
Conflict Analysis of Deontic
Contracts

Stephen Fenech
Supervisors: Dr Gordon Pace & Dr Gerardo Schneider

Department of Computer Science and Artificial Intelligence
University of Malta

September 2008

Submitted in partial fulfilment of the requirements
for the degree of M.Sc. (Computer Science)

Abstract

Industry is currently pushing towards Service-Oriented Architectures, where
code execution is not limited to the organisational borders but may be ex-
tended beyond. Typically, these sources are not accessible making it im-
possible to fully trust their execution. Contracts, expressing obligations,
permissions and prohibitions of the different actors, can be used to protect
the interests of the organisations engaged in such service exchange. Compo-
sition of different services with different contracts, and the combination of
service contracts with local contracts can give rise to unexpected conflicts,
exposing the need for automatic techniques for contract analysis. In this
work we start by applying the contract language CL to the CoCoME case
study in order to compare with other methods of specification. CL takes a
deontic approach to specifying contracts formally. We then present a trace
semantics of CL suitable for conflict analysis, and a decision procedure for
detecting conflicts (together with its proof of soundness, completeness and
termination). We also discuss its implementation and look into other appli-
cations of the contract analysis approach we present. These techniques are
applied to a small case study of an airline check-in desk.

Dedicated to the memory of Carmel Fenech

Acknowledgments

There are a number of people who I wish to thank. First of all there are my
two supervisors, Gordon Pace and Gerardo Schneider, both of which had
a lot of patient with me and have been there all throughout my masters.
I would like to thank them for guiding me when I felt stuck. I would like
to thank Gordon for arranging opportunities to go working with research
groups abroad; it was very fruitful for my masters. I would like to thank
Gerardo for making sure everything goes smoothly when I was in Oslo and
also arranging a stay in Aalborg.

I would like to thank Joseph C. Okika for coming to pick me up from the
Aalborg airport when I arrived for my stay at the Aalborg University. He
was very helpful, not only with the technical side of the masters but also all
throughout my stay in Aalborg. I would like to also take this opportunity
to thank Anders P. Ravn with whom I had the pleasure to work with in
Aalborg and whose insights where very valuable in this initial period of my
work.

From the University of Oslo I would especially like to also thank Olaf Owe
who was very supportive all throughout my stay. I would also like to thank
the other members of the PMA group with whom I spent my working hours
during my stay in Oslo, especially Peter Ölveczky, Martin Steffen, Marcel
Kyas, Joakim Bjørk, Arild Torjusen, Cristian Prisacariu and Daniela Lepri.

I would also like to thank my family for being there all through this year,
especially my mother who proof read my draft even though most of it she
found not interesting; even though she would not admit it openly. Finally
I would like to thank Michéle Lange, for being supportive all through this
year and also was part of the reason I chose to pursue this masters.

2

Contents

Acknowledgments . 6
Preface . 6

1 Introduction 8
1.1 Motivation for Automatic Analysis of Contracts 9

1.1.1 SOA . 10
1.1.2 Agents . 10

1.2 Contribution of the Work . 11
1.3 Structure . 11

2 Logics 13
2.1 Modal . 14

2.1.1 General Interpretation of Modal Logics 15
2.2 Dynamic . 16
2.3 Temporal . 16

2.3.1 CTL*, CTL and LTL 17
2.4 µ-Calculus . 18
2.5 Default Logics . 19
2.6 Model Checking . 20

2.6.1 State Explosion Problem 21
2.7 Conclusion . 22

3 Deontic Logic 23
3.1 Deontic Logic . 23

3.1.1 A Brief Historical Overview of Deontic Logic 24
3.1.2 Paradoxes of Deontic Logic 27
3.1.3 Uses of Deontic Logic in Computer Science 31

3.2 CL . 32
3.2.1 A Survey of CL . 32
3.2.2 The Syntax and Semantics of CL 38

3.3 The Exclusive-Or and CL . 39
3.4 Prohibition of Choice . 41
3.5 Related Work . 42
3.6 Conclusion . 45

3

4 Comparing CL to Other Specification Approaches 46
4.1 CoCoME Overview . 46
4.2 Specification using Temporal Logics 48
4.3 Specification of Properties using CL 50
4.4 Comparing between specifications 51
4.5 Modelling CoCoME . 53

4.5.1 Introduction to SMV 53
4.5.2 Introduction to UPPAAL 55
4.5.3 Comparing Modelling Methods 56

4.6 Conclusion . 57

5 Conflicts in Contracts 58
5.1 Extending the CL Semantics 59

5.1.1 Are full semantics required? 59
5.1.2 Augmenting the trace semantics 60
5.1.3 Canonical form and the Kleene Star 76

5.2 Conflict Analysis . 77
5.2.1 Contract Conflict Freedom 77
5.2.2 Automating conflict analysis 78
5.2.3 Correctness of Algorithm 83

5.3 Related Work . 86
5.4 Conclusion . 86

6 Other Analysis 88
6.1 Simulation . 88
6.2 Monitoring . 90
6.3 Contract Queries . 93
6.4 Reachability Analysis . 94
6.5 Superfluous Clauses . 96
6.6 Overlapping Clauses . 97
6.7 Related Work . 98
6.8 Conclusion . 99

7 CL and Other Logics 100
7.1 The Relationship between CL and CTL* 100
7.2 The Relationship between CL and LTL 102
7.3 The Relationship between CL and CTL 103
7.4 Contradiction Analysis using LTL 103

7.4.1 Contracts that are not Satisfiable 104
7.4.2 Satisfiable Contracts with Contradictions 104
7.4.3 Automata Theoretic Approach 105
7.4.4 Model checking CL using LTL 108

7.5 Conclusion . 108

4

8 Implementation and Case Study 109
8.1 Implementing conflict analysis 109

8.1.1 The Data Structures 110
8.1.2 The Algorithm . 111
8.1.3 Translating Action into Array form 119

8.2 Improving Implementation . 120
8.2.1 Encoding Actions . 120
8.2.2 Generating only required transitions 121
8.2.3 On-the-fly conflict analysis 123

8.3 The Tool . 123
8.4 Case Study . 124

8.4.1 The Scenario . 126
8.4.2 The Contract . 127
8.4.3 Analysing the Contract 128

8.5 Conclusion . 135

9 Conclusion 136
9.1 Future Work . 136
9.2 Concluding remarks . 139

A Correctness of ts3 140

B Correctness of Algorithm 158

5

Preface

In this preface I would like to explain my personal motivation of why I
wanted to continue working in academic research and why I took this par-
ticular subject. I thought that it would be fit to at least have a single part
of a scientific document which takes a lighter, non-scientific style of writing.
This way I may give my reasons for taking this masters. For those who
are only interested in the scientific work, I would urge them to skip directly
to the introduction since here I shall narrate what led me to work on this
masters.

I had just finished my bachelor final year project where I created a
framework where one could model check concurrent algorithms written in
assembly. My approach was to create a virtual machine written in SMV on
which one could execute assembly algorithms. SMV is a language used to
model systems in order to model check. Thus this virtual machine was a
model of how a processor would behave. Given the assembly algorithm my
tool would generate an SMV model which will execute the code and then
it is up to the user to decide what properties one would like to verify. The
user had a number of facilities to change the behaviour and architecture
of the system. For example one could decide if a multi-threaded environ-
ment rather than actually a multi-processor environment is required. The
behaviour of the assembly code could be changed and even create custom
assembly instructions. I also investigated a number of other techniques,
particularly using induction in order to verify unbounded algorithms.

After this year working with model checking, I found this technique very
intriguing. Even though there are a number of limitations on the size of the
problems one could model check, I realised that it is a very viable technique
which when used appropriately can help find problems in the system from
very early on. It will also help in getting an overall picture, even by simply
deciding what properties one would like to verify. Unfortunately, by the
end of the project, I was feeling as though even though I did a great deal of
good work, it still does not apply to the mainstream industry. There are not
many industries who write only in assembly and most would rather program
using C or C++ and only use assembly for certain specific parts. Thus my
framework, even though useful, does not apply directly.

The industry today is pushing towards the service oriented architecture.

6

Large companies and organisations are taking part in complex communi-
cation with external services thus executing code which is external to the
organisation. I have spent the past two years working on an open source
enterprise service bus so I have quite some background knowledge on how
the industry employs the service oriented architecture. So a question that
started to dwell in my head was how could we make use of model checking
or some formal tools in this scenario.

An enterprise service bus can be seen as a message hub or router that
connects diverse systems in the enterprise or even between enterprises. The
service bus will be able to transform messages passing through it in order
to be able to branch between different systems that might be using different
communication protocols or making use of different message structures. One
may notice that the service bus will be spanning over most of the enterprise
and it has quite a good view of the overall enterprise. It will not have the
detailed information of the particular systems since it may not have direct
access to the different parts. However, by observing the messages that are
passing through it can get an idea of the overall behaviour of the system.

So the message service bus would be an effective place to observe the
entire system. One could create a module inside the enterprise service bus in
order to monitor the behaviour, or maybe ensure that the enterprise service
bus behaves in a certain desired way. As things turned out, I obtained my
answer to the question while talking to my supervisor.

When I went to talk to my supervisor about what master ideas he had,
he started to talk about electronic contracts and the work he had been do-
ing with a number of colleagues abroad. So if there is a service agreement
between two or more companies that are communicating through the en-
terprise service bus, it would be an ideal place from where to monitor the
agreement. This would entail the generation of the monitor from the con-
tract. Furthermore, it would be a good idea if we could verify that the
contract has a number of properties that could be verified and maybe even
model check the contract.

So this was what I had in mind before starting to work on my masters.
Throughout the year I had a number of problems and hassles, from the
social hassles of setting up my overseas stays to more technical hurdles like
the changing of the CL syntax. However, I believe that overall I achieved
the goals that I started with.

7

Chapter 1

Introduction

Contracts are a means to protect the signatories in order to ensure that
the needs of all the participants are respected. Such agreements are becom-
ing a more integral part of the daily life of the computer science community.
For example, in many software development life cycles, documents produced
during the requirements phase are regarded to as contracts. These docu-
ments are signed by the clients and developers marking an agreement on
what the final product should be and what penalties should apply if the
contract is broken. Many companies are also outsourcing a lot of develop-
ment and due to the push towards the Service Oriented Architecture (SOA)
it is more frequent that we make use of code that is located outside of our
organisation.

This adds a number of risks since now we are dependent on code that
we have not developed or even code that we have no access to. In SOA,
the services need not be found in our organisation, the code is executing
remotely and we have no access to the internals of the service and thus one
would like to protect oneself. Thus some form of contract is agreed upon to
protect the interest of all parties. However, the interpretation of contracts
are, like any other information represented in natural language, subjective
and ambiguous thus possibly leading to disagreements.

If we formally describe contracts we avoid these problems since there is
only one possible meaning to the contract. Furthermore, having a formal
description enables a number of automatic possibilities since the contract
is now machine readable and can be reasoned upon. With this formal con-
tract we can possibly automatically analyse and monitor the contract, model
check the system or even have automatic negotiation between services.

The contract language CL, is a language designed to describe contracts
where, even though it is not a logic in itself, its semantics are formally defined
using an extention of the µ-calculus. This way we can logically reason and
analyse the contracts. CL incorporates features from deontic logic, temporal
logic and dynamic logic. However, having a formal representation is not

8

enough. It would be desirable to not only have a sound theoretic background
but also numerous tools for automatic analysis. This adds value to the usage
of the language.

The aim of the masters is to investigatge how one can automatically anal-
yse contracts, focusing mostly on automatic conflict analysis. It is important
to note that often, a service is composed of a number of other services, each
with its own contract. Thus when combining all the contracts together we
need to ensure that they do not conflict with each other. Furthermore, if
we look at a client and service provider scenario, they will have a service
agreement dictating their interaction but they each may also have contracts
dictating their internal behaviour. In this situation we need to ensure that
the contracts are not conflicting. Automating this process will not only
speed the negotiation process but also ensures that there are no mistakes
thus having both parties protected.

Our approach will make use of techniques currently being applied in
temporal logic model checking in order to unwind temporal and dynamic
operators to represent what the contract is enforcing at any particular time.
This results in an automaton that accepts only traces that do not violate the
contract and during construction we shall also be able to find any conflicts
present.

1.1 Motivation for Automatic Analysis of Con-
tracts

What benefits would we obtain from automatic analysis of contracts? The
answers to this question are the motivating points that drive this work. The
first task in order to be able to analyse contracts automatically is to have a
formal representation of a contract. There has been quite some research in
this regard and I shall continue building on it. There has also been a great
deal of work attempting to automate parts of the legal system in order to
aid lawyers with their work. There has also been work in order to try and
mimic the way lawyers and judges reason about the law. This drive to help
lawyers has been present in the computer science community for a couple
of years already but it was always a challenge due to the logical tools which
were present.

Let us consider that a group of lawyers are drafting a contract. It would
be desirable if after the draft is written, they can simply push a button and
this will verify that the contract has a number of properties. It would be
extremely useful to automatically ensure that the contract is conflict free,
ensuring that the signatories will never end up in a position that the contract
itself will not be satisfiable. It would also be desirable if we could ensure
that the contract has certain properties that will ensure that there are no
loopholes. Another attractive feature would be to help the lawyers clean up

9

the contract by removing superfluous or overlapping clauses that might be
confusing to the reader.

By automating this analysis it will not only speed up the writing of the
contract, but it will also verify formally that the contract has the desired
properties. This automation of general contracts is quite a big task. In this
masters we shall focus only on a specific type of contracts, that is, contracts
concerning services. In this way, as we shall see later, we are able to focus
on a usable and practical solution rather than get lost in deep philosophical
issues of how to interpret contracts.

1.1.1 SOA

Today the industry is pushing towards the service oriented architecture
(SOA). Service oriented architecture encourages the use of quite a number
of best practices like code de-coupling and reuse. It also enables industries
to be more flexible and also makes it easier to scale up. However, since the
services may be found anywhere, not necessarily inside the same organisa-
tion, as we have seen in the introduction, many companies turn towards
Service Level Agreements (SLAs) in order to protect the interests of the
organisation.

How would automation of contract analysis help in this service oriented
architecture? As described above, it would be very useful to be able to
ensure that there are no conflicts in the contract and also other properties,
which for example ensure that there are no loopholes. Also, if we focus on
such service level agreements, it should be easier to reach our goals and then
slowly extend these techniques to other areas.

Since SLAs usually describe the behaviour of computer systems, we could
do even more with automation. It would be desirable as well to obtain
a monitor automatically from the contract which will make sure that the
parties involved adhere to the contract. If any violation occurs, it is observed
by the monitor and it will either automatically take reparative actions or
inform the parties to take legal action for example enforce payment of fines.

Contract automation fits very well in the SOA, especially when it comes
to automatically generate monitors from the SLAs. There are, however,
other areas where contract automation fits.

1.1.2 Agents

A software agent can be defined as any piece of software that acts on behalf
of the user. There is a great deal of work in order to have automatic,
intelligent agents that interact with each other and constantly looking for
other agents that provide better services or offer better prices.

Such agents will also have some form of agreement made with each other
and it would be desirable if it would be in some form of a contract in order

10

to protect the interests of the users they are acting on behalf of. This would
require some form of negotiation between the agents and this could only
be done if we have a formal representation of these contracts and a way to
analyse the contract drafts in order to be able to gauge if the agreement is
beneficial or not.

This is a very interesting area since it requires some form of artificial
intelligence and it may also be seen as a form of game where each agent will
try to negotiate for the best deal possible.

1.2 Contribution of the Work

In this masters we mostly aim at developing a theory on how we can check
that contracts do not have conflicts. In order to do this we needed to iso-
late to a certain extent the deontic notions of obligation, prohibition and
permission from the temporal aspect of the CL formula, which is written
using dynamic logic notation. In order to do this we opted for an automata
theoretic approach. Once we construct the automata we could do further
types of analysis and not just conflict analysis.

Another result of this work is the application of CL in a number of
case studies. The CoCoME case study is a project aimed at comparing
different specifications. Thus, we use this case study in order to focus on
the specification of systems using CL. We also tackle another case study.
This shows how the techniques developed in this work could be applied in
practice. Furthermore, due to the practical exposure of CL while working
with these case studies, we found a number of points that could be improved
in CL and hence contributing to the continual development of CL.

From the theory we also developed a tool, which implements these anal-
ysis. Although this was not the main focus of the masters, by providing a
tool and not just theory, we show the viability of using CL for contracts.
Also, by automating analysis, we are adding value to users who use CL.

1.3 Structure

The structure of this thesis is as follows. We shall start in Chapter 2 by
describing a number of logics from which CLis inspired. We start with a
brief introduction of classical modal logic (Section 2.1) and then some more
specific instances of modal logic, mainly dynamic (Section 2.2) and temporal
(Section 2.3) logic since these apply more to the area of computer science.
This is then followed by a brief overview of Model Checking techniques from
where our solutions are inpired. This leads us to Chapter 3 where we discuss
Deontic Logics and CL. At the end of this chapter we also discuss some issues
which we believe CL has and possible solutions. We also discuss a number
of improvements we would like to eventually add to CL.

11

After this introduction to CL we go through the CoCoME case study in
Chapter 4. We show how one could specify the case study using CL and we
compare it to how this could have been done using the temporal logics CTL
and LTL.

The main contribution can be found in Chapter 5 where we show what
changes need to be done to the semantics in order to be able to analyse
for contradictions followed by the algorithm for finding conflicts and their
proofs. Once we have the main algorithm in place, we could do a number
of other types of analysis and these are tackled in the following chapter,
Chapter 6.

In Chapter 7, we then look at how CL could be encoded into other
logics thus comparing CL with a number of different logics. We also show
how to use LTL model checking in order to perform certain analysis that
could be done using our algorithm as well, mainly satisfiability checking and
reachability analysis. These however, unlike our algorithm, are not fully
automated.

Finally, in Chapter 8 we take a look at our implementation of the algo-
rithm followed by a case study. In this case study we show how one would
go about creating a contract when making use of our tool and techniques.
This is then followed by the Conclusion.

12

Chapter 2

Logics

In philosophy and computer science, the word “logic” is associated to tech-
niques that enable us to reason about truths and usually we associate it
with propositional logic, also described as Boolean logic. Boolean logic can
be seen as the most basic logic where we have a set of atomic propositions
that can take two values, either true or false and have a number of Boolean
operators. This logic is useful in order to describe certain state of affairs
and reason about these universal truths, however it has limitations. For ex-
ample, describing the notion that all men are mortal would require that we
have a proposition for every possible man. This is clearly not elegant and
in cases where the universe of discourse is infinite or unbounded, it would
be impossible. This need leads to the introduction of two new operators
resulting in the creation of predicate logic.

The two new operators of predicate logic are the existential and universal
quantifiers. The existential quantifier describes the situation where there ex-
ists some subject that has certain properties whereas the universal quantifier
describes the situation where all the subjects have these properties.

As Socrates said in the dialogue “Republic”, “Necessity is the mother of
invention” 1 and thus, depending on what is desired from the logic and on
what one desires to reason about, different systems have been devised. In
this chapter we shall describe a number of these logics that have been devel-
oped in order to allow the reasoning and representation of certain properties.
We first take a look at Modal logic, which describes different modes of truth
and we are able to reason about possibility, necessity, obligation, belief or
perception among others. This is then followed by Dynamic and Temporal
logics, which are also Modal logics but they were aimed at verification of
computer programs. We describe these logics since CL has adopted a num-
ber of features from these logics and thus it is useful to see what CL offers

1In the “Republic”, written by Plato, Socrates and Adeimantus where discussing the
origin of the state and Socrates said “the true creator is necessity, who is the mother of
our invention.”

13

and what problems it has solved when compared with its ancestors.

2.1 Modal

The term modal logics describes a large set of logics and the literature about
modal logic agrees that there is not just one definition of what a modal logic
is. This can be seen by the definition given by Blackburn et al in their book
Modal Logic [49]. They make use of three definitions, what they called
Slogans rather than a definition in order to define what modal logic is. In
the “Handbook of Modal Logic” [6] two different and seemingly opposing
views of what modal logic is are given in order to emphasise this fact.

I would describe Modal logic as any logic that tries to deal with what
are known as modalities. A modal is described as qualification of truth of a
judgement [23]. Usually it is easier to explain this with an example of what
such modes could be. Classically, modal logic had two main modalities,
mainly “necessity” and “possibility” and these modes qualify some truth.
Some examples of these modal prepositions would be “It is possible that it
will rain tomorrow” and “It is necessary that it is raining now or it is not
raining now”. These modes when looked at from a linguistic perspective
are usually characterised as adverbials [23] and some examples are: neces-
sarily, possibly, known by me to be, believed by you to be, permitted to be,
eventually will be, obliged to be, forbidden to be. This gives room for many
different modal logics that define these different modalities and allows us
to reason about these different modes of truth. Apart from classical modal
logic, which makes use of the possible and necessary modalities, we also have
others. Cases in point are temporal logic, which makes use of tense modali-
ties, deontic logic, which makes use of the normative modalities (obligation,
permission and prohibition) and epistemic or doxastic modalities, which are
aimed at reasoning about knowledge and belief.

Philosophers have developed and discussed these different modes of truth
for many centuries [20]. The modalities of necessity and possibility have been
discussed by philosophers from the time of the Greek and these two modal-
ities are sometimes referred to as the “alethic” modalities, which comes
from the Greek word for “truth”. Aristotle noticed that necessity implies
possibility but the converse does not hold and wrote about this in De Inter-
pretatione [73]. He also noticed that these two notions are interdefinable,
where the possibility of p is not the necessity to not do p. From Aristo-
tle’s time the discussion about modalities has had many contributions. The
Megariens, the Stoics, Ockham and Pseudo-Scotus are but a few from a long
list.

This discussion has found itself in a dead end after the work by the
Scholastics. It was Leibniz’s suggestion that there are other possible worlds
besides the actual world, which gave light to how this logic can keep de-

14

veloping. It was Kripke who formalised the notion of possible worlds and
it is one of the most easy to understand views of modal logic giving an in-
tuitive description of modalities. It was however C. I. Lewis, years before
Kripke, who first studied modal logics in a formal manner [6] in 1918. He
introduced the first modal operators and attempted to solve paradoxes of
material implication and to obtain logics of necessity and possibility.

In contemporary modal logic many of the contributions shifted from
philosophers to computer scientists since a sound theoretic formalism of
these modalities will enable machines to reason about these modalities. Even
though this area has its roots in the classical period it is still relatively fresh
and there is a great deal of work being done on different aspects of modal
logics.

2.1.1 General Interpretation of Modal Logics

A way to look at modal logics is that there exists a number of different
worlds and the modal operators enable us to access one world from another.
If we compare this to Boolean logic, a truth table is a listing of all possible
worlds and each row of a truth table is one such possible world. This repre-
sentation for modal logics was introduced by Kripke in the 1960’s and also
independently by Hintikka.

Kripke makes use of a model in order to define these worlds, where a
model is the tuple 〈G,R, ²〉 where G is the set of worlds and R is the relation
G × G where if P and Q are two worlds and (P, Q) ∈ R then the world Q
is accessible from P . ² is the relation between the possible worlds and the
set of atomic propositions; thus, if (Q, p) ∈ ² then p is true in world Q. We
can represent the relations R and ² as P R Q and Q ² p respectively. In
literature, one refers to the set of worlds and their accessibility relation as
a frame; thus, a frame is the tuple 〈G,R〉.

If we have the classical modalities of possibility and necessity with their
classical representation, ♦ and � respectively, we can define truth in a model
as follows:

Given a model 〈G,R, ²〉, the relation ² can be extended to arbitrary
formulas as follows. For each P ∈ G

1. P ² ¬p iff P 2 p

2. P ² (p ∧ q) iff P ² p and P ² q

3. P ² (p ∨ q) iff P ² p or P ² q

4. P ² �q iff for every world Q such that PRQ then Q ² p

5. P ² ♦q iff there exists a world Q such that PRQ and Q ² p

15

One should note that we do not need to define both ∧ and ∨ since they
are interdefinable using the negation. ♦ and � are also interdefinable using
negation.

P

Q Rp p,q

Figure 2.1: An example of a model

Figure 2.1 shows one such model. In this model, since Q ² p and R ² p, q,
then P ² �p ∨ q. Furthermore, since R ` p then P ² �p. However, P 2 �q
since Q 2 q but P ² ♦q since there exists an accessible world where q is
true.

After this brief introduction to modal logics and its classical represen-
tation we are going to take a look at two modal logics, Dynamic Logic
and Temporal Logic that have been developed with program verification in
mind.

2.2 Dynamic

Dynamic logic can be described as a modal logic with the emphasis on
actions. It has the classical modal operators � and ♦ but also adds the
operators [] and 〈〉. If a and p are atomic propositions, [a]p would mean
that after a is performed p must follow. On the other hand the 〈a〉p means
that it is possible to perform a and if a is performed then p has to be
performed.

Actions found between the square and angle brackets might be composed
of a number of atomic actions combined using operators. Such actions are
called compound actions. Usually the following operators are used, where
+ stands for choice, ; or · stands for sequence and ∗ is an iteration (Kleene
star). Some other operators that are also used in certain extensions are the
test operator ? and concurrency operator &.

This type of modal logic was aimed at verification of programs and was
developed in 1974 by Pratt [52].

2.3 Temporal

Temporal Logic, similar to Dynamic Logic, was aimed at program verifica-
tion [51] but concentrates, as the title suggests, on time. Temporal logic
also falls under the umbrella of modal logic where temporal operators or
modalities are added in order to reason about how truth values change over

16

time [20]. Temporal logic adds temporal operators to the classical Boolean
operators where X means in the next instance, G means always or globally,
F means finally or eventually and U stands for until.

This type of logic has become very popular since in the 80s an algorithm
for verifying temporal logic properties of finite-programs was discovered [57,
13, 37]. This led to a method called “model checking” where the process of
verifying these properties on a model was automated. It was called model
checking since the program was modelled as a Kripke structure on which the
property was verified. We shall go into more detail about model checking in
Section 2.6.

Temporal logics can be split into two types, either Linear or Branching.
Lamport in [35] describes these two types of temporal logics as being two
interpretations to the two different ways of looking at time. One can look
at time in a linear fashion, having a string of actions, that is, one event
happens after another. The other way of looking at time is as branching,
where at each instance there are a number of possibilities that may be done.

There are many papers that discuss the differences between these two
types of temporal logics and which of the two logics are best suited for
which situation. In [35] linear temporal logic was stated to be better for
reasoning about concurrent programs whilst branching for nondeterministic
programs. There are also many discussions that compare these two types of
logics like [21, 38, 33].

2.3.1 CTL*, CTL and LTL

CTL, LTL and CTL* [19] are all examples of temporal logic. We are going
to first take a look at CTL* whose formulas are made up of two parts, a
path quantifier and temporal operators. There are two quantifiers available
for this type of logic, A which means for every path and E which means for
at least one path. These two operators are similar to the ∀ and ∃ operators
in predicate calculus and thus A means ∀ reachable paths whilst E means
∃ a path.

The second part of a CTL* formula is made up of temporal operators.
These are

• X : meaning that in the next step this property holds

• F : meaning that eventually (in the future) this property will hold

• G : meaning that this property will always (globally) hold

• U : this is a binary operator and means that until the second property
holds, the first property will always be true

These operators can be combined together using Boolean operators to
build complex temporal formulas for describing desired situations. For ex-
ample, if we want to say that it will always be the case that in the future we

17

EF EG AF AG

Figure 2.2: State representation of the Basic CTL operators

reach a state where property a is true and property b is false, the equivalent
temporal formula would be AF(a ∧ ¬b). Another example would be if we
want to describe that there exists a path that will repeatedly lead to a being
true. We would formalise this as EGF(a).

CTL and LTL are restrictive sublogics of CTL*. CTL* is more powerful
than both CTL and LTL. CTL and LTL do intersect each other; thus, being
able to represent some identical concepts using all three languages. However
CTL can express certain behaviours that LTL cannot and vice-versa. The
main difference between CTL and LTL is that CTL is a branching-time logic
and LTL is a linear-time logic.

In CTL the temporal operators are used on the possible paths from a
given state. Thus every temporal operator must always be preceded by a
path quantifier. This clearly makes it less expressive than CTL*. Thus in
CTL we cannot define something like A(FG p) meaning that at some point
in the future, p is true and will remain true forever.

In LTL, the temporal operators apply to a single computation path. In
other words all temporal formulas specified in LTL will have the A path
quantifier followed by a path formula. This will result that formulas, like for
example AG(EF p) (meaning that it is always true that a path exists that
will lead to p being true in the future), cannot be expressed. Even though
all formulas in LTL make use of the A path quantifier we still may check
that certain properties are true for at least a single path(i.e. E quantifier).
One can negate the property and the Model Checker should return a trace
of one such path, effectively verifying that one such path does exist.

2.4 µ-Calculus

The µ-calculus was developed by Kozen [31]. It makes use of the fixed-point
operator making it very powerful. µ-Calculus may also be referred to as
a temporal logic. In fact, LTL, CTL and CTL* may be encoded in the
µ-calculus. However, µ-calculus is described as being very complex. It is
very difficult to make sure that what is being expressed is actually what
is desired. Furthermore most desired properties make use of two levels of
alternation. So most of the power that µ-calculus has is not typically used.

18

Because of this, when it comes to verification, most of the time other logics
like LTL and CTL are used. For example, the alternation-free µ-calculus
model checker evaluator [40] forming part of the CADP toolset 2 allows an
easy mechanism of making use of macros in order to encode, for example
CTL, so as to be used as the top level language rather than write properties
directly in µ-calculus.

2.5 Default Logics

Default logic [58] allows us to reason about incomplete data, something
that classical logic is not capable of. As one might deduce from the title
of this logic, we are capable of reasoning about incomplete data by making
the use of defaults. This type of reasoning is commonly used, for example
in the medical profession where instead of performing all possible tests in
order to diagnose the patient, from an incomplete set of information the
doctor will try to deduce what the patient has by filling up the rest of the
information making use of defaults or as colloquially referred to, ‘rules of
thumb’. So with incomplete information the doctor may deduce a cause
and thus, start with the treatment before the results from all the tests have
arrived. One should note that as the results start to come in, these may
affect the diagnosis and thus, as more facts are added to the picture the
final diagnosis may change. This is also captured in Default logic and this
is called nonmonotonic reasoning.

Consider we have a set of premises (truths) P and from this set P we may
deduce α. If we are using monotonic reasoning, if P ⊆ P ′ where P ′ is another
set ot truths, then α must also be deducable from P ′. If P = {a → b, a}, we
can deduce b and if P ′ = {c, a → b, a}, since P ⊆ P ′, then it must follow that
b is also deducable from P ′. This is not the case with nonmonotonic; thus,
α is not necessarily deduced from P ′. Going back to the diagnosis example,
if from the current set of truths we deduce the patient’s diagnosis, as we
start getting more information about the case, the diagnosis may change.

Default logic was proposed by Raymond Reiter in [58]. This logic has
been used very frequently in the area of artificial intelligence and many
different extensions have been put forward. This logic has also been used
very frequently in legal reasoning since similar to the medical example, law
makes use of defaults when there is nothing that specifies the contrary. A
good tutorial paper about the subject is [2] by Grigoris Antoniou. We shall
now give a brief description of the semantics of default logic.

In default logic, a default theory T is a pair (W,D) where W is a set
of predicate logic formulas, which are the facts (axioms) and D is a set of

2The CADP toolset and information about it and Evaluator model checker may be
obtained from http://www.inrialpes.fr/vasy/cadp/

19

defaults. A default has the following structure:

σ : ϕ1, ϕ2, . . . , ϕn

χ

where σ is refered to as the ‘prerequisite’, ϕ the justifications and χ the
conclusion. Using this syntax, in order to conclude that χ holds in the
current default theory T, σ must be true in T (i.e. an element of W or
deduced from W). Furthermore, the justifications should be consistent in
T. By consistent we mean that we have no contradicting fact in T. If so, then
we may conclude χ. One should note that if we add a new fact to W that
contradicts a justification, then we cannot deduce χ anymore. One should
also note that the order that we apply defaults to the theory does make a
difference and thus certain theories have more than a single interpretation.

2.6 Model Checking

Model checking is the technique to automatically verify finite state sys-
tems [19]. It is a very attractive alternative to testing or simulation because
the model checker will exhaustively search through all the possible execution
paths verifying the desired properties unlike testing or simulation where not
all execution paths are necessarily analysed. This type of formalisation is
also attractive because once the model is built, everything is done automati-
cally. Furthermore, if there is a situation where the actual specification does
not hold, one will typically get a trace of how the system ended up in the
bad state thus one is directed to the source of the problem. However model
checking does have its draw backs. First there is the state explosion problem
which we shall discuss in the following section. Secondly, model checking is
restricted to a finite state system. However, this technique is still invaluable
in many situations.

In order to model check a system, there are three steps one needs to
follow

Modelling The building of the formal model that is accepted by the model
checking tool.

Specification Stating properties desired. It is important that the specifi-
cation is complete since the model checker will only verify properties
specified; thus, if you do not have a complete specification there still
might be problems in the algorithm.

Verification Automatic verification of the specification on the model.

From these three steps, the first two need to be done by the user whilst the
verification step is done automatically.

20

The modelling usually takes the form of a Kripke structure, which can
be seen as a special case of a Finite State Automation. The Kripke structure
M is the four-tuple M = 〈S, S0, R, L〉 where

• S is a finite set of states

• S0 is the set of initial states (S0 ⊆ S)

• R is the set of possible transitions, which by definition must be total
(R ⊆ S × S)

• L is a function that labels every set with the set of propositions true
in that state.

The Kripke structure is used to represent all the states of a system and
the transitions between these states. The labelling function will label each
state with all the true propositions. In order to represent a system with
four Boolean state variables the Kripke structure will be made up of 4× 4
states. As the number of variables increase, so do the number of states in
an exponential manner. This is known as the state explosion problem, due
to which we cannot use Model Checking to directly prove a system with a
large number of variables.

2.6.1 State Explosion Problem

As the number of state variables in a Kripke structure increases, the number
of states increases exponentially, thus making the model impossible to check.
A number of techniques have been employed in order to try and reduce as
much as possible this state explosion in order to be able to check models
with a larger number of states.

Symbolic Model Checking was the first attempt to reduce this problem,
where the transition relations of the Kripke structure were represented using
Ordered Binary-Decision diagrams [10]. This allows us to model check more
than 1020 states as seen in the appropriately titled paper “Symbolic Model
Checking: 1020 States and Beyond” [29].

This does not completely solve the problem since there still is a limit on
the size of the model. Researchers turned to abstraction in order to be able
to split the model into smaller chunks and thus model checking only parts
of the system at a time, or a high level abstracted model with most of the
inner states removed.

For a much more detailed description of how the State Explosion Problem
has been tackled, please refer to the paper “Progress on the State Explosion
Problem in Model Checking” [12].

21

2.7 Conclusion

In this chapter we have seen an overview of logics which have affected CL
in some way or another. We first tackled a description of modal logics
under which both CL and many other logics that are used in computer
science reside. Two special modal logics that we mentioned are dynamic
and temporal logics. Dynamic logic is a prominent part of CL as we shall
see in the next chapter. Temporal logic formed part of the initial CL syntax;
however, the authors then decided to make use soley of dynamic logic since
temporal aspects may be expressed using dynamic logic. However, we still
mentioned temporal logic since the techniques used for model checking of
temporal formulas have inspired the conflict analysis approach of this work.
We also discussed briefly µ-Calculus. It was used in order to specify the
initial semantics of CL and default logic, which has some attractive features
with respects to contracts. Finally we briefly described the model checking
problem.

In the next chapter we shall tackle deontic logics and finally CL. We
shall have a brief introduction on deontic logics and the issues faced, mainly
the paradoxes. Then we have an extensive description of CL, seeing how the
syntax and semantics changed and where CL currently stands.

22

Chapter 3

Deontic Logic

3.1 Deontic Logic

Deontic logic may be described as the logic of obligation, prohibition and
permission; however, an even better description of deontic logic is the logic
of ideal behaviour and actual behaviour [44], or equivalently to reason about
normative and non-normative behaviour [45]. Another indication to what
deontic logic means is by looking at the root of the word deontic, which
comes from the greek word δεoυτως meaning “as it should be”.

As one might expect, Deontic logic has its foundation in philosophy of
law and ethics. However, as happens with many subjects in philosophy, it
has now also become a subject of interest for computer scientists, who added
their own flavour to it moving away from the philosophical into the more
formal paradigm. With the view of deontic logic as a method for reasoning
about ideal and actual behaviour, we may use it to model and describe the
ideal behaviour of the system and the exceptional behaviour that cannot be
completly described using other classical logics.

Clasically, in deontic logic, one makes use of three deontic operators
representing permission, obligation and prohibition; however, other formal-
isations are possible for concepts like duty, right, power and liability. Some
examples of statements we could express using deontic logic would be “You
have the permission and duty to vote unless you are incarcerated, in which
case you are forbidden from voting” or “you are obliged to pay, otherwise
we shall be obliged to fine you”.

We shall now go through a brief historical overview of deontic logic. The
normative notions of deontic logic have been investigated since Aristotle’s
time; however, we shall not go back so far. We shall take a look at how
deontic logic developed from when a formal semantics or representation was
given, or attempted to be given, to this deontic reasoning.

23

3.1.1 A Brief Historical Overview of Deontic Logic

Ernst Mally was the first person to try to formally reason about deontic
logic in 1926 in his paper entitled ‘Elemente der Logik des Willens’. We
use the word ‘try’ since Mally’s system was in fact a fragment of alethic
propositional logic and thus not really a deontic logic after all.

Standard Deontic Logic or SDL was the first real attempt towards de-
ontic reasoning. This was done by von Wright in [69] where he made use
of a modal Kripke style description. This system is today called the ‘Old
System’ (OS) since another system has been developed on this ‘Old System’.

SDL consists of the following axioms and rules

(K) O(ϕ → ψ) → (Oϕ → Oψ)

(D) ¬O⊥
(N) ϕ

Oϕ

(P) Pϕ ↔ ¬O¬ϕ

(F) Fϕ ↔ O¬ϕ

(T) All (or enough) tautologies of propositional logic

(MP) ϕ,ϕ→ψ
ψ

The semantics of the standard system were based on the semantics given
to modal logics where we have the notion of possible worlds. The possible
worlds act as the set S in a Kripke model. Each world has a set of primi-
tive propositions which have been assigned a truth value using a valuation
function π and there is a relation R ⊆ S × S which relates these worlds
together.

Using this Kripke model M = 〈S, π, R〉 we may give the semantics to
the deontic operators as we would do to modal operators where

(M, s) ² Op iff ∀s′ s.t. (s, s′) ∈ R then (M, s′) ² p

(M, s) ² Pp iff ∃s′ s.t. (s, s′) ∈ R and (M, s′) ² p

(M, s) ² Fp iff ∀s′ s.t. (s, s′) ∈ R then (M, s′) 2 p

It is important to note that here we are treating O as the basic modal
operator, where we define its semantics as for Op to be true in a world s
then p must be true in all the worlds which are related (accessible) from s.
From a modal logic perspective, O is similar to the necessity operator. The
P and F operators may be defined using the O operator. For Pp to hold in

24

a world s then there must exist an accessible world where p is true whereas
for Fp to be true, p cannot hold in all accessible worlds.

With this view of SDL, we allow the obligation of a tautology, or what
is called an ‘Empty Normative System’. This was not really accepted by
von Wright since he deemed it to be a paradox. We shall discuss this in
Section 3.1.2 where we deal with paradoxes of deontic logic.

Allowing conditional obligations gave rise to many severe problems. One
such example is Ross’s paradox. In order to solve this problem von Wright
in [70] introduced the ‘New System’(NS) (and made some corrections in [71]).
The OS syntax is augmented by O(p/q) meaning that p is obliged under some
condition q. Unfortunately, other undesirable theorems are introduced, in
particular O(p/q) → ¬O(¬p/r). This is described by von Wright himself as
“manifestly absurd”.

Many amendments to this system were attempted; however, some of
these undesirable properties remained and some of the proposed solutions
are quite complicated. Some people who attempted these amendments are
von Wright himself, van Fraassen, van Eck, Hansson, al-Hibri, McCary and
Soeteman.

The idea to introduce temporal notions to deontic logic was first proposed
by van Eck [63] . Enriching deontic logic with this information about time
gives us a more refined way of describing deontic formulas. This permitted
them to remove certain paradoxes like Chisholm’s Paradox. Thomason [61]
was another author who firmly believed that deontic logic needs this foun-
dation in temporal logic.

In 1992, Fiadeiro and Maibaum [22] proposed to do this reduction from
a deontic specification to a temporal one semantically. They interpreted the
obligation to do something as a liveness property, so Op would be translated
to Fp, in the future p will hold. They also made use of features from dynamic
logic.

Meyer proposed another reduction into propositional dynamic logic using
the violation atomic preposition V . This approach resulted in a shift of how
deontic logic is viewed, where now, instead of taking the “ought to be”
approach (in deontic literature called “Seinsollen”) we take the “ought to
do” approach (in deontic literature called “Seinsollen”).

The three deontic operators are defined using dynamic logic as follows

Fα ≡ [α]V
Pα ≡ ¬Fα(〈α〉¬V)
Oα ≡ F (α)([α]V)

Being forbidden to perform action α is reduced to the formula that states
that if α is observed, this will lead to a state where V holds. The formula
α is permitted is reduced to α is not forbidden, or that there exists some
way to perform α without ending in a state where V is true. The definition

25

of the obligation makes use of the compliment of action α, where now, if
we observe the compliment of α we shall end up in a violating state. Even
though the complement of an action might be intuitive, it poses a number
of formal problems.

Furthermore, as we have seen in Section 2.2 actions might be compound
making use of sequential composition, non deterministic passive or imposed
choice and parallel composition.

The beauty of this approach is twofold. First of all, we get rid of many, if
not all of the nasty paradoxes that have been a burden on traditional deontic
logic. Some publications discussing this are Meyer [43], Anderson [1] and
Castaneda [46]. Secondly, we can directly integrate deontic constraints with
dynamic integrity constraints as done in [66] and [68].

Using the reduction of the deontic operators in conjuction with the com-
pound action operators we have the following truths

F (α; β) ≡ [α]F (β)
O(α; β) ≡ Oα ∧ [α]Oβ

P (α; β) ≡ 〈α〉Pβ

F (α + β) ≡ Fα ∧ Fβ

P (α + β) ≡ Pα ∨ Pβ

O(α&β) ≡ Oα ∧Oβ

Oα ∨Oβ → O(α + β)
Fα ∨ Fβ → F (α&β)
P (α&β) → Pα ∧ Pβ

As shown in [43] this approach resolves most paradoxes, including the
classical Chisholm’s paradox. Furthermore, certain paradoxes are not even
expressible in the language any more. Unfortunately, this representation
still allows Ross’s paradox; however, some doentic logicians do not consider
this a genuine paradox. Even though we solve most problems, we end up
introducing new paradoxes. Consider the third equality, looking at the im-
plication from left to right we may describe the following: If after shooting
the president, it is permitted to remain silent, then it is also permitted to
shoot the president and remain silent.

The current approach here is that the end justifies the means, that is,
we only check if we have a violation of the contract at the end of a sequence
(〈α〉Pβ ≡ 〈α〉(〈β〉¬V)). This was observed by van der Meyden in [62] where
he also gave a solution to this. We could also solve this by having a stronger
permission operator P∗ where P ∗ (α;β) ≡ P ∗α∧〈α〉P ∗β and P ∗α ≡ Pα.
So without sequences of actions, P∗ behaves like P . It is clear that using
this stronger version of P the president paradox does not hold. This P∗

26

operator is however not strong enough either since we need to ensure that
after the first action of the sequence we do not end up in a violating state
and thus, we shall define P ∗ ∗(α;β) ≡ 〈α〉(¬V ∧ P ∗ ∗β). This version of
the permission operator does not suffer these problems since we ensure that
every step is permitted and that every step does not lead to a violating state.

Another method is the application of defeasible reasoning 1 methods to
the notions of obligations. In defeasible reasoning we are faced with the
problem of inferencing without having complete knowledge; thus, this gen-
erally results in a logically unsound reasoning mechanism where by adding
new information might result in a contradiction. This is then followed by
some mechanism to reinstate consistency.

This approach is quite different from what has already been done. For
example now it is freely accepted to have contradicting obligations thus we
accept the situation where we arrive in a state where a violation will surely
occur. This will however allow us to reason about which obligation should we
violate with some form of preference, for example depending on the liability
or reparation that has to be done.

3.1.2 Paradoxes of Deontic Logic

Deontic logic can be seen as a logic plagued with paradoxes and it is because
of this that many logicians have given up on the practicality of this logic.
However we believe that if we restrict the domain of the logic, for example
in our case, the domain of electronic contracts, we may have a logic that is
free from these paradoxes but yet expressive enough for our purposes. We
shall now go through a list of the most famous deontic paradoxes.

Paradoxes in this field may be described as logical expressions that are
valid in the logical system for deontic reasoning but which unfortunately is
counterintuitive when the expression is described in an intuitive/informal
manner [44]. Most other logical systems have such paradoxes but what is of
note in deontic logic is that most of these paradoxes are fairly simple and
may be easily described. Also, such paradoxes have been studied for years
and yet, a solution for all these paradoxes is yet to be found.

Empty normative system

Oϕ (where ϕ is a tautology, e.g. O(ψ ∨ ¬ψ))

In this situation, we are enforcing or obliging something that the underlying
logic already does. Some authors, including von Wright [69] believe that this
is an undesirable property of deontic logic. Another example is forbidding
a contradiction. The act of forbidding a contradiction is not contributing

1Default Logic falls under the category of defeasible reasoning

27

anything to the meaning since a contradiction is already, to a certain extent,
being forbidden by the underlying logical system and thus, is superfluous.

Ross’s Paradox

Oϕ → O(ϕ ∨ ψ)

The classical interpretation of this paradox is that if we are obliged to mail
a letter then this also implies that we are obliged to mail a letter or burn
it. Remember that a disjunction can always be introduced since a → a ∨ b.
However, in ordinary language, this introduction of a new possibility is not
always allowed. As seen in this case this sounds paradoxical.

No free choice permission

(Pϕ ∨ Pψ) ↔ P (ϕ ∨ ψ)

In this paradox, we see that having the permission to do ϕ or having the
permission to do ψ implies having the permission to do ϕ or ψ. Consider
the situation where we are forbidden to do ψ. This will still imply that we
are permitted to do either ϕ or ψ (P (ϕ∨ψ)), however we do not really have
this choice since ψ is forbidden. Thus since we expect that when P (ϕ ∨ ψ)
holds we have a free choice of choosing either ϕ or ψ it is paradoxical to
have this free choice taken from us. So basically, P (ϕ ∨ ψ) would have a
natural language reading of Pϕ ∧ Pψ rather than (Pϕ ∨ Pψ).

Penitent’s paradox

Fϕ → F (ϕ ∧ ψ)

This paradox is similar to the No free choice permission where now if we are
forbidden to do something, we can also be forbidden from doing anything
else. The classical example is that if we are forbidden to do a crime, then
we are also forbidden from doing penitence.

Good Samaritan paradox

ϕ → ψ ` Oϕ → Oψ

This paradox says that every logical consequence of something that is obliged
is itself obliged. As the title suggests the classical example is from the Bible
where if the Good Samaritan helps the injured traveller implies that he has
been injured. Thus if the Good Samaritan is obliged to help the injured

28

traveller then it is also obliged that the traveller is injured. This conclusion
is surely not the lesson that is being taught.

Chisholm’s paradox

(Oϕ ∧O(ϕ → ψ) ∧ (¬ϕ → O¬ψ) ∧ ¬ϕ) → ⊥
This paradox is described as being awkward and to a certain point even
embarrassing by deontic logicians [44]. This paradox may be described using
the example where ϕ stands for “go to the party” and ψ stands for “tell we
are coming”. So if we are obliged to go to a party then it is obliged that if
we go to the party we tell that we are coming, but if we do not go we are
obliged not to tell we are coming. In such a setting if we end up not going
to the party it would be still ok and thus is intuitively consistent however it
is inconsistent in Standard Deontic Logic (SDL).

Forrester’s paradox of gentle murder

(Fϕ ∧ (ϕ → Oψ) ∧ (ψ → ϕ) ∧ ϕ) ` ⊥
This time we let ϕ stand for “murder” and ψ stand for “murder gently”.
So this paradox would be exemplified with we are forbidden to murder,
but if we do murder, we are obliged to murder gently. Furthermore, if
we murder gently it implies that we have also murdered, and finally one
murders someone. This is again inconsistent in SDL but actually makes
common sense.

Conflicting obligations

¬(Oϕ ∧O¬ϕ), or equivalently, Oϕ → Pϕ

Here we state that we do not want to have any conflicting duties. This is a
desirable property. This cannot really be seen as a paradox but rather that
this does not always manifest itself in real life; thus, this situation may seem
unrealistic.

Derived Obligation

Oϕ → O(ψ → ϕ)

Fψ → O(ψ → ϕ)

¬ϕ → (ϕ → Oψ)

29

These are the deontic equivalent of the paradoxes of material implication
in classical logic. The paradox of the material implication of classical logic
may be described using two examples. The first example is ((l → e) ∧ (p →
f)) ` ((l → f) ∨ (p → e)) where l stands for London, e England, p Paris
and f France. The interpretation is that if we are in London, then we are
in England and if we are in Paris, then we are in France. This statement
is sound in everyday language; however, we can end up with if we are in
London then we are in France or if we are in Paris then we are in England,
which is not true but holds in the classical Boolean framework. The second
example is p ∧ q → r ` ((p → r) ∨ (q → r)) where p and q stand for switch
one and switch two being on respectively and r stands for the light being
on. So if both switch one and two are on, then the light is on. From this
statement we may deduce logically that either if switch one is on then the
light is on or if switch two is on then the light is on, which in reality is not
true if the switches are in series. With these two examples we may conclude
that using classical logic and taking material implication to mean if-then is
an unsafe method of reasoning that may give erroneous results and this also
holds for the deontic equivalents.

Thus this boils down in manner that we “read” the → (implication).

Deontic detachment

(Oϕ ∧O(ϕ → ψ)) → Oψ

This states that obligations are closed under implication. This statement
raises controversies that are similar to that of the Good Samaritan problem.
Using this setting, we may say that the Good Samaritan is obliged to help
the traveller but also that the Good Samaritan is obliged that if he helps
the traveller then the traveller is injured and thus, there is the obligation
for the traveller to be injured.

Kant’s ought implies can

Oϕ → ♦ϕ

This formula states that we may only be obliged to do things that are possi-
ble and thus, this denies the possibility to specify that one is really obligated
to do the impossible. This cannot be described as a paradox; however, we
should note that in real life we may be obliged to do the impossible.

Epistemic obligation

OKϕ → Oϕ

30

This paradox may be exemplified using the following instance. If we are
obliged to know that a spouse is committing adultery, then it ought to be
the case that the spouse is committing adultery.

Remarks on Paradoxes

After this listing of the most common paradoxes, we note that some para-
doxes, like the derived obligation, disappear when it is analysed exactly as
what is stated by the formula rather than applying a looser reading of it.
Also, there are certain paradoxes that cannot really be called paradoxes but
rather that they exemplify an ideal world, for example Kant’s ‘ought implies
can’ restricts us to be obliged only to do possible things. However, some
paradoxes are quite serious, most notably being Chisholm’s Paradox and
the Good Samaritan paradox.

We shall now take a look at some uses of deontic logic in computer
science.

3.1.3 Uses of Deontic Logic in Computer Science

In this section we are going to investigate how deontic logic is being used
by computer scientists. This section is based on the paper “Applications of
Deontic Logic in Computer Science: A Concise Overview” written by R.J.
Wieringa and J.-J.Ch. Meyer [67].

As one might assume, there is a great deal of work concerning the use
of deontic logic in order to perform automation of legal processes. It is
quite recent that other areas are being explored where deontic logic may be
employed. An example is in the description of fault-tolerant systems where
we need to differentiate between ideal and actual behaviour.

Structured view of deontic applications in computer science

After a historical overview, the authors continue to give a description of the
type of applications that have made use of deontic logic.

Fault-tolerant Systems Deontic logic may be used to describe the ideal
and actual behaviour and thus, is used in order to specify exception
handling since fault-tolerant systems need to be able to handle non
ideal situations.

Normative user behaviour Using deontic logic one may specify user be-
haviour making a distinction between desirable and non-desirable user
interaction. This can also be seen as a form of exception handling
where we may easily describe what should be done in case a user does
not behave in an ideal fashion while still making a distinction between
ideal and exceptional behaviour.

31

Policy specification In this scenario deontic logic is used to make the
policy of an organisation unambiguous and also to reason about dif-
ferent policies and analyse the repercussions. Most commonly it is the
security policy that is specified using deontic logic.

Specification of Law This scenario is similar to the policy specification;
however, the overall result is different. The focus is on law from the
legal perspective whereas the policy specification takes a computer sci-
ence flavour. This will also encompass the simulation of legal thinking
where instead of simply having a set of formulas representing the law,
we model the way that lawyers and judges think using deontic logic.

Looking at the way the authors split the applications of deontic logic, we may
summarise that there are two main classes of applications of deontic logic.
The first one concerns the representation of exception handling and the other
dealing directly with the legal realm. However, there have been other uses
of deontic logic like in integrity constraints of databases. There have also
been more creative uses of deontic logic. It has been used in the solving of
scheduling problems where the system can still handle the situations where
the allocation of jobs will result in some violations of deadlines. Again, we
believe that these applications may be split under these two headers.

3.2 CL
The contract language CL first appeared in the paper “A Formal Language
for Electronic Contracts” [55] written by Prisacariu and Schneider. We
shall go through the papers and technical reports concerning CL in order
to attempt to document the development of CL. We deem this important
since CL was changing while we were working on the masters and thus,
affected the directions and decisions that were taken. We shall thus start
with reporting the contributions of the first paper about CL [55].

3.2.1 A Survey of CL
CL is introduced in the paper “A Formal Language for Electronic Con-
tracts” [55]. The authors describe where such a language would fit in today’s
industry. It is very common today that we find applications spanning across
organisational borders mainly due to the internet and the trend to develop
applications using the Service Oriented Architecture. In such architectures
each organisation participating will not have access to complete information
about services residing outside the organisation. Most often, the organi-
sation would not have access to the external code let alone the ability to
verify that the implementation is correct. This dependability on external
entities drives the need of having an agreement between the parties before

32

collaboration starts in order to safeguard the interests of both parties. Such
an agreement is usually called a contract and determines what the duties of
every party are and the penalties if these duties are violated.

Not only would we desire that we have a contract between parties but
also to have a contract that is machine readable. This opens up a number
of opportunities, for example automatic contract negotiation and automatic
monitoring. For example, the signatories of the electronic contracts may
entrust a third party who will monitor the transactions and ensures that
the contract is not violated. These are but a few of the possibilities of
having unambiguous machine readable contracts.

There are a number of approaches to define formal contracts; however,
the authors of [55] believe that the most promising approach is the one based
on logics. They also add that a logic for contracts does not necessarily have
to be based on some form of deontic logic but would always contain some
form of normative notions like obligation, permission and prohibition. The
task of formalising these deontic notions is not an easy task and this may
be witnessed all through the history of such research starting as back as
1926 [39] (See Section 3.1 for more details and Section 3.1.1 for a more in
dept history of deontic logic).

Most often, contracts contain clauses that by definition are violable and
in such situation some other clause (that may be for example a penalty/repa-
ration) is enacted [55]. These are usually referred to as contrary-to-duty
(CTD) and contrary-to-prohibition (CTP) clauses. The authors also point
out that other deep issues with deontic logic are the relation between the
deontic notions (the duality of the operators and the definitions in terms of
each other) and the understanding of their truth-value (or even if such no-
tions have a truth value). The main concern in [55] is the formal definition
of e-contracts, attempting to avoid the philosophical problems of deontic
logic and focus more on the practicality of the logic. The starting point of
CL was [9] where a fixed point characterisation of obligation, permission and
prohibition is given using modal µ-calculus. In [55] we again see semantics
given in an extension of the µ-calculus; however, the semantics are different
from that in [9] as we shall see.

The main contribution of [55] is the definition of a contract language
which has the properties that:

1. avoids the most of the classical paradoxes of deontic logic

2. enables the expression of obligations, permissions and prohibitions over
concurrent actions while keeping their intuitive meaning

3. obligation of disjunctive and conjunctive actions is defined composi-
tionally

4. the definition and the semantics of obligation do not contain action
negation

33

5. it is possible to express CTDs and CTPs

6. has a formal semantics given in a variant of the propositional µ-calculus

Other contributions are that the paper provides new insights into how one
should relate deontic notions to the context of e-contracts, provide a natural
and precise interpretation of disjunctions on obligations and also extend the
propositional µ-calculus with concurrent and deterministic actions.

We shall now see what properties a contract should have as described
in [55].

Desirable Properties of a Language for Electronic Contracts

When it comes to desirable properties of a deontic logic, the first and fore-
most would be to try and avoid as much of the deontic paradoxes as possible.
For a discussion on deontic paradoxes please refer to Section 3.1.2. In [55],
the authors particularly refer to Ross’s paradox (defined as O(a) → O(a+b))
and the free choice paradox (defined as P (a) → P (a + b)). They also want
to disallow the disjunction between deontic modalities where they actually
limit the use since they allow it in certain specific cases2. Conjunction of
obligation should imply that we execute the obligated actions concurrently
in order not to violate any of the obligations. Also, an obligation of a se-
quence of actions should imply the obligation of all the subsequent actions.
The language should also permit the specification of reparations and also
allow the definition of conditional obligations (i.e. ϕ → O(a)). Obligation
should imply permission but these two deontic notions should not be inter-
definable. Many authors commented on this issue such as Hintikka in [26]
and von Wright in [72]. However, they believe that defining permission in
terms of prohibition is natural and desirable. This view is not shared by
authors like Hintikka [26] and Broersen [8].

These properties need to match properties of actual electronic contracts.
This is an important argument since the authors believe that the philosoph-
ical problems with deontic logics may be avoided if we restrict ourselves to
only electronic contracts. We find the justification that the negation of de-
ontic notions is not necessary in [55]. It is not natural to say that we are not
obliged to do something, so ¬O(a) should not occur. Furthermore, instead
of saying that we are not permitted to perform action a we can say that we
are forbidden to do a and vice versa so ¬P (a) ≡ F (a) and ¬F (a) ≡ P (a).
Having the choice operator inside the forbidden operator is counter intuitive
where F (a + b) would usually stand for you are forbidden from doing both
a and b, and thus F (a + b) should be represented as F (a) ∧ F (b) since as
F (a+ b) might have the semantics that you are forbidden to have the choice

2The syntax of CL allows disjunction only in the following case: F (a) ∨ [a]F (b). This
was originally allowed in order to define CTPs; however, in later semantics the CTPs were
defined as part of the language

34

of performing action a or b which is not that intuitive but still possible.
This ambiguity of choice and prohibition is also extended over the exclusive
choice.

They also make some changes to the classical dynamic algebra [53] by
removing the Kleene star (iteration) and the inclusion of concurrent actions.
They believed that it is unnatural to have the Kleene star under deontic
operators. Consider O(a∗). This cannot be violated since any amount of
action a could happen; thus, no particular information is given but is rather
confusing and can be described as O(true). F (a∗) is also counter intuitive
since if we perform any amount of a we shall violate this formula and thus,
this formula cannot be satisfied and may be represented as F (true). They
also define the negation of an action as any trace of actions that takes us
outside of the negated action trace [9].

The Initial Syntax of CL
Definition 3.2.1. The contract language syntax is defined by:

Contract := D; C
C := φ|CO|CP |CF |C ∧ C|[α]C|〈α〉C|CUC| © C

CO := O(α)|CO ⊕ CO

CP := P (α)|CP ⊕ CP

CF := F (δ)|CF ∨ [δ]CF

A contract is made up of two parts: the definitions and clauses. The def-
initions are left unspecified; thus, leaving the freedom to be able to define
anything. These definitions are the atomic assertions and actions like for
example ‘the budget is more than x’. C stands for a general clause whereas
CO, CP and CF stand for the obligation, permission and prohibition clauses
respectively. The ∧,∨ and ⊕ have the classical meaning of conjunction, dis-
junction and exclusive disjunction. α stands for a compound action (syntax
to be given later) and δ denotes a compound action not containing any oc-
currence of +. Please note that the ∨ operator can only appear in certain
circumstances with the prohibition deontic operator and the ⊕ operator can
never appear between prohibitions.

The [.] and 〈.〉 operators are taken from Propositional Dynamic Logic
(PDL) where [α]C means that after performing α, C must hold whereas
〈α〈C means that there must be the possibility of executing α and if it is
executed C must hold afterwards.

There are also temporal logic (TL) operators [50] where C1UC2 means
that C1 must hold until C2 holds and ©C means that C should hold in the
next moment. Using these operators we may define �C and ♦C to mean
always and eventually.

35

From our experience using CL the Until modality gives a choice when
some clause starts to apply and thus, it has the problems of free choice
(internal vs. external choice) which lead to many different interpretations
possible. Furthermore, since there is no notion of true and false defined
in the syntax, it is not clear how we may define these temporal operators
since they typically concern themselves with truth. For example consider
O(a)UF (b). We somehow need to know that suddenly F (b) has started
to be enacted and thus we are not still obliged to perform a. The Until
modality has been removed from the CL syntax; thus, solving this issue
but still allowing the same expressivity if desired by the introduction of the
Kleene star to actions that are not inside deontic operators.

The following are a number of rules that show the decomposition of
compound actions.

O(α + β) ≡ O(α)⊕O(β)
O(α&β) ≡ O(α) ∧O(β)
O(α; β) ≡ O(α) ∧ [α]O(β)

P (α + β) ≡ P (α)⊕ P (β)
P (α; β) ≡ P (α) ∧ 〈α〉P (β)
F (α; β) ≡ F (α) ∨ [α]F (B)

For a more in depth discussion on these composition rules we are referred to
their technical report [56]. The normal form of obligations may be achieved
by applying a number of rewrite rules. Using this syntax CTDs are defined
as OC(α) ≡ O(α)∧ [α]C whereas CTPs are defined as FC(α) ≡ F (α)∨ [α]C;
however, CTPs and CTDs are incorporated as part of the language in [34].

The semantics of CL is given using an extension to µ-calculus called Cµ
where concurrent actions together with special prepositional constants are
added to the standard µ-calculus. A translation function from CL into Cµ
is given in [55]. From these semantics, the following properties of CL hold:

P (α) ≡ ¬F (α)
F (α) ≡ ¬P (α)
O(α) → P (α)
P (a) 9 P (a&b)
F (a) 9 F (a&b)

F (a&b) 9 F (a)
P (a&b) 9 P (a)

CL was translated into a variant of the µ-calculus because the µ-calculus
is decidable [32], has a complete axiomatic system [65] and a complete
Gentzen-style proof system [64].

36

Model Checking Contracts

CL could also be used in order to model check contracts [48]. The authors of
“Model Checking Contracts - a case study” argue that an e-contract may be
viewed in two different ways: “(1) The executable version of a conventional
contract by translating the paper version into the electronic one; (2) As
contracts by themselves obtained directly from certain software applications
like web services”. In [48] we see how model checking techniques may be
applied in the context of electronic contracts. The method presented in [48]
has seven steps:

1. translate the conventional contract written in English into CL
2. translate syntactically CL into Cµ

3. obtain a Kripke-like model (labelled transition system, LTS) from Cµ
formulas

4. translate LTS into the input language of NuSMV

5. perform model checking using NuSMV

6. in case of counter-example given by NuSMV, interpret it as a CL clause
and repair contract until the property desired is satisfied.

The syntax given in [48] is identical to [55] except that the � is added
to the syntax rather than defined by using the other operators. The method
applied in [48] of how the LTS was constructed was ad hoc and furthermore,
the properties verified were LTL properties rather than CL properties. If we
could also specify CL clauses we would be able to verify that some contract
implies another contract and more.

Run-time Monitoring of Electronic Contracts

Apart from being able to model check CL clauses by translating them into an
LTS, one can perform run-time monitoring of electronic contracts specified
in CL [34]. The authors of [34] focus on a subset of the CL semantics that
is required in order to perform monitoring. For monitoring, the CL syntax
changes slightly. The temporal operators are entirely removed (U ,© and
the later �). The new syntax given in [34] is as follows:

C := CO|CP |CF |C ∧ C|[β]C|>|⊥
CO := OC(α)|CO ⊕ CO

CP := P (α)|CP ⊕ CP

CF := FC(α)|CF ∨ [α]CF

α := 0|1|a|α&α|α; α|α + α

β := 0|1|a|β&β|β; β|β + β|β ∗ |C?

37

Another difference that one should note in this new syntax is that the com-
pound action is defined as part of the CL syntax. This is unlike in the
previous syntax where the syntax of actions was not specified. One should
also note that in this syntax the Kleene star has been added to compound
actions; however, compound actions that contain the Kleene star may only
be used in [] and the 〈〉 operators. The authors of [34] still believe that the
Kleene star is counter intuitive inside obligations, permissions or prohibi-
tions. The Kleene star was added so that now we may encode the temporal
operators using only dynamic logic constructs. Furthermore, the assertion
was removed and the reparations are defined as basic operations; thus, CTDs
and CTPs are modelled directly. A deep discussion about the action algebra
and action negation may be found in the technical report [54].

A trace is defined as being a sequence of sets of atomic actions [34].
The canonical form may be obtained for any α that was defined with the
operators +,; or &. So for any α it can be put in the form of +i∈Iα

i
&;αi

where αi
& ∈ A&

B and αi is a compound action in canonical form. We should
note that AB is the set of the basic (atomic) actions whereas A&

B is the set
of all possible concurrent sets built from the set of atomic actions.

The negation of an action is based on the canonical form where α =
+i∈Iαi

&; αi that in turn is equal to +γ∈Rγ + (+i∈Iα
i
&; αi) where set R =

γ|γ ∈ A&
B, and ∀i ∈ I, αi

& * γ, meaning that the set R contains all the con-
current actions γ that do not include any action αi

& for all i ∈ I.
The satisfaction relation ² of a trace is defined as ‘a trace σ is said to

satisfy (not violate) a contract C if σ ² C’ whereas a trace σ that violates
the contract C would be described as σ 2 C. The recursive definition of the
trace semantics of CL may be found in the following section.

3.2.2 The Syntax and Semantics of CL
As just witnessed, the syntax and semantics have both changed a number
of times. The syntax has moved away from that shown in the original
paper where now the temporal operators have been substituted with the
dynamic logic operators and the Kleene star in order to be able to encode
the original temporal operators. When the syntax changed there was no
formal definition of the full semantics of CL with the new syntax. However,
we shall be needing the trace semantics of CL as we shall see in Section 5.1.1
of which we do have the semantics using the latest syntax. The following is
the syntax and trace semantics that have been used throughout this work.

38

C := CO|CP |CF |C ∧ C|[β]C|>|⊥
CO := OC(α)|CO ⊕ CO

CP := P (α)|CP ⊕ CP

CF := FC(α)|CF ∨ [α]CF

α := 0|1|a|α&α|α;α|α + α

β := 0|1|a|β&β|β; β|β + β|β∗|C?

σ ² C1 ∧ C2 if σ ² C1 and σ ² C2

σ ² C1 ∨ C2 if σ ² C1 or σ ² C2

σ ² C1 ⊕ C2 if (σ ² C1 and σ 2 C2) or (σ 2 C1 and σ ² C2)
σ ² [α&]C if α& ⊆ σ(0) and σ(1..) ² C, or α& * σ(0)
σ ² [β;β′]C if σ ² [β][β′]C
σ ² [β + β′]C if σ ² [β]C ∧ σ ² [β′]C
σ ² [β∗]C if σ ² C and σ ² [β][β∗]C
σ ² [C1?]C2 if σ 2 C1, or if σ ² C1 and σ ² C2

σ ² OC(α&) if α& ⊆ σ(0), or if σ(1..) ² C

σ ² OC(α;α′) if σ ² OC(α) and σ ² [α]OC(α′)
σ ² OC(α + α′) if σ ² O⊥ or σ ² O⊥(α′) or σ ² [α + α′]C
σ ² FC(α&) if α& * σ(0), or if α& ⊆ σ(0) and σ(1..) ² C

σ ² FC(α; α′) if σ ² F⊥(α) or σ ² [α]FC(α′)
σ ² FC(α + α′) if σ ² FC(α) and σ ² FC(α′)
σ ² [α&]C if α& * σ(0) and σ(1..) ² C or if α& ⊆ σ(0)
σ ² [α; α′]C if σ ² [α] and σ ² [α][α′]C]
σ ² [α + α′]C if σ ² [α]C or σ ² [α′]C

3.3 The Exclusive-Or and CL
The semantics of the exclusive-or given in [34] introduces a number of issues
into CL. In [55] it is argued that one should not allow negation in front of
obligations, permissions and prohibitions. We agree with this since it does
not make sense to say that ‘we are not obliged to perform an action’ since
it means that ‘we are free to do whatever we want’. ‘We are not permitted
to do an action’ may be easily translated to ‘we are forbidden to perform
an action’ and vice versa.

39

Recall that the exclusive-or may only appear between obligation clauses
and between permission clauses and not between prohibition clauses. This
was done in order to avoid paradoxes. Consider the following O(α)⊕O(α′).
This could be translated into O(α + α′) ∧ F (α&α′) while keeping the same
meaning.

Proof. Proving that the exclusive disjunction of two obligations may be
represented without using an exclusive disjunction. This is done since the
exclusive disjunction of two obligations may be represented as the obligation
to perform either of the actions and being forbidden to perform both:

σ ² O(α)⊕O(α′) ⇔ σ ² O(α + α′) ∧ F (α&α′)

σ ² O(α)⊕O(α′)
⇔ {Definition of ⊕}

(σ ² O(α) and σ 2 O(α′)) or (σ 2 O(α) and σ ² O(α′))
⇔ {Definition of σ ² O and its negation for σ 2 O}

(α ⊆ σ(0) and α′ * σ(0)) or (α * σ(0) and α′ ⊆ σ(0))
⇔ {(p ∧ ¬q) ∨ (¬p ∧ q) ⇔ (p ∨ q) ∧ ¬(p ∧ q)}

(α ⊆ σ(0) or α′ ⊆ σ(0)) ∧ (α ∪ α′ * σ(0))
⇔ {Definition of Obligation and Prohibition}

O(α + α′) ∧ F (α&α′)

This might be a clean way to remove the exclusive disjunction; however,
when one adds CTDs the problem complicates itself — one may even end
up with an exclusive-or between any of the deontic notions which is not
allowed. Consider OF (a)(0)⊕OP (b)(0). Since 0 is the impossible action, both
obligations will fail. Since the obligations are violated, the reparations come
into effect; however, they are still under the exclusive disjunction effectively
having the exclusive disjunction between the reparations. Thus, this clause
could have been represented as [1](F (a) ⊕ P (b)), which is undesirable and
also not part of the CL syntax.

Furthermore, one could also define a formula equivalent to a form of
negation on obligations. Using the exclusive-or we could define a clause
which will effectively represent the clause that we need to violate an obli-
gation in order to satisfy the contract. This has the same philosophical
problems as the negation of deontic operators. Consider O(1)⊕O(b). Since
the first obligation will always be satisfied the clause could have been repre-
sented as F (b) since if b is observed then both obligations would have been

40

satisfied thus violating the exclusive disjunction. Please note that this is not
equivalent to “We are not obliged to perform b” but rather “We are obliged
to violate the obligation to perform b” or “We cannot satisfy the obligation
to perform b”.

The exclusive-or as defined in these papers gives space to express a num-
ber of clauses that do not have a clear meaning and can also be described
as paradoxical. One should be very careful when using the exclusive opera-
tor and it appears that this operator philosophically solves certain classical
problems but introduces new ones as well.

3.4 Prohibition of Choice

The trace semantics of CL for the prohibition of choice is defined as follows:

σ ² FC(α + α′) if FC(α) and FC(α′)

This semantics does capture the required meaning. For example, if we
are forbidden from performing actions a or b, then we are forbidden to
perform both. The question we would like to raise is about the behaviour of
the reparation. Consider FC(a+ b). If we perform a we want the reparation
C to hold, if we perform b then we want the reparation C to hold and
if we perform both a and b we also want the reparation C to hold. This
is the behaviour one would expect from FC(a + b) and also the behaviour
obtained by using the semantics FC(a) and FC(b). However now consider
FC(a + (b · c)). This formula, using the semantics, would be equivalent to
FC(a)∧ [b]FC(c). So if we perform a then the reparation C must hold due to
the breaking of the first prohibition. However, if we performed a&b followed
by c then the reparation would have to hold twice, first due to the breaking
of the prohibition of performing a and then in the following step due to the
prohibition of performing c.

As just seen, when violating the clause FC(a + (b · c)) with the trace
(a&b) · c we are ending up having to satisfy the reparation twice after each
other. This however is counter intuitive. From the structure of the formula,
since the reparation is tied directly to the violation of a single clause, one
would expect for it to occur only once, even though there are more than a
single way to violate the clause.

The semantics of this representation would be slightly more complicated:

σ ² FC(α + α′) if (F⊥(α) and F⊥(α′)) or [α + α′]C

However, one should note that its semantics is similar to that of the obli-
gation of choices. Also, we still cannot perform neither α nor α′ in order
not to violate the contract; however, we have grouped the reparation such
that if either is violated the reparation is performed only once rather than
possibly multiple times.

41

3.5 Related Work

This section follows the structure of the related work found in the initial
paper about CL [55]. We did not find any new work in the field significant
enough to show the diverse views that one may take in order to tackle the
problem of reasoning about contracts.

Most related work in this field takes a different approach at attempting
to arrive at a definition of a contract in a formal manner. Unfortunately
none have really reached a state so as to be a candidate for the solution of the
problem of formally defining a contract. Certain solutions have attractive
semantics with a proof system or model theory but then no machanism
for monitoring while other solutions provide a good method for monitoring
but then do not have a formal semantics or a reasoning system. Solution
based on deontic logic typically focuses too much on the logical properties
forgetting the practical side, which is the opposite approach taken for the
creation of CL.

The similar formalisms are based on either of the following:

• Models of computation:

– Finite State Machines (FSMs). In [11] the authors describe how
one may generate an FSM directly from a business contract thus
removing any form of ambiguity and also permit the monitoring
of the contract. They also suggest of employing such a monitor-
ing system inside the B2BObjects, which is a distributed object
middleware in order to monitor the interactions between parties.
However they assume that the contracts are already in place and
do not consider the notion of negotiation or the analysis of prop-
erties but rather the translation. If we look at CL once we have
translated the contract into CL we may generate automatically
the FSM 3 while we are also still capable of analysing the contract
and reason about the contract rather than just the FSM.

– Petri Nets. As seen in [16], in spirit it is similar to FSMs but
a different modelling method is used. An attractive thing about
using Petri Nets is that there are many tools that help us cre-
ate Petri Nets and also tools to perform verification. In fact the
author explicitly says that a main reason of the choice of using
Petri Nets was due to the fact of the existence and availability
of these tools. Unfortunately there is still the task of convert-
ing a contract from textual form into these models that are still
performed in an ad-hoc manner even if guidelines are provided.

• Logic-based:
3The automatic generation of the automaton from CL is one of the results of this work

42

– Classical Logic. The approach taken in [18] is quite interesting.
Their domain is that of Semantic Web Services and focus on the
specification of both process modelling and that of contracting
services. They make use of classical first-order logic together with
temporal logic [20] and concurrent transaction logic [7]. They
also include concepts taken from game theory [47] since a con-
tract usually involves different parties that might have different
and possibly conflicting goals or priorities. They provide both
a model theory and also a proof theory which make it quite a
nice alternative to the negotiation part of contracting. They also
provide outlines of algorithms required in order to solve the con-
straints of the temporal workflow.

– Modal Logic [17], where their main concern is the performance or
execution of contracts in the Business-to-Business setting. The
authors use both modal action logic and also deontic action logic;
thus, this paper bridges between modal and deontic logic. How-
ever the model developed is typical for Modal Logic rather than
deontic. In fact they make use of an adapted notation which is a
modal language, which is typically used for transition systems for
representation. Looking at the results of this paper, their focus is
on the creation of the transition system that represents the con-
tract and thus, not as high level as a contractual representation.

– Deontic logic. In [25] the authors take a theoretical deontic ap-
proach to what a CTD is. They describe a CTD as an exceptional
represenation; thus, they do not look at a CTD as conflicting
obligation that overrides the primary obligation but rather as a
logic exception of the primary obligation. So now an obligation
is looked at as a sequence of formulae where if the first one is
not satisfied, then the second one should be satisfied, and if the
second one is not satisfied either, then the third and so on. Using
their approach they show their solution to a number of paradoxes,
most importantly Chisholm’s Paradox and the Gentle Murder.

– Defeasible logic. A very important feature in defeasible logic is its
nonmonotonicity. Having conflicts or contradictions in the formu-
las is not a problem in defeasible logic and such situations are re-
solved by some form of priority or “scepticism”. In [24] they make
use of defeasible logic in order to represent contracts and also per-
form not only monitoring but also some form of analysis. They
make use of an extension of RuleML to translate the contracts
into a machine readable form and their representation also has
flavours from deontic logic. They believe that the use of deontic
logic is important since it allows “ease of expression and compre-
hension” and also “clear and intuitive semantics”. RuleML was

43

chosen because it allows the execution and exchange of rules be-
tween systems and is also the expected method to define rules on
the web and distributed systems. Once the contract is described
in their suggested extension of RuleML we could automatically
monitor and to a certain extent perform certain conflict analy-
sis. In [60] they then show how they can nest rules in order to
have a more hierarchical structure making it easy to handle larger
contracts.
I believe that defeasible logic has a number of desirable fea-
tures for contract representation, especially default logic since
one could look at a contract as a set of default behaviour and a
set of exceptions that “break” this default behaviour; thus, pair-
ing up default logic together with deontic logic would probably
have interesting results.

• Based on contract taxonomies. This approach is quite different than
all the above since its focus is not automation but rather how to struc-
ture contracts and contractual facts. An example of such usage is in [5]
where they focus on how one can incorporate contractual information
into components. Their approach shows how one can incorporate con-
tractual information inside the code of the components (in the form
for example of interfaces) and also how to manage the information.

CL is close to the notion of using a propositional constant in an action-
based logic for giving the semantics to the deontic operators. This was first
presented in [43], where a special constant V was used to denote a state
where a violation has occured. In the case of CL V will correspond to Fa

in the original semantics; however, in this work we shall make use of V for
the violation and Fa will label a state where we are forbidden to perform a.
In CL we also have the constant Oa. This allows us to define obligation not
in terms of action negation; thus, deviating CL from other approaches like
in [43]

CL is mostly related to the approach taken by Broersen et al [9]. Broersen
makes use of µa-calculus in order to define the deontic notions over regular
expressions on actions. Thus they take the ought-to-do approach on regu-
lar actions similar to CL; however, they do not have a notion of contract
languages but rather the characterisation of obligations, permissions and
prohibitions in the µa-calculus. Furthermore, they define only one deon-
tic primitive, the permission over atomic actions and derive the rest from
this definition. This, resulted in the obligation to be defined using an infi-
nite conjunction of all violating action. This infinite conjunction is avoided
by defining obligation and prohibition as the deontic primitives and define
permission as the negation of prohibition. Broersen et al also make use of
the Kleene star that we believe is unnatural to be used inside the deontic

44

operators. However it is permitted to make use of the Kleene star when
describing actions outside of the deontic notions. The obligation on the
choice of actions is not compositional in the logic presented in [9] but in the
case of CL it is. Also, CL has concurrent actions whereas Broersen’s ap-
proach does not. Another differentiating feature is that Broersen makes use
of disjunction over deontic operators, whereas CL makes use of the exclusive
disjunction. The negation is defined in a similar manner (the negation of an
action means not performing the action but rather performing something
else). However, at the CL language level the number of actions is finite
whereas in Broersen’s approach it is infinite. In order to express CTDs in
Broersen’s approach we shall need to extend the µa-calculus and possibly
change the definitions slightly since as we explained previously, Broersen’s
basic deontic operator is the permission. In the case of CL both CTDs and
CTPs may be easily defined. The semantics of the deontic notions in the
case of Broersen is given over traces whereas in the original CL this is given
over a Kripke style structure. The semantics of CL are also later given over
a trace semantics but it is, however, not the complete semantics of CL.

3.6 Conclusion

In this chapter we have started with a brief history of deontic logic that
depicts the complex problems faced when one attempts to formalise deontic
notions. We then went through a number of typical paradoxes of deontic
logic and a brief overview of uses of deontic logic. We then presented CL
showing how CL was changed until the current syntax and semantics which
have been used in this work. This was then followed by discussing issues
present in the current version of the language and some related approaches
similar to CL.

In the next chapter we shall compare CL to other specification methods
making use of the CoCoME case study.

45

Chapter 4

Comparing CL to Other
Specification Approaches

In this chapter we shall tackle a case study that is part of the CoCoME
project. We shall specify just a fragment of the whole case study in order to
be able to compare different ways of specifying the case study. We shall be
comparing between temporal logic specification and deontic specification.
Part of the work in this chapter is to be published with an addition of
operational semantics together with Anders P. Ravn and Joseph Okika from
the university of Aalborg, Gerardo Schneider from the University of Oslo and
Gordon J. Pace from the university of Malta.

4.1 CoCoME Overview

Our example is taken from a larger case study — CoCoME (The Common
Component Modelling Example) experiment [59]. The aim of the CoCoME
project was to compare and contrast a number of different component models
and description techniques using the same application as an example.

The chosen example was that of a Point-of-Sale (POS) system. The
main purpose of the POS is to record the sales and handle the payments.
The case study tackles a distributed environment having external services
like the Banks and Suppliers. There are also a number of Quality of Service
(QoS) requirements.

This case study is made up of a number of use cases but we shall be
mostly focusing on Use Case one and two since these are the ones that have
the most actors taking part. The other Use Cases are generally inhouse and
just involve a few actors where the focus is mostly on performance behaviour.
For our intents and purposes we shall focus just on the behavioural aspects
of the case study since we want to show that CL is very good with regards
to the specification of exceptional behaviour.

46

We shall focus on the following specification that is taken from the verbal
description of the use cases.

F1 If the customer chooses to pay by card he is obliged to swipe the card
followed by entering the correct pin number. If the pin number is
incorrect the customer has two more attempts at entering the correct
pin after which the client is obliged to pay with cash. If the client
refrains to pay with cash the client has to give up the goods. See
transition diagram in Figure 4.1.

F2 While in normal mode, the cashier may choose to switch in express mode
if in the last hour 50% of the sales had less than eight items (condi-
tionMet). Once in express mode the cashier is obliged to eventually go
back to normal mode. If conditionMet holds infinitely often, then the
cashier should change to express mode infinitely often. See transition
diagram in Figure 4.2.

F3 In express mode, once a sale has commenced, the cashier is obliged to
service customers with less than eight items. To service a customer,
the items need to be entered in the system and then finish the sale.
If a customer has more than eight items then it is up to the cashier’s
discretion whether to service the client or send him or her back to the
end of another line. See transition diagram in Figure 4.3.

Clause F1 describes what is to happen when the card payment is chosen.
In such a situation there are two possible choices, either enter the correct
pin that would end the sale or else enter the wrong pin, after which the same
two possibilities occur. The client has the possibility to enter three wrong
pins after which he has the choice of either paying by cash or returning the
goods.

Clause F2 describes under which conditions the cashier can change from
normal mode to express mode. It includes interesting aspects as permissions,
obligations and fairness constraints. In Figure 4.2 the left most state is
decorated with a black circle to indicate that the state should be visited
infinitely often. This models the part of the clause which states that the
cashier is obliged to always eventually go back to normal mode. From the
normal state we may only exit when the express condition is met, after which
the cashier has the choice of going back to normal mode or express mode.
The dashed transition signifies that if this transition is taken infinitely often
then the dotted transition needs to be also taken infinitely often, modelling
the part of the clause stating that if the condition is met infinitely often
then the cash desk needs to infinitely often go into express mode.

Clause F3 describes how the cashier should act when in express mode,
where once in express mode, the cashier is obliged to service a client if he
has less than eight items since he is following the express desk requirement.

47

However, if the client has more than eight items then the cashier has the
choice of either servicing the client or sending the client back to another
queue to a desk that is not in express mode. This choice is up to the
cashier’s judgment since there are situations where it would be wise to still
service customers with more than eight items, for example when some of the
customers were already waiting in the queue with more than eight items at
the moment of changing the desk to express mode. This ‘permission’ to the
cashier to ‘violate’ the rule can be seen as an allowed explicit exception.

cashPay

returnItems

correctPin

incorrectPin

correctPin

incorrectPin

correctPin

incorrectPin

cardPay

Figure 4.1: Full transition diagram for cardPay (F1)

disableExpress

conditionMet enableExpress

disableExpress

anyany

Figure 4.2: Transition diagram for Express mode (F2)

4.2 Specification using Temporal Logics

CTL and LTL are widely used in order to specify properties of systems
and both were designed with computer systems in mind as described in
Section 2.3 about temporal logics. We shall now attempt to specify all the
three properties using both these logics.

Specification of F1 The first clause may be seen as a list of conditional

48

disableExpress

enableExpress

<8

enterItem

sendBack

>8

startSale

finishSale

>8

Figure 4.3: Transition diagram for sales process (F3)

statements where it is always the case that after the card is swiped
then there is a choice of either entering the correct pin, in which case it
would satisfy the formula or else it could be satisfied in the next step.
In the next step we repeat the possibility of satisfying the formula by
entering the correct pin and if not we again check the next step. This
formula may be described in both CTL and LTL:

AG(cardPay → AX (correctPin∨
AX(correctPin∨
AX(correctPin∨
AX(cashPay ∨ returnItems)))))

G(cardPay → X(correctPin∨
X(correctPin∨
X(correctPin∨
X(cashPay ∨ returnItems)))))

Specification of F2 The second clause cannot be described using CTL
due to fairness, unless the logic is extended with fairness constraints.
We should note that we may model check CTL formulas with fair-
ness constraints; however, the fairness constraints cannot themselves
be expressed in CTL. Moreover, it is not clear how the permissions
and obligations of the clause could faithfully be represented in CTL.
Fairness is expressible using LTL; however, the clause also requires
the existence of the transition leading to express mode which cannot
be represented using LTL. Briefly, the combination of fairness, with
permissions and obligations, makes this clause difficult to be handled
in temporal logics and in this case cannot be represented in neither

49

LTL nor CTL.

Specification of F3 For the third clause it is always the case that once we
go to express mode then we need to satisfy the express mode behaviour
until we go back to normal mode. Once a sale is started the client needs
to be serviced until the sale is finished or the client is sent to another
line. If the client has less than eight items then that implies that
he should be serviced, otherwise the cashier has to choose between
either servicing the customer or sending the customer back. We are
also ensuring that there exists the possibility of both servicing the
customer and sending the customer back since this is required by the
clause. It is because of this requirement that the behaviour cannot be
expressed using LTL. However, in CTL it is:

AG enableExpress →
AX(startSale →
AX(

(< 8 → AX(enterItemAUfinishSale))∧
(> 8 →
AX(enterItem ∨ sendBack)∧
EX(enterItem)∧
EX(sendBack))
AX(enterItem → enterItemAUfinishSale))

)
AUdisableExpress)

4.3 Specification of Properties using CL
We shall make use of CL as deontic specification. For a detailed description
of CL please refer to Chapter 3.

Specification of F1 For this case we make extensive use of the CTD con-
struct where we have a number of options of how the client may satisfy
the payment by card. Once a card is swiped then the client is obliged to
enter the correct pin (primary obligation). However, if the entered pin
is incorrect then the client may still try again two times (secondary
obligation) and in case of failure the exceptional cases of paying by
cash or returning the items must be enforced. If none is satisfied, the
contract is violated.

�[cardPay] O(correctP in)
O(correctP in)
O(correctP in)
O(cashPay+returnItems)

50

One should note that using CTDs orders the desirability of the path
taken. Looking at Figure 4.1, if the client pays by cash after entering
the wrong pin three times is just as viable as entering of the correct
pin in the first try and there is no priority as to which path is most
desirable. However, when we read the clause it is implicit that it is first
and foremost desired to enter the correct pin and the other options are
there as reparations.

Specification of F2 Clause F2 starts by stating that the cashier is in-
finitely often obliged to go to the normal mode: it can never stay in
express mode forever. Then we state that it is always the case that
after conditionMet is observed (possibility to enable the express mode)
then the cashier is obliged to either choose to stay in normal mode or
express.

�♦O(disableExpress)∧
�([conditionMet](O(disableExpress + enableExpress)∧
P (enableExpress))) ∧�♦[conditionMet]� ♦O(enableExpress)

We also enforce that, once the condition is met, the cashier has the
possibility to go to express mode to avoid a model that only returns
to normal mode. We do not need to explicitly ensure that there is a
possibility to choose to stay in normal mode in a similar way to what
we have done with the express mode. We also do not need to ensure
that after being in express mode we have the possibility to go back to
normal mode. We do not need to make these checks because of the
first conjunct which states that we have to go infinitely often to normal
mode. The fairness requirement is specified in the final part of the
clause where we say that if we infinitely often observe conditionMet,
then we shall infinitely often be obliged to go back into express mode.

Specification of F3 It is always the case that once we go to the express
mode a certain behaviour needs to be followed until we go back to
normal mode. In the case that the client has less than eight items,
then the cashier is obliged to service the customer. However, if the
client has more than eight items the cashier is obliged to choose to
either service the customer or send back the customer to another cash
desk and both possibilities should exist. The last property is specified
in CL as follows:

4.4 Comparing between specifications

In Table 4.1 we present a summary of which formulae may be expressed by
the Temporal and Deontic Specifications we just used.

51

�([enableExpress](
[startSale](
[< 8]O(enterItem)UfinishSale∧
[> 8](
O(enterItem + sendBack)∧
P (sendBack)∧
P (enterItem)∧
[enterItem]O(enterItem)UfinishSale)

)UdisableExpress)

LTL CTL CL
F1 X X X
F2 – – X
F3 – X X

Table 4.1: Comparisons between specifications

The specification of the example using the different notations shows that
CTL allows the specification of the branching behaviour aspect of a contract,
mainly permission, which cannot be specified in LTL. However, CTL cannot
express global properties such as fairness or liveness which, on the other
hand, could be done making use of LTL.

As it is well known, LTL is linear time, while CTL is branching time. CL
combines both linear and branching aspects, with the addition of deontic
notions. It has not only information of what actions are to be done to satisfy
the CL clause but also prescriptive information about the action. Namely
whenever the action is observable, it is possible to distinguish whether it was
required to perform it (as a primary obligation), whether it was a reparation
to an obligation, or simply a permitted action.

Moreover, the expression of CTDs and CTPs in terms of basic CL goes
beyond syntactic rewriting, since it still enables a contractual view of when
obligations, permissions and prohibitions are active, have been satisfied, or
violated. The main advantage of viewing the properties as a deontic contract
is that this knowledge is preserved and can be reasoned about. As we noted
earlier, by just looking at the Figure 4.1 , there is no information about
which would be the most desirable path to take. This also holds when we
represent the clause using both CTL and LTL. All the deontic information
is lost and thus, we do not know if when performing an action it is actually
to satisfy the initial obligation or to satisfy the reparation. This will prevent
us from reasoning about these deontic notions.

F2 seems to be relatively complex property and is difficult to be cap-
tured in specifications using temporal logics. Deontic specifications seem

52

to be appropriate whenever a right combination of deontic operators with
temporal ones are required.

Both LTL and CTL can be used to specify formulas to be verified using
model checking [14, 27]. Unfortunately CL cannot be yet model checked. In
this work we develop a method in order to check for deontic inconsistencies.
In this way, given a CL contract, we are able to detect whether the contract
contains contradictory obligations, or an obligation and a prohibition to do
an action at the same time, and other kinds of contradictions A general
model checker for CL is currently under development, though by using a
semantic encoding into an extended µ-calculus [55] it is possible to model
check contracts written in CL as presented in [48].

Let us take an additional example to the 3 clauses seen so far. Consider
the contract [a]O(c)∧ [b]F (c) that is satisfiable except when the concurrent
action a&b is observed: we end in a state where the contract cannot be
satisfied since c is both forbidden and required to take place. Using LTL
we may find contracts that are not satisfiable. However, in order to identify
satisfiable contracts that have conflicts, we would require the modelling of
the deontic notions. This is obviously overkill when one can directly use
CL. We could encode the CL trace semantics into LTL; however, the correct
encoding of the deontic notions so as to be able to model check contract
inconsistencies would be extremely difficult. Moreover, in order to handle
the above small example, CTL and LTL should be extended with concurrent
actions and a priority order among actions (this is already built-in CL–see
[55]).

4.5 Modelling CoCoME

Apart from looking at CL as a way to specify properties, we may look at
CL as a way to define a model. We may look at a contract as though it
is a model of a system that does not violate the contract itself. If we can
generate a model from a CL contract we may then use it to model check the
contract itself. This has already been investigated in [48]. We again made
use of this case study in order to compare the modelling possibilities. Apart
from CL we also made use of SMV and UPPAAL, both of which are very
common model checkers. We shall first introduce both modelling methods,
followed by a comparison.

4.5.1 Introduction to SMV

SMV or Symbolic Model Validation was developed by Dr. K.L.McMillan as
part of his doctoral thesis [41]. With this tool one may describe (model) a
system, specify a number of desired properties and assert these properties.
Two other flavours of SMV have also been fashioned. NuSMV is a reimple-
mentation of the original SMV as in [41] with some extensions. The other

53

flavour is Cadence SMV that is targeted more towards the industry and has
an expanded language. The main difference is that the Cadence SMV makes
use of LTL whilst the original SMV makes use of CTL and NuSMV supports
both LTL and CTL. Another attractive feature in NuSMV is that the model
could be generated as an automaton directly rather then encoding it in the
language.

The SMV language

Similar to c, the SMV language has a main module that the tool will execute
first. Another thing to note is that all lines are executed simultaneously
since the model is translated into a truth statement by the SMV tool and
evaluated. Because of this, a variable can only have a single assignment at
any one step, that is, we cannot set x to have a value of 1 and in the same
block set it to 2.

In order to be able to affect the next iteration, we have to make use of
the next operator which can be seen as a delay, that is, next(x)=1 means
that in the next iteration x will have a value of 1. A number of conditional
constructs are available to help the programmer structure the model like
the classic “if then else” and “switch” construct. The “default” construct
is another conditional construct that is made up of two code blocks and is
used to set the default value of any unassigned variables. This construct is
also useful to introduce priorities to code, since the code in the second block
of the default has a higher priority than the default in the first block.

Some other useful constructs are loops that are syntactic sugar to help
define models more concisely. These loops are expanded before SMV starts
the model checking.

Another very useful construct is the set comprehension. This is used
extensively in the models we have developed since it makes it easy to make
non-deterministic assignments from a particular set and also used to check
for a particular value across an array. f(i) : i = x..y where f(i) will be some
expression and x..y is an integer range, that will be expanded as f(x), .., f(y).
For example i ∗ 2 : i = 1..4 will generate 2, 4, 6, 8, the set of even numbers
from 2 till 8 inclusive. Another extension to this is the conditional construct,
f(i) : i = x..y, c(i). For f(i) to be added to the set, c(i) must be true.

Finally there are the specification constructs with which we can assert
specifications using the “assert” keyword. The code foo : assertp will make
sure that the property p is true for every iteration of the model. The prop-
erty p can be any LTL formula using the X G F U operators and standard
Boolean operators. A more in depth description of LTL may be found in
Section 2.3.

This was just a brief introduction of the SMV language so as to be able
to understand the code that follows. For a more detailed description please
check the documentation supplied with the SMV tool [42].

54

4.5.2 Introduction to UPPAAL

UPPAAL1 has been a joint project between the Swedish Uppsala University
and the Danish Aalborg University. UPPAAL is described on the website as
“an integrated tool environment for modelling, validation and verification of
real-time systems modelled as networks of timed automata, extended with
data types (bounded integers, arrays, etc.).”

UPPAAL is mainly directed towards real-time controllers and commu-
nication protocols since we may model a number of non-deterministic pro-
cesses with a finite control structure and real-valued clocks that commu-
nicate through channels or shared variables. Furthermore, this approach
is ideal to model concurrent applications using message passing (not only
shared variables). Thus, it might be easier to use in certain situations in-
stead of SMV since the communication issues between the different processes
might be taken care of inherintly by UPPAAL unlike in SMV where these
had to modelled implicitly.

The tools supplied with the model checker are quite extensive and the
graphical user interface make UPPAAL quite easy to use. The GUI tool is
not only very useful during the modelling of the system but also makes it
very easy to go through the traces returned by the model checker.

Another interesting feature is that we may simulate the model. This is
mostly helpful in the initial stages when the model is being developed.

In order to get a good foundation to understand the inner workings of
UPPAAL and in which situations it would be very useful, one should refer
to [4]. For a quick and to the point introduction to UPPAAL one should
refer to [36]. Even though this paper is not the latest and there have been a
number of improvements, it still is a good introduction. For an even recent
tutorial paper one should refer to [3]. The rest of this introduction is a brief
summary of this paper.

UPPAAL is based on the theory of timed automata. For a description of
Timed Automata please refer to [3]. UPPAAL has a number of extensions
to TA like guards and channels in order to make modelling easier.

The Query language used by UPPAAL to specify properties is a subset
of CTL. The difference from CTL is that UPPAAL does not allow nesting of
path formulae. UPPAAL supports path formulae that may be classified into
reachability, safety and liveness. As part of state formulae, UPPAAL has a
special state formula consisting of the keyword deadlock that is satisfied in
all deadlock states. Another interesting point is how the liveness properties
are described using the notation ϕ Ã ψ or in UPPAAL syntax ϕ−− > ψ.
This is equivalent to the CTL formula A� (ϕ ⇒ ¦ψ). So UPPAAL does, to
a certain extent, support nested path quantifiers.

1UPPAAL can be obtained from http://www.UPPAAL.com. The website also has a
number of very useful resources

55

UPPAAL also has three types of locations: normal, urgent and commit-
ted locations. When in a committed location, the next action will be to move
out of the committed state. In an urgent state, time will not pass while in
that state but interleaving with normal states may occur. An urgent state
may be seen as a state with the invariant y <= 0.

[3] portrays a number of modelling patterns that are found very useful
when modelling with UPPAAL.

Variable Reduction One should reset variables when they are not needed
in order to reduce the state space.

Synchronous Value Passing A model to send values from one process to
another in a synchronous way.

Atomicity One should reduce any interleavings that will not affect the
correctness of the model in order to reduce the state space.

Urgent Edges This model shows how to make edges urgent even though
they are not directly supported in UPPAAL.

Timers Model to emulate a timer.

Bounded Liveness Checking It is similar to Liveness checking but now
we have an upperbound of when a certain state needs to be reached.
This makes the verification problem easier but we shall have to make
some changes to the model.

Abstraction and Simulation Abstraction will permit us to verify even
larger models. There is a light description of how abstraction may be
applied but one should look in the Ph.D. thesis of Jensen [28] for the
full details.

The material available and also the graphical user interface makes UP-
PAAL a very easy tool to get to grips with and immediately start modelling
with. Its advanced features are quite complex and flexible; however, I believe
that it has a less steep learning curve than SMV. Also, a very evident differ-
ence is that UPPAAL is centred around modelling using automata whereas
SMV takes a programming language approach.

4.5.3 Comparing Modelling Methods

After modelling the same part of the case study using both SMV and UP-
PAAL we may compare it with modelling the case study as a contract. From
our experience, using UPPAAL to model this case study was much more ef-
ficient than using SMV since UPPAAL has been designed with this kind of
interaction in mind, where one has a number of modules, communicating

56

with each other, and each module’s behaviour is determined with an au-
tomaton. With SMV we had to mimic this behaviour and thus not directly
out of the box.

Using the model we developed in SMV, we could verify that it con-
tains both the LTL and CTL properties using Cadence SMV and NuSMV
respectively. Using the UPPAAL model we verified that it has both the
CTL properties and that it is deadlock free. Thus by modelling with these
methods we automatically get the ability to model check LTL and CTL
properties.

Modelling the case study using contracts made the models quite elegant
since they were just formulae. Unfortunately at that point in time we had
no way to analyse the contract automatically. Instead we translated the
contract into an SMV model that was then used to model check the proper-
ties. This technique was used in [48] in order to model check the contract.
Unfortunately, since this translation is not automatic, there is ample room
for mistakes, especially since the approach taken in [48] is ad hoc. However,
if we can automatically generate an automaton from the CL contract and
then translate the automaton into either an SMV representation or an UP-
PAAL representation, we could leverage the model checking possibilities of
these languages together with the elegance of representing the system as a
contract.

4.6 Conclusion

We have just seen how specifying properties using CL compares with CTL
and LTL. This was done by applying CL to the CoCoME case study and
then compared how these two other specifications would be used. This was
then followed by looking at CL as a modelling language rather than just
specification of properties.

In the following chapter we shall tackle how to find conflicts in contracts
expressed in CL automatically. We first extend the trace semantics of CL in
order to be able to define conflicts. This is then followed by an automatic
decision procedure that will analyse if a contract is conflict free or not.

57

Chapter 5

Conflicts in Contracts

A contract has a conflict if it may request a signatory to perform conflicting
actions. An example of a conflicting contract would be one obliging us to
open the door while at the same time forbidding us to do so. We may
informally define a conflict as follows:

1. being obliged and forbidden of doing the same action
(eg. O(opendoor) ∧ F (opendoor))

2. being permitted and forbidden of doing the same action
(eg. P (opendoor) ∧ F (opendoor))

3. being obliged to do two conflicting actions
(eg. O(opendoor) ∧O(closedoor))

4. being obliged and permitted to do two conflicting actions
(eg. O(opendoor) ∧ P (closedoor))

One should note that once the contract is requesting these conflicting
conditions there is no way in which the contract may be satisfied. It is the
contract itself that is putting us in a position where we cannot satisfy it and
thus such a contract is not desired.

However, there is another type of conflict that is not as clear as the
previous case if it should be allowed in a contract or not. Consider the
following CL formula O(a + b) ∧ F (a). Looking at it we realise that here
there is a conflict but it can still be resolved since if we perform action b
we satisfy both the obligation and the prohibition. But we should also note
that this depends on the interpretation of the choice, that is, if it is internal
or external. If the choice is up to the user to choose how to satisfy the
obligation (either a or b) then the user does not really have any choice here.
However, if the choice is imposed by the system, there will be instances
where the contract will not be able to be satisfied. However, in certain
situations it would be ideal to leave such “conflicts” since it would simplify

58

the representation. Furthermore, it is typical that in contracts first the base
case is defined and then further clauses are given which override the base case
with the exceptional cases. This view would thus suggest that this should
not be considered as a conflict. We shall refer to the first kind of “conflict”
discussed in this section as strong conflict and the last type of conflict we
discussed as a weak conflict in order to easily distinguish between them.

One might say that this is more of a philosophical discussion and thus if
we want to be practical about it, we should find a compromise rather than
say which is best. We believe that a good solution would be to identify both
and then leave it up to the user to decide if he should make changes to the
contract or not.

After this informal introduction to conflicts, we shall investigate what
we require in order to identify conflicts in contracts. This chapter will be
split in two. We first investigate what kind of semantics we require and we
extend the CL semantics in order to be able to analyse contracts for conflicts.
We shall also show that the extended semantics is still correct (sound and
complete) with respect to the original semantics. The second half of the
chapter will focus on conflict freedom analysis. We define what a conflict is
and we also define an algorithm that we prove correct with respect to the
semantics of CL and the definition of a conflict.

5.1 Extending the CL Semantics

In this section we shall first see which semantics are required in order to
perform conflict analysis. Then we shall see if the current semantics, as
defined in previous papers about CL are enough for conflict analysis. After
we discuss why the current semantics are not enough for conflict analysis,
we extend the semantics in order to accomodate conflict analysis and prove
the correctness of the extensions with respect to the original semantics.

There are currently two semantics given to CL. The full semantics given
in [55] and the trace semantics given in [34]. The first question to ask is
which of these semantics would apply for conflict analysis.

5.1.1 Are full semantics required?

Do we require the full semantics in order to verify that a contract is conflict
free? The “conflict-free” property may be described as ‘given any sequence
of non-violating actions, the contract execution will not end up in a state
where the contract is enforcing a violation’. Using this definition we do
not really require to know that there exists the possibility of performing two
different actions taking us down two different branches, but rather, that both
branches will not lead us into a conflicting state. Thus, for the ‘conflict-free’
property we do not require a branching semantics, a trace semantics should
be enough.

59

Using the trace semantics given in [34] is unfortunately not enough.
These semantics were aimed at runtime monitoring of contracts and thus
cannot be used to check that a contract is conflict free since we are losing
all deontic information. Without deontic information we can only check if
the contract is satisfiable1 but we cannot check that it is conflict free. If
we look at the semantics given in [34], it is defined over an infinite trace,
of actions, which does not contain any deontic information. Furthermore,
they treat permission as being the default behaviour unless a prohibition is
enforced. For conflict analysis we would however desire to have any explicit
permissions identified in order to ensure that they are not in conflict with
prohibitions.

5.1.2 Augmenting the trace semantics

First of all we need to define formally what a conflict is. The informal defi-
nition described above suggests that we are required to know which deontic
notions apply at any point in time, given that the sequence of actions lead-
ing to that point have not yet violated the contract. As the semantics are
defined right now, one can know if a trace satisfies the contract or not but
cannot know what deontic notions apply in the following step. Consider the
contract [a]O(b) ∧ [c]F (b). Using the current semantics we cannot find if
there is a conflict in this contract. We cannot even check if there exists a
trace that cannot be extended anymore since every extension will lead into
a violation because as the definition is, the semantics only accepts or rejects
infinite traces. We do not even have information about permissions. Even
though using the trace semantics we cannot know if a permission is violated
or not, we still may find conflicts due to permissions if we know when a
permission is being enforced by the contract.

In order to define what a conflict is formally we need to have a way to
know which deontic notions apply at what time. One way of preserving
the deontic information is to change the semantics slightly. This is done by
adding another trace, but instead of having a set of actions as elements of
the trace (as the original trace is) it will have elements from the set Da that
is defined as {Oa|a ∈ AB} ∪ {Fa|a ∈ AB} ∪ {Pa|a ∈ AB} where Oa stands
for ‘we are obliged to do a’, Fa stands for ‘we are prohibited to do a’ and Pa

stands for ‘we are permitted to do a’. We shall refer to this trace as σd and
this trace will preserve the deontic information required for conflict analysis.

Consider the contract [a]P (b)∧[c]F (b). A trace that satisfies this contract
would be [{a, c}, a, . . .]. The deontic trace that will be related to this trace
would be [∅, {Fb, Pb}, ∅, . . .]. Using the deontic trace we can find that a
conflict is present in this contract since there is a deontic trace that has not
led to a violation and has an element set labelled with the prohibition and

1if it is not satisfiable there will be no σ that satisfies the contract

60

permission of performing the same action.
However, we still have a small issue. Consider the contract [a]O(b + c)∧

[b](F (b)∧F (c)). This contract has a conflict since both the possible obliged
actions are violated. However, in the deontic trace we need to be able to
encode this choice, and make a difference between O(b+c) and O(b&c) since
O(b + c)∧F (b) does not have a conflict whereas O(b&c)∧F (b) does have a
conflict. In order to encode this in the deontic trace, instead of the elements
of σd being sets of elements of Da, they will be sets of the power set of Da,
where the elements of the set are possibilities. So if we consider the contract
[a]O(b + c) ∧ [b]F (b) a possible trace would be [{a, b}, . . .]2 and the deontic
trace would be [∅, {{Oa, Ob}, {Fb}}] whereas for [a]O(b + c) ∧ [b]F (b), given
the same action trace, the deontic trace would be [∅, {{Oa}, {Ob}, {Fb}}].

Before continuing with the extension of the semantics we shall define a
number of operators on σd. We may concatinate two sequences using the
; operator. Any two deontic traces are pointwise (synchronously) joined
using the combine operator where we shall use the ∪ symbol and defined as:
σd ∪ σ′d = σd(0) ∪ σd(0)′;σd(1) ∪ σd(1)′ . . . σd(n) ∪ σd(n)′. We are assuming
that the length of σd is equal to σ′d. In the case of ts2, by definition both
traces are infinite and thus they are always of equal length. In the following
semantics we will deal with finite traces. In the case that they are not
of equal length, the shorter trace may be extended with empty elements
in order to make them the same length. In the semantics we shall also
use the ∪ operator between sets in which case the classical meaning will
hold. Furthermore, if α is a set of atomic actions then we shall use Oα as a
shortcut for the set {{Oa}|a ∈ α}. σ(1..) is used to represent the trace from
the second item onwards.

We will make use of the relationship ²d∞ where σ, σd ²d∞ C is interpreted
as the infinite action trace σ satisfies the contract C and the infinite de-
ontic trace σd is consistent with contract C. A deontic trace σd is said to
be consistent with a contract given a particular trace σ if all the deontic
notions which apply to the trace are part of the deontic trace. So given
the contract [a]O(b), a trace that satisfies the contract is [a, b, 1 . . .] whereas
the corresponding deontic trace would be [∅, Ob, ∅, . . .]. The new semantics,
which we shall refer to as ts2, are defined as follows:

2There is no infinite trace starting with action a&b that satisfies this contract. We are
required to fix the semantics in order to be able to capture such traces and we shall be
tackling this later in this section.

61

Definition 5.1.1. Trace semantics ts2:

σ, σd ²d∞ > if σd(0) = ∅ and σ(1..), σd(1..) ²d
∞ >

σ, σd 2d∞ ⊥
σ, σd ²d∞ C1 ∧ C2 if σ, σ′d ²d

∞ C1 and σ, σ′′d ²d
∞ C2 and σd = σ′d ∪ σ′′d

σ, σd ²d∞ C1 ⊕ C2 if (σ, σd ²d
∞ C1 and σ, σd 2d

∞ C2) or
(σ, σd ²d

∞ C2 and σ, σd 2d
∞ C1)

σ, σd ²d∞ [α&]C if σd(0) = ∅ and
(α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C, or α& * σ(0)))
σ, σd ²d∞ [β; β′]C if σ, σd ²d

∞ [β][β′]C
σ, σd ²d∞ [β + β′]C if σ, σd ²d

∞ [β]C ∧ [β′]C
σ, σd ²d∞ [β∗]C if σ, σd ²d

∞ C ∧ [β][β∗]C
σ, σd ²d∞ OC(α&) if σd(0) = {Oα&

} and
((α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ >) or σ(1..), σd(1..) ²d
∞ C)

σ, σd ²d∞ OC(α;α′) if σ, σd ²d
∞ OC(α) ∧ [α]OC(α′)

σ, σd ²d∞ OC(α + α′) if σ, σ′d ²d
∞ O⊥(α) or σ, σ′′d ²d

∞ O⊥(α′) or
(σd(0) = (σ′d(0) ∪ σ′′d(0)) and σ, ∅;σd(1..) ²d

∞ [α + α′]C)
σ, σd ²d∞ FC(α&) if σd(0) = Fα&

and ((α& * σ(0) and σ(1..), σd(1..) ²d
∞ >)

or (α& ⊆ σ(0) and σ(1..), σd(1..) ²d
∞ C))

σ, σd ²d∞ FC(α; α′)σ, σd ²d
∞ F⊥(α) or σ, σd ²d

∞ [α]FC(α′)
σ, σd ²d∞ FC(α + α′) if σ, σd ²d

∞ FC(α) ∧ FC(α′)
σ, σd ²d∞ [α&]C if σd(0) = ∅

and ((α& * σ(0) and σ(1..), σd(1..) ²d
∞ C) or α& ⊆ σ(0))

σ, σd ²d∞ [α; α′]C if σ, σd ²d
∞ [α]C ∧ [α][α′]C]

σ, σd ²d∞ [α + α′]C if σd(0) = ∅ and (σσd ²d
∞ [α]C or σ, σd ²d

∞ [α′]C)

σ, σd ²d∞ P (α) if σd(0) = Pα&
and σ(1..), σd(1..) ²d

∞ >
σ, σd ²d∞ P (α; α′) if σ, σd ²d

∞ P (α) ∧ [α]P (α′)
σ, σd ²d∞ P (α + α′) if σ, σd ²d

∞ P (α) ∧ P (α′)

This extension has the same behaviour as the original trace semantics
with the difference that now we have added the deontic trace and have cer-
tain restrictions on this deontic trace. Most of the definitions do not involve
the deontic trace and thus, are identical to the original trace semantics.
However the definition of >, C1 ∧Cs, [α&]C, OC(α&), OC(α + α′), FC(α&),
[α&]C and PC(α&) define the deontic trace and hence, have this extension
over the basic definition. Furthermore, we are also defining permission.

62

Satisfied, Violated: The simplest definition is that for >, the trivially
satisfiable contract. In the original semantics this was simply true
by definition; however, in our extension we require that the deontic
trace is empty since the contract is satisfied and thus, we have no
more deontic requirements. Hence, any trace of actions will satisfy
the contract >; however, the deontic trace that satisfies the contract
> is the trace with only empty elements (∀ i : I · σd(i) = ∅). ⊥ is the
unsatisfiable contract and thus there does not exist any trace that can
satisfy this contract.

σ, σd ²d
∞ > if σd(0) = ∅ and σ(1..), σd(1..) ²d

∞ >

Conjunction For the definition of the conjunction we require that the
traces satisfy both clauses. One should note that the deontic trace
cannot satisfy both clauses unless they have the same deontic require-
ments, in which case they would be identical. Consider O(a) ∧ O(b).
This would be split in two, O(a) and O(b) where the trace σ needs to
satisfy both. However, the deontic trace, by definition, cannot satisfy
both. The deontic trace consistent with O(a) would be [{Oa}, ∅ . . .]
whereas for O(b) would be [{Ob}, ∅ . . .]. This is tackled by having a
deontic trace that satisfies each of the sub-clauses and then both de-
ontic traces are joined pointwise using the combine operator. Thus in
this case [{Oa}, ∅ . . .] ∪ [{Ob}, ∅ . . .] would be equal to [{Oa, Ob}, ∅ . . .]
and this is the expected deontic trace consistent with O(a) ∧O(b).

σ, σd ²d∞ C1 ∧ C2 if σ, σ′d ²d
∞ C1 and σ, σ′′d ²d

∞ C2 and σd = σ′d ∪ σ′′d

Exclusive Disjunction The exclusive disjunction is defined as having the
traces satisfying only one of the two sub clauses.

σ, σd ²d∞ C1 ⊕ C2 if (σ, σd ²d
∞ C1 and σ, σd 2d

∞ C2) or
(σ, σd ²d

∞ C2 and σ, σd 2d
∞ C1)

Conditions Since any action may be represented in the normal form de-
fined in [55], the concurrent operator may be pushed to the innermost
level and thus we first define the conditions structurally. First we
define the action built only from atomic actions and the concurrent
operator and with this we define the sequence and choice. As de-
scribed in the trace semantics, [α&]C is trivially satisfied if α& is not
observed. If α& is observed then C must hold. For the negation the
converse holds. Both for the positive and negative case, the restriction
on the deontic trace is that the first element is the empty set. This
is the desired behaviour since [α]C makes no deontic restrictions at
the initial point in time but if the action α is observed, the clause C

63

is required to hold in the following step, and thus the rest of σd will
depend on C.

σ, σd ²d∞ [α&]C if σd(0) = ∅ and
(α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C, or α& * σ(0)))
σ, σd ²d∞ [β; β′]C if σ, σd ²d

∞ [β][β′]C
σ, σd ²d∞ [β + β′]C if σ, σd ²d

∞ [β]C ∧ [β′]C
σ, σd ²d∞ [β∗]C if σ, σd ²d

∞ C ∧ [β][β∗]C
σ, σd ²d∞ [α&]C if σd(0) = ∅

and ((α& * σ(0) and σ(1..), σd(1..) ²d
∞ C) or α& ⊆ σ(0))

σ, σd ²d∞ [α;α′]C if σ, σd ²d
∞ [α]C ∧ [α][α′]C]

σ, σd ²d∞ [α + α′]C if σd(0) = ∅ and (σσd ²d
∞ [α]C or σ, σd ²d

∞ [α′]C)

Obligations Similar to the definition of conditions, obligations are defined
structurally on the action expressions. In the definition of the obli-
gation, as one might expect, we find another requirement from the
deontic trace. If we are obliged to perform α& then the deontic trace
at that step needs to contain the set Oα&

(σd(0) = Oα&
). For the obli-

gation, we also need to define the obligation of a choice. As described
before, a choice will be encoded as being a set of elements of Da. Thus
similar to what we have done for the definition of the ∧ operator, we
have two deontic traces, one for each possibility, which is then joined
using the union. One should note that this time, we use the classical
union since we are only requiring that σd(0) = σ′d(0) ∪ σ′′d(0). We are
not combining the complete traces since we have the possibility of sat-
isfying one or the other and thus the continuation of the deontic trace
might be equal to σ′d, σ′′d or a combination of both, depending on the
trace. This will be handled in the following steps.

σ, σd ²d∞ OC(α&) if σd(0) = {Oα&
} and

((α& ⊆ σ(0) and σ(1..), σd(1..) ²d
∞ >) or σ(1..), σd(1..) ²d

∞ C)
σ, σd ²d∞ OC(α; α′) if σ, σd ²d

∞ OC(α) ∧ [α]OC(α′)
σ, σd ²d∞ OC(α + α′) if σ, σ′d ²d

∞ O⊥(α) or σ, σ′′d ²d
∞ O⊥(α′) or

(σd(0) = (σ′d(0) ∪ σ′′d(0)) and σ, ∅; σd(1..) ²d
∞ [α + α′]C)

σ, σd ²d∞ FC(α&) if σd(0) = Fα&
and ((α& * σ(0) and σ(1..), σd(1..) ²d

∞ >)
or (α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C))

Prohibitions The extension made to prohibition is similar to that done to
obligation, with the difference that we do not have the issues with the

64

prohibition of choice as we have with the obligation of choice. Pro-
hibition of choice F (α + α′) is defined as F (α) ∧ F (α′) since being
prohibited from doing either of two actions is effectivly being prohib-
ited from performing both actions.

σ, σd ²d∞ FC(α&) if σd(0) = Fα&
and ((α& * σ(0) and σ(1..), σd(1..) ²d

∞ >)
or (α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C))
σ, σd ²d∞ FC(α;α′)σ, σd ²d

∞ F⊥(α) or σ, σd ²d
∞ [α]FC(α′)

σ, σd ²d∞ FC(α + α′) if σ, σd ²d
∞ FC(α) ∧ FC(α′)

Permission Permission is similar to prohibition, where the permission to
perform either of two actions is defined as the permission to perform
both (P (α + α′) = P (α) and P (α′)). One might want to define per-
mission of choice as P (α) or P (α′) in which case this would require a
definition similar to what we have done for the obligation. We believe
that the first instance is more natural and this is the definition that
we shall use in the rest of the work; however, it is trivial if one would
want to change the definition.

The permission operator is not explicitly defined in the original se-
mantics since as discussed previously, given a trace one cannot know
if the contract has been violated or not. If we look at the definition of
permission, we do not place any restrictions over the action trace but
only on the deontic trace.

σ, σd ²d∞ P (α) if σd(0) = Pα&
and σ(1..), σd(1..) ²d

∞ >
σ, σd ²d∞ P (α; α′) if σ, σd ²d

∞ P (α) ∧ [α]P (α′)
σ, σd ²d∞ P (α + α′) if σ, σd ²d

∞ P (α) ∧ P (α′)

Using ts2 we now have a way to know which deontic operators occur at
what time. In fact if we want we may define the satisfaction relation of σ
with respect to σd rather than the contract C since the contract is encoded
in σd. One might expect that this semantics is enough in order to check
for conflict freedom. We will make use of the notation α#α′ in order to
represent that α and α′ are mutually exclusive and thus cannot occur at the
same time. We would need to check that for any trace such that σ, σd ²d∞ C,
all elements D of σd(i) for all i are conflict free. By conflict free we mean
that for every D there exists a d, element of D that is not in conflict with
the rest of the deontic notions. Thus if

65

d = Oa then for all D′ element of σd(i), D′ does not prohibit the action
a (D′ 6= {Fa}) and it does not give permission to perform a
mutually exclusive action (D′ 6= {Pb} and a#b) and if D′ is an
obligation or a choice of obligations, at least an element of D′

must not oblige a mutually exclusive action (D′ ⊆ {Oa|a ∈ A} →
∃Ob ∈ D′ s.t. ¬(a#b))

d = Fa then there does not exists d′ element of D′, element of σd(i), such
that it obliges or permits the action a (d′ = Pa or d′ = Oa).

d = Pa then there does not exist d′ element of D′, element of σd(i), such
that it prohibits action a or obliges a mutually exclusive action
(d′ = Fa or d′ = Ob and a#b).

Thus we are requiring that every element of the trace σd is conflict free. If
the elements contain a single deontic notion, then we are required to ensure
that it is not in conflict with any of the other deontic notions applying in
this position. If it does not contain a single element, that means that we
have a choice of obligations and thus, for it to be conflict free there needs
to exist at least one of these elements that is not in conflict with any of the
others.

Unfortunately, this method will only work for cases when we are permit-
ted and forbidden to perform the same action and when we are permitted
and obliged to perform conflicting actions. We need to ensure that the
conflict was reached without any prior violations and thus, ensuring that
σ ²∞ C. Since permission will never result in the violation of a trace3,
there will be traces that satisfy the contract but still be identified as having
conflicts. Consider the contract [a]P (b) ∧ [b]F (b). The trace [{a, b}, a, . . .]
will satisfy this contract and thus will be tested for a conflict, which in this
case there is since the corresponding deontic trace is [∅, {{Pb}, {Fb}}, ∅, . . .]
and it has a conflict when i = 1.

However, for conflicts where obligations and prohibitions are concerned,
there will be no trace that satisfies the contract and also leads to these
conflicts. This is because once we reach these conflicts there will be no
possible way to satisfy the contract and thus, there will be no infinite trace
satisfying the contract that leads to the conflict. Because of this, we need
to define another semantics. We are required to define the notion of ‘has
not violated yet’. We shall do this by defining a relation similar to the ²∞
relation but instead of being defined on infinite traces we define it for finite
traces. We use the interpretation “has not violated yet” because if we extend

3When looking just at a trace we cannot know if a permission is satisfied or not since
we are just looking at one possible sequence of action and thus, cannot know if there is
the possibility to do the permitted action or not. In fact, in the original trace semantics,
permission was not defined whereas in ts2 the permission was added just so that we add
the information to σd

66

the finite trace we could end up violating the contract. Furthermore, we do
not want to use the notion of having a finite trace that satisfies the contract
since that would entail that all the clauses have been satisfied and that is
not what we want.

Consider the contract [a]O(b) ∧ [b]F (b). The deontic trace that would
identify this conflict is [∅, {{Ob}, {Fb}}, ∅, . . .]. However there is no trace
of actions that will satisfy the contract that will have this corresponding
deontic trace. Satisfying traces, given that the set of actions is {a, b} would
be [a, b, · · ·] and [b, a, · · ·]. Both these traces do not have a deontic trace
identifying the conflict since both do not lead to a state of conflict. A
trace that would lead to the conflict would start with the action [{a, b}].
Regardless of what follows, we will not be able to satisfy the contract. If
we have the relation described above, we could reason that the trace [{a, b}]
has not yet violated the contract and so we need to check that it has not led
to any deontic conflict and thus we will be able to identify that a conflict
has occurred.

The new relation defined is ²f where σ, σd ²f C is interpreted as the
finte trace σ has not yet violated the contract C and the finite deontic trace
σd is consistent with C. We will refer to this semantics as ts3.

To define the new relation we are going to require a number of semantic
tools. We define the function len as to return the size of a trace. Thus if
trace σ = [a, b], c then len(σ) = 2. In the new semantics we want that both
σ and σd are finite. Furthermore we want that len(σ) = len(σd). Hence,
if len(σ) 6= len(σd) then σ, σd 2f C.

One should note that if the trace is empty (i.e. len(σ) = 0) then it
cannot violate any contract. Thus if len(σ) = 0 then σ, σd ²f C where C is
any contract. Otherwise the same semantics hold. Most of the other rules
are very similar to ts2. The full finite semantics ts3 is defined as follows.

67

Definition 5.1.2. Trace Semantics ts3

σ, σd 2f C if len(σ) 6= len(σd)

σ, σd ²f > if len(σ) = 0 or σd(0) = ∅ and σ(1..), σd(1..) ²f >
σ, σd 2f ⊥
σ, σd ²f C1 ∧ C2 if σ, σ′d ²f C1 and σ, σ′′d ²f C2 and σd = σ′d ∪ σ′′d
σ, σd ²f C1 ⊕ C2 if len(σ) = 0 or (σ, σd ²f C1 and σ, σd 2f C2) or

(σ, σd ²f C2 and σ, σd 2f C1)
σ, σd ²f [α&]C if len(σ) = 0 or (σd(0) = ∅ and

(α& ⊆ σ(0) and σ(1..), σd(1..) ²f C, or α& * σ(0))))
σ, σd ²f [β; β′]C if σ, σd ²f [β][β′]C
σ, σd ²f [β + β′]C if σ, σd ²f [β]C ∧ [β′]C
σ, σd ²f [β∗]C if σ, σd ²f C ∧ [β][β∗]C
σ, σd ²f OC(α&) if len(σ) = 0 or (σd(0) = Oα&

and
((α& ⊆ σ(0) and σ(1..), σd(1..) ²f >) or σ(1..), σd(1..) ²f C))

σ, σd ²f OC(α; α′) if σ, σd ²f OC(α) ∧ [α]OC(α′)
σ, σd ²f OC(α + α′) if σ, σ′d ²f O⊥(α) or σ, σ′d ²f O⊥(α′) or

(σd(0) = (σ′d(0) ∪ σ′′d(0)) and σ, ∅; σd(1..) ²f [α + α′]C)
σ, σd ²f FC(α&) if len(σ) = 0 or (σd(0) = Fα&

and
((α& * σ(0) and σ(1..), σd(1..) ²f >)
or (α& ⊆ σ(0) and σ(1..), σd(1..) ²f C)))

σ, σd ²f FC(α; α′) if σ, σd ²f F⊥(α) or σ, σd ²f [α]FC(α′)
σ, σd ²f FC(α + α′) if σ, σd ²f FC(α) ∧ FC(α′)
σ, σd ²f [α&]C if σd(0) = ∅ and

((α& * σ(0) and σ(1..), σd(1..) ²f C) or α& ⊆ σ(0))
σ, σd ²f [α; α′]C if σ, σd ²f [α]C ∧ [α][α′]C]
σ, σd ²f [α + α′]C if σd(0) = ∅ and (σσd ²f [α]C or σ, σd ²f [α′]C)

σ, σd ²f P (α&) if len(σ) = 0 or (σd(0) = Pα&
and σ(1..), σd(1..) ²f >)

σ, σd ²f P (α; α′) if σ, σd ²f P (α) ∧ [α]P (α′)
σ, σd ²f P (α + α′) if σ, σd ²f P (α) ∧ P (α′)

As mentioned before, an empty trace has not violated the contract and
thus this is encoded in the definition of >, ⊕, [], O, F and P . The rest of
the cases are defined using these base cases.

Consider the semantics given for the obligation. The obligation has not

68

yet been violated if the trace is empty or if it has now been satisfied or
else if violated, then the reparation is satisfied. Using this definition we can
construct the trace stepwise and at each step know if the contract has been
violated or not. The same goes for the rest of the definitions.

Using these trace semantics we shall be able to find all the types of
conflicts. Lets us consider again the same example as before. The conflict
in [a]O(b) ∧ [b]F (b) cannot be found making use of the previous semantics.
However, using these semantics we can find the conflict since the trace [{a, b}]
has not violated the contract yet ([{a, b}], [∅] ²f [a]O(b) ∧ [b]F (b)) and thus
we shall check if this trace leads to a conflict. We shall see how this is done
in the following section.

After defining the finite trace semantics we shall prove that ts3 is sound
and complete with respect to ts2. We shall not do the proof that ts2 is
sound and complete. The outline of the proof would be the following. The
definitions are exactly the same except for the deontic trace. Thus we can
conclude that if σ ² C then there exists a σd such that σ, σd ²d∞ and that
if σ 2 C then there does not exists any σd such that σ, σd ²d∞ C. Also,
if σ, σd ²d∞ C then it also holds that σ ² C and if for all possible deontic
traces, σ, σd 2d∞ C holds then σ 2 C.

Correctness of ts3

At the end of the previous section we explain why we did not formally prove
the correctness of ts2 with respect to the original semantics and also gave a
very brief outline on how this would have been done. In this section we shall
depict the proof of correctness of ts3 with respect to ts2. We shall do this
by proving that ts3 is sound and complete with respect to ts2. We say that
ts3 is sound with respect to ts2 if when a trace satisfies a contract using the
semantics of ts2 then it will also satisfy the contract using ts3. We say that
ts3 is complete with respect to ts2 if when a trace satisfies a contract using
the samantics of ts3 it will also satisfy the contract using the semantics of
ts2. The main problem in this proof is that ts2 makes use of infinite traces
whilst ts3 is finite and thus the relation is not “satisfies the contract” but
rather “has not violated yet”.

The first step is to prove that an empty trace will not violate any con-
tract. We define σ∅ as being an infinite sequence of ∅.
Theorem 5.1.1. An empty trace can never violate a contract:

∀C, len(σ) = len(σd) = 0 ⇒ σ, σd ²f C

Proof. We shall prove this by structural induction on the formula. The base

69

cases are the following and result directly from the definition:

len(σ) = len(σd) = 0 ⇒
σ, σd ²f >
σ, σd ²f [α&]C
σ, σd ²f OC(α&)
σ, σd ²f FC(α&)
σ, σd ²f P (α&)
σ, σd ²f C1 ⊕ C2

The rest of the cases are defined using these base cases.

Case C1 ∧ C2

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f C1

⇒ {inductive hypothesis}
σ, σd ²f C2

⇒ {conjunction introduction}
σ, σd ²f C1 and σ, σd ²f C2

⇒ {definition}
σ, σd ²f C1 ∧ C2

Case [β; β′]C

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f C1

⇒ {inductive hypothesis}
σ, σd ²f C2

⇒ {let C1 = [β]C2 and C2 = [β′]C}
σ, σd ²f [β][β′]C

⇒ {definition}
σ, σd ²f [β; β′]C

The rest of the cases are similar. Refer to Appendix A Theorem A.1 for the
complete proof.

Proposition 5.1.2. Any finite trace using the semantics of ts3 will satisfy
the trivial contract >

∀σ σ, σ∅(0..len(σ)) ²f >

70

Proof. We shall prove this by induction on the length of σ.

Base Case n=0 from Theorem 5.1.1

Inductive Hypothesis n=k

∀σ σ(0..k), σ∅(0..k) ²f >

Inductive Case n=k+1

σ(0..k + 1), σd(0..k + 1) ²f >
⇒ {definition}

σ(1..k + 1), σd(1..k + 1) ²f >

⇒
{the definition does not consider the elements in the trace,
only the length. Thus the definition cannot differentiate
between σ(1..k + 1) and σ(0..k)}
σ(0..k), σd(0..k) ²f >

⇒ {Inductive hypothesis}

Proposition 5.1.3. Any infinite trace using the semantics of ts2 will satisfy
the trivial contract >

∀σ σ, σ∅ ²d
∞ >

Proof. The definition of σ, σd ²d∞ > is recursive where we chop off the first
element from σ and σd and then check that σ(1..), σd(1..) ²d∞ >. The only
check on the first element is that σd(0) = ∅ thus σ(0) is free to be any set of
possible actions. Furthermore, we know that σd(0) = ∅ since by definition,
σ∅ is the infinite sequence of ∅ and thus, this proposition is true.

Proposition 5.1.4. For any infinite trace which satisfies the trivial contract
>, the deontic trace will be empty, as defined before, σd = σ∅

σ, σd ² > ⇒ σd = σ∅

Proof. The definition of σ, σd ²d∞ > is recursive where we chop off the first
element from σ and σd and then check that σ(1..), σd(1..) ²d∞ >. By defini-
tion we require that σd(0) = ∅ and then we keep on recursively checking the
rest of the trace recursively, removing the first element and checking that
σd(0) = ∅ and thus for σ, σd ²d∞ >, σd = σ∅

Theorem 5.1.5. A trace σd is equal to the combination of σ′d and σ′′d (σd =
σ′d ∪ σ′′d) iff any subtrace of σd is equal to the combination of the subtraces
of σ′d and σ′′d given that they are of the same length.

σd = σ′d ∪ σ′′d ⇔ ∀n, σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n)

.

71

Proof. We shall split this proof in two cases, proving the two directions of
the implication separately.

Case σd = σ′d ∪ σ′′d ⇒ ∀n, σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n). The definition of
σd = σ′d ∪ σ′′d is σd = σ′d(0)∪ σ′′d(0), σ′d(1)∪ σ′′d(1) . . . σ′d(n)∪ σ′′d(n). We shall
use induction on n in order to prove this case.

Base Case n=0

σd = σ′d ∪ σ′′d
⇒ {definition}

σd = σ′d(0) ∪ σ′′d(0), σ′d(1) ∪ σ′′d(1) . . . σ′d(n) ∪ σ′′d(n)
⇒ {n=0, so we chop σd and take only required sequence}

σd(0) = σ′d(0) ∪ σ′′d(0)

Inductive Hypothesis n=k

σd(k) = σ′d(0..k) ∪ σ′′d(0..k)

Inductive Case n=k+1

σd = σ′d ∪ σ′′d
⇒ {definition}

σd = σ′d(0) ∪ σ′′d(0), σ′d(1) ∪ σ′′d(1) . . . σ′d(n) ∪ σ′′d(n)
⇒ {inductive hypothesis}

σd(k) = σ′d(0..k) ∪ σ′′d(0..k)
⇒ {definition}

σd(k) = σ′d(0) ∪ σ′′d(0), σ′d(1) ∪ σ′′d(1) . . . σ′d(k) ∪ σ′′d(k)

⇒ {by definition we may add the next element by adding to
sequence}
σd(k + 1) = σ′d(0) ∪ σ′′d(0), σ′d(1) ∪ σ′′d(1) . . .

σ′d(k) ∪ σ′′d(k), σ′d(k + 1) ∪ σ′′d(k + 1)
⇒ {definition}

σd(k + 1) = σ′d(k + 1) ∪ σ′′d(k + 1)

Case σd = σ′d ∪ σ′′d ⇐ ∀n, σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n)
σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n) holds for all N thus if n = len(σd) then

σd(0..n) = σd, σ
′
d(0..n) = σ′d and σ′′d(0..n) = σ′′d

72

Lemma 5.1.6. If the infinite traces σ, σd satisfy a contract C, then any
finite prefix of these traces will not violate the contract.

σ, σd ²d
∞ C ⇒ ∀n : N, σ(0..n), σd(0..n) ²f C

Proof. σ, σd ²d∞ C means that the traces σ, σd do not violate the contract
C. So if the entire infinite trace does not violate the contract then even
any finite prefix would not violate the contract, or at least would not have
violated the contract yet. This is the definition of the ²f relationship and so
we may conclude that for any finite prefix of the infinite traces that satisfy
a contract C will not violate the contract.

We shall use structural induction in order to prove this formally. First
of all we have the rule that σ, σd 2f C if len(σ) 6= len(σd). In our case the
lengths of σ and σd are identical by definition.

Case >

σ, σd ²d
∞ >

⇒ {Proposition 5.1.4}
σd = σ∅

⇒ {σd = σ∅ and Proposition 5.1.2}
∀n : N,σ(0..n), σd(0..n) ²f >

Case C1 ∧ C2

σ, σd ²d
∞ C1 ∧ C2

⇒ {definition of ts2}
σ, σ′d ²d

∞ C1 and σ, σ′′d ²d
∞ C2 and σd = σ′d ∪ σ′′d

⇒ {inductive hypothesis and Theorem 5.1.5}
∀n : N σ(0..n), σd(0..n)′ ²f C1 and ∀n : N σ(0..n), σd(0..n)′′ ²f C2

and ∀n : N σd(0..n) = σd(0..n)′ ∪ σd(0..n)′′

⇒ {associativity of ∀ over conjunction}
∀n : N (σ(0..n), σd(0..n)′ ²f C1 and σ(0..n), σd(0..n)′′ ²f C2

and σd(0..n) = σd(0..n)′ ∪ σd(0..n)′′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f C1 ∧ C2

73

Case OC(α&)

σ, σd ²d
∞ OC(α&)

⇒ {definition of ts2}
σd(0) = Oα and
((α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ >) or σ(1..), σd(1..) ²d
∞ C)

⇒ {inductive hypothesis}
σd(0) = Oα and (α& ⊆ σ(0) and ∀n : N σ(1..n), σd(1..n) ²f >) or
(∀n : N σ(1..n), σd(1..n) ²f C)

⇒ {No free variable n, thus can move ∀n : N outside}
∀n : N σd(0) = Oα and (α& ⊆ σ(0) and σ(1..n), σd(1..n) ²f >) or
(σ(1..n), σd(1..n) ²f C)

⇒ {an empty trace cannot violate a contract(Theorem 5.1.1)}
∀n : N len(σ) = 0 or σd(0) = Oα and
((α& ⊆ σ(0) and σ(1..), σd(1..) ²f >) or σ(1..), σd(1..) ²f C)

⇒ {Definition of ts3}
∀n : N σ(0..n), σd(0..n) ²f OC(α&)

The rest of the cases are similar. Refer to Appendix A Theorem A.6 for the
complete proof.

Lemma 5.1.7. If all the finite prefixes of an infinite trace do not violate a
contract C then the infinite traces satisfy the contract.

σ, σd ²d
∞ C ⇐ ∀n : Nσ(0..n), σd(0..n) ²f C

Proof. We shall use structural induction to show that if for any n, n :
Nσ(0..n), σd(0..n) ²f C then for the equivalent infinite trace, σ, σd ²d∞ C.

Case >

∀n : N,σ(0..n), σd(0..n) ²f >
⇒ {Proposition 5.1.3}

σ, σd ²d
∞ >

74

Case C1 ∧ C2

∀n : N, σ(0..n), σd(0..n) ²f C1 ∧ C2

⇒ {definition of ts3}
∀n : N, (σ(0..n), σ′d(0..n) ²f C1 and σ(0..n), σ′′d(0..n) ²f C2 and

σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n))
⇒ {inductive hypothesis and Theorem 5.1.5}

σ, σ′d ²d
∞ C1 and σ, σ′′d ²d

∞ C2 and σd = σ′d ∪ σ′′d
⇒ {definition of ts2}

σ, σd ²d
∞ C1 ∧ C2

Case [α&]C

∀n : N σ(0..n), σd(0..n) ²f [α&]C
⇒ {definition of ts3}

len(σ) = 0 or (σd(0) = ∅ and (α& ⊆ σ(0) and
∀n : N σ(1..n), σd(1..n) ²f C, or α& * σ(0))))

⇒ {inductive hypothesis}
len(σ) = 0 or (σd(0) = ∅ and (α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C, or
α& * σ(0))))

⇒ {σ is infinite so len(σ) 6= 0}
σd(0) = ∅ and (α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C, or α& * σ(0)))
⇒ {definition of ts2}

σ, σd ²d
∞ [α&]C

75

Case OC(α&)

∀n : N σ(0..n), σd(0..n) ²f OC(α&)
⇒ {definition of ts3}

∀n : N len(σ) = 0 or σd(0) = Oα and
((α& ⊆ σ(0) and σ(1..n), σd(1..n) ²f >) or σ(1..n), σd(1..n) ²f C)

⇒ {inductive hypothesis}
len(σ) = 0 or σd(0) = Oα and
((α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ >) or σ(1..), σd(1..) ²d
∞ C)

⇒ {σ is infinite so len(σ) 6= 0}
σd(0) = Oα and
((α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ >) or σ(1..), σd(1..) ²d
∞ C)

⇒ {definition of ts2}
σ, σd ²d

∞ OC(α&)

The rest of the cases are similar. Refer to Appendix A Theorem A.7 for the
complete proof.

Lemma 5.1.8. ts3 is correct with respect to ts2

σ, σd ²d
∞ C ⇔ ∀n : Nσ(0..n), σd(0..n) ²f C

Proof. Directly from Lemma 5.1.6 and Lemma 5.1.7.

Lemma 5.1.8 concludes our proof. For the complete proof please refer to
Appendix A.

5.1.3 Canonical form and the Kleene Star

Before we look at the automation of conflict analysis we have to take a
look at the canonical form. The canonical form has been only specified for
actions defined using the Concurrency, Choice and Sequence operators but
no Kleene star. If we look at the trace semantics it assumes that action
concurrency is the innermost operator and thus, the concurrency operator
will only be acting on atomic actions. However, the syntax allows us to
define a formula of the following form [a&(b∗)]C that cannot be described
directly using the semantics. How can we handle such situations?

One should note that the Kleene star poses many of problems when defin-
ing normal forms. There is no standard normal form for regular expressions
and neither for Propositional Dynamic Logic. One way is by unfolding the
Kleene star, but this may lead to non-termination.

Let us consider the simplest case, a&(b∗). Remember that b∗ = 1 +
b · b∗, so substituting this into the original formula will result in a&(1 +

76

b · b∗) that with a bit of massaging, by taking out the choice and sequence
operator (similar to what is done in the canonical form), we end up with
a+(a&b·b∗). We have, thus, successfully taken the Kleene star outside of the
concurrancy operator. Remember that the Kleene star may be repetitively
opened ending up with an infinite definition. Thus regardless of the length
of action with which we are combining it, we can always generate a longer
definition. Consider for example (a · b)&c∗, which is equal to (a · b)&(1 + c ·
c∗ + c · c · c∗) that with a bit of massaging will end up defined as (a · b) +
(a&c · b) + (a&c · b&c · c∗).

A slightly more complicated situation arises when combining the Kleene
star with the sequence operator. When it is to the right of the sequence
operator, there is no problem; however, when it is to the left it is not as
straight forward. The semantics suggest the following way to process the
Kleene star: [β∗]C = C ∧ [β][β∗]C thus if C = [a]C ′ then this will end up
being [a]C ′ ∧ [β][β∗][a]C ′. Also, remember that [a · b]C = [a][b]C. Thus
[a∗ ·b]C = [b]C∧ [a ·a∗ ·b]C. So the action a∗ ·b should be equal to b+a ·a∗ ·b
and not as one might expect to be equal to 1 + a · b&a∗. Thus, if we have
a&(b∗ · c) this will have to be translated to (a&c) + (a&b · b∗ · c).

Another question would be how to simplify the concurrency of two
Kleene stars, a∗&b∗. This could be opened as 1+a ·a∗+ b · b∗+a&b ·a∗&b∗.
However, this still leaves the concurrency operator between two non-atomic
actions. Thus when we add the Kleene star, we cannot always end up with
the concurrency operator between atomic actions. This representation is
however equivalent to (a&b)∗ which can be processed.

In this work we shall restrict that the syntax will not contain concurrency
of Kleene star as seen in the previous paragraph. We believe that these could
still be represented using an equivalent representation with the Kleene star
outside of the concurrency operator; however, since this was not the focus
of our work we opted to restrict the syntax. The definition of the canonical
form with the addition of the Kleene star will be part of our future work.

5.2 Conflict Analysis

In this section we shall first define what a conflict is using the extension
to the initial CL trace semantics we defined in the previous section. After
defining formally what a contract is we shall define the decision procedure
that will automatically analyse a contract for conflicts.

5.2.1 Contract Conflict Freedom

After proving the soundness and completeness of ts3, we need to find a
method that will allow us to verify that a contract is conflict free. We
require that the trace leading to a conflict has not already violated the
contract. If a contract is violated then the contract has been voided and

77

external legal action is to be taken. As discussed before, we are concered
with finding conflicts which are being brought about by the contract and
thus we require that the contract has not been already violated. Thus, in
order to find a conflict we require that given a contract C, σ, σd ²f C and
that σd has a conflict.

Consider the contract [a]O(b) ∧ [b]F (b). If a is observed, then we are
required to satisfy both O(b) and F (b). As described earlier this is one
case of a conflict. We also require that σ, σd ²f C and that the conflict is
found in σd. In this case [a], [∅] ²f [a]O(b) ∧ [b]F (b) however σd has not
yet reached the conflict. In the following step, whatever action we perform
but, we are not able to satisfy the contract and thus one would expect that
[a, b], [∅, {Ob, Fb}] 2f [a]O(b) ∧ [b]F (b) since by the definition of prohibition,
in order to satisfy the prohibition of b we cannot observe b. However, remem-
ber that F (b) is shorthand for F⊥(b) and thus by the definition of prohibition,
if it is violated then we are required to satisfy the reparation, in which case
it is the unsatisfiable clause ⊥. Thus [a, b], [∅, {Ob, Fb}] ²f [a]O(b)∧ [b]F (b),
however any extention of these traces will not satisfy the contract since no
trace may satisfy the ⊥ clause.

Definition 5.2.1. For a given trace σd of a contract C, let D,D′ ⊆ σd(i)
(with i ≥ 0).We say that D is not in conflict with D′ if and only if there
exists at least one element e ∈ D such that:

e = Oa → (@ d′ ∈ D′, s.t. d′ = Fa or (d′ = Pb and a#b)) and
D′ ⊆ {Oa|a ∈ A} → ∃Ob ∈ D′ s.t. a\#b)

∧ e = Fa → @ d′ ∈ D′, s.t. d′ = Pa or d′ = Oa

∧ e = Pa → @ d′ ∈ D′, s.t. d′ = Fa or (d′ = Ob and a#b)

A contract C is said to be conflict-free if for all traces σ and σd such that
σ, σd ²f C, then for any D, D′ ⊆ σd(i) (0 ≤ i ≤ len(σd)), D and D′ are not
in conflict.

Using this definition of conflict, we shall only be able to find Strong
conflicts. In order to find weak conflicts we need to treat a set of possibilities
as if they all need to be satisfied. Once we have defined what a conflict is,
we can turn to defining a method that will automatically check if a contract
is conflict free or not.

5.2.2 Automating conflict analysis

We shall split the automated conflict analysis in two steps. First we shall
generate an automaton that accepts all and only those traces which do
not violate the contract. Then, we shall apply conflict analysis on this
automaton.

78

Generating the automaton

Given a clause C, we can construct an automaton A(C) = 〈S, A&, s0, T, V, l, δ〉
where S is the set of states, A& is the set of concurrent actions, s0 is the
initial state, T = S×A&×S is the set of labelled transitions, V is a special
violation state, l is a labelling function labelling states with the CL clause
that holds in that state (l : S → CL) and δ is a labelling function labelling
states with the set of deontic notions that hold in that state.

A run of this automaton (a sequence of states) is accepted by the au-
tomaton if none of the states in the run is the violating V state. Once a
contract is violated (i.e. a clause has not been satisfied and no reparations
are left) then there is no way to satisfy the contract again and thus there
will be no way to leave the violating state. We mention this now in order
to point out that given a run, we may check if it is accepted or not by the
automaton if there always exists a transition between two consecutive states
and the final state is not the violating state.

Similarly, we say that the automaton accepts a trace σ if none of the
actions of σ is the label of a transition which contains the state V . Typically,
the term ‘word’ is used instead of trace but in our case we will use the term
trace since this ‘word’ is equivalent to the trace we have described in the
semantics. If a particular trace is accepted by the automaton generated for
a particular contract we write Accept(A(C), σ)

The construction of the automaton makes use of an auxiliary function
f . f is a function which given a CL formula C and an action α will return
the clause that needs to hold in the following step. This approach is similar
to the CTL sub-formula construction. f is defined in Table 5.1. We need to
define the binary operator / that is used in f . Given two actions, / will chop
the second action from the front of the first action. If the prefix (head) of the
first action matches the second action we will remove this prefix (return the
tail). This operator is required since CL formulas do not allow disjunction
between Obligations. This operator will allow us to perform what function
f is doing but instead of on a CL clause, on an action thus allowing us to
split the concernes of the contract between what needs to be satisfied now
and what needs to be satisfied later. This operator is defined inductively as
follows:

Definition We define / as

α′&/α& = ε if α′& = α&, otherwise 0
(0;α)/α& = 0
(1;α)/α& = α

(α; α′)/α& = α/α&; α′

(α + α′)/α& = α/α& + α′/α&

79

Given that ϕ ∈ A&

f(1, ϕ) = 1
f(0, ϕ) = 0

f(C1 ∧ C2, ϕ) = f(C1, ϕ) ∧ f(C2, ϕ)

f(C1 ⊕ C2, ϕ) =

1 if (f(C1, ϕ) = 1 ∧ f(C2, ϕ) = 0)∨
(f(C1, ϕ) = 0 ∧ f(C2, ϕ) = 1)

0 if (f(C1, ϕ) = 1 ∧ f(C2, ϕ) = 1)∨
(f(C1, ϕ) = 0 ∧ f(C2, ϕ) = 0)

f(C1, ϕ)⊕ f(C2, ϕ) otherwise

f([α&]C, ϕ) =
{

C if α& ⊆ ϕ
1 otherwise

f([β · β′]C, ϕ) = f([β][β′]C, ϕ)
f([β + β′]C, ϕ) = f([β]C ∧ [β′]C, ϕ)

f([β∗]C, ϕ) = f(C ∧ [β][β∗]C, ϕ)

f(OC(α&), ϕ) =
{

1 if α& ⊆ ϕ
C otherwise

f(OC(α · α′), ϕ) = f(OC(α) ∧ [α]OC(α′), ϕ)

f(OC(α + α′), ϕ) =

1 if f(O0(α), ϕ) = 1 or f(O0(α′), ϕ) = 1
C if f(O0(α), ϕ) = 0 and f(O0(α′), ϕ) = 0
OC(α + α′/ϕ) otherwise

f(FC(α&), ϕ) =
{

C if α& ⊆ ϕ
1 otherwise

f(FC(α · α′), ϕ) = f([α]FC(α′), ϕ)
f(FC(α + α′), ϕ) = f(FC(α) ∧ FC(α′), ϕ)

f(P (α&), ϕ) = P (α&)
f(P (α · α′), ϕ) = f(P (α) ∧ [α]P (α′), ϕ)

f(P (α + α′), ϕ) = f(P (α) ∧ P (α′), ϕ)

f([α&]C, ϕ) =
{

C if α& * ϕ
1 otherwise

f([α · α′]C, ϕ) = f([α][α′]C, ϕ)

f([α + α′]C, ϕ) =

C if f([α]C,ϕ) = C or f([α′]C, ϕ) = C

1 if f([α]C,ϕ) = f([α′]C, ϕ) = 1
[α + α′/ϕ]C otherwise

Table 5.1: Definition of the construction function

80

fc(s) = if l(s) = > then
T := T ∪ (s, 1, s)

if l(s) = ⊥ then
V := s
T := T ∪ (V, 1, V)

otherwise
∀a ∈ A&

if ∃ s′ ∈ S s.t. l(s′) = f(l(s), a) then
T := T ∪ (s, a, s′)

otherwise
new s′

l(s′) := f(l(s), a)
S := S ∪ s′

T := T ∪ (s, a, s′)
d(s′) := fd(l(s′))
fc(s′)

Table 5.2: Definition of the Construction function

The construction function is defined in Table 5.2. We initially create a
state s0 where l(s0) = C and pass that state to function fc that will generate
the rest of the automaton. If the label of the state (i.e. the contract that
needs to be satisfied in that state) is equal to>, that means that the contract
has been satisfied and thus, we add a new transition from that state to itself
labelled with action being 1 (i.e. for all actions). This is because once
a contract is satisfied any action that may occur will still not violate the
contract.

If on the other hand the label is ⊥, then that means that the contract
has been violated and thus, we make the violation state equal to this state
and add a transition to itself with action 1 that will match any action. If
a contract is violated no action may satisfy the contract and thus we shall
remain in this violation state regardless of what action is observed.

If the label of the state is neither > nor ⊥ we shall go through all possible
actions (∀a ∈ A&) in order to add all possible transitions out of this state.
For each of this transitions ((s, a, s′)) we compute what will be required to
be satisfied in the following state. This is computed by function f by passing
the label of the current state and the action as parameters. This CL formula
will be the label of the state (s′) that is reached from the current state (s)
when observing the action a (l(s’)=f(l(s),a)). We first check if there already
exists a state (s′′) in S that is labelled with the same label of s′. If this is the
case we add the transition from the current state (s) to this already created
state s′′ with a (T ∪ (s, a, s′′)) and remove the transition to s′ and the state
s′. Checking that there is no state already labelled with what is required to

81

be satisfied in the following state will ensure that we have at most only one
state representing satisfaction and violation and will also allow termination
of the algorithm.

If there does not exist such a state, we shall create this new state that is
labelled with what has to be satisfied next (l(s′) = f(l(s), a)). We add this
state to S and add the transition (s, a, s′) to T . We label the deontic label
by calling the function fd defined in Table 5.3. This function will label the
state with all the deontic notions that apply in this state. We shall then call
the construction function on this new state s′ thus recusively constructing
the rest of the automaton.

Let us consider the contract [a]O(b) ∧ [b]F (b). The automaton is con-
structed by applying fc to the state s0 where l(s0) = [a]O(b)∧[b]F (b). Every
possible transition is created (in this case, transitions labeled with a, b and
a&b) from this state to a new state labeled with the result of applying func-
tion f to the original formula and the label of the transition as parameters.
Thus, the state that is reached with the transition labeled with action a is
f([a]O(b)∧ [b]F (b), a) = O(b). If there is another state with the same label,
the transition will connect to the existing state and the new one will be
discarded (this ensures termination). If there is no such a state, fc is then
recursively called on this new state. Eventually we either reach a satisfying
state, a violating state, or a state already labeled with the formula.

Looking at the definition of function fd (Table 5.3) we notice that we only
consider prohibitions and permissions of concurrent actions. We do not ex-
plicitely consider the prohibition or permission of a choice and sequence. The
reason of this is that the clause passed to function fd has already been passed
through function f . The prohibition and permission of choice will be split
into the conjunction of two prohibitions/permissions (f(FC(α + α′), ϕ) =
f(FC(α) ∧ FC(α′), ϕ) and f(P (α + α′), ϕ) = f(P (α) ∧ P (α′), ϕ)). Be-
cause of this, function fd will never be passed a clause which is a pro-
hibition or permission of choice. The similar holds for the permission or
prohibition of a sequence where function f will translate the sequence into
what is required now and what is required in a later step making use
of the square brackets operator (f(FC(α · α′), ϕ) = f([α]FC(α′), ϕ) and
f(P (α · α′), ϕ) = f(P (α) ∧ [α]P (α′), ϕ))).

For the obligation of a sequence, the similar holds as for the prohibition
and permission of a sequence, however, when it comes to the obligation of
a choice, we will need to consider it in function fd. Thus unlike prohibi-
tion and permission, with obligation we are required to encode the choice
between actions. Furthermore, this choice may be between concurrent ac-
tions or other choices. Thus the set returned from function fd will contain
elements that show the deontic notions which apply at this point in time.
Each of these elements is in themselves a set and the elements of this set are
the possible choices. Each of these choices is another set where the elements
of this set are the concurrent actions which form the choice. In the case of

82

fd(C1 ∧ C2) = fd(C1) ∪ fd(C2)
fd(O(α&)) = {{Oα&

}}
fd(F (α&)) = {{Fα&

}}
fd(P (α&)) = {{Pα&

}}
fd(O(α + α′)) = {x ∪ y|x ∈ fd(O(α)) and y ∈ fd(O(α′))}
fd(otherwise) = ∅

Table 5.3: Definition of the deontic labelling function fd

prohibitions and permissions, since they will always be the prohibition and
permission of a concurrent action, F (α&) and P (α&), they will always be
labeled with {{Fα&

}} and {{Pα&
}}. We will typically shorten the represen-

tation to Fα&
and Pα&

. The obligation of concurrent actions is similar to the
prohibition and permission and we also typically shorten the representation.
The obligation of choice will make use of the complete structure. Consider
O(α + α′ + α′′), fd(O(α + α′)) = {{Oα, Oα′ , Oα′′}}

Once we create the automaton we check that a contract is conflict free
by ensuring that every state generated is conflict free. The definition is very
similar to the definition given for CL traces.

Definition 5.2.2. Given a state s of an automaton A(C), let D,D′ ∈ fd(s).
We say that D is not in conflict with D′ if and only if there exists at least
one element e of D such that:

If e = Oa then (@ d′ ∈ D′, s.t. d′ = Fa or (d′ = Pb and a#b)) and
D′ ⊆ {Oa|a ∈ A} → ∃Ob ∈ D′ s.t. ¬(a#b))

If e = Fa then @ d′ ∈ D′, s.t. d′ = Pa or d′ = Oa

If e = Pa then @ d′ ∈ D′, s.t. d′ = Fa or (d′ = Ob and a#b).

An automaton A(C) is said to be conflict-free if for every state s ∈ S,
then for any D, D′ ∈ fd(s), D and D′ are not in conflict.

The difference from the CL trace definition is that in this case we are
not doing the analysis for all possible traces but rather go through all the
constructed states. Since the automaton generation procedure will only
generate the required and reachable states, and since the automaton accepts
all possible traces, it is enough to check all the states rather than all the
possible runs.

5.2.3 Correctness of Algorithm

In order to prove corectness of the algorithm, we first need to prove that
the algorithm will accept all and only the traces which satisfy the contract.
Then we shall prove that the algorithm will identify correctly if a contract
is conflict free or not.

83

Lemma 5.2.1. Given a CL expression C, we may build an automaton A(C)
that will accept all and only the traces σ that satisfies the contract, that is
σ ² C. This can be achieved by proving

σ ² C ⇔ σ(1..) ² f(C, σ(0))

We shall prove this by applying induction on the structure of the formula.

Proof. Case C1 ∧ C2

σ ² C1 ∧ C2

⇔ {Definition of Trace Semantics}
σ ² C1 and σ ² C2

⇔ {Inductive hypothesis}
σ(1..) ² f(C1, σ(0)) and σ(1..) ² f(C2, σ(0))

⇔ {Definition of trace semantics (∧)}
σ(1..) ² f(C1, σ(0)) ∧ f(C2, σ(0))

⇔ {Definition of f}
σ(1..) ² f(C1 ∧ C2, σ(0))

Case [α&]C

σ ² [α&]C
⇔ {Definition of Trace Semantics}

α& * σ(0) or σ(1..) ² C

⇔ {Inductive Hypothesis}
α& * σ(0) or σ(2..) ² f(C, σ(1))

⇔ {Definition of trace semantics ([])}
σ(1..) ² [α&]f(C, σ(1))

⇔ {Definition of []}
σ(1..) ² (α& * σ(0) or f(C, σ(1))

⇔ {Definition of f}
σ(1..) ² f([α&]C, σ(0))

84

Case OC(α&)

σ ² OC(α&)
⇔ {Definition of Trace Semantics}

α& ⊆ σ(0) or σ(1..) ² C

⇔ {Inductive Hypothesis}
α& ⊆ σ(0) or σ(2..) ² f(C, σ(1))

⇔ {Definition of Obligation}
σ(1..) ² (Of(C,σ(1))(α&))

⇔ {Opening of Obligation}
σ(1..) ² (α& ⊆ σ(0) or f(C, σ(1))

⇔ {Definition of f}
σ(1..) ² f(OC(α&), σ(0))

The rest of the cases are similar. Refer to Appendix B Theorem B.1 for the
complete proof.

After proving that the automaton A(C) accepts all and only runs that
satisfy the contract we need to prove that the automaton identifies that a
contract is conflict free if and only if C is actually conflict free. An accepted
run of the automaton A(C) is a sequence of states r such that for i =
0 to len(r) ri 6= V . With this definition of a run we accept all traces
which have either satisfied the contract or have not yet violated the contract.
Furthermore, we do not require to check that every state in the run is not
the violating state since by construction we cannot leave the violating state
and thus, we need only to check the final state.

From the definition, A(C) is conflict free if for every run r that is accepted
by A(C), every element D of δ(ri), for i = 0 up till len(r), is not in conflict
with any other deontic notion in the same state. Let D′ be any element of
δ(ri). D is not in conflict if there exists at least one element e of D such
that if

e = Oa → (@ d′ ∈ D′, s.t. d′ = Fa or (d′ = Pb and a#b)) and
D′ ⊆ {Oa|a ∈ A} → ∃Ob ∈ D′ s.t. a\#b)

∧ e = Fa → @ d′ ∈ D′, s.t. d′ = Pa or d′ = Oa

∧ e = Pa → @ d′ ∈ D′, s.t. d′ = Fa or (d′ = Ob and a#b)

This is equivalent to the definition with ts3. Also, the labelling function
fd is equivalent to how the labelling is done in ts3. However, our algorithm
checks that all the states do not have a conflict rather than checking all
possible satisfying runs. In order to prove that this is correct we shall need
to prove that all and only reachable states are generated.

85

Proposition 5.2.2. All and only reachable states are generated by the con-
struction function fc

Proof. By Lemma 5.2.1 we conclude that the construction will construct all
required reachable states. Furthermore, from the construction, only reach-
able states are generated since the states are generated recursively by cre-
ating the state and a transition to that state from an already reachable
state.

Lemma 5.2.3. A contract is identified to be conflict free by the automaton
iff it is actually conflict free

Proof. By Lemma 5.2.1 the automaton can accept all satisfying traces and
thus, by ensuring that no run has a conflicting state is equivalent to ensuring
that every deontic trace does not have any conflicting labels. However our
algorithm does not check every trace but goes through all the states. But
by Proposition 5.2.2 we can conclude that it is equivalent since all the states
created are reachable and thus, all the states will be passed through by at
least one run.

5.3 Related Work

When it comes to conflict analysis, no work was found that does this auto-
matically as in this work. However, in [34] we find a method for generating
an automaton from the trace semantics aimed at monitoring. The automa-
ton generated is different from the one generated in this work and cannot
be used for conflict analysis. Furthermore, as we shall see in Chapter 6 we
may create a monitor directly from the automaton generated in this work.

In [48], a Labelled Transitions System (LTS) is generated in an ad hoc
manual manner in order to be model checked with LTL formulas. We may
translate the automaton generated from a CL contract into an LTS auto-
matically. Thus we automate the generation of an LTS from a CL contract
thus the method specified in [48] all automated. However, in [48] the full
branching semantics is used and by using this method, we may not translate
automatically the branching semantics. In this case, the branching portions
of the formula would have to be done manually.

5.4 Conclusion

This chapter was split into two parts. In the first part we showed why
the trace semantics presented in [34] were not enough for determining that
a contract is conflict free. We then proceeded with the extension of this
semantics, first to ts2 and then to ts3 once we had shown why ts2 was still
not adequate.

86

The second part of the chapter started with a formal definition of what
a conflict free contract is. This was defined making use of the semantics
specified in the previous section. We then defined a function which would
create an automaton that accepts all and only traces which satisfy the con-
tract and defined a method to ensure that a contract is conflict free on this
automaton. We finally proved that the automaton does in fact accept all
and only non violating traces and that the conflict analysis is correct.

In the next chapter we shall show how by using the automaton generated
in this chapter we may make further analysis on the contract. Thus, we not
only are able to perform conflict analysis on a contract but by analysing the
automaton we can verify other properties on the contract.

87

Chapter 6

Other Analysis

Once we have created the automaton in Chapter 5 in order to find conflicts,
we can make use of the same automaton to perform other analysis on the
contract. Remember that we are essentially generating an automaton that
accepts all possible traces that do not violate the contract. We also add
certain information to the automaton that will enable us to perform conflict
analysis. All this can be used in order to perform other types of analysis.

After the work taken to generate the automaton, it is logical to try
and apply as many different analysis as possible. As mentioned in previous
chapters, analysing for conflict analysis could be seen as model checking the
contract for a particular property; thus, now we are adding more diverse
properties we can model check for.

6.1 Simulation

Suppose that we are drafting a contract. We would like to check that the
contract behaves as expected in certain situations. We could manually ex-
ecute the contract. This will ensure that the behaviour of the contract is
as expected in these limited number of situations. Thus, this will help in
gaining confidence that the behaviour of a system satisfying the contract is
as expected.

However, when doing this manually, one could easily make mistakes,
or overlook certain clauses; thus, this will result in possibly overlooking
mistakes the contract might have that could then be abused by certain
signatories. However, we can automate the simulation process leaving the
choice of which trace to follow to the user while also ensuring that the
contract is being satisfied.

Once we have generated the automaton from the contract, simulation will
boil down to the execution of the automaton. If we are given the contract
in automaton form, simulation will constitute in moving from one state to
another depending on the desired actions. This simulation could be done

88

Orec Frec

V

payment
receipt

payment

receipt&payment

payment&receipt

receipt

payment

receipt

receipt&payment

Figure 6.1: Automaton generated from [1∗][payment]O(receipt) ∧
[1∗][payment]F (receipt)

manually directly from the automaton; however, we could aid the user even
more if we provide a simpler interface to the automaton. The interface
could be similar to the UPPAAL [3] interface that is used when simulating
the model.

Consider the simple clause ‘You are obliged to issue a receipt on payment,
but you are forbidden to issue a receipt before payment is made’. This could
be represented in CL as [1∗][payment]O(receipt)∧ [1∗][payment]F (receipt).
The automaton that would be generated from this clause may be as seen in
Figure 6.1. The simulation tool would provide the user with the actions that
could be performed starting from the first state. Thus if the user chooses the
payment action, he will advance a step in the automaton, and the interface
will instruct the user that he cannot accept another payment since that
would lead to the violating state and thus, he needs to issue a receipt. This
is exactly the behaviour that the user is expecting in this situation. However,
the user might also notice that in the first step, the simulator is allowing the
user to issue a receipt. This is not the desirable behaviour since the issueing
of a receipt should only be allowed after payment has been received. This
would identify the problem in the contract, where we would need to add the
close which forbids the issue of a receipt in the first step.

Even though this is quite a simple analysis, it would aid during the
drafting and negotiation of contracts. Using simulation we can ensure that
a certain sequence of actions would violate a contract or what obligations

89

will the contract enforce after a certain sequence of actions. This clearly
is very helpful during the design and drafting of the contract. It would
also be a helpful tool to help the signatories of the contract understand the
contract and be more confident that they are signing a contract that ensures
the desired behaviour.

6.2 Monitoring

Monitoring is a technique of observing a live system ensuring that certain
behaviour is adhered to. For example, one could be monitoring internet
traffic in order to identify when a Denial of Service attack is being performed
in order to attempt in counter acting the attack. Monitoring of CL contracts
could be seen as being quite similar to simulation. The difference is that
instead of the user entering the actions we are observing a live system.
Monitoring is a very desirable option once a contract is represented using CL.
It would also be more desirable to have an automated manner to construct
the monitor that will make sure that the contract is abided to. Such a
monitor would ensure that if any obligations are broken then the reparations
are enacted and if not, detect this violation and inform the user.

Since we have the automaton constructed already, what we need is to
make a means to observe the actions from the real-time application. This
may be done by making use of a monitoring framework. Furthermore, this
can be seen as real-time verification since we are verifying that the parties
are not violating the contract while it is enacted.

In our implementation, we provided monitoring by translating the au-
tomaton into Larva [15] code. Larva is a real-time verification system. This
will allow us to write contracts restricting Java programs from which we
automatically generate a monitor. Larva is a framework used to generate
code seamlessly in order to monitor an application written in Java. Using
Larva we can specify the events that are to be monitored. Then, using the
Larva compiler, the Larva model will be translated automatically into the
required Java code. The events will be in the form of method calls, where
when specific methods are called, the event will be triggered which will cor-
respond in the monitor automaton moving to the following state. Larva
makes use of AspectJ [30] in order to observe the events; thus. you could
easily monitor certain specific method calls.

The Larva code will piggy back onto the application, and you specify
an automaton or model which will do the actual monitoring. The monitor
will start in its initial state and move from one state to another depending
on what events are observed. If the monitor ends in a bad state, it is then
up to the user to decide what action he should take. From CL we will be
generating the Larva model automatically.

The definition of a Larva model is split into two parts. We have the

90

S1

Init

S2

V
logout

request

request

login

logout

request

login

logout

login

Figure 6.2: Automaton generated from the CL clause [login
∗]F (request) ∧

[1∗][logout][login
∗]F (request) ∧ F (request) using our implementation. One

should note that this is not the minimal automaton possible. We require
to perform formula simplification in order to have the formulas required to
be satisfied in states 1 and 3 to be identical and thus be able to join them
together

specification of the events where we tie the events to particular method calls.
The events may also have conditions attached to them and also variables.
The second part is the specification of the monitor automaton which is made
up of states and transitions. Transitions in Larva not only have events which
are observed but also conditions which need to be met in order to take the
transition and also actions which are performed when taking a transition.

From CL we automatically generate the specification of the monitor au-
tomaton. One would then have to specify the events by tying the events to
particular methods of the implementation. One should note that Larva does
not support concurrent actions. We will be monitoring a real implemented
system and thus due to practical limitations we cannot really observe a con-
current call to different methods. Because of this we should make all actions
mutually exclusive in order to have transitions with single actions. We may
still represent concurrent actions in CL however we would eventually still
need to tie particular concurrent actions to a single method call or timer
event.

Consider that we want to ensure that a user logs into a system before
being able to request data and also we allow the user to log out. This would
be written in CL as:

[login
∗]F (request) ∧ [1∗][logout][login

∗]F (request) ∧ F (request)

The automaton generated would be as seen in Figure 6.2. From this
automaton we generate the Larva code of Listing 6.1.

91

1 PROPERTY c l c on t r a c t {
2 STATES {
3 BAD { V }
4 NORMAL { S1 S2 }
5 STARTING { I n i t }
6 }
7 TRANSITIONS {
8 I n i t −> S1 [l o g i n]
9 I n i t −> V [reque s t]

10 I n i t −> S2 [logout]
11 S1 −> S1 [l o g i n]
12 S1 −> S1 [r eques t]
13 S1 −> S2 [logout]
14 S2 −> S2 [logout]
15 S2 −> V [reques t]
16 S2 −> S1 [l o g i n]
17 }
18 }

Listing 6.1: This code is generated automatically from the automaton in
Figure 6.2 which is generated from a CL clause

The step which would be left is tying the actions to method calls. This
will need to be done manually since knowledge of the system is required.
Lets assume that in order to login into the system a method named “login”
is called on some object, in order to logout of the system a method named
“logout” would be called on some object whereas the method “requestItem”
is called in order to request information. We specify the events using the
code in Listing 6.2. Using aspect programming the monitoring framework
will be notified when the methods login, logout or requeast are called on
any object.

1 EVENTS{
2 l o g i n = {∗ . l o g i n () }
3 logout= {∗ . l ogout () }
4 reque s t= {∗ . r eque s t () }
5 }

Listing 6.2: We specify the events in order to tie the CL actions with actual
method calls.

Thus in this example, the monitor will start in the initial state. Once
a method ‘login’ is called on any object, the monitor automaton will move
from state Init to state S1. If this is followed by a call to a ‘logout’ method
followed by a ‘request’ method, the monitor will end up in state V which
is a bad state and it will be up to the user to implement what code to be
executed by the monitor on the behalf of the application. It is important to
note that when implementing the system, one would not need to have any
knowledge that a monitor is going to be ensuring properties on the execution

92

og the system thus the development of the application will not incure any
penalties. Furthermore, the monitor can be seen as an extra precaution
which could eventually also be seemlessly removed if deemed not necessary.

Another ideal place for a monitor is as a module inside Enterprise Service
Bus as initially discussed in the Preface. This would directly apply in the
world of service oriented architecture. We have not implemented such a
module yet however we will discuss this in the case study in Chapter 8.

6.3 Contract Queries

It would be an attractive feature to have the ability to ask/query the contract
for certain information. Simulation can be seen as a form of a simple query.
Given that the contract is in a certain state and that a certain action has
been performed, in what state will we be then? This, even though practical,
is quite limited, and using the automaton we have generated we can obtain
more information.

Consider we have a contract in place and we know that in certain sit-
uations we would be obliged to pay a fine as some form of reparation. It
would be very useful to check which are the possible traces that would lead
to being obliged to pay this fine. Given that we have the automaton already
generated, we can obtain an automaton that will generate all the traces that
would lead to the contract obliging the signatories to pay the fine. This can
be done by first finding all the states that oblige the payment of the fine, and
go through the automaton in reverse order until the start state is reached.

The query could be made starting from a different state rather than the
start state, and ask for example how, given that we have already performed
a number of actions, shall we satisfy the contract, and this will return all the
possible traces that would lead in the contract being satisfied. Thus querying
the contract is helpful both during the initial drafting of the contract but
also while the contract is already in effect.

Lets take as an example a betting company which is requesting a software
house to develop an online betting solution to the following specification:

1. 24 hours before the match, the link for betting on the match should
be made available on the main page.

2. After the link is made available, every bet request should be accepted
and processed.

3. 1 hour before the start of the match, the link for the betting on the
match should be removed.

This would be translated in CL as:

1. [24hoursbefore]O(placeLink)

93

2. [placeLink][1∗][betRequest]O(processBet)

3. [1hourbefore]O(removeLink)

This contract would then translated into an automaton and then we may
query the contract. A particular query which one would make is to list
all traces which lead in the application being obliged to process a bet.
This would result in traces of the form {24hoursbeforegame · placeLink ·
betRequest} which are correct, however there are others which suggest
an undesirable behaviour. Another trace returned would be {placeLink ·
betRequest} which shows an undesirable situation, where the link is be-
ing placed earlier than 24 hours before the match. This could be fixed
by adding [24hoursbefore

∗]F (placeLink) ∧ F (placeLink). After this ad-
justment we apply the same query. From the traces returned we see that
the previous problem has been solved, however we see traces of the form
{24hoursbeforegame · placeLink · 1hourbefore · removeLink · betRequest}.
This is also an undesired behaviour. Even though the link has been removed
from the page, somebody might still have the link visible on the web page
and click on it to place a bet less than one hour before the match. The con-
tract needs to also enforce that once the link is removed, we are forbidden
to process bets. To solve this problem we need to change the second clause
to:

[placeLink] ([removeLink
∗][betRequest]O(processBet)∧

[removeLink][1∗]F (processBet))

One should note that using only quering will not ensure that a contract
is correct. In large contracts, the traces returned could be quite long and
numerous to analyse manually. An even better solution would be model
checking contracts, however up till now, this has not been implemented for
CL. However, this example shows that it is a viable help during the drafting
of a contract.

6.4 Reachability Analysis

A desirable property that a contract should have is that all the obligations,
prohibitions and permissions that are explicitly specified in the contract can
actually be enacted. Consider the contract F (a)∧ [a]O(b). The only way to
ever be obliged to perform b is by first observing a, however this would break
the prohibition of performing a and since it has no reparation the contract
is violated. Thus we could never be obliged to perform b since the contract
would have already been violated.

Such a situation is not desirable and would typically mean that there
is a mistake in the contract. Thus it would be desirable to ensure that all
the obligations, prohibitions and permissions in the contract are reachable
without violating the contract, if not, either that normative requirement is

94

not needed, or we have a mistake in the other deontic notions preventing we
to reach the situation where the norm is enacted.

We could ensure that this property holds by making use of the automaton
generated. Since we only generate the states that are reachable without
violating the contract and we are labelling the states with the deontic notions
that apply in that particular state, we could ensure this property by listing
these norms and go through the automaton ensuring that there exists at
least one state labelled with each of the norms. The automaton generated
for F (a) ∧ [a]O(b) in Figure 6.3 will identify that the obligation to perform
b is never reached since there is no state labelled Ob.

Fa

0
b

a
ab

Figure 6.3: The automaton generated for F (a) ∧ [a]O(b) has no state la-
belled Ob. Thus not all the normative notions required by the contract are
reachable

At first glance one might think that this type of analysis would be
enough. However, consider the contract F (a)∧ [a]O(b)∧ [b]O(b). This would
generate the automaton in Figure 6.4. If we use the method as described
before, the list of deontic notions in the contract would be F (a) and O(b)
and thus, the algorithm will search the automaton that there exists at least
a state that has the labels Fa and Ob. Since there does exist a state la-
belled with Fa and also Ob, the algorithm will erroneously say that all the
deontic notions are reachable missing that the obligation to perform b after
observing a is not reachable.

Fa

Ob 0

1

b
a

b

ab

ab

a

Figure 6.4: Using the automaton generated for F (a)∧ [a]O(b)∧ [b]O(b) as is
cannot be used to identify that the obligation that should be enacted after
observing a is not reachable

95

In order to solve this problem, we shall need to make some minor changes
to how we construct the automaton. We need to identify between the obli-
gation to perform b after observing a b and the obligation to perform b after
observing an a. This could be done by adding an index to the normative
notions that are identical in order to be able to distinguish between them.
Thus we would now have F (a), O(b)1 and O(b)2 that will be labelled accord-
ingly and now using the automaton we can find that there is no reachable
state that is labelled with Ob1.

6.5 Superfluous Clauses

The first question to answer is what is meant by superfluous clauses. Con-
sider the contract [a]O(b) ∧ [a&b]O(b). It should be clear that the clause
[a&b]O(b) is not required since [a]O(b) → [a&b]O(b). This is not desirable
since a contract with such clauses is more complicated than necessary and
is surely not minimal. Furthermore, such situations may cause confusion
when interpreted or might also be a mistake. Consider the contract “If the
luggage weighs more than 15kg then the client is obliged to pay extra. If
the client has a priority boarding and his luggage weighs more than 15kg
then then client is obliged to pay extra”. The equivalent contract would
be [> 15]O(pay) ∧ [priority& > 15]O(pay) which would similarly have the
second part of the contract redundant. The problem with this is that it
might confuse readers. The readers will try and understand why there is
this redundancy and start to wonder if they understood well or not since
they would expect that there are no repetitions in the contract or whether
if with priority boarding you have a different price list.

Such an analysis could also aid in finding a mistake during the drafting
since this redundancy could have been a mistake. Even though these ex-
amples were quite simple and easy to spot, in a real situation the contract
would be more complicated and thus it would be ideal if we could perform
this check in an automated way.

This could be achieved using the automaton generated automatically
from the clause using the extension we discussed in the previous section.
This mainly entails that we index the deontic notions in order to be able to
distinguish between the different parts of the contract that have the identical
deontic requirements.

Consider the initial contract we were using as an example, [a]O(b) ∧
[a&b]O(b). This would generate the automaton in Figure 6.5. We should
note that typically the states labelled Ob1 and Ob12 would typically be
grouped as one and the information encoded. We split them up in this
example in order to simplify the explanation.

In order to find superfluous clauses we need to go through the states.
If all the states that are labelled by a certain label are also labelled with

96

Ob1 Ob12

a
ab

0

1a
a

b,ab

b,ab b

Figure 6.5: Automaton generate from [a]O(b) ∧ [a&b]O(b).

another label that has the same semantic meaning but with a different index
then that clause is redundant. Considering this example. All the states that
are labelled with Ob2 are also labelled Ob1; however, not the converse. Thus
now we know that Ob2 is contained in Ob1. We could now notify the user and
leave it up to the user to decide between fixing it manually, or automatically
remove all the sub clauses that contains the second obligation.

Furthermore, we can also check that the change has preserved the overall
behaviour, that by removing the superfluous clause, the same behaviour is
still kept. This can be done by comparing the new automaton generated
and it should be identical to the original one without the presence of the
superfluous clause label.

6.6 Overlapping Clauses

Superfluous clauses may be seen as a special case of overlapping clauses.
Overlapping clauses are clauses that enforce the same action at the same
time. However, unlike superfluous clauses, one clause does not necessar-
ily contain the other, so unlike superfluous clauses, we cannot simply re-
move the contained clause. An example of an overlapping clause would be
[a]O(b) ∧ [b]O(b). The presence of overlapping clauses does not necessarily
mean that the contract should be fixed; however, in certain circumstances
it would make the contract easier to read, for example [a]O(b)∧ [b]O(b) may
be translated into [a + b]O(b). Although this has the same meaning it is
much easier to read.

Figure 6.6 shows the automaton constructed for [a]O(b)∧ [b]O(b). Please
note that typically, the nodes bounded by the dotted line would be joined in
a single node since they have the exact same formulas yet to be processed.
The information about the overlapping would be encoded inside the node. It
is clear from the image where the overlapping is occurring since it is labelled

97

Ob1 Ob2Ob12

1 0

a ab b

b,ab
a a

a

b,ab
b,ab

Figure 6.6: Automaton constructed for [a]O(b) ∧ [b]O(b).

with the obligation from two different parts of the contract.
This tool would again aid during the drafting of the contract. Consider

the Contract “If one has a business class ticket we are permitted to visit
the VIP lounge. If one has a gold card you are permitted to visit the VIP
lounge”. In this case we have an overlap if the traveller has both a business
class ticket and a gold card. This shows that this case of overlap cannot
be described as wrong (unlike the special case of overlap where one clause
is contained in another), however, the contract can be made smaller and
possibly more clear by changing it to “If one has a business class ticket or a
gold card, you are permitted to visit the VIP lounge”.

We should note that a superfluous clause is a special case of overlapping
clauses where one clause overlaps entirely another clause. We make this
distinction between superfluous and overlapping clauses because typically
superfluous clauses identify a mistake in the contract whereas overlapping
clauses identify possibilities to improve the representation of the contract
but most not an error in contract.

6.7 Related Work

The trace semantics used in order to create the conflict analysis was obtained
from [34] in which they proved that it is possible to translate a CL clause into
an automaton. However, they have not implemented the solution and they
focused on monitoring instead of conflicts. The theory they used in order to
generate the automaton, even though fundemantally similar to eachother is
taken from a different point of view. Furthermore, they do not identify any
other forms of analysis apart from the generation of the monitor.

98

6.8 Conclusion

In this chapter we saw a number of other tools and analysis we can obtain
once we generate the automaton from the contract. The first three sections
describe techniques where we make use of the automaton to get further
information from the contract about its behaviour. This information could
be used by humans in order to simulate the contract or query for certain
properties or by machine in order to automatically monitor the contracts.

The last three examples are tools to identify certain undesirable prop-
erties that will help the user to simplify and clarify the contract. It is
important to note that this simplification is being automatically done when
we translate the contract into automaton form. In the reachability analysis,
situations that can never be reached are removed from the automaton. In
superfluous clauses and overlapping clauses analysis the states are joined to-
gether automatically so that no extra states are produced. Thus, these three
simplifications would have been gained automatically if we could translate
the automaton back into contractual form. So we could see that the au-
tomaton is actually the canonical form of the contract and thus, if we could
generate the clauses from the automaton we would effectively be simplifying
the contract. We are not claiming that we would get the minimal contract
possible, but as could be seen in the previous sections, we would simplify
certain situations. However, this analysis was not part of the study, even
though we believe that it is possible.

99

Chapter 7

CL and Other Logics

From the semantics given in [55] we know that CL can be represented using
an extension of the µ-calculus called Cµ. However even though this helps
us with defining the semantics it still poses a difficulty when it comes to
representing and understanding these semantics. A useful question to answer
is “Is there any other logic that could be used to reprsesent CL?”. If so, we
might even be able to verify other properties or make use of tools that have
already been implemented for these logics.

As seen in the Chapter 2, µ-calculus can be referred to as a temporal
logic. Furthermore, there are less expressive temporal logics like CTL* and
LTL. So a question that we might ask is what subset of CL can these logics
represent since if the properties we would like to describe fall into these
subsets then we can translate the CL clauses into these logics and then
leverage on the tools already present for these logics. For example we could
make use of LTL model checking if we are able to translate the CL clauses
into LTL. First lets start by looking at CTL* being more expressive than
LTL.

7.1 The Relationship between CL and CTL*

Using CTL* we believe that we can represent the trace semantics of CL.
Furthermore, we can also represent the branching part of the full semantics
of CL. The following is a translation function from CL to CTL*.

100

f(⊥) → false

f(>) → true

f(α&) →
∧

αp

f(α&) → ¬
∧

αp ∧
∨

Prep

f(C1 ∧ C2) → f(C1) ∧ f(C2)
f(C1 ∨ C2) → f(C1) ∨ f(C2)
f(C1 ⊕ C2) → (f(C1) ∧ ¬f(C2)) ∨ (f(C2) ∧ ¬f(C1))

f([α&]C) → (f(α&) ∧Xf(C)) ∨ f(α&)
f([β · β′]C) → f([β]f([β′]C))

f([β + β′]C) → f([β]C) ∧ f([β′]C)
f([α∗]C) → f(C)U¬f(α)

f(〈α&〉C) → EX(f(α&)) ∧Xf([α&]C))
f(〈β · β′〉C) → f(〈β〉f(〈β′〉C))

f(〈β + β′〉C) → f(〈β〉C) ∨ f(〈β′〉C)

f(OC(α&)) → X(f(α&) ∨ (¬(f(α&)) ∧ f(C)))
f(OC(α · α′)) → f(OC(α)) ∧ f([α]OC(α′))

f(OC(α + α′)) → f(O⊥(α)) ∨ f(O⊥(α′)) ∨ (¬(f(α) ∨ f(α′)) ∧ f(C))
f(FC(α&)) → X(¬f(α&) ∨ (f(α&) ∧ f(C)))

f(FC(α · α′)) → f(F⊥(α)) ∨ f([α]FC(α′))
f(FC(α + α′)) → f(FC(α)) ∧ f(FC(α′))

f(P (α&)) → EXf(α&)
f(P (α · α′)) → f(P (α)) ∧ f([α]P (α′))

f(P (α + α′)) → f(P (α)) ∧ f(P (α′))

As one can see we can also define Permission and also 〈〉. The syntax
of CL has been changed since the first publication where the semantics in
µ-Calculus was given and no new full semantics has been given. If we take
the trace semantics together with the original definition of Permission and
〈〉 we can show that they accept the same trees of actions. One should note
however, that in the original branching definition the deontic notions were
placed after the action and not before. This was initially done in order to
have a deterministic model; however, we moved the deontic notions before
the action that will satisfy/violate the notion. This occurs when we created
the automaton while still keeping the model deterministic.

101

7.2 The Relationship between CL and LTL

Let us first start by defining the modal operators. Obligation and prohibition
are quite straight forward. if O(x) then x must hold whilst if F (x) then ¬x
must hold. Permission is slightly more tricky, but we can see permission as
the negation of prohibition, so P (x) can be defined as ¬F (x) but F (x) is ¬x
so P (x) is ¬¬x which is x. Unfortunately here we see that now O(x) and
P (x) are the same thing, but as discussed earlier, if one has the permission
to do x it does not necessarily mean that he is also obliged to do x.

Permission adds some form of branching notion. If we have permission
to do action x in a certain state we want to have at least one path that
does x but we do not need that every path does x like an obligation would
demand. LTL cannot be used to describe such notions and thus LTL cannot
be used to describe CL since it is not able to describe branching. However,
we believe that the trace semantics of CL can be represented using LTL.
The following is a function that will translate the trace semantics of CL into
LTL.

f(⊥) → false

f(>) → true

f(α&) →
∧

αp

f(α&) → ¬
∧

αp ∧
∨

Prep

f(C1 ∧ C2) → f(C1) ∧ f(C2)
f(C1 ∨ C2) → f(C1) ∨ f(C2)
f(C1 ⊕ C2) → (f(C1) ∧ ¬f(C2)) ∨ (f(C2) ∧ ¬f(C1))

f([α&]C) → (f(α&) ∧Xf(C)) ∨ f(α&)
f([β · β′]C) → f([β]f([β′]C))

f([β + β′]C) → f([β]C) ∧ f([β′]C)
f([α∗]C) → f(C)U¬f(α)

f(OC(α&)) → X(f(α&) ∨ (¬(f(α&)) ∧ f(C)))
f(OC(α · α′)) → f(OC(α)) ∧ f([α]OC(α′))

f(OC(α + α′)) → f(O⊥(α)) ∨ f(O⊥(α′)) ∨ (¬(f(α) ∨ f(α′)) ∧ f(C))
f(FC(α&)) → X(¬f(α&) ∨ (f(α&) ∧ f(C)))

f(FC(α · α′)) → f(F⊥(α)) ∨ f([α]FC(α′))
f(FC(α + α′)) → f(FC(α)) ∧ f(FC(α′))

102

7.3 The Relationship between CL and CTL

Following the previous chapter CTL seems a better candidate for CL since
it allows branching. We shall start again with defining the modal operators.

O(x) , AX(x) (7.1)
F (x) , AX(¬x) (7.2)

P (x) , EX(x) (7.3)

The next step is to check that the Equations 7.1 and 7.2 still hold.
Equation 7.1 holds since if it is always true that in the next step x is true then
it is also true that there exists at least one path where x is true. Furthermore
the converse is not necessarily true since if there exists a path which leads
to x it does not necessarily mean that all paths lead to x. Equation 7.2 is
also true since there exists one path that leads to x being true means the
same as it is not true that all paths do not lead to x. Thus these deontic
notions have successfully been described using CTL.

Unfortunately, CTL cannot specify fairness and liveness constraints un-
like what can be done in CL. There is no way in CTL to represent the
following formula ¤♦O(α). Thus even though it would be helpful to trans-
late certain CL formulas into CTL in order to model check, we believe that it
would be misleading when using formulas using AGAF and AGAF since
they would not have the equivalent meaning to CL. So, we shall refrain
from giving a translation function to the limited subset of CL that could be
represented using CTL.

7.4 Contradiction Analysis using LTL

As seen in Section 7.2, LTL is not as expressive as full CL; however, it is
expressive enough in order to represent the trace semantics. As we already
know, the trace semantics is enough to check for conflicts in contracts; thus,
we can draw some parallels between conflict analysis and the LTL represen-
tation of the trace semantics of CL. Remember that there are many tools
today that model check LTL so we could leverege some of the tools already
present for LTL.

As described before, there are also two types of contradictions that may
occur. First, a contract may always lead to a contradicting state; thus, the
contract can never be satisfied. This type of contradiction is generally a
question of satisfiability. The other contradiction is slightly more compli-
cated. This is when the contract does not necessarily lead to a contradiction,
but it will only in certain situations. In this case, we need to check that
every path will never lead to a contradiction. It is clear that the former
type of a contradiction is a special case of the latter where all paths lead to
a contradiction.

103

7.4.1 Contracts that are not Satisfiable

Contracts that cannot be satisfied are ones that can never be obeyed since
they always lead to a contradiction. Consider the following contract made
up of these three clauses.

�[x]O(y) (7.4)
�[x]F (y) (7.5)

3O(x) (7.6)

This would be translated in LTL as

G(x → X (y)) (7.7)
G(x → X (y)) (7.8)

F(x) (7.9)

When we join these clauses together it is clear that this contract can
never be satisfied since if we satisfy clause 7.6 we do action x and once we
do action x we are both obliged and forbidden to do y. This is a contradiction
and thus, this contract can never be satisfied.

We can make use of a model checker to automate the search for this
contradiction. What we do is check that the conjunction of all the clauses
does not imply false on a free model. So if we make use of SMV we shall
need to declare two boolean variables, x and a, and verify that the following
assertion is true.

G((G(x → X(a)) ∧G(x → X(¬a)) ∧ F (x)) → 0)

Using SMV, this assertion was verified to be true. This means that the
contract is not satisfiable and thus will always lead to a violation. However
this is not always the case as described above. Consider removing clause 7.6.
Now the contract is satisfiable and will not always lead to a contradiction
since if we never perform action x we will never end up in the contradiction.
If we try to verify the implication without F (x) the model checker will return
a trace where x is never true and thus it returns a valid trace. We cannot
use this technique in order to check for the existance of a contradiction.

7.4.2 Satisfiable Contracts with Contradictions

As seen in the previous section, there are situations where the contract can
be satisfied in certain situations but still poses undesirable contradictions
that can crop up in certain situations. In order to find such contradictions we
need to augment our translation from CL to LTL with our modal operators
since in the previous translation we have lost them.

104

We can add a variable for every obligation and prohibition that is true
whenever there is such an obligation or prohibition. So if we consider the
previous example, we need to add three variables, Ox,Oa and Fa. We want
these variables to be true only when there is a modality being enforced and
are not free like the other variables (a and x in this case). However, it is
not easy to control these variables and the LTL formulas start to become
cumbersome.

The first step is to translate the obligation and prohibition to two differ-
ent variables so that now we do not have a contradiction in the LTL formula.
So if we have action a we shall have two variables Fa and Oa and depending
on these variables we assign a value to a. If however both Fa and Oa are
true we then have a contradiction and will set some variable to signify that
the state is in contradiction. We then need to verify that this variable is
never set to true.

Even though the idea behind it is quite simple, the creation of the clauses
are not that simple as it was before since now, unlike before, these variables
inside the obligations are not free anymore. We cannot state that unless
told otherwise Fa and Oa are false. We need to explicitly say this in the
LTL formula. Furthermore, if we have more than one clause dictating the
values of Oa and Fa we have to be careful of overlaps.

CL by default assumes that unless otherwise stated we are not obliged to
do anything. One can also asume that things dictated by the contract are
by default forbidden whilst things that are out of the control of the contract
are permitted. This gives us a kind of hierarchy which to represent in LTL
can become cumbersome.

7.4.3 Automata Theoretic Approach

In order to look for contradictions we can make use of an automata theoretic
approach. We should be able to create a Büchi automata since we are
translating the CL formula into LTL. During this translation we then can
look for states where we have contradicting atomic propositions.

Usually when LTL formulas are translated into Büchi automata for
model checking these states are discarded since no such language can be
accepted. In our case we have to keep these contradictions in order to anal-
yse which clauses lead to these contradictions.

Care however must be taken since certain contradictions need to be re-
moved when dealing with the disjunction. The way the algorithm works,
when a node is found with a disjunction it is split into two nodes, one with
each possibility. In this case there could be the situation that one of the
conditions leads to a contradiction but since we have a disjunction we can
simply remove that state since overall the formula is still true.

105

Translating CL into LTL for Contradiction analysis

As discussed before, LTL cannot be used to describe CL formulas; however,
in certain situations, LTL could be enough. As described before, CLclauses
cannot be translated into LTL because of its branching features, the P and
〈〉 operators. However, in the case of contradiction analysis we can omit
branching as discussed in Section 5.1.1. We are analysing the contract for
possibilities which lead to contradictions. We do not need to check that
when we have P (a) there exists a transition which performs a but what will
happen when we take this transition; will it lead to a contradiction or not.
The same holds for the 〈〉 operator. We do not care that there exists a
transition that can do that sequence of actions but we want to check that if
they are taken there will not be any contradictions.

This means that we can translate P (a) to a or not a and 〈a〉x as (a →
Xx). So adding these translations to the one described in Section 7.2 we can
now translate any CL formula into LTL. Even though we are loosing certain
semantic meaning from the original formula, we are retaining enough for our
purpose.

Furthermore, we need to preserve the deontic information in order to be
able to find conflicts in satisfiable contracts. Similarly as we have done with
the trace semantics of CL we need to augment the LTL trace semantics with
the deontic notions; thus, we shall add variables in order to represent the de-
ontic information. These variables will take the form of Oα&, Fα& and Pα&

which signify that in this state one is obliged, prohibited or permitted to per-
form these actions. Thus, the translation into LTL will be slightly modified
where

f(OC(α&)) → Oα& ∧X(f(α&) ∨ (¬(f(α&)) ∧ f(C)))
f(FC(α&)) → Fα& ∧X(¬f(α&) ∨ (f(α&) ∧ f(C)))
f(P (α&)) → Pα&

Furthermore, these variables will have a default value of false, unlike
in typical LTL model checking where unspecified variables are given values
non-deterministically. This notion of a default will move us away from the
standard LTL and that is why we have described this as an extension.

Looking for Contradictions

After translating to LTL we need to generate a Büchi automaton that ac-
cepts only the paths that satisfy the LTL formula. This can be done using
stardard techniques used in model checking. After we translate into the
Büchi automatom, we search for all states that have contradicting deontic

106

notions. Once we find these contradictions we need to return a path showing
what is the sequence of events which lead to a contradiction and also mark
in the original CL formula where the contradiction is.

Lets consider the example [x]O(a) ∧ [x]F (a). In this case if x is never
true, the contradiction never occurs. This would be translated from CL into
LTL as x → Oa ∧X(a) ∧ x → Fa ∧X((¬a)). This is then translated into
negated normal form, in this case removing the implication. Fa∧Oa∧(¬x∨
x∧X(a))∧ (¬x∨x∧X((¬a))). From this, a graph will be generated as seen
in Figure 7.1 and we can see that when the action x occurs this will lead to
a state where a contradiction occurs.

x → Oa ∧X(a) ∧ x → Fa ∧X((¬a))

!x x,Oa, Fa,Xa&X!a

a,!a

Figure 7.1: The formula [x]Oa∧[x]Fa will be translated into this automaton.

We now need to go through the states and look for states that have
contradictions, and in the case of Figure 7.1 we can find a state where both
Oa and Fa are true; thus, this is a conflicting state. We need to show a path
that leads to this conflicting state and also which parts of the original CL
formula that have been violated in order to aid the user adjust the contract.
Because of this we need to keep a reference between the different steps of
the translation.

Viability of this method

Initially, we implemented a prototype using the method as seen in the pre-
vious section. Unfortunately, the initial syntax changed, moving away from
the temporal operators that now would need to be defined using the dynamic
logic operators. This meant that before translating to an extension of LTL,
we needed to translate all the dynamic logic behaviour into its equivalent
LTL formulas making it quite inefficient. Instead we opted to translate CL
directly into an automaton rather than go through this intermediate step,
however, the knowledge obtained during the implementation of the proto-
type was very helpful.

107

7.4.4 Model checking CL using LTL

As described before, CL cannot be fully expressed in LTL since it is not just
linear. However, this does not mean that if we have a model M we cannot
check that it has CL properties using the LTL language. When there is no
branching involved we can use the previous translations and model check
using that. However, when branching is involved it will take a number of
steps to model check.

In order to check for permission, we need to have at least a single path
that lets us do the permitted activity. This cannot be directly described in
LTL but what we can do is change that permission into a prohibition and
check the model for that. If the verification fails, the model checker will give
us a path showing that there does exist a path that permits us to do the
permitted action and thus we know that we are permitted.

The other branching operator is the dynamic logic diamond operator, 〈〉.
Similar to the permission operator, we first need to check that there does
actually exist a path that allows us to perform this action and this is done in
the same way as the permission operator. Then, what we do is change the
diamond operator to the [] operator and model check this new formula that
can now be translated into LTL. One could translate 〈α〉C into P (α)∧ [α]C
which has the same requirements, that there exists a path performing α and
if that path is taken then C must hold.

Even though this “hacking” may permit us to verify that a model obeys
a contract written in CL, we believe that it would be much more desirable
if we do not have to manually be checking parts of the formula but rather
just directly model check the model. This full model checking will be part
of our future work.

7.5 Conclusion

In this chapter we have seen how CL could be represented using other logics.
In the case of CTL* we could translate a CL clause into CTL* where both
formulas will accept the same traces, however, when translating into CTL*
we are loosing deontic information and thus we will not be able to perform
analysis which requires this information, for example conflict analysis. LTL
could be used in order to represent the trace semantics of CLẆe shown how
one could model check certain properties and also how one would perform
conflict analysis using this translation into LTL. This however would require
the encoding of the deontic information, thus making it less feasable than
the suggested solution in Chapter 5.

In the next Chapter we will give a brief overview of the implementation
and also tackle a case study in order to depict how one would use the tool
and techniques discussed in this work.

108

Chapter 8

Implementation and Case
Study

In this chapter we shall go through the implementation of the automatic
conflict analysis of CL. After going through the basic implementation we
shall see how we can improve on our initial implementation of the con-
struction of the automaton from the clauses. This is then followed by the
implementation of a number of different analysis techniques that we men-
tioned in the previous chapters. We then take a brief look at the tool we
have implemented and finally end by going through a case study.

In this case study we show how contracts written in CL could be used
in a real life situation. We also show how automating the analysis of the
contract for certain properties may help during the drafting of the contract.
We shall also see how useful monitoring of the system would be in real life
situations, especially when the monitor is generated automatically from the
CL contract.

8.1 Implementing conflict analysis

From the definition of the algorithm, the automaton we will generate will
be defined as A = 〈S, s0, A&, T, l, d〉 where

S is the set of states

s0 is an element of S and it is the intial state

A& is the set of possible concurrent actions (as defined in previous sections)

T is the set of transitions in the form of S ×A& × S

l is the labelling function labelling the state with the clauses that need hold
at this state.

109

d is a labelling function that labels a state with a subset of Da (as defined
at the end of Section 5.1.1)

We shall also have a special state V that is the violating state; thus, any
trace that will lead to this state will not satisfy the contract.

Ob

Oab

Oa

V

b
a

a a

ab

a,b ab

b b

Figure 8.1: Automaton representing the contract [a]O(b) ∧ [b]O(a)

We shall first see the data structures we use in the implementation fol-
lowed by the actual implementation.

8.1.1 The Data Structures

The main data structure used is the “Node” structure, which can be seen
as a state that is still being processed1. The node structure will be defined
as follows

Definition 8.1.1. A Node n will contain the fields 〈N,O, T, D〉 where:

N is a set of CL formulas that still need to be processed

O is a set of CL formulas that have already been processed

T is a set of outbound transitions where an outbound transition can be seen
as the tuple A&×N . Thus it will contain an action and the node that
the transition will lead to.

D is the set of the deontic notions that apply in this state, and thus will be
a subset or equal to Da.

1A node that is fully processed will be translated into a state.

110

The algorithm will also make use of a stack U that will contain unpro-
cessed nodes and a set S that will contain the processed nodes. We make use
of the stack U instead of using a recursive call as in the original algorithm in
order to avoid any potential stack overflow. Remember that the heap space
is typically much larger than the stack.

8.1.2 The Algorithm

The initialisation and main loop of the algorithm can be seen in Listing 8.1.
The algorithm is initialised by creating a new node and adding the complete
contract2 to this new node (Lines 2-3). This node is then pushed into the
stack that contains the unprocessed nodes (Line 4). After this initialisation
we start the main loop (Lines 5-8) that while the stack U contains nodes,
will pop a node and process the node. Once the unprocessed stack is empty,
that would mean that the processing of the contract is ready after which we
can translate the nodes into states and obtain the final automaton.

1 GenerateAutomaton (CLContract C) {
2 n=new Node
3 n .N={C}
4 U. push (n)
5 while U. hasItems {
6 curNode=U. pop
7 curNode . p roc e s s (U, S)
8 }
9 return translateToAutomaton (S)

10 }
Listing 8.1: The main loop of the algorithm

Before we go into how we are going to process the node we wish to
comment about the structure of compound actions. In [34, 54] the authors
show and prove that any compound action may be translated into canonical
form. For convenience we shall repeat it again here:

Theorem 8.1.1. For any compound action defined in terms of +, & and ·
there exists an equivalent action called the canonical form of the form:
+i∈Iα

i
& · αi, where each αi

& ∈ A&
B and αi is another action in canonical

form.

Furthermore we discussed the extention of the canonical form for the
case of the Kleene star in Section 5.1.3. Once in Canonical form we can look
at an action as a disjunction of actions that must occur now and for each
of these a compound action that needs to hold in the next step. This is a
very helpful way of looking at a compound action while processing the node
since we can translate a compound action α into an array of possibilities

2The compelete contract is the conjunction of all the clauses making up the contract.

111

αi where for each entry we have the atomic actions that need to hold now
(αi.now) and the possible compound or empty actions that need to follow at
the next instance(αi.next). Let us consider the compound action (a&(d +
(b · a))) + (c · (b + (c · a))) that can be translated into the canonical form
(a&d) + ((a&b) · a) + ((c · (b + (c · a)))) which then can be translated into
array form [ad|, ab|a, c|b + (c · a)] where for compactness each element in
the array is of the form now|next. This will help us split the concerns;
thus, we can pass on elements that do not need to hold now to other nodes
which come further down the trace. With regards to the implementation,
we will assume that all compound actions will be represented in this form.
It should be straightforward to see that any compound action written in
canonical form can be traslated into this form.

We shall now look at how we shall process the nodes. The pseudocode
can be found in Listing 8.2. The first thing we do when we start to process
a node is check if the set of new formulas N is empty (Line 2). If it is empty
that means that there are no more formulas to process and thus we can add
this node to the set of finished nodes S (Line 3). If on the other hand N is
not empty, that means that we have formulas still to process.

1 Node . p roce s s (Stack U, Set S) {
2 i f (N. empty ()) {
3 S . add (t h i s)
4 } else {
5 g en e r a t ePo s s i b l eT ran s i t i on s ()
6 while (!N. empty ()) {
7 c=N. get ()
8 i f (c . i sConjunct ion) {
9 N. add (c . l e f tBranch)

10 N. add (c . r ightBranch)
11 } else
12 i f (c . i sOb l i g a t i o n) {
13 addDeont icInfo (O(c . r ightBranch))
14 e l s e i f (c . i sP r o h i b i t i o n) {
15 addDeont icInfo (F(c . r ightBranch))
16 } e l s e i f (c . i sPe rm i s s i on)
17 addDeont icInfo (P(c . r ightBranch))
18
19 f o ra l l t in N.T
20 t . State .N. add (proce s s (c , t))
21
22 N. groupNodes ()
23 N. checkAlreadyProcessed ()
24 N. addNodestoU ()
25 }
26 }
27 }

112

28 }
Listing 8.2: Algorithm for Processing the node

Figure 8.2: This is how the compound (a&d)+((a&b) ·a)+((c · (b+(c ·a))))
would be parsed

Figure 8.3: This is how the formula [a]O(b) ∧ [b]O(a) would be parsed

In order to keep the algorithm simple we generate all the possible transi-
tions and create new nodes at the end of these transitions. This is done with
the method call on Line 5, which will create a transition for each element in
the set A&. Once this is done, we get an element from the set N of formulas
and check which is the root element of the formula. We are talking about
the root element since the formulas have been parsed into a parse tree. In
Figure 8.2 we see an example of a parsed compound action and similarly in
Figure 8.3 we see an example of a parsed CL formula.

The simplest operator to process is the conjunction. When the root of
the formula being processed is the conjunction operator we split the formula
in two (take the left branch and right branch of the parse tree) and add
both formulas to the set N (Lines 8-10). Thus if the set N is equal to
{[a]O(b) ∧ [b]O(a)} once the formula is processed it will then contain two

113

formulas instead of the initial one and will be equal to {[a]O(b), [b]O(a)}.
We can intuitively see why this is the correct behaviour since we want that
both formulas hold in this state.

For the rest of the operators we shall have to call another function. If the
operators are either Obligation, Prohibition or Permission, we add deontic
information to the set D (Lines 13, 15 and 17 respectively).

After this we go through all the possible transitions always calling the
process function and adding the return value to the node to which the tran-
sition leads to. The return value from this function is the formula that is left
to be satisfied in the node following the transition. The code of the process
function can be found in Listing 8.3.

1 Node . p roce s s (Clause c , Trans i t i on t) {
2 Clause t oSa t i s f y1 , t o S a t i s f y 2
3 Clause tmpClause , r epa ra t i on
4 i f (c . i sCon junct ion) {
5 t oSa t i s f y 1=proce s s (c . l e f tBranch , t)
6 t oSa t i s f y 2=proce s s (c . r ightBranch , t)
7 i f (t o S a t i s f y 1==0 or t oSa t i s f y 2==0){
8 return 0
9 } e l s e i f (t o S a t i s f y 1==toSa t i s f y 2==1){

10 return 1
11 } else {
12 return t oSa t i s f y 1 and t oSa t i s f y 2
13 }
14
15 } e l s e i f (c . i s []) {
16 αi=c . l e f tBranch
17 tmpClause=c . r ightBranch
18 f o ra l l a in αi{
19 i f (a.now ⊆ t.Action)
20 i f (a.next 6= ∅)
21 re turn [a.next]tmpClause
22 else
23 return tmpClause
24 else re turn 1
25 }
26 } e l s e i f (c . i sOb l i g a t i on) {
27 αi=c . r ightBranch
28 r epa ra t i on=c . l e f tBranch
29 newαi=new Array ()
30 s a t i s f i e d=f a l s e
31 f o ra l l a in αi{
32 i f (a.now ⊆ t.Action)
33 i f (a.next 6= ∅)
34 newαi . add ([a.next])
35 else
36 s a t i s f i e d=true
37 }

114

38 i f (s a t i s f i e d)
39 re turn 1// Ob l i g a t i on s a t i s f i e d by t a k ing t h i s

t r a n s i t i o n
40 e l s e i f (newαi . s i z e >0)
41 re turn O(newαi , Reparation)
42 else
43 return r epa ra t i on
44 } e l s e i f (c . i sP r o h i b i t i o n) {
45 αi=c . r ightBranch
46 r epa ra t i on=c . l e f tBranch
47 newαi=new Array ()
48 v i o l a t ed=f a l s e
49 f o ra l l a in αi{
50 i f (a.now ⊆ t.Action)
51 i f (a.next 6= ∅)
52 newαi . add ([a.next])
53 else
54 v i o l a t ed=true
55 }
56 i f (v i o l a t e d)
57 re turn r epa ra t i on
58 e l s e i f (newαi . s i z e >0)
59 re turn F(newαi , Reparation)
60 else
61 return 1\\ Proh ib i t i on has been s a t i s f i e d
62 } e l s e i f (c . i sPe rmi s s i on) {
63 αi=c . r ightBranch
64 newαi=new Array ()
65 f o ra l l a in αi{
66 i f (a.now ⊆ t.Action)
67 i f (a.next 6= ∅)
68 newαi . add ([a.next])
69 }
70 return P(newαi)
71 } e l s e i f (c . i sExc lus inveOr) {
72 t oSa t i s f y 1=proce s s (c . l e f tBranch , t)
73 t oSa t i s f y 2=proce s s (c . r ightBranch , t)
74 i f (t o S a t i s f y 1==toSa t i s f y 2==0 or t oSa t i s f y 1==

toSa t i s f y 2==1){
75 return 0
76 } e l s e i f ((t o S a t i s f y 1==1 and t oSa t i s f y 2==0)or (

t oS a t i s f y 1==0 and t oSa t i s f y 2==1)) {
77 return 1
78 } else {
79 return t oSa t i s f y 1 xor t oSa t i s f y 2
80 }
81 }
82 }

Listing 8.3: Algorithm for Processing clauses

115

Looking at Listing 8.3 we would realise that we are again processing the
conjunction operator (Lines 4-14). The first reaction would be to conclude
that, we do not really need both and thus we could remove this and leave
the one in the other function (Listing 8.2). We shall see why we need it
in this function once we take a look at how we process the exclusive or.
We process the conjunction by first processing the left branch by calling
the same function but passing the left branch as a parameter and then
process the right branch. Then, if either result is 0 (i.e. violation) then the
whole conjunction has been violated and thus, we can return 0 as well. If
both are satisfied then we can return 1 (the conjunction has been satisfied)
otherwise, that means that there are still items left to satisfy and thus we
return the conjunction of both. Note that the overall result of how we
process the conjunction here is identical to how we process the conjunction
in Listing 8.2. However, here, we keep the structure of the conjunction (this
will be needed when processing the exclusive or). Note that the algorithm
would still work if we removed the part where we processed the conjunction
in Listing 8.2 (Lines 8-10).

If the operator to process is the square brackets ([α]C) then the left
branch will contain an action and the right branch will contain a clause.
The action has been translated into canonical form and then into the array
form; thus, from α we get αi. To process this (Lines 15-25) we shall need
to go through all the transitions and for each transition we go through all
of the elements in αi and if αi[n].now is a subset or equal to the label of
the transition then we add [αi[n].next]C to the set N of the node to which
the transition leads. If αi[n].next] is empty then we simply add C instead
of adding the empty square brackets. Figure 8.4 shows an example of the
structure generated when processing the square brackets.

Figure 8.4: When processing the [] operator we go through all the transitions
and check which satisfy the requirement inside the square brackets and add
accordingly to the nodes what is left to be satisfied

The next operator we shall look at is the obligation. When an obligation
is parsed its right branch will be the action that is obliged and the left branch
will be the reparation. Processing an obligation is more demanding than the
square brackets (Lines 26-43). Again, we shall need to go through all the

116

possible transitions and check if by taking the transition the obligation is
satisfied in which case we would not need to add anything else to the node.
If however it does not satisfy the obligation then we will need to add the
reparation to the node. If there is no reparation than a violation has occured
thus we add the special marker 0.

This is not as simple since we have compound actions. We shall have
to go again through all the items in the array representation, however this
time we need to keep additional information. To do this we create a boolean
variable “satisfied” that is set to false (Line 30) and an empty action array
“newαi”. If the transition satisfies one of the elements of αi that does not
have anything left to satisfy, then we set the “satisfied” variable to true
(Line 36); thus, signifying that by taking this transition the obligation has
been satisfied. If however, there are actions left to be satisfied then we add
these to “newαi” (Line 34) since the obligation has not been fully satisfied
but has still parts of the obligation to be fullfilled. Once we go through
all the elements of αi we first check if “satisfied” is true, in which case the
obligation has been fulfilled and we do not need to add anything to the state
reached with this transition. If not, we then check if newαi contains any
elements. If so, we add to the node pointed to by the transition the formula
O(newαi) while keeping also the original reparation. If however newαi is
empty, that means that taking this transition will not satisfy (or partially
satisfy) neither of the possible requirements and thus, this transition would
lead to the violating state.

We first check if “satisfied” is set before check if newαi has elements
since there is a disjunction between the elements of αi and so if just one
element is fully satisfied then the whole compound action has been satisfied.

Prohibition is similar to Obligation (Lines 44-61). Instead of defining
a “satisfied” variable we define a “violated” variable that will be set if an
element of αi.now is satisfied by the label on the transition and the element’s
next field is empty. If however the next element is not empty then we add
this to the array newαi. Once all the elements of αi have been processed we
first check if the “violation” variable has been set to true, in which case we
add the violation marker. If not, we then check if the array newαi is empty.
If it is not empty then we add F (newαi) together with the corresponding
reparation to the node pointed to by the transition. If newαi is empty then
that would mean that the prohibition has been satisfied.

Permission is slightly simpler than obligation and prohibition since when
using the trace semantics we cannot know if a permission has been violated
and thus a permission will never lead to a violation. The code handling the
permission can be found between Lines 62 and 70. It will go through every
transition and check which values of the ‘now’ elements of αi are satisfied by
the transition label and add their next value to newαi. Then add P (newαi)
to the node that is pointed to by the transition.

117

The exclusive disjuction is a slightly trickier operator and as discussed
in Section 3.3 has a number of issues however here we will simply try to
model the trace semantics given to the exclusive or. The semantics of the
exclusive disjunction in the original trace semantics were:

σ ² C1 ⊕ C2 if (σ ² C1 and σ 2 C2) or (σ 2 C1 and σ ² C2)

In order to process this we do the same as we did with the conjunction.
We process the left and right branches on their own. Then depending on
the values returned, we either return satisfaction, violation or else return a
new formula that needs to be satisfied. So, if the results from processing
the right and left formulas are either both 1s or 0s then the exclusive or
has been violated and thus, we return 0. If however, one branch is satisfied
and the other is not, then we have successfully satisfied the exclusive or and
thus, we can return 1. If one of the branches has still to be satisfied/violated
(i.e. when processing it, the result was neither 0 nor 1) then we shall take
both results, join them with an exclusive or and return them since that is
the new formula that has to be satisfied in that node.

It is because of this behaviour that we need to process the conjunction
in this way (preserve the conjunction structure). Consider the following
formula C1 ⊕ (C2 ∧C3)3. We cannot simply split the conjunction since it is
inside the exclusive or and thus, we need to keep this structure. When we
process the exclusive or, we first see what is returned when we process C1

and then process the right branch, which contains a conjunction effectively
processing C2 and then C3 and getting back the result of their conjunction.

Once we have seen how we process the formulae we go back to Listing 8.2
where we continue with analysing what nodes have been created. In order
to simplify the automaton and reduce the ammount of processing we have
to do, we can join nodes with identical values in the set N into one node.
This entails the algorithm to go through the set of transitions and compare
the nodes to which they point to. When two identical nodes are found, one
of the nodes is dropped and the transition which pointed to that node is
made to point to the node that was not discarded.

After this, we do the same but this time check if we have already pro-
cessed a node with the same formulae. This is done by going through the set
S of already processed nodes and check if the set O contains the same values
as in the set N of any of the nodes pointed to by any of the transitions. If
there exists such a node, it is dropped and the transition made to point to
the old one.

Finally we add the nodes that are left to be processed to the stack U .
3The syntax allows the exclusive or to reside only between two obligation clauses or two

permission clauses however as discussed in Section 3.3 we may end up having to process
such clauses.

118

8.1.3 Translating Action into Array form

As discussed previously, we are translating an action into this array form
in order to make the main algorithm simpler. We are splitting a compound
action into an array of possible actions, and each element of this array is
split into two, the action that needs to be observed/satisfied now, and the
rest of the action that needs to be satisfied in the next step.

The algorithm assumes that it is given an action that is already in canon-
ical form. The code can be found in Listing 8.4.

1 actionToArray (Action a) {
2 \\a i s a l r eady Parsed and in Canonical Form
3 Stack pStack=new Stack
4 Array act ionArray=new Array
5 Proce s s ing . Push (a)
6 while (! Proce s s ing . isEmpty) {
7 Action a=pStack . Pop
8 i f (a . i sD i s j un c t i o n) {
9 pStack . Push (a . LeftBranch)

10 pStack . Push (a . RightBranch)
11 } else i f (a . i sSequence) {
12 ActionItem item=new ActionItem
13 item . now=a . LeftBranch
14 item . next=a . r ightBranch
15 act ionArray . add (item)
16 } else i f (a . i sConcurrent) {
17 ActionItem item=new ActionItem
18 item . now=a
19 item . next=∅
20 act ionArray . add (item)
21 } else i f (a . i s S t a r) {
22 ActionItem item=new ActionItem
23 item . now=a
24 item . next=∅
25 act ionArray . add (item)
26 }
27 return act ionArray
28 }

Listing 8.4: Algorithm for translating an action into an array

The algorithm starts by creating a stack (pStack) that will contain sub
parts of the action which still need to be processed and the array (actionAr-
ray) which will be the array that is returned with the final result. The
algorithm starts by initialising the array and stack followed by the pushing
of the action to the processing stack (Lines 3-5).

While the stack is not empty, we shall pop an action and process it. If
the root element is a disjuction (+) then we push both the left and right
branches into the pStack (Lines 8-10). The disjunction means that both

119

branches are possible to satisfy the action and that each item in the array
will stand for a possibility; thus, one can see a disjunction between each
entry in the array. We push the branches back into the stack rather than
processing them since it might be the case that there is another disjunction.

If the root element is a sequence then we create a new array element item
and make item.now = a.LeftBranch and item.next = a.RightBranch
(Lines 11-15). We should note that the way we translate into canonical
form restricts sequences to only have a concurrent action in the left branch.
Again, we are preserving the semantics of the actions. There, the action
occuring before the sequence symbol is placed in the now element and the
rest in the next element.

When the root element is a concurrency operator, we create a new array
element item and make item.now = a and make item.next = ∅ (Lines 16-
20). This is quite straightforward since all the concurrent actions must occur
now and thus, the next step is left empty.

If the root element is a Kleene star we simply add it to the array and it
is left up to the rest of the algorithm to process the star.

8.2 Improving Implementation

In this section we shall see a number of improvements that we have made
to our basic implementation. These improvements will not only allow us to
analyse larger contracts but also in shorter time.

8.2.1 Encoding Actions

During the construction of the automaton we are repetitively comparing
concurrent actions together. Consider that we are creating an automaton
for the clause [a]O(b). This will create the first state labelled [a]O(b). Then
we generate all possible transitions and check if a is a subset or equal to
the label on the transition. In this case we do three comparisons between
actions. However note that as the number of actions increases the number
of comparisons will increase exponentially since the possible action combi-
nations will increase exponentially.

By making this comparison as efficient as possible we shall improve the
speed of the algorithm. If we keep actions in the form of a parse tree, a
comparison between concurrent actions would require us to traverse the tree
and compare between the leaves. This will be quite a heavy computation
since we need to list the leaves of one concurrent action and check if the are
present in the other action.

In order to improve on this point we encode concurrent actions as inte-
gers. We do this by assigning a bit position to each atomic action and set
that bit position to 1 when that action is present. Thus if the list of possible
atomic actions is {a, b, c, d}, we would represent action b&d as 0101, which

120

is equal to 5. This will clearly reduce the size of representation since now we
do not have to store the entire tree structure but instead only the number
representing the concurrent action. Let fe be the function that will encode
concurrent actions in this way. Thus given a concurrent action fe will return
an integer (fe : A& → I).

Comparing between actions is also simplified. The comparison that is
mostly used is the subset or equal to (⊆). Suppose we want to check if
α& ⊆ α′&. We perform a bitwise conjunction between fe(α&) and fe(α′&)
and if the result is equal to fe(α&) then α& is a subset or equal to α′&.
Otherwise it is not.

Furthermore, we do not need to stay encoding the actions just before
comparison but we can do this once we translate the contract into canonical
form and thus, will have concurrent actions already encoded.

This encoding will also improve the generation of all possible transitions.
Instead of creating the formulas of all possible combinations of actions we
can simply loop from 1 till the maximum number of combinations (|A|2)
and this will go through all possible actions. This generation of all possible
transitions typically occurs when processing every state.

With this encoding we shall reduce the size of the space required to
generate the automaton and will also make the generation of the automaton
faster.

8.2.2 Generating only required transitions

When processing a node we create all possible transitions and then add what
is left to be satisfied in the following state. The problem is that the number
of transitions will increase exponentially to the number of atomic actions.
Also, each state will have a constant (maximal) number of transitions leav-
ing the state. Thus, if we create an automaton for a clause that has five
different atomic actions and will result in having five states, we shall have
125 transitions. If instead we have 10 different atomic actions and 10 states,
we shall have 1000 transitions. Most of the time this results in having more
transitions than actually required because in most states there will be ac-
tions that will not affect the outcome of the transition. Furthermore, there
will be a number of transitions from one state to another all labelled with
different concurrent actions that will result in the same behaviour.

Consider processing the formula [a]Ob ∧ [b]Oc. If we generate all the
transitions the result would be the automaton in Figure 8.5. We should
note that out of each state we have all possible transitions (we grouped
transitions as ‘otherwise’ in order to make the automaton more readable).

It would be desirable if we could group transitions that go from the
same initial and destination state into one; thus, reducing the maximum
number of transitions. Thus, in the first case we shall have a maximum
of 25 transitions whereas in the second case we would have a maximum

121

[a]Ob,[b]Oc

Oc

Ob

V

Oc,Ob

a

a&c

b
b&c

a&b&c
a&b

a&b
b&c

b

a&b&c

otherwise

c&b
a&b&c

otherwise

a b
a&b

otherwise c

Figure 8.5: Automaton generated for [a]Ob ∧ [b]Oc with all the transitions
being created.

of 100 transitions. In the case of the [a]Ob ∧ [b]Oc, instead of generating
the automaton in Figure 8.5 which has a total of 54 transitions we would
generate the automaton in Figure 8.6 which has a total of 12 transitions.

This will however require us to possibly label transitions not only with
concurrent actions but we shall also have to encode choice. This will also
make the automaton more complex to execute. Instead we can go for a
solution which is a compromise between the two. We will reduce the number
of transitions while still keeping transitions labeled only with concurrent
actions (i.e. integers since we are encoding the concurrent actions).

Instead of creating all the transitions before we start processing the
node, we generate only the required transitions and states as we process the
node. Consider processing the initial node where P = [a]Ob, [b]Oc. We start
without any transitions and add new transitions as required while processing
the sub formula. When processing the first sub formula we add a transition
with a and place Ob in the new node. However when we process the second
sub formula we cannot simply add a transition with action b and add Oc
to the new node. We shall have to go through all the transitions already
created and create a transition that is a combination of both actions. In
this case we shall need to create a transition a&b and add both Ob and Oc
to the new node. The result can be seen in Figure 8.6.

When traversing the automaton we shall now need to take the transition
with the maximal possible match. Consider that we are in the first state of
the automaton in Figure 8.6 and the action a&b is observed. Even though
actions b and a are a substet of a&b we cannot take the transitions labeled
with these actions since there is another transition labelled with a&b that
is a better match.

122

[a]Ob,[b]Oc

Oc

Ob

V

Oc,Ob

a

b

b

otherwise

c&botherwise
otherwise

c

otherwise
a&b

Figure 8.6: By creating only the necessary transitions the corresponding
automaton for [a]Ob ∧ [b]Oc is much smaller.

8.2.3 On-the-fly conflict analysis

Another viable possibility when the automaton for the contract is too large
to analyse is to make the conflict analysis on the fly. Instead of generating
the automaton first and then analysing the contract for conflicts we may
check for conflicts once a node has been processed since it would already
be labelled with the deontic requirements in that state. Furthermore we
do not need to store transitions between states. We only need to store the
sub formulae which have been processed and the formulas which are yet to
be processed. We need to store the sub formulae that have already been
processed in order for the algorithm to terminate.

If the contract has a conflict, it may identify that the contract has a
conflict before all the reachable sub formulae have been analysed. However,
since we have not generated the automaton we shall only have a listing of the
conflicting sub formula and we are not able to generate traces that lead to
the conflict. This method would fit well in order to ensure that a contract
is conflict free. However, the types of analyses possible are limited when
compared to the generation of the entire automaton.

8.3 The Tool

From the description given in the previous section, the tool developed per-
forms conflict analysis, superfluous clause analysis and also generation of
Larva code. The tool implemented has got a graphical user interface in
order to make it accessible even for non computer scientists who are used
to have this kind of friendlier interface. In Figure 8.7 we can see a screen
shot of the application. One can add clauses to the contract by entering the

123

clause in the top text box and clicking on the add clause button. The clause
will then be placed in the list view shoing all the clauses. In order to remove
from the list, select and click on the remove clause. Once the contract is
ready for analysis click on Analyse. The results will be displayed in the text
area below together with other information like a textual representation of
the graph and also the code generated for LARVA.

To add conflicts you enter the conflict using the ‘#’ symbol as a seperator
between actions, and similar to the conflicts use the appropriate buttons
ot add and remove mutually exclusive actions. There is also the option to
shorten transitions which will group certain actions into an ‘otherwise’ group
in order to reduce the number of actions visible.

After we click the analyse button we may choose to generate the au-
tomaton or the parse tree. These will be displayed on the appropriate tabs
an example of which can be seen in Figure 8.8. This is the automaton gen-
erated for the contract [c]O(b) ∧ [a]F (b) which has a conflict and the state
in which the conflict is present is marked red.

Figure 8.7: Screen shot of implemented tool

The appropriate syntax to be used is can be found in Table 8.1.

8.4 Case Study

With this case study we are going to show how straight forward it is to
create a contract using CL. We also show how valuable it is to look for

124

Figure 8.8: Automaton generated for [c]O(b) ∧ [a]F (b)

CL syntax Tool equivalent
C ∧ C CˆC
C ⊕ C C-C
OC(a) O(a) C
FC(a) F(a) C
P (a) P(a)
[a]C [a]C

[a · b]C [a.b]C
[a + b]C [a+b]C

[a]C [!(a)]C

Table 8.1: Syntax to be used when defining contracts for application

conflicts, superfluous clauses and reachability all of which are automated
once the description is in CL. Furthermore, we shall show how queries and
simulation can be used in order to help the understanding of the contract
and to increase the confidence in the contract. We will finally see how
monitoring could be applied once the contract has been signed and put into
action.

The approach taken is that we start with a draft of a contract written
in english. From this contract we create a CL representation of this same
contract. Using the tool and techniques described in this work we analyse
the contract and incrementally improve the contract in order to fix any errors
the contract might have. Once we are satisfied with that the CL contract is
what is actually required by the signatories, we then translate it back into
its english, textual representation.

125

8.4.1 The Scenario

We are going to take a look at the airline industry. Consider that we have
two players in this scenario, the airline company and a company taking care
of the ground crew (mainly the check-in process) This is a typical scenario
for small airline companies when operating from large airports.

In such a situation each party would like to protect itself and this is done
by writing a contract. The airline company would like to give enough time
for its clients to check-in so that the travellers can comfortably check-in in a
reasonable amount of time without incurring having to wait in long queues.
Also, the airline wants to have the plane ready for takeoff on time since any
delays would possibly mean having to pay liabilities to the travellers that
miss connecting flights. In order for the luggage to be loaded on time the
loading crew would need to get the information of all luggage weights and
the luggage themselves in time to balance the containers with the luggage
and load the luggage themselves. All these requirements will fall on the
check-in company. The check-in company is required to open the check-
in desk two hours before the flight leaves giving passengers ample time to
check-in, without having the problem of long queues that end up delaying
the flight. Furthermore, they are required to close the check-in desk and
send the luggage information to the loading personnel 20 minutes before the
flight has to leave.

After this brief introduction we are going to see what points should be
written in the contract. The airline would require the ground crew to open
check-in desk two hours before the flight leaves and the ground crew would
require that the airline provides them with the passenger information once
the check-in desk is open. Furthermore, the airline would require the ground
crew to check and confirm that the passport details match the passenger
details on the ticket and that the luggage weighs within the required amount.
If the luggage weighs more, then they are obliged to charge the passenger
extra. The ground crew is also obliged to send all the luggage information
and luggage 20 minutes before the flight leaves. The reparation to each of
these requirements would be in monetary form (payment of a fine).

At the centre of this system is a messaging hub (Enterprise Service Bus),
managing the routing of information between the three parties. When open-
ing the check-in desk, a request is made to the hub to get all the passenger
information from the airline system. Once we close the check-in process
the passenger information and luggage information is sent to both the air-
line system and the loading system. Since all these messages are passing
through the message hub, we can place a monitor inside the Service Bus
which could make sure that the contract is adhered to and will automati-
cally detect violations and will then inform the respective central offices in
order to impose the monetary reparations.

126

8.4.2 The Contract

The first step would be to draft a candidate contract. This will be followed
with the analysis of the contract in order to ensure that it has no conflicts
and also to refine and improve the contract. We will then see how we would
generate a monitor directly from the contracts.

Contract between airline and ground crew

1. The ground crew is obliged to open the check-in desk and request the
passenger manifest two hrs before the flight leaves.

2. The airline is obliged to reply to the passenger manifest request made
by the ground crew with the passenger manifest

3. After the check-in desk is open the check-in crew is obliged to initiate
the check-in process with any customer present by checking that the
passport details match what is written on the ticket and that the luggage
is within the weight limits. Then they are obliged to issue the boarding
pass

4. If the luggage weighs more than the limit, the crew are obliged to collect
payment for the extra weight after which they are obliged to issue the
boarding pass

5. The ground crew is obliged to close the check-in desk 20 minutes before
the flight is due to leave.

6. After closing check-in, they are obliged to send the luggage information
to the airline.

7. If any of these obligations are violated a fine is to be paid

This contract will regulate on how the ground crew will handle the clients
of the airline agency. One should find all the information discussed in the
description of the case study described in some form or another in the con-
tract.

Before giving the CL representation, we need to define the actions that
are going to be used in the contract. Up until now, we have not been
doing this when defining contracts in CL since all the examples given where
straightforward. However, defining the actions is required when defining
contracts using CL since the actions are to be defined by the users. The
definitions of the actions may be found in Table 8.2.

The contract could be represented in CL as follows:

1. [2hrs]OO(fine)(openCheckIn&requestInfo)

2. [requestInfo]OO(fine)(replyInfo)

127

Action Definition
2hrs This action is observed once it is 2 hours before the

flight leaves
fine A monetary fine is to be paid
openCheckIn Ground crew opens the check-in desk
requestInfo Ground crew requesting passenger information

from airline
replyInfo The airline sends the passenger information to the

groud crew
correctDetails A traveller with the matching passaport and ticket

details is checking-in
luggageInLimit The weight of the luggage is within the desired limit
boardingCard Ground crew issues a boarding card to the traveller
collectPayment Ground crew collects payment due to the luggage

being over the weight limit
20mins This action is observed once it is 20 minutes before

the flight leaves
closeCheckIn Ground crew closes the check-in desk
sendLuggageInfo Ground crew sends the information about the

checked-in luggage and passengers to the airline

Table 8.2: Action definition of contract being used for the case study

3. [openCheckIn][correctDetails&luggageInLimit]
OO(fine)(boardingCard)

4. [openCheckIn][correctDetails&luggageInLimit]
OO(fine)(collectPayment · boardingCard)

5. [20mins]OO(fine)(closeCheckIn)

6. [closeCheckIn]OO(fine)(sendLuggageInfo)

8.4.3 Analysing the Contract

After producing the first draft of the contract, we shall make use of the tools
we developed in order to analyse the contract and fix any problems in the
contracts that the tools may detect.

The first step would be to input the contract into our tool and analyse it
for conflicts. This will then be followed by analysing the contract for conflicts
and for reachability of all the deontic restrictions. This step is performed
after every change made to the contract. As is, this contract does not have
any conflicts which is good. However, that does not mean that it has the
desired behaviour. If we query for non violating traces which have an action

128

which is boardingCard (which stands for issuing a boarding card) we realise
that we have traces where a boarding card is issued without checking that the
client has the correct details. This is a huge security risk which surely is not
desired. In order to fix this issue we need to add a clause which ensures that
we cannot issue a boarding card without first confirming the correct details.
We will thus add the clause [correctDetails]F (boardingCard). When we
execute the same query again in order to check that the problem has been
solved we realise that this however has not solved the security issue. We need
to enforce that this clause holds in all the states not just the first one and thus
we need to modify it to [1∗][correctDetails]F (boardingCard). This is again
not enough since we will notice traces which immediately start witch issuing
the boarding card. In the first state we are not actually prohibiting the issue
of the boarding card. We only have a formula which states that if the correct
details are not shown then a boarding card cannot be issued. We will need
to add the prohibition of issuing a boarding card in the first state and thus
we will need to change the clause to [1∗][correctDetails]F (boardingCard)∧
F (boardingCard).

When we check this modified contract for conflicts we realise that with
these modifications we have introduced a conflict. We get the following trace
that leads to the conflict openCheckIng·correctDetails&luggageOverLimit·
collectPayment and the state is labelled with OboardingCard and FboardingCard.
We have just forbid the handing of boarding cards except exactly after the
correct details have been supplied. We will thus have to make changes to the
prohibition to allow the possibility of collecting the payment before issuing
the boarding card. However, an easier approach which will keep the con-
tract written in CL cleaner would be to make the collection of the payment
and the issue of the boarding pass a concurrent action. Thus now Clause 4
becomes:

[openCheckIn][correctDetails&luggageInLimit]
OO(fine)(collectPayment&boardingCard)

We now query for traces leading to a state where the crew is obliged to
issue a boarding card. One thing we should realise is that there is no loop
in the trace; the crew is being obliged to issue a boarding card only once.
We would like that this will happen repeatedly once the cash desk is open
and not just do it for the first client thus we will need to change Clauses 3
and 4 to

[openCheckIn][1∗][correctDetails&luggageInLimit]OO(fine)(boardingCard)

and
[openCheckIn][1∗][correctDetails&luggageInLimit]

OO(fine)(collectPayment&boardingCard)

When we check again the traces that lead to the crew to be obliged to
issue a boarding card we now see that as desired we have a loop thus they

129

will be obliged to process not just the first customer. Unfortunately we see
another fault. Customers are being checked in after the check-in desk has
been closed. One might say that this clause should be taken for granted
since it should be obvious that once the check-in desk is closed no more
people should be allowed to check-in. However, if it is not explicitly written
in the contract, a ground crew member might pity a late passenger and
check-in his bags after check-in has closed thus giving rise to the possibility
of the bag not making it to the plane on time. In order to prevent any
check-in to occur after the check-in desk is closed we add the following
clause [1∗][closeCheckIn][1∗]F (boardingCard). This however introduces a
conflict since after the check-in is opened it is always the case ([1∗]) that if
the client has the correct details then the crew is obliged to issue a boarding
card. This must be changed to while the desk is open ([closeCheckIn

∗]).
Thus the Clauses 3 and 4 become

[openCheckIn][closeCheckIn
∗][correctDetails&luggageInLimit]

OO(fine)(boardingCard)

and

[openCheckIn][closeCheckIn
∗][correctDetails&luggageInLimit]

OO(fine)(collectPayment&boardingCard)

This however still has not solved all the conflicts. Consider the situation
where we first open the check-in desk and then we close it and receive correct
details concurrently. In the following step we are both obliged and forbidden
from issuing a boarding card. To solve this we will make the closing of the
desk and the receiving of the passenger details as mutually exclusive actions
thus prohibiting that these actions occur at the same time.

In order to increase the confidence in the contract we may decide to
simulate the contract. We realise that there is the possibility that be-
fore check-in opens, if a client issues the correct details then the crew may
issue the boarding card. This again is undesirable since we want cards
only to be issued after the check-in desk is opened, thus we need to add
[openCheckIn

∗]F (boardingCard). Again using the simulation we may re-
alise that we are permitted to open the check-in desk after it has already
been open. This might seem redundant but it does not really pose any
danger. However what about being able to open the check-in desk after it
has already been closed? Right now this is still permitted however this still
would not allow us to check-in any luggage and there is no conflict either
since after the check-in is closed we are no longer obliged to check-in luggage.
However, for clearness sake this should be prohibited and thus the clause
which prohibits us to issue any more boarding cards after the check-in desk
is closed should be changed to [1∗][closeCheckIn][1∗]F (boardingCard +
openCheckIn). Please note that this is equivalent to

[1∗][closeCheckIn][1∗](F (boardingCard) ∧ F (openCheckIn))

130

which when translated into textual form has a clearer and more direct rep-
resentation.

Now we turn our focus to the first two clauses. First of all, after
the experience already obtained from the previous cases, we should im-
mediately realise that we will need to add some form of Kleene star to
the beginning of the clauses. Thus the first clause should be changed to
[2hrs

∗][2hrs]OO(fine)(openCheckIn&requestInfo). One should note that
CL does not have a notion of time and that 2hrs is just a normal action
thus the contract allows that action to appear more than once and it is be-
cause of this that we used [2hrs

∗] instead of [1∗] since this ensure that the
obligation to open the check-in occurs only once after the first 2hrs action is
observed. We will not explicitly prohibit the 2hrs action not to occur after
the first occurrence since it will not affect the overall contract and in real
life it is taken for granted. It would also be desired to restrict that the info
is requested only when opening check-in and not anytime later thus we may
change the clause to [2hrs

∗][2hrs](OO(fine)(openCheckIn&requestInfo) ∧
[1][1∗]F (requestInfo)).

With respect to clause two we will need to decide when the airline is
obliged to reply with the flight information. In this case it would make
sense to wait until the check-in desk is open and only after the check-in desk
is open do we make the airline obligated to reply. We thus make clause two
equal to

[openCheckIn
∗][openCheckIn · requestInfo]OO(fine)(replyInfo)

When analysing the contract we realise that an unreachable obligation has
been detected. We will never be obliged to reply with the information. In
this case we have a mistake, not just a case of removing the unreachable
deontic notion. From clause two we are waiting for the request to arrive
after the opening of the check-in, whereas from clause one we are obliging
the request at the time when opening the check-in. This would not have
been a problem since we could still be free to request for the information one
step afterwards, however we have prohibited that thus ending in a situation
where we miss the request and thus never obliged to reply. This can be
changed by making clause two equal to

[openCheckIn
∗][openCheckIn&requestInfo]OO(fine)(replyInfo)

One should note that if the prohibition was not there, the obligation to reply
with the information would not have been flagged as an unreachable state,
however with the analysis tools available we could have still detected such
a situation. If we requested the traces which would lead to us being obliged
to reply with the information, we will realise that the request is not actually
being obliged but it is only being permitted.

If we query to see traces that do not violate the contract and one of the
actions is closeCheckIn we will realise that this action may occur before even

131

opening the check-in. This is obviously undesirable. Thus we will need to
add the clause [openCheckIn ∗] F (closeCheckIn)∧F (closeCheckIn). This
could again be described as an obvious clause since we know the typical
behaviour of how a check-in desk would work. However, the contract does
not have this “universal” knowledge. This clause, even though it should be
added to the contract written in CL it is not necessary to add to the contract
written in textual format since it might be seen as overkill. This change to
the contract however leads to a conflict. The check-in crew is obliged to
close the desk 20 minutes before departure, however in the trace returned
we realise that we are observing the 20mins action before the 2hrs action.
Again we should “two hours before the flight” occurs before “20 minutes
before the flight”. We will thus add [2hrs

∗]F (20mins). This clause will not
be translated into the final textual representation of the contract and is only
a clause to add the correct behaviour of these two actions.

We also realise that we will have a deontic directive which is not reach-
able. Clause five states that after the check-in is closed then the ground
crew are obliged to send the Luggage Information:

[closeCheckIn]OO(fine)(sendLuggageInfo)

The mistake is that we have not added [closeCheckIn
∗] to the front without

which this clause would only apply to the initial step and in the initial step
it is prohibited to close the check-in since it has not been opened yet.

In order to improve on the speed of the analysis we may add infor-
mation about mutually exclusive actions since when we make actions mu-
tually exclusive we reduce the number of possible actions. We may add
openCheckIn#closeCheckIn and also 2hrs#20mins.

The final contract would be:

1. [2hrs
∗][2hrs](OO(fine)(openCheckin&requestInfo)∧

[1][1∗]F (requestInfo))

2. [openCheckin
∗][openCheckin&requestInfo]OO(fine)(replyInfo)

3. [openCheckin
∗][openCheckin][closeCheckin

∗]
[correctDetails&luggageInLimit] OO(fine)(BoardingCard)

4. [openCheckin
∗][openCheckin][closeCheckin

∗][correctDetails&
luggageInLimit] OO(fine)(CollectPayment&BoardingCard)

5. [1∗][correctDetails]F (BoardingCard)

6. [openCheckin
∗](F (BoardingCard) ∧ F (closeCheckin))

7. [20mins∗](F (closeChecking) ∧ [20mins]O(closeCheckin))

8. [closeCheckin
∗][closeCheckin]OO(fine)(sendLuggageInfo)

132

9. [1∗][closeCheckin][1∗](F (BoardingCard) ∧ F (openCheckin))

10. [2hrs]F (20mins)

This could be represented in textual form as:

1. 2 hours before flight time, the ground crew are obliged to open the
check-in desk and request from the airline the passenger information.
After this they are forbidden from requesting the passenger informa-
tion again.

2. The airline are obliged to reply to the passenger information request
which occurred with the opening of the check-in desk with the passen-
ger manifest.

3. While the check-in desk is open, if the details of the passport match
the details on the ticket and the luggage is within the weight limit the
ground crew are obliged to issue a boarding card.

4. While the check-in desk is open, if the details of the passport match
the details on the ticket however the luggage is over the weight limit
the ground crew are obliged to collect payment for the extra weight
and issue a boarding card.

5. The ground crew are prohibited from issuing any boarding cards with-
out inspecting that the details are correct beforehand.

6. The ground crew is prohibited from closing the check-in before 20
minutes before the flight at which time they are obliged to close the
check-in desk.

7. Once the check-in desk is closed the ground crew are obliged to send
the luggage information to the airline.

8. Once the check-in desk is closed the ground crew are forbidden from
issuing any boarding cards or reopening the check-in desk again.

Once the contract is signed by both parties we can generate the monitor
directly from the contract in order to ensure that the contract is adhered to
between the two parties. Certain aspects of the contract, like for example
that that the ground crew personnel check the details of the passengers
cannot be observed by the enterprise service bus in most airports, however
this might soon change when we have our biometric information encoded in
the passport and we would be required a thumb scan or retinal scan.

133

Monitoring the System

In this case, we have two systems communicating with eachother. We have
the airline system that has the information about the passengers and that
will receive information about which passengers have checked in, and we
have the check in system that logs the information about each traveller that
is checking in and then sends the information to the airline system. In this
case, using Larva in for monitoring would not be ideal since you would have
two monitors on both systems and there is also the requirement that they
are both written in Java.

In such scenario, there is typically an enterprise service bus (ESB) resid-
ing seamlessly between the two systems. The enterprise service bus will aid
systems using different protocols to communicate with eachother. Lets con-
sider that the airline system will communicate through web services wheras
the check-in desks will get the passenger information using JDBC (getting
information from a database) and use JMS (Java Messenging Service) in
order to send the check in information and notify the opening and closing
of the desk. Thus when the enterprise service bus receives the jms mes-
sage that the check in desk has been opened, it will translate the message
into a web service request and retrieve the passenger information which is
then translated into a database insert query that is executed on the check
in database. The JMS messages sent by the check in desks are aggregated
at the ESB and sent as a web service request once the close check-in desk
message is received.

As one can note, this ESB allows for a highly decoupled design, and
allows the same airline and check-in system to interact with other systems
even if they provide different interfaces.

The ESB, does not have access to the internal code of niether of the
systems, however, since it is observing all the messages passing to and from
the airline and check-in system it can quite effectively monitor the behaviour.
Thus it would be ideal to have a monitoring module inside the ESB which
generates the monitor directly from the CL contract. One would also need
to define the actions, which in this case would be the events of receiving and
sending of messages through the ESB.

By placing the monitor on the ESB, we can now ensure for example that
the check-in desks open and close on time and do not check-in any luggage
once closed. We can also ensure that payment is collected when luggage
that is checked-in is overweight. Furthermore we can ensure that the airline
system responds with the correct passenger details. Unfortunately, in this
case, we cannot monitor the entire contract since the system cannot be sure
that the check-in crew has ensured that the details on the passport match
the details on the ticket. However it is clear that with this method, we could
ensure that most of the contract is adhered to.

134

8.5 Conclusion

In this chapter we first went through the implementation of the tool, where
we saw how the main part of the algorithm was implemented. This was
then followed by a discussion of improvements to the basic implementation
which will allow us to analyse even larger contracts. This is then followed by
the case study, where we showecased our tools and techniques in a realistic
scenario.

In the case study we have shown how one would go about drafting a
contract. Then using our tool we can analyse the contract for conflicts and
reachability analysis from which we can then fix errors in the contracts.
We also shown how quering and simulating the contract would also help in
identifying and fixing errors.

135

Chapter 9

Conclusion

In this work we have successfully automated conflict analysis of a contract
written in CL. In order to automate conflict analysis we were required to
generate an automaton that accepts all and only traces which satisfy the
contract. We proved that the automaton generated will in fact accept all
and only traces satisfying the contract and also proved that the conflict
analysis is correct. Once we have generated the automaton we have also
shown how we could analyse the contract further. We have shown how we
could check a contract for superfluous clauses, query the contract, simulate
the contract and also generate the monitor. Using the theory developed in
this work, we have also implemented a tool that will automatically analyse
contracts for conflicts.

In this work we also portrayed CL as a specification language and as a
modelling language. We compared CL with other methods of specification.
Furthermore, by making use of CL in case studies we have shown that the
CL language is mature enough to be used in real life situations. We have also
shown how attractive it is to use such a deontic logic. We have also shown
how we could aid in the drafting of contracts using the tools developed in
this work together with the other possibilities mentioned in this work .

9.1 Future Work

The future work on this subject may be split in two. First of all, there is the
work directly concerned with the refinement of the CL language. Secondly,
there is work concerned with the development of techniques in order to
automatically analyse contracts. With regards to the language there are a
number of possibilities that we would like to explore further:

• Right now, the actions are left underspecified and we add our own
definition to the action. However, in these contracts we do not have
the notion of signatories of the contracts. So if we have the formula

136

O(pay) the contract in itself has no knowledge of who is to do the
payment and to whom. This issue has been avoided by encoding this
information inside the action itself. Thus for example, action “pay” is
defined to mean that the client paid a certain amount to the service
provider. However we believe that it would be useful that the deontic
notions would have information about who is doing what, for example
an obligation will become a triple rather than just a single action
where it will have the information about who is being obliged and on
whom the action is being made. This will open up a number of new
possibilities with respect to possible analysis that we may perform on
the contracts.

• The semantics of CL do not differentiate between actions. However we
believe that actions may have different features or qualities and also
different defaults. In contracts, actions are usually either permitted
or forbidden by default. Typically, actions that are in the control of
the signatories are forbidden by default whereas actions that cannot
be controlled (i.e. actions being done by non signatories) are usually
permitted by default. As one might expect, there are many exceptions
to this rule. However, we believe that we should be able to specify the
default behaviour of actions. Thus we have the default deontic notions
which apply to the action and then we have a higher level where we
specify how these defaults are overidden.

• Another point that would be interesting to investigate, that is slightly
based on the previous item, is that we have a layered contract. We first
give the most basic clauses and then we refine these general clauses in
higher and higher layers. This is usually the way contracts are written,
where first we give the general rules example “Clients are forbidden to
make any sort of damage to the property”. Then we have exceptions
“in case of fire clients are permitted to break glass”. In this work, the
situation would be marked as a conflict and in order to fix this we have
to explicitly write that we are forbidden to make any sort of damage
to the property except in the case of fire.

• We need to give more thought to the Exclusive Or operator as dis-
cussed in Section 3.3. The current syntax and semantics allow us to
define clauses which when certain traces are followed we will have to
satisfy clauses which we and the original authors of CL believe should
not be allowed. Consider the clause >⊕O(a). In this case we are not
allowed to satisfy the obligation to perform a thus effectively we have
a negation of an obligation which in [55] is deemed as undesirable.

• We need to make changes in the definition of the prohibition of choice
as defined in Section 3.4 or explicitely make this issue clear. The

137

current semantics define FC(α + α′) as FC(α) ∧ FC(α′). If the length
of α and α′ is identical, then there is no problem, since if both are
observed (thus violating the clause) the reparation will be enacted
once at the same instance. However, if they are not of the same length
and the clause is violated by both α and α′ we will have to satisfy
the reparation twice. We believe that if both ways of violating the
prohibition occurs, the reparation is only applied once. If the original
behaviour is required, that the reparation is satisfied twice, one can
still define this using the conjunction of the prohibition of both actions.

When it comes to automation the following are interesting prospects on
which we shall continue to work:

• In this work we have suggested a number of different analysis which
could be done using the automaton generated from a CL contract.
Because of time restrictions not all of these have been implemented
in the tool. It would be an interesting project to implement more of
these analysis techniques and possibly investigate further possibilities.

• Full model checking of the trace semantics. Once we have generated
an automaton from the contract written in CL it is now possible using
automata theoretic approaches to model check. Thus given a model,
we may verify that it will always satisfy the contract. The spirit of
the approach would be to negate the automaton generated from the
CL contract and then obtain the product of this new automata with
the model and this should result in an empty automaton. This is,
however very inefficient and so it would be interesting to investigate
this further.

• Develop a normative automata approach to CL where we give the
semantics of CL using an automata rather than using an extension
in the µ-Calculus. This will not only give a clearer semantics but we
shall also have a start towards model checking of the full CL. There
is already some work on this but nothing concrete yet.

• Once we extend the CL with the notion of actors and possibly the
layering of contracts we would have a number of new tools possible. We
would have to extend again the conflict analysis method, monitoring
and even the superfluous clause analysis.

• An interesting project would be to implement the module described in
the Preface to fit inside an enterprise service bus in order to be able to
apply CL in live projects rather than just theoretical case studies. We
see an example of the possibilities of such a module in the case study
of Chapter 8.

138

9.2 Concluding remarks

As we have discussed in the introduction, the industry is moving towards
a service oriented architecture where now the code is distributed not only
across machines in the same company but also across the organisational’s
borders as well. Because of this dependence on other organisations, compa-
nies make use of contracts in order to safeguard against any possible adverse
behaviours performed by the other companies. This has lead to the need
of a way to be able to describe such contracts in a formal manner in order
to give the possibility for more automation and securty. CL is a language
designed to fill this void.

CL as a language is still quite young; however, it still can be applied to
current real life situations. We have seen in this work CL being applied to
the CoCoME case study and also to an airline case study. In both these situ-
ations CL performed well allowing us to elegantly describe the requirements
of the parties involved and also how exceptional behaviour is handled.

Also, by providing tools that automatically analyse contracts we add
value to CL. We have augmented the trace semantics of CL with deontic
information in order to be able to find conflicts in contracts. We then also
defined a construction to generate an automaton from CL and automatically
check if the contract is conflict free or not. Making use of automatic contract
analysis allows us to draft sound contracts in a much shorter time since we
can automatically identify undesirable situations. In this work we focused
on identifying conflict free contracts, however we also show how we can make
further analysis using the techniques described here. Furthermore, in the
airline case study we have shown how one would go about drafting a contract
and how usefull the tools developed in this masters are to identify possible
problems in the contract.

As discussed in the previous section, there is still more work to be done
on CL however, it is already in a state which could be applied and used
in real projects. Furthermore, if CL had to be equipped with a toolset to
enable users to both create, analyse and deploy contracts, it would make
CL a very suitable solution for contracting, especially in a service oriented
architecture.

139

Appendix A

Correctness of ts3

Theorem A.1. An empty trace can never violate a contract:

∀C, len(σ) = len(σd) = 0 ⇒ σ, σd ²f C

Proof. We shall prove this by structural induction on the formula. The base
cases are the following and result directly from the definition:

len(σ) = len(σd) = 0 ⇒
σ, σd ²f >
σ, σd ²f [α&]C
σ, σd ²f OC(α&)
σ, σd ²f FC(α&)
σ, σd ²f P (α&)
σ, σd ²f C1 ⊕ C2

The rest of the cases are defined using these base cases.

Case C1 ∧ C2

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f C1

⇒ {inductive hypothesis}
σ, σd ²f C2

⇒ {conjunction introduction}
σ, σd ²f C1 and σ, σd ²f C2

⇒ {definition}
σ, σd ²f C1 ∧ C2

140

Case [β; β′]C

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f C1

⇒ {inductive hypothesis}
σ, σd ²f C2

⇒ {let C1 = [β]C2 and C2 = [β′]C}
σ, σd ²f [β][β′]C

⇒ {definition}
σ, σd ²f [β; β′]C

Case [β + β′]C

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f C1

⇒ {inductive hypothesis}
σ, σd ²f C2

⇒ {conjunction introduction}
σ, σd ²f C1 ∧ C2

⇒ {let C1 = [β]C and C2 = [β′]C}
σ, σd ²f [β]C ∧ [β′]C

⇒ {definition}
σ, σd ²f [β + β′]C

Case OC(α; α′)

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f OC(α) ∧ [α]OC(α′)
⇒ {definition}

σ, σd ²f OC(α; α′)

141

Case OC(α + α′)

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f O⊥(α)
⇒ {disjunction introduction}

σ, σd ²f O⊥(α) or σ, σd ²f O⊥(α′) or (σd(0) = (Oα or Oα′) and
σ, ∅;σd(1..) ²f [α + α′]C)

⇒ {definiton}
σ, σd ²f OC(α + α′)

Case FC(α;α′)

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f F⊥(α) or σ, σd ²f [α]FC(α′)
⇒ {definiton}

σ, σd ²f FC(α;α′)

Case FC(α + α′)

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f FC(α) ∧ FC(α′)
⇒ {definiton}

σ, σd ²f FC(α + α′)

Case P (α; α′)

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f P (α) ∧ [α]P (α′)
⇒ {definiton}

σ, σd ²f P (α;α′)

142

Case P (α + α′)

len(σ) = len(σd) = 0
⇒ {inductive hypothesis}

σ, σd ²f P (α) ∧ P (α′)
⇒ {definiton}

σ, σd ²f P (α + α′)

Proposition A.2. Any finite trace using the semantics of ts3 will satisfy
the trivial contract >

∀σ σ, σ∅(0..len(σ)) ²f >
Proof. We shall prove this by induction on the length of σ.

Base Case n=0 from Theorem A.1

Inductive Hypothesis n=k

∀σ σ(0..k), σ∅(0..k) ²f >

Inductive Case n=k+1

σ(0..k + 1), σd(0..k + 1) ²f >
⇒ {definition}

σ(1..k + 1), σd(1..k + 1) ²f >

⇒
{the definition does not consider the elements in the trace,
only the length. Thus the definition cannot differentiate
between σ(1..k + 1) and σ(0..k)}
σ(0..k), σd(0..k) ²f >

⇒ {Inductive hypothesis}

Proposition A.3. Any infinite trace using the semantics of ts2 will satisfy
the trivial contract >

∀σ σ, σ∅ ²d
∞ >

Proof. The definition of σ, σd ²d∞ > is recursive where we chop off the first
element from σ and σd and then check that σ(1..), σd(1..) ²d∞ >. The only
check on the first element is that σd(0) = ∅ thus σ(0) is free to be any set of
possible actions. Furthermore, we know that σd(0) = ∅ since by definition,
σ∅ is the infinite sequence of ∅ and thus, this proposition is true.

143

Proposition A.4. For any infinite trace which satisfies the trivial contract
>, the deontic trace will be empty, as defined before, σd = σ∅.

σ, σd ² > ⇒ σd = σ∅

Proof. The definition of σ, σd ²d∞ > is recursive where we chop off the first
element from σ and σd and then check that σ(1..), σd(1..) ²d∞ >. By defini-
tion we require that σd(0) = ∅ and then we keep on recursively checking the
rest of the trace recursively, removing the first element and checking that
σd(0) = ∅ and thus for σ, σd ²d∞ >, σd = σ∅

Theorem A.5. A trace σd is equal to the combination of σ′d and σ′′d (σd =
σ′d ∪ σ′′d) iff any subtrace of σd is equal to the combination of the subtraces
of σ′d and σ′′d given that they are of the same length.

σd = σ′d ∪ σ′′d ⇔ ∀n, σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n)

Proof. We shall split this proof in two cases, proving the two directions of
the implication separately.

Case σd = σ′d ∪ σ′′d ⇒ ∀n, σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n). The definition of
σd = σ′d ∪ σ′′d is σd = σ′d(0)∪ σ′′d(0), σ′d(1)∪ σ′′d(1) . . . σ′d(n)∪ σ′′d(n). We shall
use induction on n in order to prove this case.

Base Case n=0

σd = σ′d ∪ σ′′d
⇒ {definition}

σd = σ′d(0) ∪ σ′′d(0), σ′d(1) ∪ σ′′d(1) . . . σ′d(n) ∪ σ′′d(n)
⇒ {n=0, so we chop σd and take only required sequence}

σd(0) = σ′d(0) ∪ σ′′d(0)

Inductive Hypothesis n=k

σd(k) = σ′d(0..k) ∪ σ′′d(0..k)

144

Inductive Case n=k+1

σd = σ′d ∪ σ′′d
⇒ {definition}

σd = σ′d(0) ∪ σ′′d(0), σ′d(1) ∪ σ′′d(1) . . . σ′d(n) ∪ σ′′d(n)
⇒ {inductive hypothesis}

σd(k) = σ′d(0..k) ∪ σ′′d(0..k)
⇒ {definition}

σd(k) = σ′d(0) ∪ σ′′d(0), σ′d(1) ∪ σ′′d(1) . . . σ′d(k) ∪ σ′′d(k)

⇒ {by definition we may add the next element by adding to
sequence}
σd(k + 1) = σ′d(0) ∪ σ′′d(0), σ′d(1) ∪ σ′′d(1) . . .

σ′d(k) ∪ σ′′d(k), σ′d(k + 1) ∪ σ′′d(k + 1)
⇒ {definition}

σd(k + 1) = σ′d(k + 1) ∪ σ′′d(k + 1)

Case σd = σ′d ∪ σ′′d ⇐ ∀n, σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n)
σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n) holds for all N thus if n = len(σd) then

σd(0..n) = σd, σ
′
d(0..n) = σ′d and σ′′d(0..n) = σ′′d

Lemma A.6. If the infinite traces σ, σd satisfy a contract C, then any finite
prefix of these traces will not violate the contract.

σ, σd ²d
∞ C ⇒ ∀n : N, σ(0..n), σd(0..n) ²f C

Proof. σ, σd ²d∞ C means that the traces σ, σd do not violate the contract
C. So if the entire infinite trace does not violate the contract then even
any finite prefix would not violate the contract, or at least would not have
violated the contract yet. This is the defenition of the ²f relationship and so
we may conclude that for any finite prefix of the infinite traces that satisfy
a contract C will not violate the contract.

We shall use structural induction in order to prove this formally. First
of all we have the rule that σ, σd 2f C if len(σ) 6= len(σd). In our case the
lengths of σ and σd are identical by definition.

145

Case >

σ, σd ²d
∞ >

⇒ {Proposition 5.1.4}
σd = σ∅

⇒ {σd = σ∅ and Proposition 5.1.2}
∀n : N,σ(0..n), σd(0..n) ²f >

Case C1 ∧ C2

σ, σd ²d
∞ C1 ∧ C2

⇒ {definition of ts2}
σ, σ′d ²d

∞ C1 and σ, σ′′d ²d
∞ C2 and σd = σ′d ∪ σ′′d

⇒ {inductive hypothesis and Theorem 5.1.5}
∀n : N σ(0..n), σd(0..n)′ ²f C1 and ∀n : N σ(0..n), σd(0..n)′′ ²f C2

and ∀n : N σd(0..n) = σd(0..n)′ ∪ σd(0..n)′′

⇒ {associativity of ∀ over conjunction}
∀n : N (σ(0..n), σd(0..n)′ ²f C1 and σ(0..n), σd(0..n)′′ ²f C2

and σd(0..n) = σd(0..n)′ ∪ σd(0..n)′′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f C1 ∧ C2

Case C1 ⊕ C2

σ, σd ²d
∞ C1 ⊕ C2

⇒ {definition of ts2}
(σ, σd ²d

∞ C1 and σ, σd 2d
∞ C2) or (σ, σd ²d

∞ C2 and σ, σd 2d
∞ C1)

⇒ {inductive hypothesis}
(∀n : Nσ(0..n), σd(0..n) ²d

∞ C1 and ∀n : Nσ(0..n), σd(0..n) 2d
∞ C2) or

(∀n : Nσ(0..n), σd(0..n) ²d
∞ C2 and ∀n : Nσ(0..n), σd(0..n) 2d

∞ C1)
⇒ {associativity of ∀ over disjunction}

∀n : N (σ(0..n), σd(0..n) ²d
∞ C1 and σ(0..n), σd(0..n) 2d

∞ C2) or
(σ(0..n), σd(0..n) ²d

∞ C2 and σ(0..n), σd(0..n) 2d
∞ C1)

⇒ {definition of ts3}
∀n : N σ(0..n), σd(0..n) ²f C1 ⊕ C2

146

Case [α&]C

σ, σd ²d
∞ [α&]C

⇒ {definition of ts2}
σd(0) = ∅ and (α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C, or α& * σ(0)))
⇒ {inductive hypothesis}

σd(0) = ∅ and
(α& ⊆ σ(0) and ∀n : N σ(1..n), σd(1..n) ²f C, or α& * σ(0)))

⇒ {an empty trace cannot violate a contract(Theorem 5.1.1)}
len(σ) = 0 or σd(0) = ∅ and

(α& ⊆ σ(0) and ∀n : N σ(1..n), σd(1..n) ²f C, or α& * σ(0)))
⇒ {No free variable n, thus can move ∀n : N outside}

∀n : N len(σ) = 0 or σd(0) = ∅ and
(α& ⊆ σ(0) and σ(1..n), σd(1..n) ²f C, or α& * σ(0)))

⇒ {definition of ts3}
∀n : N σ(0..n), σd(0..n) ²f [α&]C

Case [β; β′]C

σ, σd ²d
∞ [β;β′]C

⇒ {definition of ts2}
σ, σd ²d

∞ [β][β′]C
⇒ {inductive hypothesis}

∀n : N σ(0..n), σd(0..n) ²f [β][β′]C
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f [β; β′]C

Case [β + β′]C

σ, σd ²d
∞ [β + β′]C

⇒ {definition of ts2}
σ, σd ²d

∞ [β]C ∧ [β′]C
⇒ {inductive hypothesis}

∀n : N σ(0..n), σd(0..n) ²f [β]C ∧ [β′]C
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f [β + β′]C

147

Case [β∗]C

σ, σd ²d
∞ [β∗]C

⇒ {definition of ts2}
σ, σd ²d

∞ C ∧ [β;β∗]C
⇒ {inductive hypothesis}

∀n : N σ(0..n), σd(0..n) ²f C ∧ [β; β∗]C
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f [β∗]C

Case OC(α&)

σ, σd ²d
∞ OC(α&)

⇒ {definition of ts2}
σd(0) = Oα and

((α& ⊆ σ(0) and σ(1..), σd(1..) ²d
∞ >) or σ(1..), σd(1..) ²d

∞ C)
⇒ {inductive hypothesis}

σd(0) = Oα and (α& ⊆ σ(0) and ∀n : N σ(1..n), σd(1..n) ²f >) or
(∀n : N σ(1..n), σd(1..n) ²f C)

⇒ {No free variable n, thus can move ∀n : N outside}
∀n : N σd(0) = Oα and (α& ⊆ σ(0) and σ(1..n), σd(1..n) ²f >) or

(σ(1..n), σd(1..n) ²f C)
⇒ {an empty trace cannot violate a contract(Theorem A.1)}

∀n : N len(σ) = 0 or σd(0) = Oα and
((α& ⊆ σ(0) and σ(1..), σd(1..) ²f >) or σ(1..), σd(1..) ²f C)

⇒ {definition of ts3}
∀n : N σ(0..n), σd(0..n) ²f OC(α&)

Case OC(α; α′)

σ, σd ²d
∞ OC(α; α′)

⇒ {definition of ts2}
σ, σd ²d

∞ OC(α) ∧ [α]OC(α′)
⇒ {inductive hypothesis}

∀n : N σ(0..n), σd(0..n) ²f OC(α) ∧ [α]OC(α′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f OC(α; α′)

148

Case OC(α + α′)

σ, σd ²d
∞ OC(α + α′)

⇒ {definition of ts2}
σ, σd ²d

∞ O⊥(α) or σ, σd ²d
∞ O⊥(α′) or

(σd(0) = (Oα or Oα′) and σ, ∅;σd(1..) ²d
∞ [α + α′]C

⇒ {inductive hypothesis}
∀n : N σ(0..n), σd(0..n) ²f O⊥(α) or ∀n : N σ(0..n), σd(0..n) ²f O⊥(α′) or

(σd(0) = (Oα or Oα′) and ∀n : N σ(0..n), ∅; σd(1..n) ²f [α + α′]C
⇒ {No free variable n, thus can move ∀n : N outside}

∀n : N σ(0..n), σd(0..n) ²f O⊥(α) or σ(0..n), σd(0..n) ²f O⊥(α′) or
(σd(0) = (Oα or Oα′) and σ(0..n), ∅; σd(1..n) ²f [α + α′]C

⇒ {definition of ts3}
∀n : N σ(0..n), σd(0..n) ²f OC(α + α′)

Case FC(α&)

σ, σd ²d
∞ FC(α&)

⇒ {definition of ts2}
σd(0) = Fα and ((α& * σ(0) and σ(1..), σd(1..) ²d

∞ >
or (α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C))
⇒ {inductive hypothesis}

σd(0) = Fα and ((α& * σ(0) and ∀n : N σ(1..n), σd(1..n) ²f >)
or (α& ⊆ σ(0) and ∀n : N σ(1..n), σd(1..n) ²f C))

⇒ {an empty trace cannot violate a contract(Theorem A.1)}
len(σ) = 0 or σd(0) = Fα and ((α& * σ(0) and

∀n : N σ(1..n), σd(1..n) ²f >)
or (α& ⊆ σ(0) and ∀n : N σ(1..n), σd(1..n) ²f C))

⇒ {No free variable n, thus can move ∀n : N outside}
∀n : N len(σ) = 0 or σd(0) = Fα and

((α& * σ(0) and σ(1..), σd(1..) ²f >) or
(α& ⊆ σ(0) and σ(1..), σd(1..) ²f C))

⇒ {definition of ts3}
∀n : N σ(0..n), σd(0..n) ²f FC(α&)

149

Case FC(α;α′)

σ, σd ²d
∞ FC(α;α′)

⇒ {definition of ts2}
σd(0) = Fα and (σ, σd ²d

∞ F⊥(α) or σ, σd ²d
∞ [α]FC(α′))

⇒ {inductive hypothesis}
σd(0) = Fα and (∀n : N σ(0..n), σd(0..n) ²f F⊥(α) or

∀n : N σ(0..n), σd(0..n) ²f [α]FC(α′))
⇒ {No free variable n, thus can move ∀n : N outside}

∀n : N σd(0) = Fα and (σ(0..n), σd(0..n) ²f F⊥(α) or
σ(0..n), σd(0..n) ²f [α]FC(α′))

⇒ {definition of ts3}
∀n : N σ(0..n), σd(0..n) ²f FC(α; α′)

Case FC(α + α′)

σ, σd ²d
∞ FC(α + α′)

⇒ {definition of ts2}
σ, σd ²d

∞ FC(α) ∧ FC(α′)
⇒ {inductive hypothesis}

∀n : N σ(0..n), σd(0..n) ²f FC(α) ∧ FC(α′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f FC(α + α′)

Case P (α&)

σ, σd ²d
∞ P (α&)

⇒ {definition of ts2}
σd(0) = Pα and σ(1..), σd(1..) ²d

∞ >
⇒ {inductive hypothesis}

σd(0) = Pα and ∀n : N σ(1..n), σd(1..n) ²f >
⇒ {an empty trace cannot violate a contract(Theorem A.1)}

len(σ) = 0 or σd(0) = Pα and σ(1..n), σd(1..n) ²f >
⇒ {No free variable n, thus can move ∀n : N outside}

∀n : N len(σ) = 0 or σd(0) = Pα and σ(1..n), σd(1..n) ²f >
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f P (α&)

150

Case P (α; α′)

σ, σd ²d
∞ P (α;α′)

⇒ {definition of ts2}
σ, σd ²d

∞ P (α) ∧ [α]P (α′)
⇒ {inductive hypothesis}

∀n : N σ(0..n), σd(0..n) ²f P (α) ∧ [α]P (α′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f P (α; α′)

Case PC(α + α′)

σ, σd ²d
∞ P (α + α′)

⇒ {definition of ts2}
σ, σd ²d

∞ P (α) ∧ P (α′)
⇒ {inductive hypothesis}

∀n : N σ(0..n), σd(0..n) ²f P (α) ∧ P (α′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f P (α + α′)

Lemma A.7. If all the finite prefixes of an infinite trace do not violate a
contract C then the infinite traces satisfy the contract.

σ, σd ²d
∞ C ⇐ ∀n : Nσ(0..n), σd(0..n) ²f C

Proof. We shall use structural induction to show that if for any n, n :
Nσ(0..n), σd(0..n) ²f C then for the equivalent infinite trace σ, σd ²d∞ C

Case >

∀n : N,σ(0..n), σd(0..n) ²f >
⇒ {Proposition A.3}

σ, σd ²d
∞ >

151

Case C1 ∧ C2

∀n : N, σ(0..n), σd(0..n) ²f C1 ∧ C2

⇒ {definition of ts3}
∀n : N, (σ(0..n), σ′d(0..n) ²f C1 and σ(0..n), σ′′d(0..n) ²f C2 and

σd(0..n) = σ′d(0..n) ∪ σ′′d(0..n))
⇒ {inductive hypothesis and Theorem A.5}

σ, σ′d ²d
∞ C1 and σ, σ′′d ²d

∞ C2 and σd = σ′d ∪ σ′′d
⇒ {definition of ts2}

σ, σd ²d
∞ C1 ∧ C2

Case C1 ⊕ C2

∀n : N σ(0..n), σd(0..n) ²f C1 ⊕ C2

⇒ {definition of ts3}
∀n : N (σ(0..n), σd(0..n) ²d

∞ C1 and σ(0..n), σd(0..n) 2d
∞ C2) or

(σ(0..n), σd(0..n) ²d
∞ C2 and σ(0..n), σd(0..n) 2d

∞ C1)
⇒ {associativity of ∀ over disjunction}

(∀n : Nσ(0..n), σd(0..n) ²d
∞ C1 and ∀n : Nσ(0..n), σd(0..n) 2d

∞ C2) or
(∀n : Nσ(0..n), σd(0..n) ²d

∞ C2 and ∀n : Nσ(0..n), σd(0..n) 2d
∞ C1)

⇒ {inductive hypothesis}
(σ, σd ²d

∞ C1 and σ, σd 2d
∞ C2) or (σ, σd ²d

∞ C2 and σ, σd 2d
∞ C1)

⇒ {definition of ts2}
σ, σd ²d

∞ C1 ⊕ C2

152

Case [α&]C

∀n : N σ(0..n), σd(0..n) ²f [α&]C
⇒ {definition of ts3}

len(σ) = 0 or (σd(0) = ∅ and (α& ⊆ σ(0) and
∀n : N σ(1..n), σd(1..n) ²f C, or α& * σ(0))))

⇒ {inductive hypothesis}
len(σ) = 0 or (σd(0) = ∅ and

(α& ⊆ σ(0) and σ(1..), σd(1..) ²d
∞ C, or α& * σ(0))))

⇒ {σ is infinite so len(σ) 6= 0}
σd(0) = ∅ and (α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C, or α& * σ(0)))
⇒ {definition of ts2}

σ, σd ²d
∞ [α&]C

Case [β; β′]C

∀n : N σ(0..n), σd(0..n) ²f [β; β′]C
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f [β][β′]C
⇒ {inductive hypothesis}

σ, σd ²d
∞ [β][β′]C

⇒ {definition of ts2}
σ, σd ²d

∞ [β;β′]C

Case [β + β′]C

∀n : N σ(0..n), σd(0..n) ²f [β + β′]C
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f [β]C ∧ [β′]C
⇒ {inductive hypothesis}

σ, σd ²d
∞ [β]C ∧ [β′]C

⇒ {definition of ts2}
σ, σd ²d

∞ [β + β′]C

153

Case [β∗]C

∀n : N σ(0..n), σd(0..n) ²f

⇒ {definition of ts3}
∀n : N σ(0..n), σd(0..n) ²f C ∧ [β][β∗]C

⇒ {inductive hypothesis}
σ, σd ²d

∞ C ∧ [β][β∗]C
⇒ {definition of ts2}

σ, σd ²d
∞

Case OC(α&)

∀n : N σ(0..n), σd(0..n) ²f OC(α&)
⇒ {definition of ts3}

∀n : N len(σ) = 0 or σd(0) = Oα and
((α& ⊆ σ(0) and σ(1..n), σd(1..n) ²f >) or σ(1..n), σd(1..n) ²f C)

⇒ {inductive hypothesis}
len(σ) = 0 or σd(0) = Oα and

((α& ⊆ σ(0) and σ(1..), σd(1..) ²d
∞ >) or σ(1..), σd(1..) ²d

∞ C)
⇒ {σ is infinite so len(σ) 6= 0}

σd(0) = Oα and
((α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ >) or σ(1..), σd(1..) ²d
∞ C)

⇒ {definition of ts2}
σ, σd ²d

∞ OC(α&)

Case OC(α; α′)

∀n : N σ(0..n), σd(0..n) ²f OC(α; α′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f OC(α) ∧ [α]OC(α′)
⇒ {inductive hypothesis}

σ, σd ²d
∞ OC(α) ∧ [α]OC(α′)

⇒ {definition of ts2}
σ, σd ²d

∞ OC(α; α′)

154

Case OC(α + α′)

∀n : N σ(0..n), σd(0..n) ²f OC(α + α′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f O⊥(α) or σ(0..n), σd(0..n) ²f O⊥(α′) or
(σd(0) = (Oα or Oα′) and σ(0..n), ∅; σd(1..n) ²f [α + α′]C)

⇒ {inductive hypothesis}
σ, σd ²d

∞ O⊥(α) or σ, σd ²d
∞ O⊥(α′) or

(σd(0) = (Oα or Oα′) and σ, ∅; σd(1..) ²d
∞ [α + α′]C)

⇒ {definition of ts2}
σ, σd ²d

∞ OC(α + α′)

Case FC(α&)

∀n : N σ(0..n), σd(0..n) ²f FC(α&)
⇒ {definition of ts3}

∀n : N len(σ) = 0 or σd(0) = Fα and ((α& * σ(0) and
σ(1..n), σd(1..n) ²f >) or (α& ⊆ σ(0) and σ(1..n), σd(1..n) ²f C))

⇒ {inductive hypothesis}
len(σ) = 0 or σd(0) = Fα and ((α& * σ(0) and σ(1..), σd(1..) ²d

∞ >)
or (α& ⊆ σ(0) and σ(1..), σd(1..) ²d

∞ C))
⇒ {σ is infinite so len(σ) 6= 0}

σd(0) = Fα and ((α& * σ(0) and σ(1..), σd(1..) ²d
∞ >)

or (α& ⊆ σ(0) and σ(1..), σd(1..) ²d
∞ C))

⇒ {definition of ts2}
σ, σd ²d

∞ FC(α&)

Case FC(α;α′)

∀n : N σ(0..n), σd(0..n) ²f FC(α; α′)
⇒ {definition of ts3}

∀n : N σd(0) = Fα and (σ(0..n), σd(0..n) ²f F⊥(α) or
σ(0..n), σd(0..n) ²f [α]FC(α′))

⇒ {inductive hypothesis}
σd(0) = Fα and (σ, σd ²d

∞ F⊥(α) or σ, σd ²d
∞ [α]FC(α′))

⇒ {definition of ts2}
σ, σd ²d

∞ FC(α;α′)

155

Case FC(α + α′)

∀n : N σ(0..n), σd(0..n) ²f FC(α + α′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f FC(α) ∧ FC(α′)
⇒ {inductive hypothesis}

σ, σd ²d
∞ FC(α) ∧ FC(α′)

⇒ {definition of ts2}
σ, σd ²d

∞ FC(α + α′)

Case P (α&)

∀n : N σ(0..n), σd(0..n) ²f P (α&)
⇒ {definition of ts3}

∀n : N len(σ) = 0 or σd(0) = Pα and σ(1..n), σd(1..n) ²f >
⇒ {inductive hypothesis}

len(σ) = 0 or σd(0) = Pα and σ(1..), σd(1..) ²d
∞ >

⇒ {σ is infinite so len(σ) 6= 0}
σd(0) = Pα and σ(1..), σd(1..) ²d

∞ >
⇒ {definition of ts2}

σ, σd ²d
∞ P (α&)

Case P (α; α′)

∀n : N σ(0..n), σd(0..n) ²f P (α; α′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f P (α) ∧ [α]P (α′)
⇒ {inductive hypothesis}

σ, σd ²d
∞ P (α) ∧ [α]P (α′)

⇒ {definition of ts2}
σ, σd ²d

∞ P (α;α′)

156

Case P (α + α′)

∀n : N σ(0..n), σd(0..n) ²f P (α + α′)
⇒ {definition of ts3}

∀n : N σ(0..n), σd(0..n) ²f P (α) ∧ P (α′)
⇒ {inductive hypothesis}

σ, σd ²d
∞ P (α) ∧ P (α′)

⇒ {definition of ts2}
σ, σd ²d

∞ P (α + α′)

Lemma A.8. ts3 is correct with respect to ts2

σ, σd ²d
∞ C ⇔ ∀n : Nσ(0..n), σd(0..n) ²f C

Proof. Directly from Lemma A.6 and Lemma A.7.

157

Appendix B

Correctness of Algorithm

Lemma B.1. Given a CL expression C, we may build an automaton A(C)
that will accept all and only the traces σ that satisfies the contract, that is
σ ² C. This can be achieved by proving

σ ² C ⇔ σ(1..) ² f(C, σ(0))

We shall prove this by applying induction on the structure of the formula.

Proof. Case C1 ∧ C2

σ ² C1 ∧ C2

⇔ {Definition of Trace Semantics}
σ ² C1 and σ ² C2

⇔ {Inductive hypothesis}
σ(1..) ² f(C1, σ(0)) and σ(1..) ² f(C2, σ(0))

⇔ {Definition of trace semantics (∧)}
σ(1..) ² f(C1, σ(0)) ∧ f(C2, σ(0))

⇔ {Definition of f}
σ(1..) ² f(C1 ∧ C2, σ(0))

158

Case C1 ⊕ C2

σ ² C1 ⊕ C2

⇔ {Definition of Trace Semantics}
(σ ² C1 and σ 2 C2) or (σ 2 C1 and σ ² C2)

⇔ {Inductive Hypothesis}
(σ(1..) ² f(C1, σ(0)) and σ(1..) 2 f(C2, σ(0))) or

(σ(1..) 2 f(C1, σ(0)) and σ(1..) ² f(C2, σ(0)))
⇔ {Definition of Trace Semantics (⊕)}

σ(1..) ² f(C1, σ(0))⊕ f(C2, σ(0))
⇔ {Definition of ⊕}

σ(1..) ² ((f(C1, σ(0)) = 1 ∧ f(C2, σ(0)) = 0) or
(f(C1, σ(0)) = 0 ∧ f(C2, σ(0)) = 1) or
f(C1, σ(0))⊕ f(C2, σ(0)))

⇔ {Definition of f}
σ(1..) ² f(C1 ⊕ C2, σ(0))

Case [α&]C

σ ² [α&]C
⇔ {Definition of Trace Semantics}

α& * σ(0) or σ(1..) ² C

⇔ {Inductive Hypothesis}
α& * σ(0) or σ(2..) ² f(C, σ(1))

⇔ {Definition of trace semantics ([])}
σ(1..) ² [α&]f(C, σ(1))

⇔ {Definition of []}
σ(1..) ² (α& * σ(0) or f(C, σ(1))

⇔ {Definition of f}
σ(1..) ² f([α&]C, σ(0))

159

Case [β · β′]C

σ ² [β · β′]C
⇔ {Definition of Trace Semantics}

σ ² [β][β′]C
⇔ {Inductive hypothesis}

σ(1..) ² f([β][β′]C, σ(0))
⇔ {Definition of f}

σ(1..) ² f([β · β′]C, σ(0))

Case [β + β′]C

σ ² [β + β′]C
⇔ {Definition of Trace Semantics}

σ ² [β]C and σ ² [β′]C
⇒ {Inductive hypothesis}

σ(1..) ² f([β]C, σ(0)) and σ(1..) ² f([β′]C, σ(0))
⇔ {Definition of trace semantics (∧)}

σ(1..) ² f([β]C, σ(0)) ∧ f([β′]C, σ(0))
⇔ {Definition of f (∧)}

σ(1..) ² f([β]C ∧ [β′]C, σ(0))
⇔ {Definition of f}

σ(1..) ² f([β + β′]C, σ(0))

160

Case OC(α&)

σ ² OC(α&)
⇔ {Definition of Trace Semantics}

α& ⊆ σ(0) or σ(1..) ² C

⇔ {Inductive Hypothesis}
α& ⊆ σ(0) or σ(2..) ² f(C, σ(1))

⇔ {Definition of Obligation}
σ(1..) ² (Of(C,σ(1))(α&))

⇔ {Opening of Obligation}
σ(1..) ² (α& ⊆ σ(0) or f(C, σ(1))

⇔ {Definition of f}
σ(1..) ² f(OC(α&), σ(0))

Case OC(α · α′)

σ ² OC(α · α′)
⇔ {Definition of Trace Semantics}

σ ² OC(α) and [α]OC(α′)
⇔ {Inductive Hypothesis}

σ(1..) ² f(OC(α)) and σ(1..) ² ([α]OC(α′))
⇔ {Definition of Trace Semantics (∧)}

σ(1..) ² f(OC(α) ∧ [α]OC(α′))
⇔ {Definition of f}

σ(1..) ² f(OC(α · α′), σ(0))

161

Case OC(α + α′)

σ ² OC(α + α′)
⇔ {Definition of Trace Semantics}

σ ² O⊥(α) or σ ² O⊥(α′) or σ ² [α + α′]C
⇔ {Inductive Hypothesis}

σ(1..) ² f(O⊥(α), σ(0)) or σ(1..) ² f(O⊥(α′), σ(0))
or σ(1..) ² f([α + α′]C, σ(0))

Case : σ(1..) ² f(O⊥(α), σ(0))

⇒ {From definition of obligation of choice, σ ² O(α) → σ ²
O(α + α′)}
σ(1..) ² f(O⊥(α + α′), σ(0))

⇒ {If trace satisfies clause with no reparation, then it will also
satisfy one with a reparation(O⊥(α) → OC(α))}
σ(1..) ² f(OC(α + α′), σ(0))

Case : σ(1..) ² f(O⊥(α′), σ(0))

⇒ {From definition of obligation of choice, σ ² O(α) → σ ²
O(α + α′)}
σ(1..) ² f(O⊥(α + α′), σ(0))

⇒ {If trace satisfies clause with no reparation, then it will also
satisfy one with a reparation(O⊥(α) → OC(α))}
σ(1..) ² f(OC(α + α′), σ(0))

Case : σ(1..) ² f([α + α′]C, σ(0))
⇒ {Definition of f}

σ(1..) ² (1 if (f([α]C, σ(0)) = 1 or f([α′]C, σ(0)) = 1)) or
(C if (f([α]C, σ(0)) = f([α′]C, σ(0))) = C) or [α + α′/σ(0)]C

⇒ {Definition of f (f([α]C, σ(0)) = 1 → f(O⊥(α), σ(0)) = 1)}
σ(1..) ² (1 if (f(O⊥(α), σ(0)) = 1 or f(O⊥(α′), σ(0)) = 1)) or

(C if (f([α]C, σ(0)) = f([α′]C, σ(0))) = C) or
[α + α′/σ(0)]C

⇒ {Definition of f (f([α]C, σ(0)) = C → f(OC(α), σ(0)) = C)}
σ(1..) ² (1 if (f(O⊥(α), σ(0)) = 1 or f(O⊥(α′), σ(0)) = 1)) or

(C if (f(OC(α), σ(0)) = f(OC(α′), σ(0))) = C) or
[α + α′/σ(0)]C

⇒ {Definition of trace semantics (σ ² [α]C ↔ σ ² OC(α))}
σ(1..) ² (1 if (f(O⊥(α), σ(0)) = 1 or f(O⊥(α′), σ(0)) = 1)) or

(C if (f(OC(α), σ(0)) = f(OC(α′), σ(0))) = C) or
OC(α + α′/σ(0))

⇒ {Definition of f}
σ(1..) ² f(OC(α + α′), σ(0))

162

Case : σ(1..) ² (1 if (f(O⊥(α), σ(0)) = 1 or f(O⊥(α′), σ(0)) = 1)))
⇒ {Definition of trace semantics and f}

σ(1..) ² f(O⊥(α), σ(0)) or σ(1..) ² f(O⊥(α′), σ(0))
⇒ {Disjunction introduction}

σ(1..) ² f(O⊥(α), σ(0)) or σ(1..) ² f(O⊥(α′), σ(0)) or
σ(1..) ² f([α + α′]C, σ(0))

Case : C if (f(O⊥(α), σ(0)) = f(O⊥(α′), σ(0)) = 0)
⇒ {Definition of trace semantics and f}

σ(1..) ² f([α + α′]C, σ(0))
⇒ {Disjunction introduction}

σ(1..) ² f(O⊥(α), σ(0)) or σ(1..) ² f(O⊥(α′), σ(0)) or
σ(1..) ² f([α + α′]C, σ(0))

Case : σ(1..) ² OC(α + α′/σ(0)
⇒ {Definition of trace semantics and f}

σ(1..) ² f([α + α′]C, σ(0))
⇒ {Disjunction introduction}

σ(1..) ² f(O⊥(α), σ(0)) or σ(1..) ² f(O⊥(α′), σ(0)) or
σ(1..) ² f([α + α′]C, σ(0))

⇒ {From sub-cases}
σ(1..) ² (1 if (f(O⊥(α), σ(0)) = 1 or f(O⊥(α′), σ(0)) = 1))) or
(C if (f(O⊥(α), σ(0)) = f(O⊥(α′), σ(0)) = 0))) or OC(α + α′/σ(0))

⇔ {Definition of f}
σ(1..) ² f(OC(α + α′), σ(0))

163

Case FC(α&)

σ ² FC(α&)
⇔ {Definition of Trace Semantics}

α& * σ(0) or σ(1..) ² C

⇔ {Inductive Hypothesis}
α& * σ(0) or σ(2..) ² f(C, σ(1))

⇔ {Definition of Prohibition}
σ(1..) ² Ff(C,σ(1))(α&)

⇔ {Opening of Prohibition}
σ(1..) ² α& * σ(0) or f(C, σ(1)))

⇔ {Definition of f}
σ(1..) ² f(FC(α&), σ(0))

Case FC(α · α′)

σ ² FC(α · α′)
⇔ {Definition of Trace Semantics}

σ ² [α]FC(α′)
⇔ {Inductive Hypothesis}

σ(1..) ² f([α]FC(α′), σ(0))
⇔ {Definition of f}

σ(1..) ² f(FC(α · α′), σ(0))

164

Case FC(α + α′)

σ ² FC(α + α′)
⇔ {Definition of Trace Semantics}

σ ² FC(α) and σ ² FC(α′)
⇔ {Inductive Hypothesis}

σ(1..) ² f(FC(α), σ(0)) and σ(1..) ² f(FC(α′), σ(0))
⇔ {Definition of Trace Semantics}

σ(1..) ² f(FC(α), σ(0)) ∧ f(FC(α′), σ(0))
⇔ {Definition of f (∧)}

σ(1..) ² f(FC(α) ∧ FC(α′), σ(0))
⇔ {Definition of f}

σ(1..) ² f(FC(α + α′), σ(0))

Case [α&]C

σ ² [α&]C
⇔ {Definition of Trace Semantics}

α& ⊆ σ(0) or σ(1..) ² C

⇔ {Inductive Hypothesis}
α& ⊆ σ(0) or σ(2..) ² f(C, σ(1))

⇔ {Definition of trace semantics ([])}
σ(1..) ² [α&]f(C, σ(1))

⇔ {Definition of []}
σ(1..) ² (α& ⊆ σ(0) or f(C, σ(1))

⇔ {Definition of f}
σ(1..) ² f([α&]C, σ(0))

165

Case [β · β′]C

σ ² [β · β′]C
⇔ {Definition of Trace Semantics}

σ ² [β][β′]C
⇔ {Inductive hypothesis}

σ(1..) ² f([β][β′]C, σ(0))
⇔ {Definition of f}

σ(1..) ² f([β · β′]C, σ(0))

Case [β + β′]C

σ ² [β + β′]C
⇔ {Definition of Trace Semantics}

σ ² [β]C or σ ² [β′]C
⇒ {Inductive hypothesis}

σ(1..) ² f([β]C, σ(0)) or σ(1..) ² f([β′]C, σ(0))
⇔ {Definition of f}

σ(1..) ² C if (f([α]C, δ) = C or f([α′]C, δ) = C)
or σ(1..) ² 1 if (f([α]C, δ) = f([α′]C, δ) = 1) or σ(1..) ² [α + α′/δ]C

⇔ {Definition of f}
σ(1..) ² f([β + β′]C, σ(0))

166

Bibliography

[1] A. R. Anderson. Some nasty problems in the formalization of ethics.
Noûs, 1:345–360, 1967.

[2] G. Antoniou. A tutorial on default logics. ACM Comput. Surv.,
31(4):337–359, 1999.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In
M. Bernardo and F. Corradini, editors, Formal Methods for the Design
of Real-Time Systems: 4th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems,
SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer–Verlag,
September 2004.

[4] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and
tools. In W. Reisig and G. Rozenberg, editors, In Lecture Notes on
Concurrency and Petri Nets, Lecture Notes in Computer Science vol
3098. Springer–Verlag, 2004.

[5] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Making components
contract aware. IEEE Computer, 32(7):38–45, 1999.

[6] P. Blackburn, J. F. A. K. van Benthem, and F. Wolter. Handbook
of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning).
Elsevier Science Inc., New York, NY, USA, 2006.

[7] A. J. Bonner and M. Kifer. Concurrency and communication in trans-
action logic. In In Joint Intl. Conference and Symposium on Logic
Programming, pages 142–156. MIT Press, 1996.

[8] J. Broersen. Action negation and alternative reductions for dynamic
deontic logics. J. Applied Logic, 2(1):153–168, 2004.

[9] J. Broersen, R. Wieringa, and J.-J. C. Meyer. A fixed-point character-
ization of a deontic logic of regular action. Fundam. Inf., 48(2-3):107–
128, 2001.

[10] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

167

[11] E. S. J. P. W. Carlos Molina-Jiménez, Santosh K. Shrivastava. Run-
time Monitoring and Enforcement of Electronic Contracts. Electronic
Commerce Research and Applications, 3(2), 2004.

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the
state explosion problem in model checking. Lecture Notes in Computer
Science, 2000:176–195, 2001.

[13] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[14] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The
MIT Press, 1999.

[15] C. Colombo, G. J. Pace, and G. Schneider. Dynamic event-based run-
time monitoring of real-time and contextual properties. In 13th Inter-
national Workshop on Formal Methods for Industrial Critical Systems
(FMICS 2008). To be published by Springer Verlag in Lecture Notes
in Computer Science, 2008.

[16] A. Daskalopulu. Model Checking Contractual Protocols. In L. Breuker
and Winkels, editors, Legal Knowledge and Information Systems, JU-
RIX 2000: The 13th Annual Conference, Frontiers in Artificial Intelli-
gence and Applications Series, pages 35–47. IOS Press, 2000.

[17] A. Daskalopulu and T. S. E. Maibaum. Towards Electronic Contract
Performance. In Legal Information Systems Applications, 12th Inter-
national Conference and Workshop on Database and Expert Systems
Applications, pages 771–777. IEEE C.S. Press, 2001.

[18] H. Davulcu, M. Kifer, and I. V. Ramakrishnan. CTR-S: A Logic
for Specifying Contracts in Semantic Web Services. In Proceedings of
WWW2004, pages 144–153, May 2004.

[19] D. A. P. Edmund M. Clarke Jr., Orna Grumberg. Model Checking.
1999.

[20] E. A. Emerson. Temporal and modal logic. pages 995–1072, 1990.

[21] E. A. Emerson and J. Y. Halpern. ’̈sometimes̈’ and ’̈not never̈’ revisited:
on branching versus linear time temporal logic. J. ACM, 33(1):151–178,
1986.

[22] J. L. Fiadeiro and T. S. E. Maibaum. Temporal theories as modulari-
sation units for concurrent system specification. Formal Asp. Comput.,
4(3):239–272, 1992.

168

[23] M. Fitting and R. L. Mendelsohn. First-order modal logic. Kluwer
Academic Publishers, Norwell, MA, USA, 1999.

[24] G. Governatori. Representing business contracts in RuleML. Interna-
tional Journal of Cooperative Information Systems, 14:181–216, 2005.

[25] G. Governatori and A. Rotolo. Logic of violations: A gentzen system
for reasoning with contrary-to-duty obligations. Australatian Journal
of Logic, 4:193–215, 2006.

[26] J. Hintikka. Some main problems of deontic logic. In R. Hilpinen, editor,
Deontic Logic: Introductory and Systematic Readings, pages 59–104. D.
Reidel Publ. Co., Dordrecht, 1971.

[27] G. J. Holzmann. The model checker spin. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, 1997.

[28] H. E. Jensen. Abstraction-based verification of distributed systems /–
by Henrik Ejersbo Jensen. PhD thesis, Aalborg, Denmark :Aalborg
University, Dept. of Computer Science,, 1999.

[29] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic Model Checking: 1020 States and Beyond. In Proceedings
of the Fifth Annual IEEE Symposium on Logic in Computer Science,
pages 1–33, Washington, D.C., 1990. IEEE Computer Society Press.

[30] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. Lecture Notes in Computer Science,
2072:327–355, 2001.

[31] D. Kozen. Results on the propositional mu-calculus. Theor. Comput.
Sci., 27:333–354, 1983.

[32] D. Kozen and R. Parikh. A decision procedure for the propositional
µ-calculus. In E. M. Clarke and D. Kozen, editors, 4th Workshop on
Logics of Programs, volume 164 of Lecture Notes in Computer Science,
pages 313–325. Springer, 1983.

[33] O. Kupferman and M. Y. Vardi. From linear time to branching time.
ACM Trans. Comput. Logic, 6(2):273–294, 2005.

[34] M. Kyas, C. Prisacariu, and G. Schneider. Run-time monitoring of elec-
tronic contracts. In ATVA’08, LNCS. Springer-Verlag, October 2008.
To appear.

[35] L. Lamport. ”sometime” is sometimes ”not never”: on the tempo-
ral logic of programs. In POPL ’80: Proceedings of the 7th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 174–185, New York, NY, USA, 1980. ACM.

169

[36] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
Oct. 1997.

[37] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. In POPL ’85: Proceedings
of the 12th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pages 97–107, New York, NY, USA, 1985. ACM.

[38] M. Maidi. The common fragment of ctl and ltl. In FOCS ’00: Pro-
ceedings of the 41st Annual Symposium on Foundations of Computer
Science, page 643, Washington, DC, USA, 2000. IEEE Computer Soci-
ety.

[39] E. Mally. Grundgesetze des Sollens. Elemente fer Logik des Willens.
Graz: Leuschner & Lubensky, 1926.

[40] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for
regular alternation-free mu-calculus. Sci. Comput. Program., 46(3):255–
281, 2003.

[41] K. L. McMillan. Symbolic Model Checking:An approach to the state
explosion problem. PhD thesis, Carnegie Mellon university, May 1992.

[42] K. L. McMillan. The SMV language. Cadence Berkeley Labs, 2001
Addison St. Berkeley, CA 94704 USA, 1st edition, March 1999.

[43] J.-J. C. Meyer. A different approach to deontic logic: Deontic logic
viewed as a variant of dynamic logic. Notre Dame Journal of Formal
Logic, 29:109–136, 1988.

[44] J.-J. C. Meyer, F. Dignum, and R. Wieringa. The paradoxes of deontic
logic revisited: A computer science perspective (or: Should computer
scientists be bothered by the concerns of philosophers?). Technical
Report UU-CS-1994-38, Department of Information and Computing
Sciences, Utrecht University, 1994.

[45] J.-J. C. Meyer and R. J. Wieringa, editors. Deontic logic in computer
science: normative system specification. John Wiley & Sons, Inc., New
York, NY, USA, 1994.

[46] H. C. neda. The paradoxes of deontic logic: The simplest solution to
all of them in one fell swoop. In R. Hilpinen, editor, New Studies in
Deontic Logic, pages 37–85. D. Reidel Publishing Company, Dordrecht,
1981.

[47] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT
Press, 1999.

170

[48] G. Pace, C. Prisacariu, and G. Schneider. Model Checking Contracts
–a case study. In 5th International Symposium on Automated Technol-
ogy for Verification and Analysis (ATVA’07), volume 4762 of Lecture
Notes in Computer Science, pages 82–97, Tokyo, Japan, October 2007.
Springer.

[49] Y. V. Patrick Blackburn, Maarten de Rijke. Modal Logic. Cambridge
University Press, 2001.

[50] A. Pnueli. The temporal logic of programs. In Proceedings of the Eigh-
teenth Symposium on Foundations of Computer Science, pages 46–57,
1977.

[51] A. Pnueli. The temporal semantics of concurrent programs. In Pro-
ceedings of the International Sympoisum on Semantics of Concurrent
Computation, pages 1–20, London, UK, 1979. Springer-Verlag.

[52] V. R. Pratt. Semantical considerations on floyd-hoare logic. In IEEE
Symposium on Foundations of Computer Science, pages 109–121, 1976.

[53] V. R. Pratt. Dynamic algebras and the nature of induction. In 12th
ACM Symposium on Theory of Computing (STOC’80), pages 22–28.
ACM, 1980.

[54] C. Prisacariu and G. Schneider. An Algebraic Structure for the Action-
Based Contract Language CL - theoretical results. Technical Report
361, Department of Informatics, University of Oslo, Oslo, Norway, July
2007.

[55] C. Prisacariu and G. Schneider. A Formal Language for Electronic
Contracts. In M. Bonsangue and E. B. Johnsen, editors, 9th IFIP In-
ternational Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’07), volume 4468 of Lecture Notes in Com-
puter Science, pages 174–189, Paphos, Cyprus, June 2007. Springer.

[56] C. Prisacariu and G. Schneider. Towards a Formal Definition of Elec-
tronic Contracts. Technical Report 348, Department of Informatics,
University of Oslo, Oslo, Norway, January 2007.

[57] J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in cesar. In Proceedings of the 5th Colloquium on Interna-
tional Symposium on Programming, pages 337–351, London, UK, 1982.
Springer-Verlag.

[58] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(2):81–
132, 1980.

171

[59] R. Reussner et al. CoCoME - the common component modelling ex-
ample. To appear in Lecture Notes in Computer Science, 2008.

[60] I. Song and G. Governatori. Nested rules in defeasible logic. In RuleML,
volume 3791 of Lecture Notes in Computer Science, pages 204–208,
2005.

[61] R. H. Thomason. Deontic logic as founded on tense logic. In R. Hilpinen,
editor, New studies in deontic logic: norms, actions, and the founda-
tions of ethics, pages 165–176. D. Reidel Publishing Company, Dor-
drecht, Holland, 1981.

[62] R. van der Meyden. The dynamic logic of permission. In LICS, pages
72–78, 1990.

[63] J. van Eck. A system of temporally relative modal and deontic predicate
logic and its philosophical applications. Logique et Analyse, 99:249–290,
1982.

[64] I. Walukiewicz. A Complete Deductive System for the µ-Calculus. PhD
thesis, 1993.

[65] I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propo-
sitional µ-calculus. In 10th IEEE Symposium on Logic in Computer
Science (LICS’95), pages 14–24. IEEE Computer Society, 1995.

[66] R. Wieringa, J.-J. C. Meyer, and H. Weigand. Specifying dynamic and
deontic integrity constraints. Data Knowl. Eng., 4:157–189, 1989.

[67] R. J. Wieringa and J. j. Ch. Meyer. Applications of deontic logic in
computer science: A concise overview. In Deontic Logic in Computer
Science: Normative System Specification, pages 17–40. John Wiley &
Sons, 1993.

[68] R. J. Wieringa, H. Weigand, J. j. Ch. Meyer, and F. P. M. Dignum.
The inheritance of dynamic and deontic integrity constraints. Annals
of Mathematics and Artificial Intelligence, 1991:393–428, 1991.

[69] G. H. V. Wright. Deontic logic. Mind, (60):1–15, 1951.

[70] G. H. V. Wright. A new system of deontic logic. Danish Yearbook of
Philosophy 1, pages 173–182, 1964.

[71] G. H. V. Wright. A correction to a new system of deontic logic. Danish
Yearbook of Philosophy 2, pages 103–107, 1965.

[72] G. H. V. Wright. Deontic logic: A personal view. Ratio Juris, 12(1):26–
38, 1999.

172

[73] E. N. Zalta. Basic concepts in modal logic. Technical report, Center
for the Study of Language and Information, 1995.

173

