
Algorithmic Analysis of Polygonal Hybrid

Systems, Part II: Phase Portrait and Tools

Eugene Asarin a, Gordon Pace b, Gerardo Schneider c,∗,
Sergio Yovine d

aLIAFA, Case 7014, 2 pl. Jussieu, 75251 Paris Cedex 5, France

bDept. of Computer Science and AI, University of Malta, Msida, Malta

cDept. of Informatics, University of Oslo, P.O. Box 1080 Blindern, NO-0316

Oslo, Norway

dCNRS-VERIMAG, Centre Equation, 2 Ave. Vignate, 38610 Gières, France

Abstract

Polygonal differential inclusion systems (SPDI) are a subclass of planar hybrid au-
tomata which can be represented by piecewise constant differential inclusions. The
reachability problem as well as the computation of certain objects of the phase por-
trait is decidable. In this paper we show how to compute the viability, controllability
and invariance kernels, as well as semi-separatrix curves for SPDIs. We also present
the tool SPeeDI+, which implements a reachability algorithm and computes phase
portraits of SPDIs.

Key words: Hybrid systems, differential inclusions, verification, phase portrait

∗ Corresponding author.
Email addresses: Eugene.Asarin@liafa.jussieu.fr (Eugene Asarin),

gordon.pace@um.edu.mt (Gordon Pace), gerardo@ifi.uio.no (Gerardo
Schneider), Sergio.Yovine@imag.fr (Sergio Yovine).

Preprint submitted to Elsevier Science 20 September 2007

Contents

1 Introduction 3

2 Theoretical Background 5

2.1 SPDI 6

2.2 Successors and predecessors 8

2.3 Qualitative analysis of simple edge-cycles 9

3 Phase Portrait 11

3.1 Viability Kernel 11

3.2 Controllability Kernel 15

3.3 Invariance Kernel 19

3.4 Semi-Separatrix Curve 21

3.5 Further Properties of the Kernels 24

3.6 Phase Portrait Construction 26

4 SPeeDI+ 28

4.1 Description of the Tool 28

4.2 Implementation Issues 30

4.3 Example 35

4.4 Comparison with HyTech 36

5 Concluding Remarks 39

References 40

2

1 Introduction

Hybrid systems combining discrete and continuous dynamics arise as mathe-
matical models of various artificial and natural systems, and as approximations
to complex continuous systems. They have been used in various domains, in-
cluding avionics, robotics and bioinformatics. Reachability analysis has been
the principal research question in the verification of hybrid systems, even if it
is a well-known result that for most non-trivial subclasses of hybrid systems
reachability and most verification questions are undecidable. Various decid-
able subclasses have, subsequently, been identified, including timed [AD94]
and initialized rectangular automata [HKPV95], hybrid automata with linear
vector fields [LPY01], piecewise constant derivative systems (PCDs) [MP93]
and polygonal differential inclusion systems (SPDIs) 1 [ASY01].

Compared to reachability verification, qualitative analysis of hybrid systems is
a relatively neglected area [ALQ+01b,DV95,KdB01,MS00,SP02,SJSL00]. Typ-
ical qualitative questions include: “Are there ‘sink’ regions where a trajectory
can never leave once it enters the region?”; “Which are the basins of attrac-
tion of such regions?”; “Are there regions in which every point in the region is
reachable from every other point in the region without leaving it?”. To answer
such questions one usually gives a collection of objects characterizing these
sets, hence providing useful information about the qualitative behavior of the
hybrid system. We call the set of all such objects for a given system its phase
portrait, in accordance with the usual meaning of this term.

In this work we will concentrate on SPDIs. An SPDI (Fig. 1) is a finite par-
tition P of the plane (into convex polygonal areas), with a pair of vectors aP

and bP associated to each polygonal area P ∈ P. At any position on the plane
x, where x ∈ P , the dynamics of the system are defined by the differential
inclusion ẋ ∈ ∠

bP
aP

(where ∠
b

a
denotes the angle on the plane between the

vectors a and b).

In [ASY07] it has been proved that edge-to-edge and polygon-to-polygon
reachability in SPDIs is decidable by exploiting the topological properties
of a subset of the plane, extending the method introduced in [MP93]. The
procedure is not based on the computation of the reach set but rather on
the exploration of a finite number of types of qualitative behaviors obtained
from the edge-signatures of trajectories (the sequences of their intersections
with the edges of the polygons). Such types of signatures may contain loops
which can be very expensive (or impossible) to explore näıvely. However, it
has been shown that loops have structural properties that can be exploited
to efficiently compute their effect. In summary, the novelty of the approach

1 In the literature the terms polygonal hybrid system and simple planar differential

inclusion have also been used for SPDI.

3

is the combination of several techniques, namely, (i) the representation of the
two-dimensional continuous dynamics as a one-dimensional discrete dynami-
cal system, (ii) the characterization of the set of qualitative behaviors of the
latter as a finite set of types of signatures, and (iii) the “acceleration” of the
iterations in the case of cyclic signatures.

Given a cycle on a SPDI, we can speak about a number of kernels pertaining
to that cycle. The viability kernel is the largest set of points in the cycle which
may loop forever within the cycle. The controllability kernel is the largest set
of strongly connected points in the cycle (such that any point in the set may
be reached from any other). An invariant set is a set of points such that each
point must keep rotating within the set forever. The invariance kernel is the
largest of such sets. Separatrices are convex polygons dissecting the plane into
two mutually non-reachable subsets. The notion of separatrix can be relaxed,
obtaining semi-separatrix curves (or simply, semi-separatrices), such that some
points in one set may be reachable from the other set, but not vice-versa.

An important property of a dynamical system is controllability which refers
to the ability of making the system to go from one state to another. If we
think of the first state as being a ”bad situation” (e.g., faulty state) and
the second one as ”good”, the importance of this notion in control theory
is clear. Besides, controllability kernels are important elements of the phase
portrait of an SPDI yielding an analog of Poincaré-Bendixson theorem (see
for example [HS74]) for simple trajectories, and the viability kernels are their
basins of attraction [Aub90]. Invariance kernels are, on the other hand, “sinks”
while semi-separatrices are filters allowing trajectories to traverse regions in
one “direction”. The information gathered for computing reachability turns
out to be useful for computing viability, controllability and invariance kernels
of such systems. Algorithms for computing these kernels have been presented
in [ASY02,Sch04] and are implemented in the tool set SPeeDI+[PS06b].

This paper is the second part of [ASY07], which describes a reachability al-
gorithm for SPDIs. The contributions of the current paper are the following.
We first show how to compute viability, controllability and invariance kernels
for SPDIs and we present some properties of such phase portrait objects. We
then continue by giving an algorithm to compute semi-separatrices of SPDIs.
Finally, we present the tool SPeeDI+, which implements the reachability al-
gorithm presented in [ASY01,ASY07], and the computation and visualization
of the above-mentioned phase portrait objects.

This work is an extended and revised version of [Sch02, chapter 6,8] and a
number of conference papers on SPDIs. We have shown how to compute via-
bility and controllability kernels in [ASY02] and invariance kernels in [Sch04].
The computation of semi-separatrices was presented in [PS06c]. A short pre-
sentation of the tool SPeeDI appeared in [APSY02], while the description of

4

R1

R2

R3

R6

R5

R4

e1

e4

e0
I

e2e6

I’
e5 e3

Fig. 1. An SPDI and its trajectory segment.

SPeeDI+ is still unpublished [PS06b].

The paper is structured as follows. In the next section we introduce the nec-
essary theoretical background, including the definition of SPDI and some of
its properties; a more detailed and complete presentation can be found in
[ASY07]. In section 3 we show how to compute viability, controllability and
invariance kernels and semi-separatrices. In section 4 we present SPeeDI+. The
last section concludes our presentation.

2 Theoretical Background

A (positive) affine function f : R → R is such that f(x) = ax + b with
a > 0. An affine multivalued function F : R → 2R, denoted F = 〈fl, fu〉, is
defined by F (x) = 〈fl(x), fu(x)〉 where fl and fu are affine and 〈·, ·〉 denotes
an interval, with Dom(F) = {x | fl(x) ≤ fu(x)}. For notational convenience,
we do not make explicit whether intervals are open, closed, left-open or right-
open, unless required for comprehension. For an interval I = 〈l, u〉 we have
that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverse of F is defined by F−1(x) = {y |
x ∈ F (y)}. The universal inverse of F is defined by F̃−1(I) = I ′ if and only if
I ′ is the greatest non-empty interval such that for all x ∈ I ′, F (x) ⊆ I.

It is not difficult to show that F−1 = 〈f−1
u , f−1

l 〉 and similarly that F̃−1 =
〈f−1

l , f−1
u 〉, provided that 〈f−1

l , f−1
u 〉 6= ∅. Notice that if I is a singleton then

F̃−1 is defined only if fl = fu. These classes of functions are closed under
composition.

A truncated affine multivalued function (TAMF) F : R → 2R is defined by an
affine multivalued function F and intervals S ⊆ R

+ and J ⊆ R
+ as follows:

F(x) = F (x) ∩ J if x ∈ S, otherwise F(x) = ∅. For convenience we write
F(x) = F ({x}∩S)∩J . For an interval I, F(I) = F (I ∩S)∩J and F−1(I) =

5

F−1(I ∩ J) ∩ S. The universal inverse of F is defined by F̃−1(I) = I ′ if and
only if I ′ is the greatest non-empty interval such that for all x ∈ I ′, F (x) ⊆ I

and F (x) = F(x).

We say that F is normalized if S = Dom(F) = {x | F (x) ∩ J 6= ∅} (thus,
S ⊆ F−1(J)) and J = Im(F) = F(S).

The following theorem states that TAMFs are closed under composition.

Theorem 2.1 The composition of two TAMFs F1(I) = F1(I ∩ S1) ∩ J1 and
F2(I) = F2(I ∩ S2) ∩ J2, is the TAMF (F2 ◦ F1)(I) = F(I) = F (I ∩ S) ∩ J ,
where F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2). 2

2.1 SPDI

An angle ∠
b

a
on the plane, defined by two non-zero vectors a,b is the set of

all positive linear combinations x = α a + β b, with α, β ≥ 0, and α + β > 0.
We can always assume that b is situated in the counter-clockwise direction
from a.

A polygonal differential inclusion system (SPDI) is defined by giving a finite
partition P of the plane into convex polygonal sets, and associating with each
P ∈ P a couple of vectors aP and bP . Let φ(P) = ∠

bP
aP

. The SPDI is determined
by ẋ ∈ φ(P) for x ∈ P .

Let E(P) be the set of edges of P . We say that an edge e is an entry of P if
for all x ∈ e and for all c ∈ φ(P), x + cǫ ∈ P for some ǫ > 0. We say that
e is an exit of P if the same condition holds for some ǫ < 0. We denote by
in(P) ⊆ E(P) the set of all entries of P and by out(P) ⊆ E(P) the set of all
exits of P .

Assumption 1 All the edges in E(P) are either entries or exits, that is,
E(P) = in(P) ∪ out(P).

Reachability for SPDIs is decidable provided the above assumption holds;
without such assumption it is not known whether reachability is decidable.

A trajectory segment of an SPDI is a continuous function ξ : [0, T] → R
2

which is smooth everywhere except in a discrete set of points, and such that
for all t ∈ [0, T], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P). The
signature, denoted Sig(ξ), is the ordered sequence of all the edges traversed
by the trajectory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If
T = ∞, a trajectory segment is called a trajectory.

6

Example 1 Consider the SPDI illustrated in Fig. 1. For sake of simplicity
we will only show the dynamics associated to regions R1 to R6 in the picture.
For each region Ri, 1 ≤ i ≤ 6, there is a pair of vectors (ai,bi), where:
a1 = (45, 100),b1 = (1, 4), a2 = b2 = (1, 10), a3 = b3 = (−2, 3), a4 = b4 =
(−2,−3), a5 = b5 = (1,−15), a6 = (1,−2),b6 = (1,−1).
A trajectory segment starting on interval I ⊂ e0 and finishing in interval
I ′ ⊂ e4 is depicted.

We say that a signature σ is feasible if and only if there exists a trajectory
segment ξ with signature σ, i.e., Sig(ξ) = σ.

From this definition, it immediately follows that extending an unfeasible sig-
nature, can never make it feasible:

Proposition 2.2 If a signature σ is not feasible, then neither is any extension
of the signature — for any signatures σ′ and σ′′, the signature σ′σσ′′ is not
feasible. 2

Given an SPDI S, let E be the set of edges of S, then we can define a graph GS

where nodes correspond to edges of S and such that there exists an arc from
one node to another if there exists a trajectory segment from the first edge
to the second one without traversing any other edge. More formally: Given
an SPDI S, the underlying graph of S (or simply the graph of S), is a graph
GS = (NG, AG), with NG = E and AG = {(e, e′) | ∃ξ, t . ξ(0) ∈ e ∧ ξ(t) ∈
e′ ∧ Sig(ξ) = ee′}. We say that a sequence e0e1 . . . ek of nodes in GS is a path
whenever (ei, ei+1) ∈ AG for 0 ≤ i ≤ k − 1.

The following lemma shows the relation between edge signatures in an SPDI
and paths in its corresponding graph.

Lemma 2.3 If ξ is a trajectory segment of S with edge signature Sig(ξ) =
σ = e0 . . . ep, it follows that σ is a path in GS . 2

Remark. Notice that the converse of the above lemma is not true in general.
It is possible to find a counter-example where there exists a path from node e

to e′, but there does not exist a trajectory segment form edge e to edge e′ on
the SPDI.

Throughout the paper, similarly to [ASY07], we assume that all the constants
involved in the definition of the SPDI (coordinates of vectors, coordinates of
vertices, etc.) are rational.

7

2.2 Successors and predecessors

Given an SPDI, we fix a one-dimensional coordinate system on each edge to
represent points laying on edges. For notational convenience, we will use e to
denote both the edge and its one-dimensional representation. Accordingly, we
write x ∈ e or x ∈ e, to mean “point x in edge e with coordinate x in the
one-dimensional coordinate system of e”. The same convention is applied to
sets of points of e represented as intervals (e.g., x ∈ I or x ∈ I, where I ⊆ e)
and to trajectories (e.g., “ξ starting in x” or “ξ starting in x”).

Now, let P ∈ P, e ∈ in(P) and e′ ∈ out(P). For I ⊆ e, Succe,e′(I) is the
set of all points in e′ reachable from some point in I by a trajectory segment
ξ : [0, t] → R

2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). It can be shown
that Succe,e′ is a TAMF.

Example 2 Let e1, . . . , e6 be as in Fig. 1 and I = [l, u] on e1. We assume a
one-dimensional coordinate system; here all the edges have local coordinates
0 ≤ x ≤ 10. We have:

Fe1e2
(I) =

[
l

4
,

9

20
u

]
, S1 = [0, 10] , J1 =

[
0,

9

2

]

Fe2e3
(I) = [l + 1, u + 1] , S2 = [0, 9] , J2 = [1, 10]

Fe3e4
(I) =

[
3

2
l,

3

2
u

]
, S3 =

[
0,

20

3

]
, J3 = [0, 10]

Fe4e5
(I) =

[
2

3
l,

2

3
u

]
, S4 = [0, 10] , J4 =

[
0,

20

3

]

Fe5e6
(I) =

[
l −

2

3
, u −

2

3

]
, S5 =

[
2

3
, 10

]
, J5 =

[
0,

28

3

]

Fe6e1
(I) = [l, 2u] , S6 = [0, 10] , J6 = [0, 10]

with Succeiei+1
(I) = Feiei+1

(I ∩ Si)∩ Ji, for 1 ≤ i < 6; Si and Ji are computed
as shown in Theorem 2.1.

Given a sequence w = e1, e2, . . . , en, Theorem 2.1 implies that the successor
of I along w defined as Succw(I) = Succen−1,en

◦ · · · ◦ Succe1,e2
(I) is a TAMF.

Example 3 Let σ = e1 · · · e6e1. It results that Succσ(I) = F (I ∩ Sσ) ∩ Jσ,
where:

F (I)=

[
l

4
+

1

3
,

9

10
u +

2

3

]
(1)

8

Sσ = [0, 10] and Jσ = [1
3
, 29

3
] are computed using Theorem 2.1.

For I ⊆ e′, Pree,e′(I) is the set of points in e that can reach a point in I

by a trajectory segment in P . The ∀-predecessor P̃re(I) is defined in a simi-
lar way to Pre(I) using the universal inverse instead of just the inverse: For

I ⊆ e′, P̃reee′(I) is the set of points in e such that any successor of such
points are in I by a trajectory segment in P . Both definitions can be extended
straightforwardly to signatures σ = e1 · · · en: Preσ(I) and P̃reσ(I). Therefore,
the successor operator has two inverse operators.

Example 4 Let σ = e1 . . . e6e1 be as in Fig. 1 and I = [l, u]. Now, Preeiei+1
(I) =

F−1
eiei+1

(I ∩ Ji) ∩ Si, for 1 ≤ i < 6, where:

F−1
e1e2

(I) =
[
20

9
l, 4u

]
F−1

e2e3
(I) = [l − 1, u − 1]

F−1
e3e4

(I) =
[
2

3
l,

2

3
u

]
F−1

e4e5
(I) =

[
3

2
l,

3

2
u

]

F−1
e5e6

(I) =
[
l +

2

3
, u +

2

3

]
F−1

e6e1
(I) =

[
l

2
, u

]

Besides, Preσ(I) = F−1(I∩Jσ)∩Sσ, where F−1(I) = [10
9
l− 20

27
, 4u− 4

3
]. Similarly,

we compute P̃reσ(I) = F̃−1(I ∩ Jσ)∩ Sσ, where F̃−1(I) =
[
4l − 4

3
, 10

9
u − 20

27

]
if

4l − 4

3
≤ 10

9
u − 20

27
, and F̃−1(I) is equal to the empty interval otherwise.

2.3 Qualitative analysis of simple edge-cycles

Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei 6= ej for all 1 ≤ i 6= j ≤
k. Let Succσ(I) = F (I ∩ Sσ) ∩ Jσ with F = 〈fl, fu〉 (we suppose that this
representation is normalized). We denote by Dσ the one-dimensional discrete-
time dynamical system defined by Succσ, that is xn+1 ∈ Succσ(xn).

Assumption 2 None of the two functions fl, fu is the identity function.

Without the above assumption the definition of the kernels given in the next
section should have to be slightly modified to consider the particular case
whenever fl or fu are the identity. The results could be extended to take this
into account but the presentation would be rather complicated.

Let σ be a simple cycle, and l∗ and u∗ be the fix-points 2 of fl and fu, respec-
tively, and Sσ ∩ Jσ = 〈L, U〉. Then σ is of one of the following types:

2 The fix-point x∗ is computed by solving the equation f(x∗) = x∗, where f(·) is
positive affine.

9

I’

I

Fig. 2. Reachability analysis.

STAY. The cycle is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L ≤ l∗ ≤ u∗ ≤ U .

DIE. The rightmost trajectory exits the cycle through the left (consequently
the leftmost one also exits) or the leftmost trajectory exits the cycle through
the right (consequently the rightmost one also exits), that is, u∗ < L∨ l∗ >

U .
EXIT-BOTH. The leftmost trajectory exits the cycle through the left and

the rightmost one through the right, that is, l∗ < L ∧ u∗ > U .
EXIT-LEFT. The leftmost trajectory exits the cycle (through the left) but

the rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .
EXIT-RIGHT. The rightmost trajectory exits the cycle (through the right)

but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.

Example 5 Let σ = e1 · · · e6e1. We have Sσ ∩ Jσ = 〈L, U〉 = [1
3
, 29

3
]. The

fix-points of Eq. (1) are such that 1

3
< l∗ = 11

25
< u∗ = 20

3
< 29

3
. Thus, σ is a

STAY.

The classification above gives us some useful information about the qualitative
behavior of trajectories. Any trajectory that enters a cycle of type DIE will
eventually quit it after a finite number of turns. If the cycle is of type STAY,
all trajectories that happen to enter it will keep turning inside it forever.
In all other cases, some trajectories will turn for a while and then exit, and
others will continue turning forever. This information is crucial for proving
decidability of the reachability problem.

Example 6 Consider the SPDI of Fig. 1. Fig. 2 shows part of the reach set of
the interval [8, 10] ⊂ e0, answering positively to the reachability question: Is
[1, 2] ⊂ e4 reachable from [8, 10] ⊂ e0? Fig. 2 has been automatically generated
by the SPeeDI+ toolbox.

The above result does not allow us to directly answer other questions about
the behavior of the SPDI such as determine for a given point (or set of points)

10

M

B

Fig. 3. Example.

B
A

z

y

x

Fig. 4. Example 7: Viability kernel.

whether: (a) there exists at least one trajectory that remains in the cycle, and
(b) it is possible to control the system to reach any other point. In order to
do this, we need to further study the properties of the system around simple
edge-cycles.

3 Phase Portrait

In this section we define and show how to compute the viability, controllability
and invariance kernels, as well as the semi-separatrices of an SPDI.

3.1 Viability Kernel

In this and the following sections, we will be studying the qualitative behavior
of sets of trajectories having the same cyclic pattern, that is we consider
only cyclic signatures. We rely on the information given by the classification
given in the previous section (STAY, DIE, etc. cycles) to enable us to analyze
better the qualitative behavior of the system. In this first part we introduce
the viability kernel [Aub90,AC84] and we show how to compute it.

11

In general, a viability domain is a set of points such that for any point in the
set, there exists at least one trajectory that remains in the set forever. The
viability kernel is the largest of such sets.

Example 7 In Fig. 3 there are two disjoint sets, B and M \B. The dynamics
in B is given by a differential inclusion that allows the first derivative to be
any value (i.e., ∠

b

a
is such that a = 0◦ and b = 360◦) whereas outside B, the

dynamics is given by the two drawn vectors. Let us consider region A as in
Fig. 4. Notice that for any point in A, there is a trajectory segment to a point
in B from where it can remain for ever in B. On the other hand, outside A

(and outside B), for example points y and z, are not starting points of infinite
trajectories. Then, the viability kernel is given by A ∪ B.

In particular, for SPDI, given a cyclic signature, the viability domain is a set
of points which can keep rotating in the cycle forever and the viability kernel
is the largest of such sets. We show that this kernel is a non-convex polygon
(often with a hole in the middle) and we give a non-iterative algorithm for
computing the coordinates of its vertices and edges.

In what follows, let K ⊂ R
2.

Definition 3.1 A trajectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a
viability domain if for every x ∈ K, there exists at least one trajectory ξ, with
ξ(0) = x, which is viable in K. The viability kernel of K, denoted Viab(K),
is the largest viability domain contained in K.

Remark. Differently from [Aub90], we do not require viability kernel to be
closed. Indeed in our case sometimes the largest viable set is not closed, and
the largest closed viable set does not exist.

3.1.1 One Dimensional Discrete-Time System

The same concepts can be defined for Dσ, by setting that a trajectory x0x1 . . .

of Dσ is viable in an interval I ⊆ R, if xi ∈ I for all i ≥ 0.

Theorem 3.2 For Dσ, if σ is not DIE then Viab(e1) = Sσ, else Viab(e1) =
∅. 3

PROOF. If σ is DIE, Dσ has no viable trajectories. Therefore, Viab(e1) = ∅.
Let σ be not DIE. We first prove that any viability domain is a subset of
Sσ. Let I be a viability domain. Then, for all x ∈ I, there exists a trajectory
starting in x which is viable in I. Then, x ∈ Dom(Succσ) = Sσ. Thus, I ⊆ Sσ.

3 Notice that this theorem can be used to compute Viab(I) for any I ⊆ e1.

12

Now, let us prove that Sσ is a viability domain. It suffices to show that for all
x ∈ Sσ, Succσ(x) ∩ Sσ 6= ∅.
Let x ∈ Sσ.
If σ is STAY, we have that both l∗ and u∗ belong to Sσ ∩ Jσ. It follows that
both fl(x) and fu(x) are in Sσ.
If σ is EXIT-LEFT, we have that l∗ < Sσ ∩ Jσ and u∗ ∈ Sσ ∩ Jσ. Then,
fu(x) ∈ S.
If σ is EXIT-RIGHT, we have that l∗ ∈ Sσ ∩ Jσ and u∗ > Sσ ∩ Jσ. Then,
fl(x) ∈ S.
If σ is EXIT-BOTH, we have that l∗ < Sσ ∩ Jσ and u∗ > Sσ ∩ Jσ. If x ∈ Jσ:
then x ∈ F (x). If x < Jσ: then fl(x) < x < Sσ ∩Jσ, and either fu(x) ∈ Sσ ∩Jσ

or fu(x) > Sσ ∩ Jσ (the other case yields a contradiction). If x > Jσ: similar
to the previous case.
Thus, for all x ∈ S, Succσ(x) ∩ Sσ 6= ∅. Hence, Viab(e1) = Sσ. 2

The following lemma will be useful when proving some results about conver-
gence in the next section.

Lemma 3.3 For Dσ, if the trace x1x2 . . . of ξ is viable in Sσ then ∀n >

1 . xn ∈ Sσ ∩ Jσ.

PROOF. By Theorem 3.2, x1 ∈ Sσ and since xn+1 ∈ Succσ(xn) we have that
xn ∈ Dom(Succσ), i.e. xn ∈ Sσ. On the other hand, xn ∈ Succσ(xn−1) that is
included in Im(Succσ), hence xn ∈ Jσ. 2

3.1.2 Continuous-Time System

The viability kernel for the continuous-time system can be now found by
propagating Sσ from e1 using the following operator. The extended predecessor
of an output edge e of a region R is the set of points in R such that there
exists a trajectory segment that reaches e without traversing any other edge.
More formally:

Definition 3.4 Let R be a region and e be an edge in out(R). The e-extended
predecessor of I ⊆ e, Pree(I) is defined as:

Pree(I)= {x | ∃ξ : [0, t] → R
2, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e}.

The above notion can be extended to cyclic signatures (and so to edge-
signatures) as follows. Let σ = e1, . . . , eke1 be a cyclic signature. For I ⊆ e1,
the σ-extended predecessor of I, Preσ(I) is the set of all x ∈ R

2 for which there

13

(a) (b)

Fig. 5. (a) Viability Kernels; (b) Controllability Kernels.

exists a trajectory segment ξ starting in x, that reaches some point in I, such
that Sig(ξ) is a suffix of e2 . . . eke1.

It is easy to see that Preσ(I) is a polygonal subset of the plane which can
be calculated using the following procedure. First compute Preei

(I) for all
1 ≤ i ≤ n and then apply this operation k times:

Preσ(I) =
k⋃

i=1

Preei
(Ii)

with I1 = I, Ik = Preeke1
(I1) and Ii = Preeiei+1

(Ii+1), for 2 ≤ i ≤ k − 1.

Given that the viability kernels (and the other kernels as well) are defined on
cyclic signatures, we need to define a subset of the SPDI determined by such
signatures. We thus define the following set:

Kσ =
k⋃

i=1

(int(Pi) ∪ ei) (2)

where Pi is such that ei−1 ∈ in(Pi), ei ∈ out(Pi) and int(Pi) is the interior of
Pi. The segment of a trajectory with signature in σ∗ necessarily stays in Kσ.

We can now compute the viability kernel of Kσ.

Theorem 3.5 If σ is not DIE, Viab(Kσ) = Preσ(Sσ), otherwise Viab(Kσ) =
∅.

14

B

z

y

x

Fig. 6. Example 9: Controllability kernel.

PROOF. If σ is DIE, trivially Viab(Kσ) = ∅.
Let σ be not DIE. We first prove that any viability domain K, with K ⊆ Kσ,
is a subset of Preσ(Sσ). Let x ∈ K. Then, there exists a trajectory ξ such that
ξ(0) = x and for all t ≥ 0, ξ(t) ∈ K. Clearly, the sequence x1x2 . . . of the
intersections of ξ with e1 is a trajectory of Dσ. Then, by Theorem 3.2, xi ∈ Sσ

for all i ≥ 1. Thus, x ∈ Preσ(Sσ).
It remains to prove that Preσ(Sσ) is a viability domain. Let x ∈ Preσ(Sσ).
Then, there exists a trajectory segment ξ̄ : [0, T] → R

2 such that ξ̄(T) ∈ Sσ

and Sig(ξ̄) is a suffix of σ. Theorem 3.2 implies that ξ̄(T) is the initial state of
some trajectory ξ with Sig(ξ) = σω. It is straightforward to show that for all
t ≥ 0, ξ(t) ∈ Preσ(Sσ). Concatenating ξ̄ and ξ, we obtain a viable trajectory
starting in x.
Hence, Viab(Kσ) = Preσ(Sσ). 2

This result provides a non-iterative algorithmic procedure for computing the
viability kernel of Kσ.

Example 8 Fig. 5-(a) shows all the viability kernels of the SPDI given in
Example 1. There are 4 cycles with viability kernels — in the picture two of
the kernels are overlapping.

3.2 Controllability Kernel

In this section we define and we show how to compute the controllability kernel
of a simple cycle.

We say M ⊂ R
2 is controllable if for any two points x and y in M there

exists a trajectory segment ξ starting in x that reaches an arbitrarily small
neighborhood of y without leaving M .

15

Example 9 Let us consider again example of Fig. 3, where there are two
disjoint sets B and M \ B. The dynamics in B is given by a differential
inclusion that allows the first derivative to be any value (i.e., ∠

b

a
is such that

a = 0◦ and b = 360◦) whereas outside B, the dynamics is given by the two
drawn vectors. Notice that any point x in B is the starting point of a trajectory
that reach any other point in B as shown in Fig. 6. Outside B points are not
reachable one from the other, x is reachable from z but not vice-versa, for
instance. Then, B is the controllability kernel.

For SPDIs and considering cyclic signatures, the controllability kernel is a
cyclic polygonal stripe within which a trajectory can reach any point from
any point. More formally,

Definition 3.6 We say that M is controllable iff ∀x,y ∈ M, ∀δ > 0, ∃ξ :
[0, t] → R

2, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈ [0, t] . ξ(t′) ∈ M). The
controllability kernel of a set K, denoted Cntr(K), is the largest controllable
subset of K.

Notice that existence of such a largest set is not guaranteed in general. How-
ever, in the sequel we establish that controllability kernels always exist for Kσ

sets in SPDIs satisfying Assumption 2. Moreover, we give an exact procedure
allowing computation of the kernel.

3.2.1 One Dimensional Discrete-Time System

The above notions can be defined for the discrete dynamical system Dσ. In
order to compute the controllability kernel for the one-dimensional discrete-
time dynamical system we need the following:

CD(σ) =





〈L, U〉 if σ is EXIT-BOTH

〈L, u∗〉 if σ is EXIT-LEFT

〈l∗, U〉 if σ is EXIT-RIGHT

〈l∗, u∗〉 if σ is STAY

∅ if σ is DIE

We have then the following result for computing controllability kernels for the
discrete-time system.

Theorem 3.7 For Dσ, Cntr(Sσ) = CD(σ).

16

PROOF. Controllability of CD(σ) follows from the reachability result given in
[ASY07]. To prove that CD(σ) is maximal we reason by contradiction. Suppose
it is not. Then, there should exist a controllable set C ⊃ CD(σ). Since C ⊆
Sσ ∩ Jσ, there should exist y ∈ C such that either y < l∗, or y > u∗. In any
case, controllability implies that for all l∗ < x < u∗, there exists a trajectory
segment starting in x that reaches an arbitrarily small neighborhood of y.
From the reachability algorithm given in [ASY07] we know that Reach(x) ⊂
(l∗, u∗), which yields a contradiction. Hence, CD(σ) is the controllability kernel
of Sσ. 2

3.2.2 Continuous-Time System

For I ⊆ e1 let us define Succσ(I) as the set of all points y ∈ R
2 for which there

exists a trajectory segment ξ starting in some point x ∈ I, that reaches y,
such that Sig(ξ) is a prefix of e1 . . . ek. The successor Succσ(I) is a polygonal
subset of the plane which can be computed similarly to Preσ(I), that is,

Definition 3.8 Let R be a region and e be an edge in in(R). The e-extended
successor of I ⊆ e, Succe(I) is defined as:

Succe(I)= {y | ∃ξ,x ∈ I, t > 0 . ξ(0) = x ∧ ξ(t) = y ∧ Sig(ξ) = e}.

The extended successors for cyclic signatures (and for edge-signatures) can be
defined as follows. Let σ = e1, . . . , eke1 be a cyclic signature. For I ⊆ e1, the
σ-extended successor of I, Succσ(I) is the set of all reachable points y ∈ R

2

via a trajectory segment ξ starting in x ∈ I, such that Sig(ξ) is a prefix of
e1 . . . ek.

As for extended predecessors, Succσ(I) is a polygonal subset of the plane which
can be calculated using the following procedure. First compute Succei

(I) for
all 1 ≤ i ≤ n and then apply this operation k times:

Succσ(I) =
k⋃

i=1

Succei
(Ii)

where I1 = I and Ii+1 = Succeiei+1
(I) for 1 ≤ i ≤ k − 1.

Let C(σ) be defined as follows:

C(σ) = (Succσ ∩ Preσ)(CD(σ)).

In the following theorem we show how to compute controllability kernels for
continuous-time systems:

17

Theorem 3.9 Cntr(Kσ) = C(σ).

PROOF. Let x,y ∈ C(σ). Since y ∈ Succσ(CD(σ)), there exists a trajectory
segment starting in some point w ∈ CD(σ) and ending in y. Let ǫ be an
arbitrarily small number and Bǫ(y) be the set of all points y′ such that |y −
y′| < ǫ. Clearly, w ∈ Preσ(Bǫ(y)) ∩ CD(σ). Now, since x ∈ Preσ(CD(σ)), there
exists a trajectory segment starting in x and ending in some point z ∈ CD(σ).
Since CD(σ) is controllable, there exists a trajectory segment starting in z that
reaches a point in Preσ(Bǫ(y)) ∩ CD(σ). Thus, there is a trajectory segment
that starts in x and ends in Bǫ(y). Therefore, C(σ) is controllable. Maximality
follows from the maximality of CD(σ) (Theorem 3.7) and the definition of Succσ

and Preσ. Hence, C(σ) is the controllability kernel of Kσ. 2

This result provides a non-iterative algorithmic procedure for computing the
controllability kernel of Kσ.

Example 10 Fig. 5-(b) shows all the controllability kernels of the SPDI given
in Example 1. There are 4 cycles with controllability kernels — in the picture
two of the kernels are overlapping.

In what follows we provide some notations and definitions related to con-
trollability kernels. Let Cntrl(Kσ) be the closed curve obtained by taking the
leftmost trajectory and Cntru(Kσ) be the closed curve obtained by taking the
rightmost trajectory which can remain inside the controllability kernel. In
other words, Cntrl(Kσ) and Cntru(Kσ) are the two curves defining the control-
lability kernel. A non-empty controllability kernel Cntr(Kσ) of a given cyclic
signature σ partitions the plane into three disjoint subsets: (1) the controlla-
bility kernel itself, (2) the set of points limited by Cntrl(Kσ) (and not including
Cntrl(Kσ)), and (3) the set of points limited by Cntru(Kσ) (and not including
Cntru(Kσ)).

Definition 3.10 We define the inner of Cntr(Kσ) (denoted by Cntrin(Kσ)) to
be the subset defined by (2) above if the cycle is counter-clockwise or to be
the subset defined by (3) if it is clockwise. The outer of Cntr(Kσ) (denoted
by Cntrout(Kσ)) is defined to be the subset which is not the inner nor the
controllability itself.

Remark: Notice that an edge in the SPDI may be split into parts by the
controllability kernel — part inside, part on the kernel, and part outside. In
such cases, we can generate a different SPDI, with the same dynamics but
with the edge split into parts, such that each part is completely inside, on, or
outside the kernel. Although the signatures will obviously change, it is trivial
to prove that the behavior of the SPDI remains identical to the original. To
simplify presentation, in the rest of the paper we will assume that all edges

18

are either completely inside, on, or completely outside the kernels. We note
that in practice splitting is not necessary since we can just consider parts of
edges.

3.3 Invariance Kernel

In general, an invariant set is a set of points such that for any point in the
set, every trajectory starting in such point remains in the set forever and the
invariance kernel is the largest of such sets. In particular, for SPDI, given
a cyclic signature, an invariant set is a set of points which keep rotating in
the cycle forever and the invariance kernel is the largest of such sets. More
formally:

Definition 3.11 A set M is said to be invariant if for any x ∈ M there exists
at least one trajectory starting in it and every trajectory starting in x is viable
in M . Given a set K, its largest invariant subset is called the invariance kernel
of K and is denoted by Inv(K).

We need some preliminary definitions before showing how to compute the
kernel. The extended ∀-predecessor of an output edge e of a region R is the
set of points in R such that every trajectory segment starting in such point
reaches e without traversing any other edge. More formally,

Definition 3.12 Let R be a region and e be an edge in out(R), then the e-

extended ∀-predecessor of I, P̃ree(I) is defined as:

P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.

It is easy to see that P̃reσ(I) is a polygonal subset of the plane which can

be calculated using the following procedure. First compute P̃reei
(I) for all

1 ≤ i ≤ k and then apply this operation k times:

P̃reσ(I) =
k⋃

i=1

P̃reei
(Ii)

with I1 = I, Ik = P̃reeke1
(I1) and Ii = P̃reeiei+1

(Ii+1), for 2 ≤ i ≤ k − 1.

To prove the computability of invariance kernels, we need the following results
(we only give here the proof of the main theorem; see [Sch04] for a complete
proof of the auxiliary lemmas). Remember that F is an AMF and F is a
TAMF.

19

Lemma 3.13 For any STAY cycle σ, F(F̃−1(Jσ)) = Jσ.

Lemma 3.14 For any STAY cycle σ, F (F̃−1(Jσ)) = F(F̃−1(Jσ)).

Lemma 3.15 For any STAY cycle σ, F (Sσ ∩ Jσ) ⊆ Sσ ∩ Jσ.

Lemma 3.16 For any STAY cycle σ, F(Sσ ∩ Jσ) = F (Sσ ∩ Jσ).

Lemma 3.17 For any STAY cycle σ, Jσ ⊆ Sσ.

Lemma 3.18 For Dσ and σ a STAY cycle, the following is valid. If I is such
that F (I) ⊆ I and F (I) = F(I) then I is invariant. On the other hand if I is
invariant then F (I) = F(I).

We compute the invariance kernel of Kσ as follows:

Theorem 3.19 If σ is STAY then Inv(Kσ) = P̃reσ(P̃reσ(Jσ)), otherwise Inv(Kσ) =
∅.

PROOF. That Inv(e1) = ∅ for any type of cycle but STAY follows directly
from the definition of each type of cycle.

Let’s consider a STAY cycle with signature σ. Let IK = F̃−1(Jσ) = P̃reσ(Jσ).
We know that F (F̃−1(Jσ)) = F(F̃−1(Jσ)) = Jσ (see Lemmas 3.13 and 3.14).
By Lemmas 3.15, 3.16 and 3.17, we have that F(Jσ) ⊆ Jσ, so Jσ ⊆ F̃−1(Jσ)
and then F (F̃−1(Jσ)) ⊆ F̃−1(Jσ). We have then, by Lemma 3.18, that IK is
invariant. We prove now that IK is indeed the greatest invariant. Let suppose
that there exists an invariant H ⊆ Sσ strictly greater than IK . By assumption
we have that IK = F̃−1(Jσ) ⊂ H , then by monotonicity of F , F(F̃−1(Jσ)) ⊂
F(H) and by Lemma 3.13 we have that Jσ ⊂ F(H), but this contradicts
the monotonicity of F since Jσ = F(Sσ) ⊂ F(H) and then Sσ ⊂ H which

contradicts the hypothesis that H ⊆ Sσ. Hence, Inv(e1) = P̃reσ(Jσ). 2

Example 11 Fig. 7-(a) shows the unique invariance kernels of the SPDI given
in Example 1.

An interesting property of invariance kernels is that the limits are included in
the invariance kernel, i.e. [l∗, u∗] ⊆ Inv(Kσ). In other words:

Proposition 3.20 The set delimited by the polygons defined by the interval
[l∗, u∗] is an invariance set of STAY cycles. 2

In a similar way as for the controllability kernel, we define Invl(Kσ), Invu(Kσ),
the inner Invin(Kσ) and outer Invout(Kσ) of an invariance kernel.

20

(a) (b)

Fig. 7. (a) Invariance kernel; (b) All the kernels.

3.4 Semi-Separatrix Curve

In this section we define the notion of separatrix curves, which are curves on
R

2 dissecting the plane into two mutually non-reachable subsets. We relax the
notion of separatrix obtaining semi-separatrix curves such that some points in
one set may be reachable from the other set, but not vice-versa.

Definition 3.21 Let K ⊆ R
2. A separatrix in K is a closed curve γ par-

titioning K into three pairwise disjoint sets KA, KB and γ itself, such that
K = KA ∪ KB ∪ γ and the following conditions hold:

(1) For any point x0 ∈ KA and trajectory ξ, with ξ(0) = x0, there is no t

such that ξ(t) ∈ KB; and
(2) For any point x0 ∈ KB and trajectory ξ, with ξ(0) = x0, there is no t

such that ξ(t) ∈ KA.

If only one of the above conditions holds then we say that the curve is a semi-
separatrix. If only condition 1 holds, then we say that KA is the inner of γ

(written γin) and KB is the outer of γ (written γout). If only condition 2 holds,
KB is the inner and KA is the outer of γ.

Remark: Notice that, as in the case of the controllability kernel, an edge of
the SPDI may be split into two by a semi-separatrix — part inside, and part
outside. As before, we can split the edge into parts, such that each part is
completely inside, or completely outside the semi-separatrix.

The set of all the separatrices of R
2 is denoted by Sep(R2), or simply Sep. The

above notions are extended to SPDIs straightforwardly.

21

Now, let σ = e1 . . . ene1 be a simple cycle, ∠
bi
ai

(1 ≤ i ≤ n) be the dynamics of
the regions for which ei is an entry edge and I = [l, u] and interval on edge e1.
Remember that Succe1e2

(I) = F (I ∩S)∩J , where F = [a1l + b1, a2u+ b2]. Let
l be the vector corresponding to the point on e1 with local coordinates l and
l′ be the vector corresponding to the point on e2 with local coordinates F (l)

(similarly, we define u and u′ for F (u)). We define first Succ
b1

e1
(I) = {x | l′ =

αx + l, 0 < α < 1} and Succ
a1

e1
(I) = {x | u′ = αx + u, 0 < α < 1}. We extend

these definitions in a straight way to any (cyclic) signature σ = e1 . . . ene1,

denoting them by Succ
b

σ(I) and Succ
a

σ(I), respectively; we can compute them
similarly as for Succ. Whenever applied to the fix-point I∗ = [l∗, u∗], we denote

Succ
b

σ(I∗) and Succ
a

σ(I∗) by ξl
σ and ξu

σ respectively. Intuitively, ξl
σ (ξu

σ) denotes
the piece-wise affine closed curve defined by the leftmost (rightmost) fix-point
l∗ (u∗).

We show now how to identify semi-separatrices for simple cycles.

Theorem 3.22 Given an SPDI, let σ be a simple cycle, then the following
hold:

(1) If σ is EXIT-RIGHT then ξl
σ is a semi-separatrix curve (filtering trajec-

tories from “left” to “right”);
(2) If σ is EXIT-LEFT then ξu

σ is a semi-separatrix curve (filtering trajecto-
ries from “right” to “left”);

(3) If σ is STAY, then the two polygons defining the invariance kernel (Invl(Kσ)
and Invu(Kσ)), are semi-separatrices.

PROOF.

(1) By definition of EXIT-RIGHT, any trajectory is bounded to the left by
ξl
σ, which is a piece-wise affine closed curve, partitioning R

2 into three
disjoint sets: KB, the “right” part of ξl

σ; KA, the “left” part of ξl
σ; and

ξl
σ itself. By Jordan’s theorem, any trajectory may pass from KB to KA

if and only if it cross ξl
σ. However, by definition of EXIT-RIGHT, this

is only possible from KA to KB but not vice-versa. Hence ξl
σ is a semi-

separatrix curve.
(2) Symmetric to the previous case.
(3) Follows directly from the definition of invariance kernel, since any tra-

jectory with initial point in Inv(Kσ) ∪ Invin(Kσ) cannot leave Inv(Kσ).
If the trajectory cycles clockwise it cannot traverse Invl(Kσ) and if it
cycles counter-clockwise it cannot traverse Invu(Kσ). In both cases no
point on Invout(Kσ) can be reached. Symmetrically, trajectories starting
in Inv(Kσ) ∪ Invout(Kσ) cannot reach any point on Invin(Kσ). 2

22

Fig. 8. Semi-separatrices.

Remark: In the case of STAY cycles, ξl
σ and ξu

σ are also semi-separatrices.
Whenever the dynamics of the cycle σ is the identity, there is an infinite
number of semi-separatrices. This is, however, disallowed by Assumption 2.

Notice that in the above result, computing a semi-separatrix depends only
on one simple cycle, and the corresponding algorithm is then reduced to find
simple cycles in the SPDI and checking whether it is STAY, EXIT-RIGHT or
EXIT-LEFT.

Example 12 Fig. 8 shows all the semi-separatrices of the SPDI given in Ex-
ample 1 obtained as shown in Theorem 3.22. The small arrows traversing the
semi-separatrices show the inner and outer of each semi-separatrix: a trajec-
tory may traverse the semi-separatrix following the direction of the arrow, but
not vice-versa.

The following two results relate feasible signatures and semi-separatrices.

Proposition 3.23 If, for some semi-separatrix γ, e ∈ γin and e′ ∈ γout, then
the signature ee′ is not feasible. 2

PROOF. Directly from the definition of semi-separatrix. 2

Proposition 3.24 Given a semi-separatrix γ and signature σ (of at least
length 2), then σ is not feasible if head(σ) ∈ γin and last(σ) ∈ γout.

PROOF. The proof proceeds by induction on sequence σ. The base case,
when σ is of length 2, reduces to Proposition 3.23. Now, assuming that the
proposition is true for signatures of length n, we are required to prove that it
is also true for signatures of length n + 1. Consider the signature σ′ = ee′σe′′,
with e ∈ γin and e′′ ∈ γout. Clearly, either e′ ∈ γin or e′ ∈ γout.

23

Case 1: e′ ∈ γin. The signature e′σe′′ satisfies the conditions and is of length
n. Therefore, the inductive property applies, and we can conclude that e′σe′′

is not feasible. However, since any extension of an unfeasible signature is
itself unfeasible, it follows that σ′ is not feasible.

Case 2: e′ ∈ γout. The signature ee′ is unfeasible by Proposition 3.23. There-
fore, being an extension of ee′, σ′ is also unfeasible (Proposition 2.2). 2

3.5 Further Properties of the Kernels

In this section we present some properties of controllability kernels, regarding
convergence and its relation to fix-points in general. In particular, for STAY
cycles we have stronger limit cycle properties.

3.5.1 Convergence

Definition 3.25 A trajectory ξ converges to a set K ⊂ R
2 if limt→∞ dist(ξ(t), K) =

0.

For Dσ, convergence is defined as limn→∞ dist(ξn, I) = 0. The following result
says that the controllability kernel CD(σ) can be considered to be a kind of
(weak) limit cycle of Dσ.

Theorem 3.26 For Dσ, any viable trajectory in Sσ converges to CD(σ).

PROOF. Let x1x2 . . . be a viable trajectory. By Lemma 3.3, xi ∈ Sσ ∩Jσ for
all i ≥ 2. Recall that CD(σ) ⊆ Sσ ∩ Jσ. There are three cases: (1) There exists
N ≥ 2 such that xN ∈ CD(σ). Then, for all n ≥ N , xn ∈ CD(σ). (2) For all
n, xn < CD(σ). Therefore, xn < l∗. Let x̂n be such that x̂1 = x1 and for all
n ≥ 1, x̂n+1 = fl(x̂n). Clearly, for all n, x̂n ≤ xn < l∗, and limn→∞ x̂n = l∗,
which implies limn→∞ xn = l∗. (3) For all n, xn > CD(σ). Therefore, u∗ < xn.
Let x̂n be such that x̂1 = x1 and for all n ≥ 1, x̂n+1 = fu(x̂n). Clearly, for all
n, u∗ < xn ≤ x̂n, and limn→∞ x̂n = u∗, which implies limn→∞ xn = u∗. Hence,
x1x2 . . . converges to C(σ). 2

Furthermore, C(σ) can be regarded as a (weak) limit cycle of the SPDI. The
following result is a direct consequence of Theorem 3.5 and Theorem 3.26.

Theorem 3.27 Any viable trajectory in Kσ converges to C(σ) = Cntr(Kσ). 2

24

3.5.2 STAY Cycles

The controllability kernels of STAY-cycles have stronger limit cycle properties.
The following result is a corollary of the previous theorems.

Theorem 3.28 Let σ be STAY. Then,
(1) C(σ) is invariant.
(2) There exists a neighborhood K of C(σ) such that any viable trajectory
starting in K converges to C(σ).

PROOF.

(1) Suppose that C(σ) is not invariant, then it exists x ∈ C(σ) and a tra-
jectory ξ starting on x (i.e. x = ξ(0)) s.t. ξ is not viable. By definition
of C(σ), exists x′ ∈ 〈l∗, u∗〉 and t ≥ 0 such that x′ = ξ(t). On the other
hand, by our assumption of non invariance, it exists T > t such that
ξ(T) 6∈ C(σ), that means ξ(T) 6∈ Pre(l∗, u∗) and then x′ has a successor
not in 〈l∗, u∗〉, contradicting the hypothesis that σ is STAY. Hence C(σ)
must be invariant;

(2) It follows directly from Theorem 3.27. 2

From the above, the definition of invariance kernel and Theorem 3.19 the
following result relating controllability and invariance kernels for STAY cycles
follows:

Proposition 3.29 If σ = e1 . . . ene1 is STAY then Cntr(Kσ) ⊆ Inv(Kσ). 2

Example 13 Fig. 7-(b) shows the viability, controllability and invariance ker-
nels of the SPDI given in Example 1. For any point in the viability kernel of
a cycle there exists a trajectory which will converge to its controllability ker-
nel (Theorem 3.27). It is possible to see in the picture that Cntr(·) ⊂ Inv(.)
(Proposition 3.29). All the above pictures have been obtained with the toolbox
SPeeDI+ [PS06b].

3.5.3 Fix-Points

Here we give an alternative characterization of the controllability kernel of a
cycle in SPDI. As in [KV95], we define fix-points and periodic points.

Definition 3.30 A point x in e1 is a fix-point iff x ∈ Succσ(x). We call a
point x ∈ Kσ a periodic point iff there exists a trajectory segment ξ starting
and ending in x, such that Sig(ξ) is a cyclic shift of σ.

25

If x ∈ Kσ is a periodic point then there exists also an infinite periodic trajec-
tory passing through some x ∈ e1. The following result characterizes the set
of fix-points and of periodic points for SPDIs.

Theorem 3.31 For SPDIs,
(1) CD(σ) is the set of all the fix-points in e1.
(2) C(σ) is the set of all the periodic points in Kσ.

PROOF.

(1) Let σ = e1, · · · eke1 be a cycle signature, 〈L, U〉 = Sσ ∩ Jσ as before and
x a fix-point of e1.
If σ is DIE, trivial.
If σ is STAY, any fix-point of e1 must be in 〈l∗, u∗〉, hence x ∈ 〈l∗, u∗〉.
If σ is EXIT-BOTH, notice that if x is a fix-point in e1, then it exists a
viable trajectory ξ starting on x such that for all n > 1, xn = x, but by
Lemma 3.3, xn = Sσ ∩ Jσ, i.e. any fix-point of e1 must be in Sσ ∩ Jσ.
If σ is EXIT-LEFT, from the above results any fix-point must be in
〈L, U〉 ∩ 〈l∗, u∗〉, hence x ∈ 〈L, u∗〉.
If σ is EXIT-RIGHT, as for EXIT-LEFT, we obtain that x ∈ 〈l∗, U〉.

(2) Let x ∈ Kσ be a periodic point, then any trajectory starting on x must
intersect e1 in a point x that is a fix-point, but by (1), x ∈ CD(σ), then
x ∈ Pre(x) that implies x ∈ C(σ). 2

As a direct consequence of the above theorem, the following result holds.

Corollary 3.32 Given a cyclic signature σ = e1, · · · eke1, all the fix-points in
e1 are included in 〈L, U〉 ∩ 〈l∗, u∗〉. 2

3.6 Phase Portrait Construction

Let ξ be a trajectory without self-crossings. 4 Recall that ξ is assumed to have
an infinite signature. An immediate consequence of [ASY07, Lemma 4.11] is
that Sig(ξ) can be canonically expressed as a sequence of edges and cycles of
the form r1s

∗
1 . . . rns

ω
n, with (among others) the following properties:

(1) For all 1 ≤ i ≤ n, ri is a sequence of pairwise different edges, and si is a
simple cycle.

(2) For all 1 ≤ i 6= j ≤ n, ri and rj are disjoint, and si and sj are different.
(3) For all 1 ≤ i ≤ n − 1, si is repeated a finite number of times.

4 A formal definition of “self-crossing” was introduced in [ASY07, Section 3.2].

26

(4) sn is repeated forever.

Hence,

Theorem 3.33 Every trajectory with an infinite signature and which does
not have self-crossings converges to the controllability kernel of some simple
edge-cycle.

PROOF. This follows directly from the above properties and from Theo-
rem 3.27. 2

We now define the notions of the limit set and the limit points of a given
trajectory.

Definition 3.34 Given a trajectory ξ such that ξ(0) = x, a point y is a
limit point of x if there is a sequence t0, t1, t2, . . . such that tn → ∞ and
limn→∞ ξ(tn) = y. The set of all the limits points of x is its limit set, limit(ξ).

Corollary 3.35 (1) Any trajectory ξ with infinite signature without self-
crossings is such that its limit set limit(ξ) is a subset of the controllability
kernel C(σ) of a simple edge-cycle σ.

(2) Any point in C(σ) is a limit point of a trajectory ξ with infinite signature
without self-crossings

PROOF. The result is a direct consequence of Theorem 3.33. 2

A sound algorithm to compute all the above mentioned phase portrait objects
is obtained directly from theorems 3.5, 3.9, 3.19 and 3.22.

Example 14 Fig. 9 shows an SPDI with two edge cycles σ1 = e1, · · · , e8, e1

and σ2 = e10, · · · , e15, e10, and their respective controllability kernels. Every
simple trajectory eventually arrives (or converges) to one of the two limit sets
and rotates therein forever.

The phase portrait plays an important role on the optimization of the reach-
ability algorithm for SPDIs [PS06c], and to obtain a compositional parallel
reachability algorithm [PS06a].

27

e4

e3 e2

e1

e8

e7

e10

e14

R15

e15

R4

R3
R2

R11

R1

R7

R6

R5

R14

R13

R12

e12

e11

e13

R8e6

e5

Fig. 9. Another SPDI and its “phase-portrait”.

4 SPeeDI+

In this section we discuss some issues related to the tool SPeeDI+, which ex-
tends SPeeDI (implementing the reachability algorithm for SPDIs [APSY02,ASY07])
with the computation of the kernels introduced in the previous section.

4.1 Description of the Tool

The proof of the decidability of reachability questions for SPDIs given in
[ASY07] is a constructive one, giving (i) a reduction of the infinite number
of possible paths to be analyzed for a given reachability question to a finite
set of abstract signatures; and (ii) a technique for calculating the effect of
following an abstract signature. This approach lies at the core of SPeeDI+ to
answer reachability questions for a given SPDI. The resulting algorithm is thus
essentially a depth-first search on the SPDI graph (but abstracting away loops
in terms of the abstract signatures). Apart from the reachability algorithm,
SPeeDI+ comes with a number of other tools and utilities to visualize and
analyze SPDIs:

Visualization aids: To help visualize systems, the tool can generate graph-
ical representations of the SPDI, and particular trajectories and signatures
within it.

Information gathering: SPeeDI+ calculates edge-to-edge successor func-
tion composition and enlist signatures going from one edge to another.

Verification: The most important facet of the tool suite is that of verifica-
tion. At the lowest level, the user may request whether, given a signature
(with a possibly restricted initial and final edge), it is a feasible one or not.
At a more general, and useful level, the user may simply give a restricted ini-

28

Generator

SPDI

Source and

Abstract

Signature

signature

destination
intervals

Concrete signature

Signature (if feasible)

PostscriptFig

Reachability

Concretization

Visualisation

Fig. 10. Workflow of the tool.

tial edge and restricted final edge, and the tool attempts to answer whether
the latter is reachable from the former.

Phase portrait: In SPeeDI+ the user can also extract information about the
phase portrait of an SPDI and visualize it. SPeeDI+ allows the calculation
on the viability, controllability and invariance kernels. Figures 5 and 7 have
all been automatically generated the tool.

Trace generation: Whenever reachability succeeds SPeeDI+ generates stripes
of feasible trajectories using different strategies and graphical representation
of them.

Exact arithmetic: An offshoot of SPeeDI+ is a version using an exact repre-
sentation of numbers to avoid rounding errors by using the Haskell’s native
rational number library.

A typical usage sequence of the tool suite, concerning reachability analysis, is
captured in Fig. 10.

Fig. 11 illustrates a typical session of the tool on an example SPDI composed
of 63 regions. The left part of the diagram shows selected portions of the
input file, defining vectors, named points on the x-y plane, and regions (as
sequences of point names, and pairs of differential inclusion vectors). The
lower right-hand panel shows the signature generated by the tool reachable
which satisfies the user’s demand. The signature has two loops which are
expressed with the star symbol. A trace is then generated from the signature
using simsig. It traverses three times the first loop and two times the second
one. The graphical representation of the SPDI and the trace is generated
automatically using simsig2fig. The execution time for this example is a few
seconds.

29

Input file
Points:

0. 0.0, 0.0

* ...

33. -5.0, -35.0

34. -5.0, -25.0

35. -5.0, -15.0

36. -5.0, -5.0

37. -5.0, 5.0

38. -5.0, 15.0

39. -5.0, 25.0

* ...

Vectors:

* ...

v3. -1,0.1833333333

v8. 1,0

v9. 1,1

v12. 1, 1.5

v20. -1, 0.001

v22. 1,-0.001

v25. -1,0.7

v28. 1, 0.001

*...

Regions:

* ...

* R29

33 ? 41 ! 42 ! 34 ? 33, v9, v9

* R30

34 ! 42 ! 43 ? 35 ? 34, v22, v22

* R31

35 ? 36 ? 0 ! 44 ! 43 ! 35, v8, v8

* R32

44 ! 45 ! 0 ? 44, v12, v12

* R33

0 ? 45 ? 46 ! 38 ! 37 ! 0, v3, v20

* R34

38 ? 46 ? 47 ! 39 ! 38, v25, v20

* ...

Generated Figure

R34

R29
33

38
R33

37

0

R32

44

36

35
R31

R30
58

40
R35

39

34

59

Session log
Generating and trying signatures from edge 0-44 to 58-59

Starting interval:[1.0,2.0] Finishing interval:[0.0,10.0]

(0-44,45-44) (45-53,45-46,37-38,...,36-35,44-43,44-52)*

(53-52,53-61,54-62,54-55,46-47)(38-39,..., 46-47)* (39-47,

...,67-59,58-59) <REACHABLE>

Fig. 11. Example.

Fig. 12 for a short description of the different utilities of the tool. A more
detailed explanation can be found in [Sch02, chapter 8] and the appendices of
the same work.

4.2 Implementation Issues

SPeeDI+ was implemented in Haskell [Jon03], a general-purpose, lazy, func-
tional language [BW88,FH88]. Despite the fact that functional languages, es-
pecially lazy ones, have a rather bad reputation regarding performance (see
for example [LNSW01] for a report on the experiences of writing verification
tools in functional languages), we found that the performance we obtained was
more than adequate for the magnitude of examples we had in mind. Further-
more, we feel that with the gain in the level of abstraction of the code, we have
much more confidence in the correctness of our tool than had we used a lower
level language. We found laziness particularly useful in separating control and
data considerations. Quite frequently, optimizations dictated that we evaluate

30

Analysis:
getmafs Given an SPDI and a concrete signature, calculate the

intermediate TAMFS along it.
looptype Given an SPDI and a loop, analyze the type and behavior

of the loop.
showsigs Given an SPDI, a source and destination edge, list the

abstract signatures that SPeeDI+ will analyze for reachability.
trysig Given an SPDI and an abstract signature, apply the signa-

ture to calculate the behavior on the SPDI starting from a given
part of the starting edge.

reachable Given an SPDI, an interval on a source edge and an
interval on a destination edge, answers whether the destination is
reachable from the source.

simsig Given an SPDI and an abstract signature, produce a cor-
responding feasible concrete signature (provided that the origi-
nal abstract signature was feasible) through forward or backward
analysis.

viability/invariance/controllability Given an SPDI and a loop,
calculate the viability, invariance or controllability kernel for that
loop (respectively).

Visualization:
spdi2ps Visualization tool, transforming a given SPDI into a

Postscript image.
sig2path/sig2fig/sig2ps Given an SPDI and a concrete or ab-

stract signature produce a graphical representation of the signa-
ture.

simsig2fig Given an SPDI and an abstract signature, produce a
graphical visualization of a corresponding feasible concrete signa-
ture.

drawkernels Given an SPDI, produce a graphical representation
of all the kernels in that SPDI.

Fig. 12. Description of the utilities.

certain complex expressions at most once, if at all. In most strict languages,
this would have led to complex code which mixes data computations (which
use the values of the expressions) with control computation (to decide whether
this is the first time we are using the expression and, if so, evaluate it). Thanks
to shared expressions and laziness, all this came for free — resulting in cleaner
code, where the complex control is not done by the programmer.

SPeeDI+ consists of the utilities described in the previous section plus a library

31

for intervals, vectors and truncated affine multi-valued functions.

The tools are available in two versions — one which uses floating point num-
bers, and one with exact arithmetic, which uses Haskell’s rational number
library. Obviously, the performance using exact arithmetic degrades the per-
formance, but the fact that loop behaviors are analyzed and calculated in one
go, thus limiting the length of the traces analyzed, meaning that the degra-
dation in performance is reasonable.

4.2.1 Input Language

As shown in Fig. 11, the input file consists of three parts: description of points,
description of vectors and description of regions.

4.2.2 SPDI Validation

Given an SPDI, SPeeDI+ performs the following consistency checks:

(1) Regions must be well defined polygons;
(2) Vectors corresponding to a region differential inclusion must respect the

fact that the <a-vector> corresponds to a and <b-vector> corresponds
to b, such that b is situated in the counterclockwise direction of a;

(3) Each region is good (i.e., every edge is an entry or exit, but no both).

4.2.3 Data structures

An SPDI H can be represented as a graph GH. Indeed, given H, we can define
a graph GH where nodes correspond to edges of H and such that there exists
an arc from one node to another if there exists a trajectory segment from the
first edge to the second one without traversing any other edge. GH is defined
in Haskell as a list of edges identifiers and a transition function that associate
to each pair of edges its TAMF if it exists or “Nothing” otherwise.

The graph is defined then in SPeeDI+ as:

data Graph = (1)

Graph { (2)

transitionFunction :: EdgeId -> EdgeId -> Maybe TAMF, (3)

domain :: [EdgeId] (4)

}

The Graph datatype is a record consisting of (i) the transition function of the
SPDI represented as a function, which given two edges, returns the TAMF

32

between the two edges if a transition is possible (see line 3); and (ii) a list of
the nodes of the graph (in the field domain on line 4). Note that the transition
function is a total one, since we return Maybe TAMF, to enable us to return
Nothing when a direct transition is not possible, and Just f when a transition
is possible with TAMF f. Note that underneath this clean transition relation
description lies a standard efficient two dimensional array access.

4.2.4 Generation of Types of Signatures

Given two intervals I0 ∈ e0 and If ∈ ef SPeeDI+ generates all the types of
signatures r1, s1, · · · , rn, sn, rn+1 that satisfy the following properties:

(1) first(r1) = e0 and last(rn+1) = ef ;
(2) For every 1 ≤ i 6= j ≤ n + 1, ri is a path on the graph;
(3) For every 1 ≤ i 6= j ≤ n, si is a simple loop on the graph;
(4) For every 1 ≤ i 6= j ≤ n + 1, ri and rj are disjoint;
(5) For every 1 ≤ i 6= j ≤ n, si and sj are different;
(6) For every 1 ≤ i < n, si and ri+1 are disjoint;
(7) For every 1 ≤ i ≤ n, si is never a suffix of ri.

The first property guarantees that only signatures from the initial edge to
the final one are generated. The other properties ensure that there is only
a finite number of types of signatures to be considered, which is one of the
key observations for guaranteeing termination. See [Sch02] for the theoretical
justification of these properties.

4.2.5 Pre-Optimizations

In this section we describe the optimizations done in order to minimize the
graph (in terms of number of transitions and states) analyzed for reachability.
The following optimizations are implemented on the current version of the
tool.

(1) We eliminate some types of infeasible signatures: we only consider tra-
jectories that have a non-empty TAMF. It can be the case that there
is no trajectory segment from one edge to other of the same region even
though there is a path on the graph. This is detected on SPeeDI+ checking
that the transitionFunction for the two given edges gives a non-empty
TAMF when applied to the whole source edge.

(2) When considering reachability from edge e to edge e′ clearly source nodes
of the graph cannot be reachable from e (except from e itself). We recur-
sively eliminate all the source nodes of the graph different from the node
src corresponding to e.

33

Fig. 13. The SPDI of Example 4.3.

(3) As in the previous point, we do the same for the sink nodes and the
destination node dst, corresponding to e′.

4.2.6 Verification-Time Optimizations

We now describe the optimizations done in order to minimize the number of
types of signatures analyzed for reachability.

(1) A number of properties of SPDIs (as proved in [Sch02]) are used to reduce
the signatures explored. This includes the properties that, for instance,
loops may not appear more than once in a signature (since whenever a
concrete path with a repeated loop, there exists another path with the
same source and destination but with no repeated loops), and that the
paths between the loops pass through no edge more than once. These
properties are part of the constraints given in section 4.2.4.

(2) The generation of the signatures is done concurrently with their analysis
— it carries along the analysis of the application of the generated signa-
ture. As soon as a signature is not feasible (when applying the TAMF
of the partial signature to the initial interval gives an empty interval
as a result), it is not explored any further. This drastically reduces the
signatures generated.

34

0

5345

44

Fig. 14. A path manually analyzed using SPeeDI+.

4.3 Example

In this section we present an example of an SPDI analyzed using the different
utilities explained before. The SPDI we are going to consider has 63 regions
and 162 edges as shown in Fig. 13. Note that all the figures shown in this
section have been automatically created using SPeeDI+ visualization tools,
with the only additions being annotations used to refer to edges or regions.

Internally, SPeeDI+ calculates composed TAMFs on adjacent regions along a
given path. It is usually useful to see such composed TAMFs to understand
the behavior of a path in an SPDI better. This is especially useful in the case
of loops. Similarly, for a manual qualitative analysis of an SPDI, it is useful
to be able to calculate the qualitative behavior of a cycle (see section 2.3).
The tools getmafs and looptype can be used for these purposes, obtaining
information as in the following example (for the path, which includes a cycle,
as shown in Fig. 14):

The requested AMFs:

From edge 84 (0-44) to edge 86 (44-45):

AMF is [1.7677669529663687x-2.5, 1.7677669529663687x-2.5]

(accumulated AMF is

[1.7677669529663687x-2.5, 1.7677669529663687x-2.5])

From edge 86 (44-45) to edge 103 (45-53):

AMF is [0.2x, 0.5x]

(accumulated AMF is

[0.35355339059327373x-0.5, 0.8838834764831843x-1.25])

35

From edge 103 (45-53) to edge 88 (45-46):

AMF is [0.5x, 0.5x]

(accumulated AMF is

[0.17677669529663687x-0.25, 0.44194173824159216x-0.625])

...

Loop type: Exit right

Before proceeding directly to reachability analysis, we can get a list of all feasi-
ble types of signatures from one edge to another (on the symbolic graph) using
the getsigs tool. For example, the tool lists 36 feasible types of signatures on
the example shown in Fig. 11 from edge 0-44 to edge 58-59.

The type of signatures listed by the showsigs are the candidates for the reach-
ability question: Is If ⊆ ef reachable from I0 ⊆ e0? Individual types of signa-
tures can be checked for actual feasibility using the trysig tool, or one can
check all possible types of signatures (hence determining reachability), using
the reachable tool:

> reachable example.spdi [1,2] [0,10] 0-44 58-59

SPDI Reachability Tool v2

REACHABLE

0-44,45-44 (45-53,45-46,37-38,37-29,36-28,36-35,44-43,44-52)*

53-52,53-61,54-62,54-55,46-47 (38-39,30-31,30-22,29-21,28-20,

27-19,27-26,35-34,43-42,43-51,52-51,52-60,53-61,54-62,54-55,

46-47)* 39-47,48-47,56-55,64-63,72-71,79-71,78-70,77-69,76-68,

67-68,67-59,58-59

Finally, given a type of signature, we usually desire to obtain an actual concrete
signature (the corresponding signature with an unfolding of the cycles), which
can be done using the simsig tool (or the simsig2fig tool which produces a
graphical visualization of the path). Applying the tool to the path identified
by the reachability run given above, one obtains the diagram shown in Fig.
11.

4.4 Comparison with HyTech

While SPeeDI+ is, as far as we know, the only verification tool for hybrid
systems implementing a decision algorithm (with the exception of timed au-
tomata), it is interesting to compare it to “semi-algorithmic” hybrid system
verification tools such as HyTech [HPHHt97,HHW95]. HyTech is a tool capa-
ble of treating hybrid linear systems of any dimension, making it much more
general than SPeeDI+, which is limited to two-dimensional systems without

36

(−1, 1

10
)

(1, 1)

(1,−2)

(−1,−2)

(−1, 9

10
)

Fig. 15. SPDI of Example 4.4.1.

resets. On the other hand, SPeeDI+ implements acceleration techniques (based
on the resolution of fix-point equations) which yield a complete decision proce-
dure for SPDIs. Also, SPeeDI+ does not handle arbitrary polyhedra, but only
polygons and line segments. For these reasons, comparing the performance
of the two tools is meaningless and no fair benchmarking is really possible.
However, we have explored a simple illustrative example.

4.4.1 Example

Consider the SPDI defined as follows (see Fig. 15) with I0 ≡ (y = 0∧x ∈ [3; 4])
as initial region:

Region Defining conditions Vector

R0 (x ≥ 0) ∧ (y ≥ 0) a = (−1, 9

10
),b = (−1, 1

10
)

R1 (x ≤ 0) ∧ (y ≥ −10) a = b = (−1,−2)

R2 (x ≤ 0) ∧ (y ≤ −10) a = b = (1,−2)

R3 (x ≥ 0) ∧ (y ≤ 0) a = b = (1, 1)

We consider different final points xf on the x axis and try to answer the
question: Is xf reachable from I0?

The experimental results are given in Table 1. 5

All the results above of HyTech were using the reach backward command.
The reach forward gives “Library overflow error in multiplication”
in all the cases.

5 The column corresponding to SPeeDI+ uses exact arithmetic.

37

Final Point HyTech SPeeDI SPeeDI+ Reachable

199 overflow 0.05 sec 0.07 sec Yes

200 overflow 0.05 sec 0.07 sec No

201 overflow 0.01 sec 0.03 sec No

210 overflow 0.05 sec 0.07 sec No

5 0.04 sec 0.05 sec 0.07 sec No

20 0.07 sec 0.05 sec 0.07 sec No

200

9
0.10 sec 0.05 sec 0.07 sec Yes

201

9
overflow 0.03 sec 0.05 sec Yes

199

9
0.07 sec 0.04 sec 0.07 sec Yes

1

2
0.06 sec 0.05 sec 0.08 sec No

Table 1
Comparison with HyTech.

3 4

l1 =
203

10
l∗ =

200

9

If =
201

9

u1 =
118

5

Fig. 16. Simulation of reachability for xf = 201

9
.

Fig. 16 shows the simulation of the case whenever xf = 201

9
. In the picture

one can see that starting from the initial interval I0 the system spirals anti-
clockwise. The intersection of the spiral with the x-axis converges to the “fix-
point interval” I∗ = (200

9
; 200). SPeeDI+ in fact computes the interval I∗, and

whenever xf ∈ I∗ it gives immediately the positive answer to the reachabil-

38

ity question. If xf ≥ 200 SPeeDI+ says “no”. The only case when it really
computes successors is when xf lies between I0 and I∗.

Notice that the problems with HyTech are mainly whenever the final point
If is close to the fix-points (l∗ = 200

9
and u∗ = 200), and also whenever If is

located in between the fix-points or when xf ≥ u∗.

We summarize here a number of qualitative conclusions taken from the above
experiments, and others not presented in this paper, comparing HyTech with
SPeeDI+:

• It is well known that since HyTech uses exact rational arithmetic, it can
easily run into overflow problems. This is particularly an issue when the
path to the target passes through a large number of regions. This makes
verification of non-trivial sized SPDIs (e.g. the one in Fig. 11) impossible,
even though they are still possible using SPeeDI+ with exact arithmetic.

• In the case of loops, SPeeDI+ calculates the limit interval without repeatedly
iterating the loop. It makes use of this interval to accelerate the reachability
analysis, avoiding time consuming loop traversals. In contrast, HyTech per-
forms these iterations. Following the loops explicitly, easily leads to overflow
problems, and, more seriously, in certain (even simple) configurations, this
analysis never terminates. The acceleration enables SPeeDI+ to work even
when using exact arithmetic, since the length of paths explored is much
lower than had these loops to be unfolded.

While the first issue is limited to HyTech, the second is inherent to any tool
based on non-accelerated reachability analysis. On examples which HyTech
can handle, the two tools take approximately the same amount of time (a
fraction of a second) to reach the result. SPeeDI+, however, can handle much
larger (planar) examples.

5 Concluding Remarks

We have first defined viability, controllability and invariance kernels as well as
semi-separatrices for SPDIs and presented non-iterative algorithms to calcu-
late them. These objects are not merely mathematical curiosity. It turns out
that they can be used for optimizing the reachability algorithm [PS06c] and as
basis for a compositional parallel algorithm for reachability analysis [PS06a].

We have presented a prototype tool for solving the reachability problem for the
class of polygonal differential inclusions. The tool implements the algorithm
presented in [ASY07] which is based on the analysis of a finite number of
qualitative behaviors generated by a discrete dynamical system characterized

39

by positive affine Poincaré maps. Since the number of such behaviors may be
very large, the tool uses several powerful heuristics that exploit the topological
properties of planar trajectories for considerably reducing the set of actually
explored signatures. When reachability is successful, the tool outputs a visual
representation of the stripe of trajectories that go from the initial point (edge,
polygon) to the final one.

We have also presented SPeeDI+, an extension of SPeeDI with the compu-
tation and visualization of the different phase portrait objects presented in
this paper. Regarding complexity, the critical part of the algorithm consists
in counting all feasible types of signatures, which has a double exponential
upper-bound on the size of the SPDI. 6 Though we cannot provide bounds
on the required number of steps for analyzing simple cycles, our experiments
show that our algorithm performs very well in practice. The main reason is
that the analysis of most simple loops can be accelerated, i.e., the limit can
be computed without iterating (see [ASY07] for more details). Moreover, the
computation of the phase portrait itself does not add extra complexity, as most
of the required information is already computed by the reachability algorithm.

Our work is obviously restricted to planar systems, which enables us to com-
pute these kernels exactly. In higher dimensions and hybrid systems with
higher complexity, calculation of kernels is not computable. Other related
work is thus based on calculations of approximations of these kernels (e.g.,
[ALQ+01b,ALQ+01a,SP02]).

References

[AC84] J-P. Aubin and Arrigo Cellina. Differential Inclusions. Number 264
in A Series of Comprehensive Studies in Mathematics. Springer-Verlag,
1984.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical

Computer Science, 126:183–235, 1994.

[ALQ+01a] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube.
Towards a viability theory for hybrid systems. In European Control

Conference, 2001.

[ALQ+01b] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube.
Viability and invariance kernels of impulse differential inclusions. In
Conference on Decision and Control, volume 40 of IEEE, pages 340–
345, 2001.

6 This follows from [ASY07, Lemma 4.11].

40

[APSY02] E. Asarin, G. Pace, G. Schneider, and S. Yovine. SPeeDI: a verification
tool for polygonal hybrid systems. In CAV’2002, volume 2404 of LNCS,
pages 354–358. Springer-Verlag, 2002.

[ASY01] E. Asarin, G. Schneider, and S. Yovine. On the decidability of the
reachability problem for planar differential inclusions. In HSCC’2001,
number 2034 in LNCS, pages 89–104. Springer-Verlag, 2001.

[ASY02] E. Asarin, G. Schneider, and S. Yovine. Towards computing phase
portraits of polygonal differential inclusions. In HSCC’02, pages 49–
61. LNCS 2289, Springer, 2002.

[ASY07] E. Asarin, G. Schneider, and S. Yovine. Algorithmic Analysis of
Polygonal Hybrid Systems. Part I: Reachability. Theoretical Computer

Science, 379(1-2):231–265, 2007.

[Aub90] J.-P. Aubin. A survey on viability theory. SIAM J. Control and

Optimization, 28(4):749–789, July 1990.

[BW88] R. Bird and P. Wadler. Introduction to Functional Programming.
Prentice Hall International, New York, 1988.

[DV95] A. Deshpande and P. Varaiya. Viable control of hybrid systems. In
Hybrid Systems II, number 999 in LNCS, pages 128–147, 1995.

[FH88] A.J. Field and P.G. Harrison. Functional Programming. Addison
Wesley, Reading, Massachusetts, 1988.

[HHW95] T.A. Henzinger, P-H. Ho, and H. Wong-Toi. Hytech: The next
generation. In Proc. IEEE Real-Time Systems Symposium RTSS’95,
1995.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In STOC’95, pages 373–382. ACM Press, 1995.

[HPHHt97] T.A. Henzinger, P.-H.Ho, and H.Wong-toi. Hytech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1(1), 1997.

[HS74] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems

and Linear Algebra. Academic Press Inc., 1974.

[Jon03] S. Peyton Jones. Haskell 98 language and libraries: the Revised Report.
Cambridge University Press, 2003.

[KdB01] P. Kowalczyk and M. di Bernardo. On a novel class of bifurcations in
hybrid dynamical systems. In HSCC’01, number 2034 in LNCS, pages
361–374. Springer, 2001.

[KV95] M. Kourjanski and P. Varaiya. Stability of hybrid systems. In Hybrid

Systems III, number 1066 in LNCS, pages 413–423. Springer, 1995.

[LNSW01] M. Leucker, T. Noll, P. Stevens, and M. Weber. Functional
programming languages for verification tools: Experiences with ML and
Haskell. In Proceedings of SFPW’01, 2001.

41

[LPY01] G. Lafferriere, G. Pappas, and S. Yovine. Symbolic reachability
computation of families of linear vector fields. Journal of Symbolic

Computation, 32(3):231–253, 2001.

[MP93] O. Maler and A. Pnueli. Reachability analysis of planar multi-linear
systems. In CAV’93, pages 194–209. LNCS 697, Springer Verlag, 1993.

[MS00] A. Matveev and A. Savkin. Qualitative theory of hybrid dynamical

systems. Birkhäuser Boston, 2000.

[PS06a] G. Pace and G. Schneider. A compositional algorithm for parallel model
checking of polygonal hybrid systems. In ICTAC 2006, volume 4281 of
LNCS, pages 168–182. Springer-Verlag, 2006.

[PS06b] G. Pace and G. Schneider. Computation and visualization of phase
portraits for model checking SPDI. 2006.

[PS06c] G. Pace and G. Schneider. Static analysis for state-space reduction of
polygonal hybrid systems. In FORMATS’06, volume 4202 of LNCS,
pages 306–321. Springer-Verlag, 2006.

[Sch02] G. Schneider. Algorithmic Analysis of Polygonal Hybrid Systems. PhD
thesis, VERIMAG – UJF, Grenoble, France, 2002.

[Sch04] G. Schneider. Computing invariance kernels of polygonal hybrid
systems. Nordic Journal of Computing, 11(2):194–210, 2004.

[SJSL00] S. Simić, K. Johansson, S. Sastry, and J. Lygeros. Towards a geometric
theory of hybrid systems. In HSCC’00, number 1790 in LNCS, pages
421–436. Springer, 2000.

[SP02] P. Saint-Pierre. Hybrid kernels and capture basins for impulse
constrained systems. In HSCC’02, volume 2289 of LNCS. Springer-
Verlag, 2002.

42

