijective mapping between formula variables and monitor
recursion variables. Normalised conjunctions,

∧
i∈ I [pi, ci]φi, are synthesised as a recursive

summation of monitors, i.e., recY.
∑

i∈I mi, where Y is fresh, and every branch mi can be
one of the following:

(i) when mi is derived from a branch of the form [pi, ci]φi where φi ̸=ff, the synthesis
produces a monitor with the identity transformation prefix, (pi, ci), followed by the
monitor synthesised from the continuation φi, i.e., Lφi,Π M;

(ii) when mi is derived from a violating branch of the form [pi, ci]ff, the synthesis produces
an action disabling transformation via dis(pi, ci, Y,Π).

Specifically, in clause (ii), the dis function produces either a suppression transforma-
tion, (pi, ci, •), when pi is an output pattern, (xi)!(yi), or a summation of insertions,∑

b∈Π(•, ci{b/xi}, b?vdef).mi, when pi is an input pattern, (xi)?(yi). The former signi-
fies that the monitor must react to and suppress every matching (invalid) system output
thus stopping it from reaching the environment. By not synthesising monitor branches that
react to the erroneous input, the latter allows the monitor to hide the input synchronisations
from the environment. At the same time, the synthesised insertion branches insert a default
domain value vdef on every port b∈Π whenever the branch condition ci{b/xi} evaluates
to true at runtime. This stops the monitor from blocking the runtime progression of the
resulting composite system unnecessarily.

This blocking mechanism can, however, block unspecified inputs, i.e., those that do
not satisfy any modal necessity in the normalised conjunction. This is undesirable since
the unspecified actions do not contribute towards a safety violation and, instead, lead to
its trivial satisfaction. To prevent this, the default monitor def(φ) is also added to the
resulting summation. Concretely, the def function produces a catch-all identity monitor
that forwards an input to the SuS whenever it satisfies the negation of all the conditions
associated with modal necessities for input patterns in the normalised conjunction. This
condition is constructed for a normalised conjunction of the form

∧
i∈I [((xi)?(yi), ci)]φi ∧ψ
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(assuming that ψ does not include further input modalities). Otherwise, if none of the
conjunct modalities define an input pattern, every input is allowed, i.e., the default monitor
becomes (( )?( )).id, which transitions to id after forwarding the input to the SuS.

Example 5.4. Recall (the full version of) formula φ1 from Example 2.4.

φ1
def

= maxX.[((x)?(y1), x̸=b)]([((x1)?( ), x1=x)]ff ∧ [((x2)!(y2), x2=x)]φ
′
1)

φ′
1

def

= ([((x3)!( ), x3=x)]ff ∧ [((x4)!(y3), x4=b ∧ y3=(log, y1, y2))]X)

For any arbitrary set of ports Π, the synthesis of Definition 5.3 produces the following
monitor.

mφ1

def

= recX.recZ.(((x)?(y1), x̸=b).recY1.m
′
φ1
) + ((xdef)?( ), xdef = b).id

m′
φ1

def

=
∑
a∈Π

(•, a=x, a?vdef).Y1+((x2)!(y2), x2=x).recY2.m
′′
φ1
+((xdef)?( ), xdef ̸=x).id

m′′
φ1

def

=((x3)!( ), x3=x,•).Y2+((x4)!(y3), x4=b ∧ y3=(log, y1, y2)).X+(( )?( )).id

Monitor mφ1 can be optimised by removing redundant recursive constructs such as recZ.
that are introduced mechanically by our synthesis. ■

Monitor mφ1 from Example 5.4 (with Lφ1,Π M = mφ1) is very similar to mdet of
Example 3.2, differing only in how it defines its insertion branches for unblocking the SuS.
For instance, if we consider Π = {b, c}, Lφ1,Π M would synthesise two insertion branches,
namely (•, b = x, b?vdef) and (•, c = x, c?vdef), but if Π also includes d, it would add another
branch. By contrast, the manually defined mdet attains the same result more succinctly
via the single insertion branch (•, x?vdef). Importantly, our synthesis provides the witness
monitors needed to show enforceability.

Theorem 5.5 (Enforceability). sHMLnf is bidirectionally enforceable using the monitors
and instrumentation of Figure 4.

Proof. By Definition 4.1 the result follows from showing that for every φ∈ sHMLnf and
Π⊆Port, Lφ,Π M enforces φ (for every Π). By Definition 4.9, this follows from Proposi-
tions 5.8 and 5.12, stated and proved in Section 5.1.

Theorem 5.5 entails that the synthesised monitors generated by the function described
in Definition 5.3 do enforce their respective sHMLnf formula and are correct by construction.
By this we mean that, if the formula φ being enforced can be expressed in the syntactic
fragment sHMLnf, and it is satisfiable (i.e., JφK ≠ ∅), then the resulting composite system,
m[s], consisting of the synthesises monitor, m, composed with the SuS, s, is guaranteed to
satisfy φ and the changes to its original behaviour are only those that led to a violation. It
is worth pointing out that should φ be unsatisfiable, there is very little that can be done by
way of enforcement; the satisfiability caveats in Definitions 4.2, 4.4 and 4.6 are intentionally
inserted so as not to require anything of the synthesised monitor in such cases. We argue
that this way of dealing with unsatisfiable formulas is not a deficiency of the enforcement
setup, but rather a flaw in the correctness specifications being imposed.

Note that the enforcement of formulas that use µHML constructs outside of the sHML
is problematic. For instance, consider the disjunction formula φ1∨φ2 (recall that disjuctions
are not part of the sHML syntax). In a branching-time setting, the subformulas φ1 and φ2

can, in principle, describe computation from different parts of the computation tree. This
means that, although the current execution observed by a monitor might provide enough
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(s, tt) ∈ R implies true

(s,ff) ∈ R implies false

(s,
∧

i∈I φi) ∈ R implies (s, φi) ∈ R for all i∈ I
(s, [(p, c)]φ) ∈ R implies (∀α, r · s α

==⇒ r and (p, c)(α) = σ) implies (r, φσ) ∈ R
(s,maxX.φ) ∈ R implies (s, φ{maxX.φ/X}) ∈ R

where (p, c)(α) = σ is short for match(p, α) = σ and cσ ⇓ true.

Figure 5. A satisfaction relation for sHML formulas

information to determine that one subformula is about to be violated (say φ1), there could
never be an execution that allows the monitor to determine when to intervene whenever
both subformulas become violated. More precisely, by intervening to prevent φ1 from being
violated might break transparency, Definition 4.6, in cases where φ2 is still satisfied (and
thus φ1 ∨ φ2 still holds). Conversely, not intervening might affect soundness, Definition 4.2,
in cases where φ2 is also violated (and thus φ1 ∨ φ2 is certainly violated). It has been
well established that a number of µHML properties are not monitorable for a variety of
settings [FAI17, AAFI18b, AAFI18a, AAF+19, AAF+21a, AAF+21b] and it is therefore
reasonable to expect similar limits in the case of enforceability.

5.1. Enforceability Proofs. In what follows, we state and prove monitor soundness and
transparency, Definitions 4.2 and 4.6 for the synthesis function presented in Definition 5.3.
Upon first reading, the remainder of the section can be safely skipped without affecting the
comprehension of the remaining material.

To facilitate the forthcoming proofs we occasionally use the satisfaction semantics for
sHML from [AI99, HL95] which is defined in terms of the satisfaction relation, ⊨. When
restricted to sHML, ⊨ is the largest relation R satisfying the implications defined in Figure 5.
It is well known that this semantics agrees with the sHML semantics of Figure 2. As a
result, we use s ⊨ φ in lieu of s ∈ JφK. At certain points in our proofs we also refer to the
τ -closure property of sHML, Proposition 5.6, that was proven in [AI99].

Proposition 5.6. if s
τ−→ s′ and s ⊨ φ then s′ ⊨ φ.

We start by stating and proving synthesis soundness, which relies on the following
technical lemma relating recursive monitor unfolding and its behaviour.

Lemma 5.7. recX.m[s] ∼
(
m{recX.m/X}

)
[s]

Proof. Follows from the instrumentation relation of Figure 4 and, more importantly, the
monitor rule eRec, also in Figure 4.

Proposition 5.8 (Soundness). For every finite port set Π, system state s∈Sys whose port
names are included in Π, and φ∈ sHMLnf, if JφK ̸= ∅ then Lφ,Π M[s]∈ JφK.

Proof. To prove that for every system s, formula φ and finite set of ports Π

if JφK ̸= ∅ then Lφ,Π M[s]⊨φ
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we setup the relation R (below) and show that it is a satisfaction relation (⊨) by demon-
strating that that it abides by the rules in Figure 5.

R def

=

{
(r, φ)

(i) JφK ̸= ∅ and r = Lφ,Π M[s] or
(ii) JφK ̸= ∅ and r = LmaxX1. . . .maxXn.ψ,Π M[s]

and φ = ψ{maxX1. . . .maxXn.ψ/X1} . . . {maxXn.ψ/Xn}

}
The second case defining the tuples (r, φ) ∈ R (labeled as (ii) for clarity) maps monitored
system m[s] where m is obtain by synthesising a formula consisting of a prefix of maximal
fixpoint binders of length n, i.e., m = Lφ,Π M where φ = maxX1. . . .maxXn.ψ, with the
resp. unfolded formula ψ{maxX1. . . .maxXn.ψ/X1} . . . {maxXn.ψ/Xn}.

We prove the claim that R ⊆⊨ by case analysis on the structure of φ. We here consider
the two main cases:

Case φ = maxX.ψ: We consider two subcases for why (r, φ) ∈ R, following either condition
(i) or (ii):
Case (i): We know that JmaxX.ψK ̸= ∅ and r = LmaxX.ψ,Π M[s] for some s. By the

rules defining (⊨) in Figure 5 we need to show that

(LmaxX.ψ,Π M[s], ψ{maxX.ψ/X}) ∈ R

as well. This follows immediately from rule (ii) defining R.
Case (ii): We know that JmaxX.ψK ̸= ∅, that

maxX.ψ = maxX.(ϕ{maxY1. . . .maxYk.maxX.ϕ/Y1} . . . {maxYk.maxX.ϕ/Yk})

for some ϕ and k, and that r = LmaxY1. . . .maxYk.maxX.ϕ,Π M[s] for some s.
Again, by the rules defining (⊨) in Figure 5 we need to show that

(LmaxY1. . . .maxYk.maxX.ϕ,Π M[s], ϕ′) ∈ R

for ϕ′ = ϕ{maxY1. . . .maxYk.maxX.ϕ/Y1} . . . {maxYk.maxX.ϕ/Yk}{maxX.ϕ/X}.
This follows again from rule (ii) defining R with an maximal fixpoint binder
length set at n = k + 1.

Case φ =
∧
i∈I

[(pi, ci)]φi and #h∈I(ph, ch): Again we have two subcases to consider for why

we have the inclusion (r, φ) ∈ R:
Case (i): We know that

J
∧
i∈I

[(pi, ci)]φiK ̸= ∅ (5.1)

and that r = L
∧
i∈I

[(pi, ci)]φi,Π M[s] for some s. Recall that

L
∧
i∈I

[(pi, ci)]φi,Π M = recY.
(∑

i∈I

{
dis(pi, ci, Y,Π) if φi=ff
(pi, ci).Lφi,Π M otherwise

)
+ def(

∧
i∈I

[(pi, ci)]φi) (5.2)

By the rules defining (⊨) in Figure 5 (for the case involving
∧

i∈I φi and [(p, c)]φ
combined) we need to show that

∀i ∈ I, α, q if L
∧
i∈I

[(pi, ci)]φi,Π M[s] α
==⇒ q and (pi, ci)(α) = σ) then (q, φiσ) ∈ R (5.3)

Pick any [(pi, ci)]φi and proceed by case analysis:
Case [(pi, ci)]φi = [((x)!(y), ci)]ff: For any output action a!v that the system

s can produce, i.e., s
a!v
===⇒ s′, that matches the pattern of the necessity
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formula considered, i.e., ((x)!(y), ci)(a!v) = σ, the monitor synthesised in
Equation (5.2) transitions as

L
∧
i∈I

[(pi, ci)]φi,Π M
(a!v)▶•−−−−−→ L

∧
i∈I

[(pi, ci)]φi,Π M

Thus, by the instrumentation in Figure 4 (particularly rule biDisO), we
conclude that it could never be the case that

L
∧
i∈I

[(pi, ci)]φi,Π M[s] a!v
===⇒ q for any q

meaning that condition (5.3) is satisfied.
Case [(pi, ci)]φi = [((x)?(y), ci)]ff: The reasoning is analogous to the previous

case. For any input action a?v that s
a?v
===⇒ s′, that matches the pattern

of the necessity formula, ((x)?(y), ci)(a?v) = σ, the monitor synthesised in
Equation (5.2) transitions as

L
∧
i∈I

[(pi, ci)]φi,Π M
•▶(a?v)−−−−−→ L

∧
i∈I

[(pi, ci)]φi,Π M

Thus, by the instrumentation in Figure 4 (particularly rule biDisI), we
conclude that it could never be the case that

L
∧
i∈I

[(pi, ci)]φi,Π M[s] a?v
===⇒ q for any q

meaning that condition (5.3) is satisfied.
Case φi ̸= ff: From Equation (5.1) we know that for any α such that (pi, ci)(α) =

σ it holds that

JφiσK ̸= ∅. (5.4)

Now if s
α
=⇒ s′, from the form of L

∧
i∈I

[(pi, ci)]φi,Π M in Equation (5.2) and

#h∈I(ph, ch) we conclude that

L
∧
i∈I

[(pi, ci)]φi,Π M α▶α−−−→ Lφi,Π Mσ = Lφiσ,Π M

Thus, by the instrumentation in Figure 4 (particularly rules biTrnI and
biTrnO) we conclude

L
∧
i∈I

[(pi, ci)]φi,Π M[s] α
==⇒ Lφiσ,Π M[s′]

and from Equation (5.4) and the definition of R (i) we conclude that
(eBILφiσ,Π Ms′, φiσ) ∈ R, thus satisfying Equation (5.3) as required.

Case (ii): We know that J
∧
i∈I

[(pi, ci)]φiK ̸= ∅, that for all i ∈ I

φi = ψi{maxY1. . . .maxYk.ψi/Y1} . . . {maxYk.ψi/Yk} for some ψi

and that r = LmaxY1. . . .maxYk.
∧
i∈I

[(pi, ci)]φi,Π M[s] for some s. Similar to

the previous case, we need to show that r satisfies a requirement akin to
Equation (5.3). This follows using a similar reasoning employed in the previous
case, Lemma 5.7 and the transitivity of (strong) bisimulation.
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We next state and prove the fact that the synthesis function of Definition 5.3 is eventually
transparent, according to Definition 4.6. This proof for eventual transparency refers to the
auxiliary Lemma 5.10 and another transparency result Proposition 5.11 (Transparency) for
Definition 4.4, defined and proved below. The proof of Lemma 5.10, in turn, relies on the
following technical lemma which states that any sequence τ transitions from a composite
system enforced by a monitor synthesised from a conjuncted modal guard formula according
to Definition 5.3 can be decomposed such that the monitored system is allowed to produce
external actions by the monitor remains in the same state. which states that any sequence of
τ transitions from a composite system enforced by a monitor synthesised from a conjunctive
formula, according to Definition 5.3, stems from a corresponding sequence of external actions
of the monitored system while the monitor remains in the same state.

Lemma 5.9. For every formula of the form
∧

i∈I [(pi, ci)]φi and system states s and r, if

L
∧

i∈I [(pi, ci)]φi,Π M[s] τ−→* r then there exists some state s′ and trace u such that s
u
==⇒ s′

and r = L
∧

i∈I [(pi, ci)]φi,Π M[s′].

Proof. We proceed by mathematical induction on the number of τ transitions.

Case 0 transitions. This case holds trivially given that s
ε
=⇒ s and so that r =

L
∧

i∈I [(pi, ci)]φi,Π M[s].
Case k + 1 transitions. Assume that L

∧
i∈I [(pi, ci)]φi,Π M[s] τ−→k+1

r and so we can infer
that

L
∧

i∈I [(pi, ci)]φi,Π M[s] τ−→ r′ (for some r′) (5.5)

r′
τ−→k

r. (5.6)

By the definition of L−M we know that L
∧

i∈I [(pi, ci)]φi,Π M synthesises the monitor

recY.
∑
i∈I

{
dis(pi, ci, Y,Π) if φ=ff
(pi, ci).Lφi,Π M otherwise

which can be unfolded into

L
∧
i∈I

[(pi, ci)]φi,Π M=
∑
i∈I

{
dis(pi, ci,m,Π) if φi=ff
(pi, ci).Lφi,Π M otherwise (5.7)

and so from (5.7) we know that the τ -reduction in (5.5) can be the result of rules iAsy,
iDisO or iDisI. We therefore inspect each case.

• iAsy: By rule iAsy, from (5.5) we can deduce that

∃s′′ · s τ−→ s′′ (5.8)

r′ = L
∧

i∈I [(pi, ci)]φi M[s′′] (5.9)

and so by (5.6), (5.9) and the inductive hypothesis we know that

∃s′, u · s′′ u
==⇒ s′ and r = L

∧
i∈I [(pi, ci)]φi M[s′]. (5.10)

Finally, by (5.8) and (5.10) we can thus conclude that ∃s′, u · s u
==⇒ s′ and also that

r = L
∧

i∈I [(pi, ci)]φi M[s′].
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• iDisI: By rule iDisI and from (5.5) we infer that

∃s′′ · s (a?v)−−−−→ s′′ (5.11)

L
∧

i∈I [(pi, ci)]φi,Π M
•▶(a?v)−−−−−→ m′ (5.12)

r′ = m′[s′′] (5.13)

and from (5.7) and by the definition of dis we can infer that the reduction in (5.12) occurs
when the synthesised monitor inserts action a?v and then reduces back to L

∧
i∈I [(pi, ci)]φi,Π M

allowing us to infer that

m′ = L
∧

i∈I [(pi, ci)]φi,Π M. (5.14)

Hence, by (5.6), (5.13) and (5.14) we can apply the inductive hypothesis and deduce that

∃s′, u · s′′ u
==⇒ s′ and r = L

∧
i∈I [(pi, ci)]φi,Π M[s′] (5.15)

so that by (5.11) and (5.15) we finally conclude that ∃s′, u · s (a?v)u
=====⇒ s′ and that

r = L
∧

i∈I [(pi, ci)]φi,Π M[s′] as required, and so we are done.
• iDisO: We omit the proof for this case as it is very similar to that of case iDisI.

The following lemma builds on Lemma 5.9, and states that the monitor obtained from
a sequence of transitions t and a synthesised monitor Lψ,Π M can be calculated using the
function after(φ, t) and the synthesis function given in Definition 5.3.

Lemma 5.10. For every set of names Π, formula φ∈ sHMLnf, state s and trace t, if

Lφ,Π M[s] t
=⇒ m′[s′] then ∃ψ ∈ sHMLnf · ψ = after(φ, t) and Lψ,Π M = m′.

Proof. We need to prove that for every formula φ∈ sHMLnf, if we assume that Lφ,Π M[s] t
=⇒

m′[s′] then there must exist some formula ψ, such that ψ = after(φ, t) and Lψ,Π M = m′.
We proceed by induction on the length of t.

Case t = ε. This case holds vacuously since when t= ε then m′= Lφ,Π M and
φ= after(φ, ε).

Case t = αu. Assume that Lφ,Π M[s] αu
===⇒ m′[s′] from which by the definition

t
=⇒ we can

infer that there are r and r′ such that

Lφ,Π M[s] τ−→*r (5.16)

r
α−→ r′ (5.17)

r′
u
==⇒ m′[s′]. (5.18)

We now proceed by case analysis on φ.

• φ=X: This case does not apply since Lff,Π M and LX,Π M do not yield a valid monitor.
• φ∈{ff, tt}: Since L tt,Π M= id we know that the τ -reductions in (5.16) are only possible via

rule iAsy which means that s
τ−→*s′′ and r= L tt,Π M[s′′]. The latter allows us to deduce

that the reduction in (5.17) is only possible via rule iTrn and so we also know that
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s′′
α−→*s′′′ and r′= L tt,Π M[s′′′]. Hence, by (5.18) and the inductive hypothesis we conclude

that

∃ψ ∈ sHMLnf · ψ = after(tt, u) (5.19)

Lψ,Π M = m′. (5.20)

Since from the definition of after we know that after(tt, αu) equates to after(after(tt, α), u)
and after(tt, α)= tt, from (5.19) we can conclude that ψ = after(tt, αu) and so this case
holdssince we also know (5.20). The case for ff is analogous.

• φ=
∧

i∈I [(pi, ci)]φi and #i∈I(pi, ci): Since φ=
∧

i∈I [(pi, ci)]φi, by the definition of L− M

we know that recY.
∑
i∈I

{
dis(pi, ci, Y,Π) if φi=ff
(pi, ci).Lφi,Π M otherwise

which can be unfolded into

L
∧
i∈I

[(pi, ci)]φi,Π M=
∑
i∈I

{
dis(pi, ci,m,Π) if φi=ff
(pi, ci).Lφi,Π M otherwise

(5.21)

and so by (5.16), (5.21) and Lemma 5.9 we conclude that ∃s′′ · s u
==⇒ s′′ and that

r = L
∧

i∈I [(pi, ci)]φi,Π M[s′′]. (5.22)

Hence, by (5.21) and (5.22) we know that the reduction in (5.17) can only happen if

∃s′′′ · s′′ α−→ s′′′ and α matches an identity transformation (pj , cj).Lφj ,Π M (for some j ∈ I)
which was derived from [(pj , cj)]φj (where φj ̸= ff). We can thus deduce that

r′ = Lφjσ,Π M[s′′′] (5.23)

match(pj , α) = σ and cjσ ⇓ true (5.24)

and so by (5.18), (5.23) and the inductive hypothesis we deduce that

∃ψ ∈ sHMLnf · ψ = after(φjσ, u) (5.25)

Lψ,Π M = m′. (5.26)

Now since we know (5.24), by the definition of after we infer that

after(
∧

i∈I [(pi, ci)]φi, αu) = after(after(
∧

i∈I [(pi, ci)]φi, α), u)
= after(φjσ, u)

(5.27)

and so from (5.25) and (5.27) we conclude that

ψ = after(
∧

i∈I [(pi, ci)]φi, αu). (5.28)

Hence, this case is done by (5.26) and (5.28).
• φ=maxX.ψ and X ∈ fv(ψ): Since φ=maxX.ψ, by the syntactic rules of sHMLnf we
know that ψ /∈{ff, tt} since X /∈ fv(ψ), and that ψ ̸=X since logical variables must be
guarded, hence we know that ψ can only be of the form

ψ = maxY1. . . .maxYn.
∧

i∈I [(pi, ci)]φi. (5.29)

where maxY1. . . .maxYn. denotes an arbitrary number of fixpoint declarations, possibly
none. Hence, knowing (5.29), by unfolding every fixpoint in maxX.ψ we reduce the
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formula to

φ =
∧

i∈I [(pi, ci)]φi{maxX.maxY1....maxYn.
∧

i∈I [(pi, ci)]φi/X , . . .}

and so from this point onwards the proof proceeds as per that of case φ=
∧

i∈I [(pi, ci)]φi

which allows us to deduce that

∃ψ′ ∈ sHMLnf · ψ′= after(
∧

i∈I [(pi, ci)]φi{. . .}, αu) (5.30)

Lψ′,Π M = m′. (5.31)

From (5.29), (5.30) and the definition of after we can therefore conclude that

∃ψ′ ∈ sHMLnf · ψ′= after(maxX.ψ, αu) (5.32)

and so this case holds by (5.31) and (5.32).

Hence, the above cases suffice to show that the case for when t = αu holds.

The transparency proof following Definition 4.4 is given below.

Proposition 5.11 (Transparency). For every state s∈Sys and φ∈ sHMLnf, if s∈ JφK
then Lφ,Π M[s]∼ s.

Proof. Since s∈ JφK is analogous to s⊨φ we prove that relation R def

= { (s, Lφ,Π M[s]) s⊨φ }
is a strong bisimulation relation that satisfies the following transfer properties:

(a) if s
µ−→ s′ then Lφ,Π M[s] µ−→ r′ and (s′, r′) ∈ R

(b) if Lφ,Π M[s] µ−→ r′ then s
µ−→ s′ and (s′, r′) ∈ R

We prove (a) and (b) separately by assuming that s⊨φ in both cases as defined by relation
R and conduct these proofs by case analysis on φ. We now proceed to prove (a) by case
analysis on φ.

Cases φ ∈
{
ff, X

}
. Both cases do not apply since ∄s · s ⊨ ff and similarly since X is an

open-formula and so ∄s · s ⊨ X.

Case φ = tt. We now assume that

s ⊨ tt (5.33)

s
µ−→ s′ (5.34)

and since µ ∈ {τ, α}, we must consider both cases.

• µ = τ : Since µ = τ , we can apply rule iAsy on (5.34) and get that

L tt,Π M[s] τ−→ L tt,Π M[s′] (5.35)

as required. Also, since we know that every process satisfies tt, we know that s′ ⊨ tt, and
so by the definition of R we conclude that

(s′, L tt,Π M[s′]) ∈ R (5.36)

as required. This means that this case is done by (5.35) and (5.36).
• µ = α: Since L tt,Π M= id encodes the ‘catch-all’ monitor, recY.((x)!(y), true, x!y).Y +
((x)?(y), true, x?y).Y , by rules eRec and eTrn we can apply rule iTrnI/O and deduce
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that id
α▶α−−−→ id, which we can further refine as

L tt,Π M[s] α−→ L tt,Π M[s′] (5.37)

as required. Once again since s′ ⊨ tt, by the definition of R we can infer that

(s′, L tt,Π M[s′]) ∈ R (5.38)

as required, and so this case is done by (5.37) and (5.38).

Case φ =
∧

i∈I [(pi, ci)]φi. We assume that

s ⊨
∧

i∈I [(pi, ci)]φi (5.39)

s
µ−→ s′ (5.40)

and by the definition of ⊨ and (5.39) we have that for every index i∈ I and action β ∈Act,

if s
β
==⇒ s′ and (pi, ci)(β) = σ then s′ ⊨ φiσ. (5.41)

Since µ ∈ {τ, α}, we must consider both possibilities.

• µ = τ : Since µ = τ , we can apply rule iAsy on (5.40) and obtain

L
∧

i∈I [(pi, ci)]φi,Π M[s] τ−→ L
∧

i∈I [(pi, ci)]φi,Π M[s′′] (5.42)

as required. Since µ =τ , and since we know that sHML is τ -closed, from (5.39), (5.40)
and Proposition 5.6, we can deduce that s′ ⊨

∧
i∈I [(pi, ci)]φi, so that by the definition of

R we conclude that

(s′′, L
∧

i∈I [(pi, ci)]φi,Π M[s′′]) ∈ R (5.43)

as required. This subcase is therefore done by (5.42) and (5.43).
• µ = α: Since µ = α, from (5.40) we know that

s
α−→ s′ (5.44)

and by the definition of L− M we can immediately deduce that

Lφ∧,Π M = recY.
(∑

i∈I

{
dis(pi, ci, Y,Π) if φi = ff
(pi, ci).Lφi,Π M otherwise

)
+ def(φ∧) (5.45)

where φ∧
def

=
∧

i∈I [(pi, ci)]φi. Since the branches in the conjunction are all disjoint,
#i∈I(pi, ci), we know that at most one of the branches can match the same (input
or output) action α. Hence, we consider two cases, namely:
– No matching branches (i.e., ∀i ∈ I · (pi, ci)(α) = undef): Since none of the symbolic

actions in (5.45) can match action α, we can infer that if α is an input, i.e., α = a?v,
then it will match the default monitor def(φ∧) and transition via rule iTrnI, while if it
is an output, i.e., α = a!v, rule iDef handles the underspecification. In both cases, the
monitor reduces to id. Also, notice that rules iDisO and iDisI cannot be applied since
if they do, it would mean that s can also perform an erroneous action, which is not the
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case since we assume (5.39). Hence, we infer that

L
∧

i∈I [(pi, ci)]φi,Π M[s] α−→ L tt,Π M[s′] (since id =L tt,Π M) (5.46)

as required. Also, since any process satisfies tt, we know that s′ ⊨ tt, and so by the
definition of R we conclude that

(s′, L tt,Π M[s′]) ∈ R (5.47)

as required. This case is therefore done by (5.46) and (5.47).

– One matching branch (i.e., ∃j ∈ I · (pj , cj)(α)=σ): From (5.45) we can infer that the
synthesised monitor can only disable the (input or output) actions that are defined by
violating modal necessities. However, from (5.41) we also deduce that s is incapable of
executing such an action as that would contradict assumption (5.39). Hence, since we
now assume that ∃j ∈ I · (pj , cj)(α) = σ, from (5.45) we deduce that this action can
only be transformed by an identity transformation and so by rule eTrn we have that

(pj , cj).Lφj ,Π M α▶α−−−→ Lφjσ,Π M. (5.48)

By applying rules eSel, eRec on (5.48) and by (5.44), (5.45) and iTrnI/O (depending
on whether α is an input or output action) we get that

L
∧

i∈I [(pi, ci)]φi,Π M[s] α−→ Lφjσ,Π M[s′] (5.49)

as required. By (5.41), (5.44) and since we assume that ∃j ∈ I · (pj , cj)(α) = σ we have
that s′ ⊨ φjσ, and so by the definition of R we conclude that

(s′, Lφjσ,Π M[s′]) ∈ R (5.50)

as required. Hence, this subcase holds by (5.49) and (5.50).

Case φ = maxX.φ and X ∈ fv(φ). Now, lets assume that

s
µ−→ s′ (5.51)

and that s ⊨ maxX.φ from which by the definition of ⊨ we have that

s ⊨ φ{maxX.φ/X}. (5.52)

Since φ{maxX.φ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we know that: φ
cannot be X because (bound) logical variables are required to be guarded, and it also cannot
be tt or ff since X is required to be defined in φ, i.e., X ∈ fv(φ). Hence, we know that φ
can only have the following form, that is

φ = maxY0. . . .maxYn.
∧
i∈I

[(pi, ci)]φi (5.53)

and so by (5.52), (5.53) and the definition of ⊨ we have that

s ⊨ (
∧

i∈I [(pi, ci)]φi){··} where (5.54)

{··} = {maxX.φ/X, (maxY0. . . .maxYn.
∧

i∈I [(pi, ci)]φi)/Y0, . . .}.
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Since we know (5.51) and (5.54), from this point onwards the proof proceeds as in the
previous case. We thus omit the details.

These cases thus allow us to conclude that (a) holds. We now proceed to prove (b) using
a similar case analysis approach.

Cases φ ∈
{
ff, X

}
. Both cases do not apply since ∄s · s ⊨ ff and similarly since X is an

open-formula and ∄s · s ⊨ X.

Case φ = tt. Assume that

s ⊨ tt (5.55)

L tt,Π M[s] µ−→ r′ (5.56)

Since µ ∈ {τ, a?v, a!v}, we must consider each case.

• µ = τ : Since µ = τ , the transition in (5.56) can be performed via iDisI, iDisO or iAsy.
We must therefore consider these cases.
– iAsy: From rule iAsy and (5.56) we thus know that r′ = L tt,Π M[s′] and that s

τ−→ s′

as required. Also, since every process satisfies tt, we know that s′ ⊨ tt as well, and so
we are done since by the definition of R we know that (s′, L tt,Π M[s′]) ∈ R.

– iDisI: From rule iDisI and (5.56) we know that: r′ = m′[s′], s
a?v−−−→ s′ and that

L tt,Π M
•▶(a?v)−−−−−→ m′. (5.57)

Since L tt,Π M = id we can deduce that (5.57) is false and hence this case does not apply.
– iDisO: The proof for this case is analogous as to that of case iDisI.

• µ = a?v: Since µ = a?v, the transition in (5.56) can be performed either via iTrnI or
iEnI. We consider both cases.
– iEnI: This case also does not apply since if the transition in (5.56) is caused by

rule iEnI we would have that L tt,Π M a?v▶•−−−−→ m which is false since L tt,Π M = id =
recY.((x)!(y), true, x!y).Y +((x)?(y), true, x?y).Y and rules eRec, eSel and eTrn state

that for every a?v, id
a?v▶a?v−−−−−−→ id, thus leading to a contradiction.

– iTrnI: By applying rule iTrnI on (5.56) we know that r′ = m′[s′] such that

L tt,Π M a?v▶b?w−−−−−−→ m′. (5.58)

s
b?w−−−→ s′ (5.59)

Since L tt,Π M = id = recY.((x)!(y), true, x!y).Y + ((x)?(y), true, x?y).Y , by applying
rules eRec, eSel and eTrn to (5.58) we know that a?v = b?w, m′ = id = L tt,Π M,
meaning that r′ = L tt,Π M[s′]. Hence, since every process satisfies tt we know that
s′ ⊨ tt, so that by the definition of R we conclude

(s′, L tt,Π M[s′]) ∈ R. (5.60)

Hence, we are done by (5.59) and (5.60) since we know that a?v = b?w.
• µ = a!v: When µ = a!v, the transition in (5.56) can be performed via iDef, iTrnO or
iEnO. We omit this proof as it is very similar to that of case µ = a?v.
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Case φ =
∧

i∈I [(pi, ci)]φi. We now assume that

s ⊨
∧

i∈I [(pi, ci)]φi (5.61)

L
∧

i∈I [(pi, ci)]φi,Π M[s] µ−→ r′. (5.62)

From (5.61) and by the definition of ⊨ we can deduce that

∀i ∈ I, β ∈ Act · if s
β
==⇒ s′ and (pi, ci)(β) = σ then s′ ⊨ φiσ (5.63)

and from (5.62) and the definition of L− M we have that(
recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if φi = ff
(pi, ci).Lφi,Π M otherwise

)
+ def(

∧
i∈I

[(pi, ci)]φi)
)
[s′]

µ−→ r′. (5.64)

From (5.64) we can deduce that the synthesised monitor can only disable an (input or
output) action β when its occurrence would violate a conjunct of the form [(pi, ci)]ff for
some i ∈ I. However, we also know that s is unable to perform such an action as otherwise
it would contradict assumption (5.63). Hence, we can safely conclude that the synthesised
monitor in (5.64) does not disable any (input or output) actions of s, and so by the definition
of dis we conclude that

∀a?v, a!v ∈ Act, s′ ∈ Sys·(
s

a?v−−−→ s′ implies L
∧

i∈I [(pi, ci)]φi,Π M ̸•▶a?w−−−−−→ (for all w) and

s
a!v−−→ s′ implies L

∧
i∈I [(pi, ci)]φi,Π M ̸a?v▶•−−−−→

)
.

(5.65)

Since µ ∈ {τ, a?v, a!v}, we must consider each case.

• µ = τ : Since µ = τ , from (5.62) we know that

L
∧

i∈I [(pi, ci)]φi,Π M[s] τ−→ r′ (5.66)

The τ -transition in (5.66) can be the result of rules iAsy, iDisI or iDisO; we thus consider
each eventuality.
– iAsy: As we assume that the reduction in (5.66) is the result of rule iAsy, we know

that r′ = L
∧

i∈I [(pi, ci)]φi,Π M[s′] and that

s
τ−→ s′ (5.67)

as required. Also, since sHML is τ -closed, by (5.61), (5.67) and Proposition 5.6 we
deduce that s′ ⊨

∧
i∈I [(pi, ci)]φi as well, so that by the definition of R we conclude that

(s′, L
∧

i∈I [(pi, ci)]φi,Π M[s′]) ∈ R (5.68)

and so we are done by (5.67) and (5.68).
– iDisI: By assuming that reduction (5.66) results from iDisI, we have that r′ = m′[s′]

and that

L
∧

i∈I [(pi, ci)]φi,Π M •▶a?v−−−−→ m′ (5.69)

s
a?v−−−→ s′ (5.70)
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By (5.65) and (5.70) we can, however, deduce that for every value w, we have that

L
∧

i∈I [(pi, ci)]φi,Π M ̸•▶a?w−−−−−→. This contradicts (5.69) and so this case does not apply.
– iDisO: As we now assume that the reduction in (5.66) results from iDisO, we have

that r′ = m′[s′] and that

s
a!v−−→ s′ (5.71)

L
∧

i∈I [(pi, ci)]φi,Π M a!v▶•−−−−→ m′. (5.72)

Again, this case does not apply since from (5.65) and (5.71) we can deduce that

L
∧

i∈I [(pi, ci)]φi,Π M ̸a!v▶•−−−−→ which contradicts (5.72).
• µ = a?v: When µ = a?v, the transition in (5.64) can be performed via rules iEnI or
iTrnI, we consider both possibilities.
– iEnI: This case does not apply since from (5.64) and by the definition of L− M we know

that the synthesised monitor does not include action enabling transformations.
– iTrnI: By assuming that (5.64) is obtained from rule iTrnI we know that

recY.
(∑

i∈I

{
dis(pi, ci, Y,Π) if φi = ff
(pi, ci).Lφi,Π M otherwise

)
+ def(

∧
i∈I

[(pi, ci)]φi)
a?v▶b?w−−−−−−→m′ (5.73)

s
b?w−−−→ s′ (5.74)

r′ = m′[s′]. (5.75)

Since from (5.65) we know that the synthesised monitor in (5.73) does not disable
any action performable by s, and since from the definition of L− M we know that the
synthesis is incapable of producing action replacing monitors, we can deduce that

a?v = b?w. (5.76)

With the knowledge of (5.76), from (5.74) we can thus deduce that

s
a?v−−−→ s′ (5.77)

as required. Knowing (5.76) we can also deduce that in (5.73) the monitor transforms
an action a?v either (i) via an identity transformation that was synthesised from one of
the disjoint conjunction branches, i.e., from a branch (pj , cj).Lφj ,Π M for some j ∈ I, or
else (ii) via the default monitor synthesised by def(

∧
i∈I [(pi, ci)]φi). We consider both

eventualities.
(i) In this case we apply rules eRec, eSel and eTrn on (5.73) and deduce that

∃j ∈ I · (pj , cj)(a?v) = σ (5.78)

m′ = Lφjσ,Π M. (5.79)

and so from (5.77), (5.78) and (5.63) we infer that s′ ⊨ φjσ from which by the
definition of R we have that (s′, Lφjσ,Π M[s′]) ∈ R, and so from (5.75) and (5.79)
we can conclude that

(s′, r′) ∈ R (5.80)



BIDIRECTIONAL RUNTIME ENFORCEMENT OF FIRST-ORDER BRANCHING-TIME PROPERTIES 31

as required, and so this case is done by (5.77) and (5.80).
(ii) When we apply rules eRec, eSel and eTrn we deduce that m′ = id and so by

the definition of L− M we have that

m′ = L tt,Π M. (5.81)

Consequently, as every process satisfies tt, we know that s′ ⊨ tt and so by the
definition of R we have that (s′, L tt,Π M[s′]) ∈ R, so that from (5.75) and (5.81)
we can conclude that

(s′, r′) ∈ R (5.82)

as required. Hence this case is done by (5.77) and (5.82).
• µ = a!v: When µ = a!v, the transition in (5.64) can be performed via iDef, iTrnO
or iEnO. We omit the proof for this case due to its strong resemblance to that of case
µ = a?v.

Case φ = maxX.φ and X ∈ fv(φ). Now, lets assume that

LmaxX.φ,Π M[s] µ−→ r′ (5.83)

and that s ⊨ maxX.φ from which by the definition of ⊨ we have that

s ⊨ φ{maxX.φ/X}. (5.84)

Since φ{maxX.φ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we know that: φ
cannot be X because (bound) logical variables are required to be guarded, and it also cannot
be tt or ff since X is required to be defined in φ, i.e., X ∈ fv(φ). Hence, we know that φ
can only have the following form, that is

φ = maxY0. . . .maxYn.
∧
i∈I

[(pi, ci)]φi (5.85)

and so by (5.84), (5.85) and the definition of ⊨ we have that

s ⊨
∧

i∈I [(pi, ci)]φi{··} where (5.86)

{··} = {maxX.φ/X, (maxY0. . . .maxYn.
∧

i∈I [(pi, ci)]φi)/Y0, . . .}.

Since L
∧

i∈I [(pi, ci)]φi{··},Π M synthesises the unfolded equivalent of LmaxX.φ,Π M, from
(5.83) we know that

L
∧

i∈I [(pi, ci)]φi{··},Π M[s] µ−→ r′. (5.87)

Hence, since we know (5.86) and (5.87), from this point onwards the proof proceeds as per
the previous case. We thus omit showing the remainder of this proof.

From the above cases we can therefore conclude that (b) holds as well.

We are finally in a position to state and prove our eventual transparency results following
Definition 4.6.
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mc(m, tτ )
def

=


1 +mc(m′, t′τ ) if tτ =µt′τ and m[sys(µt′τ )]

µ′
−−→ m′[sys(t′τ )] and µ ̸=µ′

1 +mc(m′, tτ ) if tτ ∈{µt′τ , ε} and m[sys(tτ )]
µ′
−−→ m′[sys(tτ )]

mc(m′, t′τ ) if tτ =µt′τ and m[sys(µt′τ )]
µ−→ m′[sys(t′τ )]

| tτ | if tτ ∈{µt′τ , ε} and ∀µ′ ·m[sys(tτ )] ̸µ
′

−−→

Figure 6. Modification Count (mc).

Proposition 5.12 (Eventual Transparency). For every input port set Π, sHMLnf formula

φ, system states s, s′ ∈Sys, action disabling monitor m′ and trace t, if Lφ,Π M[s] t
=⇒ m′[s′]

and s′ ∈ Jafter(φ, t)K then m′[s′] ∼ s′.

Proof. We must prove that for every formula φ∈ sHMLnf if Lφ,Π M=m then evtenf(m,φ).

We prove that for every φ∈ sHMLnf, if Lφ,Π M[s] t
=⇒ m′[s′] and s′ ⊨ after(φ, t) then

m′[s′] ∼ s′.
Now, assume that

Lφ,Π M[s] t
=⇒ m′[s′] (5.88)

s′ ⊨ after(φ, t) (5.89)

and so from (5.88) and Lemma 5.10 we have that

∃ψ ∈ sHMLnf · ψ = after(φ, t) (5.90)

L after(φ, t),Π M = m′ = Lψ,Π M. (5.91)

Hence, knowing (5.89) and (5.90), by Proposition 5.11 (Transparency) we conclude that
L after(φ, t),Π M[s′] ∼ s′ as required, and so we are done.

6. Transducer Optimality

Recall Definition 4.9 from Section 4. Through criteria such as Definitions 4.2 and 4.6, it
defined what it means for a monitor to adequately enforce a formula. However, it did not
assess whether a monitor is (to some extent) the “best” that one can find to enforce a
property. In order to define such a notion we must first be able to compare monitors to
one another via some kind of distance measurement that tells them apart. One potential
measurement is to assess the monitor’s level of intrusiveness when enforcing the property.

In Figure 6 we define function mc that inductively analyses a system run, represented as
an explicit trace tτ , and counts the number of modifications applied by the monitor. In each
case the function reconstructs a trace system sys(tτ ) and instruments it with the monitor m
in order to assess the type of transformation applied. Specifically, in the first two cases, mc
increments the counter whenever the monitor adapts, disables or enables an action, and then
it recurses to keep on inspecting the run (i.e., the suffix t′τ in the first, and the same trace tτ
in the second) vis-a-vis the subsequent monitor state, m′. The third case, specifies that the
counter stays unmodified when the monitor applies an identity transformation, while the
last case returns the length of tτ when m[sys(tτ )] is unable to execute further.
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ec(m)
def

=


∅ if m=X⋃

i∈I ec(mi) if m=
∑

i∈I mi

ec(m′) if m= recX.m′ or m=(p, c, p).m′

{DIS}∪ ec(m′) if m=((x)!(y), c, •).m′ or m=(•, c, a?v).m′

{EN}∪ ec(m′) if m=((x)?(y), c, •).m′ or m=(•, c, a!v).m′

{ADPT}∪ ec(m′) if m=(p, c, p′).m′ and p′ ̸= p ̸= •

Figure 7. Enforcement Capabilities (ec).

Example 6.1. Recall the monitors of Example 3.2 and consider the following system run
t0τ=a?v1.a?v2.τ.a!w2.a!w2.b!(log, v2, w2). For me and ma, function mc respectively counts
three enabled actions, i.e., mc(me, t

0
τ )=3, and four adapted actions, i.e., mc(ma, t

0
τ )=4

(since b!(log, v2, w2) remains unmodified). The maximum count of 5 is attained by md as it
immediately blocks the first input a?v1, and so none of the actions in t0τ can be executed by

the composite system i.e., ∀µ·md[sys(t
0
τ )] ̸

µ−→ and so mc(md, t
0
τ )=5. Similarly, mc(mdt, t

0
τ )=4

since mdt allows the first request to be made, but blocks the second erroneous one, and as a

result it also forbids the execution of the subsequent actions, i.e., ∀µ ·mdt[sys(t
0
τ )]

a?v1−−−→· ̸µ−→.
Finally, mdet performs the least number of modifications, namely mc(mdet, t

0
τ )=2. The first

modification is caused when the monitor blocks the second erroneous input and internally
inserts a default input value that allows the composite system to proceed over a τ -action.
This contrasts withmd andmdt which fail to perform this insertion step thereby contributing
to their high intrusiveness score. The second modification is attained when mdet suppresses
the redundant response. ■

We can now use function mc to compare monitors to each other in order to identify
the least intrusive one, i.e., the monitor that applies the least amount of transformations
when enforcing a specific property. However, for this comparison to be fair, we must also
compare like with like. This means that if a monitor enforces a formula by only disabling
actions, it is only fair to compare it to other monitors of the same kind. It is reasonable
to expect that monitors with more enforcement capabilities are likely to be “better” than
those with fewer capabilities. We determine the enforcement capabilities of a monitor via
function ec of Figure 7. It inductively analyses the structure of the monitor and deduces
whether it can enable, disable and adapt actions based on the type of transformation triples
it defines. For instance, if the monitor defines an output suppression triple, ((x)!(y), c, •).m′,
or an input insertion branch, (•, c, a?v).m′, then ec determines that the monitor can disable
actions DIS, while if it defines an input suppression, ((x)?(y), c, •).m′, or an output insertion
branch, (•, c, a!v).m′, then it concludes that the monitor can enable actions, EN. Similarly, if
a monitor defines a replacement transformation, it infers that the monitor can adapt actions,
ADPT.

Example 6.2. Recall the monitors of Example 3.2. With function ec we determine that
ec(me)={EN}, ec(ma)={ADPT}, ec(md)=ec(mdt)=ec(mdet)={DIS}. Monitors may also
have multiple types of enforcement capabilities. For instance,

ec(recX.((x)?(y), •).X + ((x)!(y), •).X)={EN,DIS}. ■

With these definitions we now define optimal enforcement.
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Definition 6.3 (Optimal Enforcement). A monitor m is optimal when enforcing φ, denoted
as oenf(m,φ), iff it enforces φ (Definition 4.9) and when for every state s, explicit trace tτ

and monitor n, if ec(n)⊆ ec(m), enf(n, φ) and s
tτ−−→ then mc(m, tτ )≤mc(n, tτ ).

Definition 6.3 states that an adequate (sound and eventually transparent) monitor m is
optimal for φ, if one cannot find another adequate monitor n, with the same (or fewer)
enforcement capabilities, that performs fewer modifications than m and is thus less intrusive.

Example 6.4. Recall formula φ1 of Example 2.4 and monitor mdet of Example 4.7. Al-
though showing that oenf(mdet, φ1) is inherently difficult, from Example 6.1 we already
get the intuition that it holds since mdet imposes the least amount of modifications com-
pared to the other monitors of Examples 3.2 and 3.3. We further reaffirm this intuition
using systems sb and sc from Example 2.4. In fact, when considering the invalid runs
t1τ

def

= a?v1.τ.a!w1.a!w1.b!(log, v1, w1) of sb, and t
2
τ

def

= a?v1.a?v2.τ.a!w2.b!(log, v2, w2) of sc, one
can easily deduce that no other adequate action disabling monitor can enforce φ1 with
fewer modifications than those imposed by mdet, namely, mc(mdet, t

1
τ )=mc(mdet, t

2
τ )= 1.

Furthermore, consider the invalid traces t1τ{c/a} and t2τ{c/a} that are respectively produced
by versions of sb and sc that interact on some port c instead of a (for any port c ̸= a).
Since mdet binds the port c to its data binder x and uses this information in its insertion
branch, (•, (x?( ))).Y , the same modification count is achieved for these traces, as well i.e.,
mc(mdet, t

1
τ{c/a})=mc(mdet, t

2
τ{c/a})= 1. ■

Example 6.4 describes the case where formula φ is optimally enforced by a finite-state
and finitely-branching monitor, mdet. In the general case, this is not always possible.

Example 6.5. Consider formula φ2 stating that an initial input on port a followed by
another input from some other port x2 ̸=a constitutes invalid system behaviour. Also consider
monitor m1 where enf(m1, φ2).

φ2
def

= [(a?( ))][((x2)?( ), x2 ̸=a)]ff

m1
def

= (a?( )).recY.((•, b?vdef).Y + (a?( )).id)

When enforcing a system that generates the run t3τ
def

= a?v1.b?v2.a!w1.u
3
τ , monitorm1 modifies

the trace only once. Although it disables the input b?v2, it subsequently unblocks the SuS
by inserting b?vdef and so trace t3τ is transformed into a?v1.τ.a!w1.u

3
τ . However, for a slightly

modified version of t3τ , e.g., t
3
τ{c/b}, m1 scores a modification count of 2 + |u3τ |. This is the

case because, although it blocks the invalid input on port c, it fails to insert the default
value that unblocks the SuS. A more expressive version of m1, such as

m2
def

= (a?( )).recY.((•, b?vdef).Y + (•, c?vdef).Y + (a?( )).id),

circumvents this problem by defining an extra insertion branch (underlined), but still fails to
be optimal in the case of t3τ{d/b}. In this case, there does not exist a way to finitely define a
monitor that can insert a default value on every possible input port x2 ̸= a. Hence, it means
that the optimal monitor mopt for φ1 would be an infinite branching one, i.e., it requires a
countably infinite summation that is not expressible in Trn,

mopt
def

=(a?( )).(recY.
∑

b∈Port and a ̸=b

(•, b?vdef).Y + (a?( )).id)

or alternatively

(a?( )).(recY.
∑

b∈Port

(•, a ̸=b, b?vdef).Y + (a?( )).id)
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where the condition a ̸=b is evaluated at runtime. ■

Unlike Example 6.4, Example 6.5 presents a case where optimality can only be attained
by a monitor that defines an infinite number of branches; this is problematic since monitors
are required to be finitely described. As it is not always possible to find a finite monitor
that enforces a formula using the least amount of transformation for every possible system,
this indicates that Definition 6.3 is too strict. We thus mitigate this issue by weakening
Definition 6.3 and redefine it in terms of the set of system states SysΠ, i.e., the set of states
that can only perform inputs using the ports specified in a finite Π⊂Port. Although this
weaker version does not guarantee that the monitor m optimally enforces φ on all possible
systems, it, however, ensures optimal enforcement for all the systems that input values via
the ports specified in Π.

Definition 6.6 (Weak Optimal Enforcement). A monitor m is weakly optimal when
enforcing φ, denoted as oenf(m,φ,Π), iff it enforces φ (Definition 4.9) and when for every

state s∈SysΠ, explicit trace tτ and monitor n, if ec(n)⊆ ec(m), enf(n, φ) and s
tτ−−→ then

mc(m, tτ )≤mc(n, tτ ).

Example 6.7. Monitor m1 from Example 6.5 ensures that φ2 is optimally enforced on
systems that interact on ports a and b, i.e., when Π= {a, b}, while monitor m2 guarantees
it when Π= {a, b, c}. ■

We can show that a synthesised monitor Lφ,Π M obtained using the synthesis function Def-
inition 5.3 from Section 5 is also guaranteed to be weakly optimal (as stated by Definition 6.6)
when enforcing φ on a SuS s whose input ports are specified by Π, i.e., s∈SysΠ. Since
our synthesis produces only action disabling monitors, i.e., ec(Lφ,Π M)= {DIS} for all φ and

Π, we can limit ourselves to monitors pertaining to the set DisTrn
def

= {n if ec(n)⊆{DIS}}.
The proof for Theorem 6.12 below relies on the following lemmas.

Lemma 6.8. For every m∈DisTrn and explicit trace tτ , there exists some N such that
mc(m, tτ )=N .

Lemma 6.9. For every action α and monitor m∈DisTrn, if it is the case that m
α▶α−−−→ m′,

enf(m,
∧

i∈I [(pi, ci)]φi) and (pj , cj)(α)=σ (for some j∈I) then enf(m′, φjσ).

Lemma 6.10. For every monitor m∈DisTrn, whenever enf(m,
∧

i∈I [(pi, ci)]φi) and, for

some m′, m
(a!v)▶•−−−−−→ m′ then enf(m′,

∧
i∈I [(pi, ci)]φi).

Lemma 6.11. For every monitor m∈DisTrn, whenever enf(m,
∧

i∈I [(pi, ci)]φi) and, for

some m′, m
•▶(a?v)−−−−−→ m′ then enf(m′,

∧
i∈I [(pi, ci)]φi).

Theorem 6.12 (Weak Optimal Enforcement). For every system s∈SysΠ, explicit trace tτ

and monitorm, if ec(m)⊆ ec(Lφ,Π M), enf(m,φ) and s tτ−−→ implies mc(Lφ,Π M, tτ )≤mc(m, tτ ).

Proof. Since, from Lemma 6.8, we know that for every m∈DisTrn, there exists some N

such that mc(m, tτ )=N , we can prove that if enf(m,φ), s
tτ−−→ and mc(Lφ,Π M, tτ )=N then

N ≤mc(m, tτ ). We proceed by rule induction on mc(Lφ,Π M, tτ ).

Case mc(Lφ,Π M, tτ ) when tτ =µt′τ and Lφ,Π M[sys(µt′τ )]
µ−→ m′

φ[sys(t
′
τ )]. Assume that

mc(Lφ,Π M, µt′τ ) = mc(m′
φ, t

′
τ ) = N (6.1)
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which implies that

Lφ,Π M[sys(µt′τ )]
µ−→ m′

φ[sys(t
′
τ )] (6.2)

and also assume that

enf(m,φ) (6.3)

and that s
µt′τ−−−→. By the rules in our model we can infer that the reduction in (6.2) can

result from rule iAsy when µ= τ , iDef and iTrnO when µ= a!v, or iTrnI when µ= a?v.
We consider each case individually.

• iAsy: By rule iAsy from (6.2) we know that µ= τ and that

m′
φ = Lφ,Π M. (6.4)

Since from (6.3) we know that m is sound and eventual transparent, we can thus deduce
that m does not hinder internal τ -actions from occurring and so the composite system
Lφ,Π M[sys(τt′τ )] can always transition over τ via rule iAsy, that is,

m[sys(τt′τ )]
τ−→ m[sys(t′τ )]. (6.5)

Hence, by (6.1), (6.3) and since s
τt′τ−−−→ entails s

τ−→ s′ and s′
t′τ−−→ we can apply the

inductive hypothesis and deduce that N ≤mc(m, t′τ ) so that by (6.5) and the definition of
mc, we conclude that N ≤mc(m, τt′τ ) as required.

• iDef: From (6.2) and rule iDef we know that µ= a!v, Lφ,Π M ̸a!v−−→ and that m′
φ = id.

Since id does not modify actions, we can deduce thatmc(m′
φ, t

′
τ )= 0 and so by the definition

of mc we know that mc(Lφ,Π M, (a!v)t′τ )= 0 as well. This means that we cannot find a
monitor that performs fewer transformations, and so we conclude that 0≤mc(m, (a!v)t′τ )
as required.

• iTrnI: From (6.2) and rule iTrnI we know that µ= a?v and that

Lφ,Π M
(a?v)▶(a?v)−−−−−−−−→ m′

φ. (6.6)

We now inspect the cases for φ.
– φ∈{ff, tt, X}: The cases for ff and X do not apply since Lff,Π M and LX,Π M do not

yield a valid monitor, while the case when φ= tt gets trivially satisfied since L tt,Π M= id
and mc(id, (a?v)t′τ )= 0.

– φ=
∧

i∈I [(pi, ci)]φi where #i∈I(pi, ci): Since φ =
∧

i∈I [(pi, ci)]φi, by the definition of
L− M we have that

Lφ∧ =
∧

i∈I [(pi, ci)]φi,Π M

= recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if φi = ff
(pi, ci).Lφi,Π M otherwise

)
+ def(

∧
i∈I

[(pi, ci)]φi)

=

(∑
i∈I

{
dis(pi, ci, Lφ∧,Π M,Π) if φi = ff
(pi, ci).Lφi,Π M otherwise

)
+ def(

∧
i∈I

[(pi, ci)]φi)

(6.7)

Since normalized conjunctions are disjoint, i.e., #i∈I(pi, ci), from (6.7) we can infer that
the identity reduction in (6.6) can only happen when a?v matches an identity branch,
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(pj , cj).Lφj ,Π M (for some j ∈ I), and so we have that

(pj , cj)(a?v) = σ. (6.8)

Hence, knowing (6.6) and (6.8), by rule eTrn we know that m′
φ= Lφjσ,Π M and so by

(6.1) we can infer that

mc(m′
φ, t

′
τ ) = N where m′

φ= Lφjσ,Π M. (6.9)

Since from (6.7) we also know that the monitor branch (pj , cj).Lφj ,Π M is derived from
a non-violating modal necessity, i.e., [(pj , cj)]φj where φj ̸=ff, we can infer that a?v is
not a violating action and so it should not be modified by any other monitor m, as
otherwise it would infringe the eventual transparency constraint of assumption (6.3).
Therefore, we can deduce that

m
(a?v)▶(a?v)−−−−−−−−→ m′ (for some m′) (6.10)

and subsequently, knowing (6.10) and that tτ =(a?v)t′τ and also that sys((a?v)t′τ )
a?v−−−→sys(t′τ ),

by rule iTrnI and the definition of mc we infer that

mc(m, (a?v)t′τ ) = mc(m′, t′τ ). (6.11)

As by (6.3), (6.6), (6.8) and Lemma 6.9 we know that enf(m′, φjσ), by (6.9) and since

s
(a?v)t′τ−−−−−→ entails that s

a?v−−−→ s′ and s′
t′τ−−→, we can apply the inductive hypothesis and

deduce that N ≤mc(m′, t′τ ) and so from (6.11) we conclude that N ≤mc(m, (a?v)t′τ ) as
required.

– φ=maxX.φ′ and X ∈ fv(φ′): Since φ=maxX.φ′, by the syntactic restrictions of
sHMLnf we infer that φ′ cannot be ff or tt since X /∈ fv(φ′) otherwise, and it cannot be
X since every logical variable must be guarded. Hence, φ′ must be of a specific form, i.e.,
maxY1 . . . Yn.

∧
i∈I [(pi, ci)]φi, and so by unfolding every fixpoint in maxX.φ′ we reduce

our formula to φ
def

=
∧

i∈I [(pi, ci)]φi{maxX.φ′
/X , . . .}. We thus omit the remainder of

this proof as it becomes identical to that of the subcase when φ=
∧
i∈I

[(pi, ci)]φi.

• iTrnO: We elide the proof for this case as it is very similar to that of iTrnI.

Case mc(Lφ,Π M, tτ ) when tτ=µt′τ and Lφ,Π M[sys(µt′τ )]
µ′
−−→m′

φ[sys(t
′
τ )] and µ

′ ̸=µ.
Assume that

mc(Lφ,Π M, µt′τ ) = 1 +M (6.12)

where M = mc(m′
φ, t

′
τ ) (6.13)

which implies that

Lφ,Π M[sys(µt′τ )]
µ′
−−→ m′

φ[sys(t
′
τ )] where µ′ ̸= µ (6.14)

and also assume that

enf(m,φ) (6.15)
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and that s
µt′τ−−−→. Since we only consider action disabling monitors, the µ′ reduction of (6.14)

can only be achieved via rules iDisO or iDisI. We thus explore both cases.

• iDisI: From (6.14) and by rule iDisI we have that µ = a?v and µ′ = τ and that

Lφ,Π M •▶a?v−−−−→ m′
φ. (6.16)

We now inspect the cases for φ.
– φ∈{ff, tt, X}: These cases do not apply since Lff,Π M and LX,Π M do not yield a valid

monitor, while L tt,Π M= id does not perform the reduction in (6.16).
– φ=

∧
i∈I [(pi, ci)]φi where #i∈I(pi, ci): Since φ =

∧
i∈I [(pi, ci)]φi, by the definition of

L− M we have that

Lφ∧ =
∧

i∈I [(pi, ci)]φi,Π M

= recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if φi = ff
(pi, ci).Lφi,Π M otherwise

)
+ def(

∧
i∈I

[(pi, ci)]φi)

=

(∑
i∈I

{
dis(pi, ci, Lφ∧,Π M,Π) if φi = ff
(pi, ci).Lφi,Π M otherwise

)
+ def(

∧
i∈I

[(pi, ci)]φi)

(6.17)

Since normalized conjunctions are disjoint i.e., #i∈I(pi, ci), and since s
µt′τ−−−→ where µ =

(a?v), by the definition of dis, from (6.17) we deduce that the reduction in (6.16) can only
be performed by an insertion branch of the form, (•, cj{a/x}, a?v).L

∧
i∈I [(pi, ci)]φi,Π M

that can only be derived from a violating modal necessity [(pj , cj)]ff (for some j ∈ I).
Hence, we can infer that

m′
φ = L

∧
i∈I [(pi, ci)]φi,Π M (6.18)

pj = (x)?(y) and cj{a/x} ⇓ true. (6.19)

Knowing (6.19) and that [(pj , cj)]ff we can deduce that any input on port a is erroneous
and so for the soundness constraint of assumption (6.15) to hold, any other monitor m is
obliged to somehow block this input port. As we consider action disabling monitors, i.e.,
m∈DisTrn, we can infer that monitor m may block this input in two ways, namely,

either by not reacting to the input action, i.e., m ̸a?v−−−→, or by additionally inserting a

default value v, i.e., m
•▶(a?v)−−−−−→ m′. We explore both cases.

∗ m ̸a?v−−−→: Since sys((a?v)t′τ )
a?v−−−→ sys(t′τ ) and since m ̸a?v−−−→, by the rules in our model

we know that for every action µ′, m[sys((a?v)t′τ )] ̸µ
′

−−→ and so by the definition of mc
we have that mc(m, (a?v)t′τ )= | (a?v)t′τ | meaning that by blocking inputs on a, m also
blocks (and thus modifies) every subsequent action of trace t′τ . Hence, this suffices to
deduce that at worst 1 +M is equal to | (a?v)t′τ |, that is 1 +M ≤ | (a?v)t′τ |, and so
from (6.12) we can deduce that 1 +M ≤mc(Lφ,Π M, µt′τ ) as required.

∗ m
•▶(a?v)−−−−−→ m′: Since sys((a?v)t′τ )

a?v−−−→ sys(t′τ ) and since m
•▶(a?v)−−−−−→ m′, by rule

iDisI we know that m[sys((a?v)t′τ )]
τ−→ m[sys(t′τ )] and so by the definition of mc we

have that

mc(m, (a?v)t′τ ) = 1 +mc(m′, t′τ ). (6.20)
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As by (6.15), (6.16) and Lemma 6.11 we infer that enf(m′,
∧

i∈I [(pi, ci)]φi), by (6.13),

(6.20) and since s
(a?v)t′τ−−−−−→ entails that s

(a?v)−−−−→ s′ and s′
t′τ−−→, we can apply the inductive

hypothesis and deduce that M ≤mc(m′, t′τ ) and so from (6.12), (6.13) and (6.20) we
conclude that 1 +M ≤mc(m, (a?v)t′τ ) as required.

– φ=maxX.φ′ and X ∈ fv(φ′): We omit showing this proof as it is a special case of when
φ=

∧
i∈I [(pi, ci)]φi.

• iDisO: We omit showing the proof for this subcase as it is very similar to that of case
iDisI. Apart from the obvious differences (e.g., a!v instead of a?v), Lemma 6.10 is used
instead of Lemma 6.11.

Case mc(Lφ,Π M, tτ ) when tτ ∈{µt′τ , ε} and Lφ,Π M[sys(µt′τ )] ̸µ
′

−−→. Assume that

mc(Lφ,Π M, tτ ) = | tτ | (where tτ ∈{µt′τ , ε}) (6.21)

Lφ,Π M[sys(µt′τ )] ̸µ
′

−−→ (6.22)

enf(m,φ) (6.23)

Since tτ ∈{µt′τ , ε} we consider both cases individually.

• tτ = ε : This case holds trivially since by (6.21), (6.22) and the definition of mc,
mc(Lφ,Π M, ε) = | ε | = 0.

• tτ = µt′τ : Since tτ = µt′τ we can immediately exclude the cases when µ∈{τ, a!v} since
rules iAsy and iDef make it impossible for (6.22) to be attained in such cases. Particularly,
rule iAsy always permits the SuS to independently perform an internal τ -move, while rule
iDef allows the monitor to default to id whenever the system performs an unspecified
output a!v. However, in the case of inputs, a?v, the monitor may completely block inputs
on a port a and as a consequence cause the entire composite system Lφ,Π M[sys(µt′τ )] to
block, thereby making (6.22) a possible scenario. We thus inspect the cases for φ vis-a-vis
µ= a?v.
– φ∈{ff, tt, X}: These cases do not apply since Lff,Π M and LX,Π M do not yield a valid

monitor and since L tt,Π M= id is incapable of attaining (6.22).

– φ=
∧
i∈I

[(pi, ci)]φi where #i∈I(pi, ci): Since φ=
∧
i∈I

[(pi, ci)]φi, by the definition of L− M

we have that

Lφ∧ =
∧

i∈I [(pi, ci)]φi,Π M

= recY.

(∑
i∈I

{
dis(pi, ci, Y,Π) if φi = ff
(pi, ci).Lφi,Π M otherwise

)
+ def(

∧
i∈I

[(pi, ci)]φi)

=

(∑
i∈I

{
dis(pi, ci, Lφ∧,Π M,Π) if φi = ff
(pi, ci).Lφi,Π M otherwise

)
+ def(

∧
i∈I

[(pi, ci)]φi)

(6.24)

Since µ = a?v, from (6.24) and by the definitions of dis and def we can infer that the
only case when (6.22) is possible is when the inputs on port a satisfy a violating modal
necessity, that is, there exists some j ∈ I such that [(pj , cj)]ff and for every v ∈Val,
match(pj , a?v)=σ and cjσ ⇓ true. At the same time, the monitor is also unaware of
the port on which the erroneous input can be made, i.e., a /∈Π. Hence, this case does
not apply since we limit ourselves to SysΠ, i.e., states of system that can only input
values via the ports specified in Π.
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– φ=maxX.φ′: As argued in previous cases, this is a special case of φ=
∧

i∈I [(pi, ci)]φi

and so we omit this part of the proof.

Case mc(Lφ,Π M, tτ ) when tτ ∈{µt′τ , ε} and Lφ,Π M[sys(tτ )]
µ′
−−→ m′

φ[sys(tτ )]. As we
only consider action disabling monitors, this case does not apply since the transition

Lφ,Π M[sys(tτ )]
µ′
−−→ m′

φ[sys(tτ )] can only be achieved via action enabling and rules iEnO
and iEnI.

7. Conclusions and Related Work

This work extends the framework presented in the precursor to this work [ACFI18] to the
setting of bidirectional enforcement where observable actions such as inputs and outputs
require different treatment. We achieve this by:

(1) augmenting substantially our instrumentation relation (Figure 4);
(2) refining our definition of enforcement to incorporate transparency over violating systems

(Definition 4.9);
(3) providing a more extensive synthesis function (Definition 5.3) that is proven correct

(Theorem 5.5); and
(4) exploring notions of transducer optimality in terms of limited levels of intrusiveness

(Definitions 6.3 and 6.6 and Theorem 6.12).

Future work. There are a number of possible avenues for extending our work. One
immediate step would be the implementation of the monitor operational model presented
in Section 3 together with the synthesis function described in Section 5. This effort
should be integrated it within the detectEr tool suite [CFS15, AF16, CFAI17, CFA+17,
AAA+21]. This would allow us to assess the overhead induced by our proposed bidirectional
monitoring [AAFI21]. Another possible direction would be the development of behavioural
theories for the transducer operational model presented in Section 3, along the lines of the
refinement preorders studied in earlier work on sequence recognisers [Fra21, Fra17, AAF+21a].
Finally, applications of this theory on transducers, along the lines of [LMM20] are also worth
exploring.

Related work. In his seminal work [Sch00], Schneider introduced the concept of runtime
enforcement and enforceability in a linear-time setting. Particularly, in his setting a property
is deemed enforceable if its violation can be detected by a truncation automaton, and
prevented via system termination. By preventing misbehaviour, these automata can only
enforce safety properties. Ligatti et al. extended this work in [LBW05] via edit automata—an
enforcement mechanism capable of suppressing and inserting system actions. A property is
thus enforceable if it can be expressed as an edit automaton that transforms invalid executions
into valid ones via suppressions and insertions. As a means to assess the correctness of these
automata, the authors introduced soundness and transparency.

Both settings by Schneider [Sch00] and Ligatti et al. [LBW05] assume a trace based
view of the SuS and that every action can be freely manipulated by the monitor. They also
do not distinguish between the specification and the enforcement mechanism, as properties
are encoded in terms of the enforcement model itself, i.e., as edit/truncation automata.
In our prior work [ACFI18], we addressed this issue by separating the specification and
verification aspects of the logic and explored the enforceability of µHML in a unidirectional
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context and in relation to a definition of adequate enforcement defined in terms of soundness
and transparency. In this paper we adopt a stricter notion of enforceability that requires
adherence to eventual transparency and investigate the enforceability of sHML formulas in
the context of bidirectional enforcement.

Bielova and Massacci [Bie11, BM11b] remark that, on their own, soundness and trans-
parency fail to specify the extent in which a transducer should modify invalid runtime
behaviour and thus introduce a predictability criterion. A transducer is predictable if one
can predict the edit-distance between an invalid execution and a valid one. With this
criterion, adequate monitors are further restricted by setting an upper bound on the number
of transformations that a monitor can apply to correct invalid traces. Although this is
similar to our notion of optimality, we however use it to compare an adequate (sound and
eventual transparent) monitor to all the other adequate monitors and determine whether it
is the least intrusive monitor that can enforce the property of interest.

In [KAB+17] Könighofer et al. present a synthesis algorithm similar to our own that
produces action replacement monitors called shields from safety properties encoded as
automata-based specifications. Although their shields can analyse both the inputs and
outputs of a reactive system, they still perform unidirectional enforcement since they only
modify the data associated with the system’s output actions. By definition, shields should
adhere to correctness and minimum deviation which are, in some sense, analogous to
soundness and transparency respectively.

In [PRS+16, PRS+17], Pinisetty et al. conduct a preliminary investigation of RE in a
bidirectional setting. They, however, model the behaviour of the SuS as a trace of input
and output pairs, a.k.a. reactions, and focus on enforcing properties by modifying the
payloads exchanged by these reactions. This way of modelling system behaviour is, however,
quite restrictive as it only applies to synchronous reactive systems that output a value in
reaction to an input. This differs substantially from the way we model systems as LTSs,
particularly since we can model more complex systems that may opt to collect data from
multiple inputs, or supply multiple outputs in response to an input. The enforcement
abilities studied in [PRS+16, PRS+17] are also confined to action replacement that only
allows the monitor to modify the data exchanged by the system in its reactions, and so the
monitors in [PRS+16, PRS+17] are unable to disable and enable actions. Due to their trace
based view of the system, their correctness specifications do not allow for defining correct
system behaviour in view of its different execution branches. This is particularly useful when
considering systems whose inputs may lead them into taking erroneous computation branches
that produce invalid outputs. Moreover, since their systems do not model communication
ports, their monitors cannot influence directly the control structure of the SuS, e.g., by
opening, closing or rerouting data through different ports.

Finally, Lanotte et al. [LMM20] employ similar synthesis techniques and correctness
criteria to ours (Definitions 4.2 and 4.4) to generate enforcement monitors for a timed setting.
They apply their process-based approach to build tools that enforce data-oriented security
properties. Although their implementations handle the enforcement of first-order properties,
the theory on which it is based does not, nor does it investigate logic enforceability.
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