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Abstract

With the ever growing need of robust and reliable software, formal methods
are increasingly being employed. A recurrent problem is the intractability of ex-
haustively verifying software. Due to its scalability to real-life systems, testing
has been used extensively to verify software. However, testing usually lacks cov-
erage. Runtime verification is a compromise whereby the current execution trace
is verified during runtime. Thus, it scales well without loss of coverage.

In this thesis we examine closely the work in runtime verification and iden-
tify potential improvements with regards to the specification of properties and
guarantees which are given. For the first issue of specification we make use of a
real-life case study to better understand the day-to-day properties which system
architects would need to formalise. DATE is the logic which results from these
experiments and experiences. It is shown to be highly expressive and versatile
for real-life scenarios. This is further confirmed by the second case study carried
out and presented in this work. Our logic requires a complete architecture to
be usable with Java programs. This architecture, called Larva, is developed
using Java and AspectJ with the aim of being able to automatically create and
instrument monitoring code from a Larva script.

A central aspect of this thesis is the work on real-time properties. Such prop-
erties are very sensitive to overheads, because overheads slow down the system
and use up resources. For this purpose, we present a theory based on the promi-
nent real-time logic, duration calculus, to be able to give guarantees on the effects
of slowing down/speeding up the target system due to the monitoring overhead.
Another form of guarantee which we can give on real-time properties is the up-
perbound of memory overhead used during runtime verification. This is achieved
by starting from the subset of duration calculus, QDDC, and translating it into
Lustre.

To relate Larva to other tools in the field we use a benchmark to compare
expressivity and resource consumption of Larva to other prominent tools. Fur-
thermore, a subset of duration calculus (counterexample traces), QDDC, and
Lustre have been shown to be translatable into Larva. This has two main pur-
poses: first that this allows users familiar with other logics to utilise Larva, and
second that the guarantees enjoyed by these logics, will also benefit Larva.
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1. Introduction

1.1 Aim and Motivation

1.1.1 Background

As computer systems become increasingly present in all the aspects of our lives
— be it in transport systems, medical equipment, or online billing systems — it
becomes increasingly important to provide reliable and robust software. Faults
in security-critical systems can at best cost a lot of money, at worst the loss of
human lives.

Thus far, the most common approach to address this problem was testing.
Despite the effectiveness of proper testing, it is extremely difficult to test huge
software products in a sufficiently thorough manner so as to ensure their cor-
rectness. The reason is that testing usually lacks coverage. A system does not
work in a vacuum, but rather in an environment. Usually, we cannot predict
(and much less simulate) all the environment behaviours to test our system in
every possible situation. Another approach to provide secure software is model
checking. In this case, we try to verify all execution paths which the system can
possibly run into. However, this is usually impractical on a system which is large
enough to be of any practical use.

Therefore, it seems that we need to find another way of ensuring that com-
puter software is reliable and robust. This is a sort of trade-off between testing
and model-checking. Taking the scalability of testing and the coverage of model-
checking one can verify an execution trace during the actual runtime of a system.
The idea is that we have a clear description of the system’s specification repre-
senting all the acceptable behaviour and while the system is executing, one is
continually ensuring that the behaviour is adhering to the specification. In this
way we would be guaranteeing that whatever the environment or the input, the
behaviour is still correct. In case a property violation is encountered, the verify-
ing system can either raise an alarm or else, even more appropriately, make some
action which corrects the state of the monitored system.

1



Chapter 1. Introduction

1.1.2 Broad Aims and Achievements

In order to provide a specification, we need to have succinct and clear notation
which is not error prone itself. A number of formal notations have been proposed,
each of which were designed with a particular domain in mind. Such a notation
can still be difficult for a developer without a background in formal notation,
so we need to find easier and clearer ways of specifying the security properties.
In this work we propose the use of an automata-based logic called DATE. This
logic was designed with the aim of providing all the necessary expressivity which
a user may need. For example, a user should be able to capture system events
and keep track of the security state of the system using states and variables. The
variables and the objects associated with the events can be manipulated using
specific actions on the transitions of a DATE automaton. The automaton may
also trigger events based on timers. This is particularly useful for monitoring
real-time properties. There are various other features which make this language
particularly useful for monitoring Java programs.

However, there still remains the problem of inserting the monitoring code
which takes note of the events occurring in the security-critical system and then
verifies them against the specification. We need to keep the process of injecting
this code also error-free and hence we need to make it automatic. To this end, we
propose the use of aspect-oriented programming which injects Java monitoring
code automatically in identifiable points (join points) in the system code. The
most common join points are method calls; but there are other useful ones, such
as, exception throws and exception handlers. Together with the DATE logic we
have implemented a system Larva, to create and integrate the monitoring code
with the target system.

Finally, we need to consider the problem that upon injecting monitoring code,
we are also changing the system itself (slowing it down), because we have intro-
duced an overhead to the actual system. This issue requires careful consideration
because we do not want to introduce errors while trying to eliminate them. This
applies more specifically to real-time systems because these are more error prone
due to their strict timings. The overheads are two-fold: memory overheads and
processing overheads (which slow down the system). To tackle these issues, we
take two approaches: one which guarantees an upperbound of memory resources
and another which ensures that slowing down (or speeding up) a real-time sys-
tem will not cause the violation of the system properties which would hold on
the non-monitored version.

To guarantee memory upperbounds, we decided to use the synchronous lan-
guage Lustre [46], with the advantage of being able to calculate the memory
required at compile time. If the security properties can be represented in Lustre,
then the problem of guaranteeing memory upperbound is resolved. Lustre has
already been used to monitor QDDC [45], which is a subset of duration calculus
— a highly expressive dense-time logic. The advantage of duration calculus is
that it is based on intervals and not on points in time. For runtime verification
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this has a significant advantage that there is no distinction between past and fu-
ture. For this reason and its sound mathematical background, duration calculus
is ideal to represent real-time software properties. Lustre is known to be easily
translatable into symbolic automata and hence it was relatively easy to convert
it into DATE automata. Using the conversion from QDDC to Lustre and from
Lustre to Larva, we thus provide the framework to guarantee an upperbound
for the memory overhead required to monitor Java programs.

Duration calculus is too expressive to be fully implemented, but a useful sub-
set called implementables [78, 84] provides enough expressive power for commonly
known practical applications. This subset has been converted into phase event
automata [58] and the latter did not prove to be very difficult to convert into
Larva. Apart from QDDC and the implementables, duration calculus has other
interesting subsets which we have studied. In fact, there are two subsets which
we will refer to as slowdown truth preserving properties and speedup truth pre-
serving properties. For the slowdown truth preserving properties we guarantee
that if such a property holds on a particular execution of a program, it will also
hold on a slowed-down version of the same execution. Similarly, for the speedup
truth preserving properties we guarantee that if such a property holds on a par-
ticular execution of a program, it will also hold on a speeded-up version of the
same execution. These two subsets intersect for a number of useful properties
which are concerned with the number of events. The number of events is not
affected by slowing down or speeding up of an execution. Although parts of the
slowdown/speedup subsets are not in the implementables subset, it is still useful
to identify the subset of implementables which intersects with the slowdown and
speedup subsets.

1.2 Practical Implications

We envision two main practical applications for which Larva can be used: (i) dur-
ing software development — connecting the implementation with requirements,
and (ii) when deploying fully developed software — being either in-house or third
party software. In a software development environment, the requirements of the
software can be expressed in a formal notation very early in the development life
cycle. If these are written using the Larva language (or any other supported
notation), eventually, during the actual implementation, the requirements can
be directly related to concrete system events such as method calls or exception
throws. With this little extra overhead, the monitoring of system requirements
comes with no additional human intervention — just a simple compilation which
includes the monitoring code generated by the Larva system. The extra advan-
tage of using Larva is the proved guarantees that can be given when running
the system with the monitoring code. When deploying a fully developed system,
the user can decide either to keep the monitoring system (if it was already in-
troduced), or create the monitoring system from scratch (even if the software is
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third party software). This freedom of removing/introducing monitoring code in
real-time systems can only be guaranteed to have no impact on the target system
if the monitored properties happen to lie within the subsets of slowdown/speedup
properties. For example, removing the monitors from a system will usually cause
the system to run faster. If the properties being verified are speedup truth pre-
serving, we can guarantee that any property which was satisfied by the system,
will still hold in the version without the monitors. Similarly, introducing mon-
itors for slowdown properties to software will not affect the satisfaction of such
properties.

1.3 Other Accomplishments

To assess whether our work is useful in practice, we have applied it to two real-life
case studies: a transaction system and an intrusion detection system. The former
is a system taken from a local industrial company which processes a large volume
of transactions per hour. The emphasis of this case study is the integration of
the Larva runtime verification architecture to the target system. On the other
hand, the intrusion detection system was purposely created for the second case-
study. The emphasis in this case was on the encoding and monitoring of real-time
properties.

The related work in the area of runtime verification is very important in
this thesis because it is useless to create new logics and architectures without
showing the advantages and improvements on the existing work in the field. This
was mainly achieved through a benchmark which has the aim of comparing the
expressivity and resource usage of various state-of-the-art logics and tools in the
field of runtime verification. To compare expressivity we selected a number of
important features and for each tool we checklisted the list of features which it
offers. Comparing the resource usage of the various tools was more intriguing.
We created a fictitious scenario to be used as a benchmark and tried different
tools to solve the same problem.

As a by-product of using other logics with our architecture to gain more guar-
antees, we have ultimately created a complete runtime verification infrastructure
in which the users have a choice of five different notations: Larva, counterexam-
ple traces, phase event automata, QDDC, and Lustre. This makes our tool more
easily usable by users who are used to the currently used notations.

1.4 Document Outline

The document is organised in five main parts as follows:

• The first one gives the necessary background for the work. This has two
main components: Chapter 2 which gives a complete overview about dy-
namic analysis with special emphasis on runtime verification followed by
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Chapter 3 which introduces the real-time logics which will feature later on
in the work.

• The second part features the DATE logic and Larva architecture. The
first chapter explains the design choices and mathematics behind the DATE
logic. The following two chapters explain the reasons behind the choice of
syntax for the logic and the implementation details of the Larva infras-
tructure.

• The third part gives the theory and proofs which relate DATE to other logics
and derive guarantees on runtime verification properties. Chapter 7 gives
the relationship of DATE to two other logics — counterexample traces and
QDDC — proving the translations involved. The following chapter gives
the theory of truth preservation of real-time properties written in duration
calculus.

• The fourth part gives an account of the experiments carried using Larva:
Chapter 9 gives an account of two real-life scenarios while Chapter 10 com-
pares Larva to related work in our research area using a benchmark.

• The last part concludes the work with Chapter 11.
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2. Dynamic Analysis

2.1 Introduction

In this chapter we introduce dynamic analysis in Section 2.2, explain how it
evolved in Section 2.3, and compare it to static analysis in Section 2.4. In Section
2.5, we give an overview of the notations used for describing system properties.
Subsequently, in Section 2.6 we explain the use of automatic instrumentation in
the context of runtime verification. Some algorithms used for runtime verification
are introduced in Section 2.7. The issues related to overhead brought about by
runtime verification are discussed in Section 2.8 while Section 2.9 concludes the
chapter.

2.2 What is Dynamic Analysis?

Dynamic analysis is the process of verifying a system (referred to as the target
system) while it is executing. In more technical terms, dynamic analysis will
refer to all the techniques used to verify the system’s properties for one partic-
ular execution trace obtained by executing the program. [35]. To perform such
an analysis, we would require two basic components over and above the target
system: (i) a monitoring mechanism; (ii) a verification mechanism. Monitoring
the system entails the elicitation of events while they are occurring. These events
are then communicated to the verification mechanism which verifies that the se-
quence of events adheres to the target system’s specification. If a violation is
found, then, the verification system raises an alarm or possibly reacts in some
way so as to revert the target system back to an acceptable state. The follow-
ing subsections will give a more detailed account of the phases which dynamic
analysis comprises.

2.2.1 The Phases of Dynamic Analysis

We will now give an outline of the various phases involved in different dynamic
analysis approaches. Figure 2.1 shows a block diagram of the dynamic analysis
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architecture. The numbers in the figure correspond to the following list of five
phases.

Monitoring
System

System

AspectJ

Feedback

Events

Specification
1

2

3

4

5

Figure 2.1: The phases of dynamic analysis.

1. Specification. The first phase includes the specification of the system’s
properties in some kind of formal notation. The choice of the notation
depends on the domain of the problem.

2. Instrumentation. Once the system properties are specified, these must be
instrumented into the system code. This process involves the generation of
the monitoring code which concretely ensures that the specified properties
are not violated. As soon as the system properties are in the same form
as the system itself, they can then be instrumented into the target code.
In some cases the monitoring code is not instrumented in the system code.
Rather, a monitoring system is run in parallel to the monitored system and
this will circumvent the need of the full instrumentation of monitoring code
(but simply instrument the code which generates the events).

3. Monitoring. Subsequently, the actual monitoring of the system is carried
out. This can either be done online or offline. This means that either
the system is actually running and the monitoring mechanism is running
synchronously or else a trace of the system’s execution is saved and then it
is verified at a later time.

4. Handling violation of properties. The next phase would be to raise
exceptions on the detection of a property violation. Another possibility is
that rather than simply raise an exception (as a notification of the viola-
tion), an automatic fault-handling mechanism may be implemented. This
means that when a problem is detected an automatic action is carried out
by the verification mechanism to correct the problem.

5. Mitigating the impact of verification. A final possible phase is the
mitigation of the impact of verification. The purpose of this phase is to try
to minimise or possibly eliminate the impact of the instrumented monitor-
ing code on the actual system. It is not always possible to simply remove
the monitoring code from the target system. In the first place, considering
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the removal of the monitors assumes that the monitoring code is simply
there for testing purposes, when in fact this is not always the case. Sec-
ondly, removing monitors from a system may bring about undesired effects
which did not emerge due to the monitors. Two possible approaches to this
problem would be to give guarantees (using metrics) on the effects of the
added code, and/or allow the system to adapt itself (using reflection) at
runtime to leave out certain code which checks for properties which may
have been verified earlier in the execution.

2.3 Flavours of Dynamic Analysis

The following are various software design methodologies or architecture patterns
which incorporate dynamic analysis to assure system properties. For each of these
methodologies, we will explain which of the above phases it includes.

2.3.1 Design by Contract

Design by contract [72] has been developed with the aim of creating more secure
software by manually inserting checks in the code which correspond to a contract.
These checks, better known as assertions, are then verified during runtime. This
approach is quite primitive when considering the amount of effort which is left to
the developer to do. In design by contract, the system properties are inserted as
preconditions or post-conditions in methods or as invariants for classes. Hence
there is no need for code instrumentation [18], since the property specifications
are manually inserted in the actual system implementation. It is important to
note that there is no option of offline monitoring since the monitors become an
integral part of the actual system. There is, however, the possibility of compiling
a version of the program which simply ignores all the monitoring [72].

In the verification of security-critical systems, the aim is that the verification
process is automated as much as possible so that the possibility of human error is
eliminated. Therefore, design by contract has quite a considerable disadvantage
when considering the amount of human intervention involved.

2.3.2 Runtime Verification

Runtime verification [25, 91, 67, 10] has also been developed to verify software
against a formal specification. However, it differs from design by contract in
various aspects. First of all, the specification of properties is done through formal
notation and it is usually automatically instrumented into the target system.
Runtime verification not only ensures that no system properties are violated, but
it also provides the mechanism to correct the behaviour so that the system can
continue to function. Therefore, the extra code for runtime verification includes
both the monitoring code (which extracts the sequence of events (trace) from the

9



Chapter 2. Dynamic Analysis

current program execution) and the code which is triggered upon a violation of
the properties.

If the specification of security properties is as cumbersome as writing the pro-
gram itself, there is probably the same chance of making mistakes. Hence runtime
verification is much more appropriate for security-critical systems because it uses
formal notation for specifying security properties. The advantage is that usu-
ally, formal notation is very succinct and much more abstract than the actual
implementation.

Although strictly speaking runtime verification should occur during the run-
time of the target system, variations of runtime verification allow for both online
and offline verification of the execution trace. This is motivated by the fact that
the overhead introduced by the runtime verification code is sometimes too large.
The alternative is to limit the overhead to the extraction of the trace from the
running program (similar to creating a log) and subsequently the actual verifica-
tion of the trace is performed later on.

2.3.3 Monitoring-Oriented Programming

Monitoring-oriented programming is a paradigm which combines the specifica-
tion and the implementation of a system [19, 18]. It goes further than runtime
verification in that it not only specifies properties to detect violations and raise
exceptions, but the violation handling mechanism is itself part of the design of
the system’s functionality. Hence, the monitoring is not simply an extra check
on top of the system but an integral part of the system’s design. For exam-
ple, consider a system which does user authentication using a security policy in
monitoring-oriented programming. Monitoring-oriented programming is a very
flexible architecture and allows for the monitoring code to be separated from the
actual system code. It also allows the monitoring code to be run asynchronously
with respect to the system being monitored.

2.3.4 Runtime Reflection

Runtime reflection [68] adds yet another idea over and above monitoring-oriented
programming methodology: it incorporates a diagnosis layer just above the mon-
itoring layer. The purpose of this layer is to identify the type of failure that
occurred rather than simply detect that a failure has occurred. This enables the
system to give an explanation of the current system state [68]. One advantage of
this extra layer is that it is more easily applicable in a distributed system where
distributed parts send their monitoring information but the diagnosis is carried
out at a central system. Furthermore, there is more separation of concerns in that
the monitoring system simply obtains values representing the state of the system,
while it is up to the diagnosis layer to interpret the system state. Subsequently,
the mitigation layer performs an operation in response to that interpretation. It
is important to note that the runtime reflection architectural pattern can still be
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achieved by using an monitoring-oriented programming methodology by imple-
menting the diagnosis layer in the monitor-triggered code.

The idea of having an explanation for ending in a bad state is very desirable.
This is more especially so when dynamic analysis is used during the testing phase
to identify errors, since this would be of great help to the developers.

2.3.5 Online vs. Offline Verification

Recall that dynamic analysis is used to verify the system’s properties for one
particular trace of events during the actual execution of the system. The monitors
are responsible to record a trace of events which are eventually analysed. The
analysis of an execution trace can be done online or offline [18]. Online verification
is when the target system and the verifying system are run synchronously in
parallel (either as two separate systems or as a single instrumented system). The
advantage of such a configuration is that the verification system can correct the
detected property violations during the execution of the system. However, this
poses more challenges for the verification process since the trace is not available
as a whole, but becomes available progressively in synchrony with the actual
execution. The fact that the trace is not all available means that certain efficient
algorithms which are able to verify the trace backwards or as a whole [82, 80]
cannot be used. However, there still exist efficient algorithms which are able to
work on-the-fly [55, 56]. The main techniques used for runtime verification are
dynamic programming [55] and term rewriting [23, 54, 53, 56].

Choosing between online and offline verification, one should consider whether
the main purpose of the runtime verification is to find errors — during testing
— or to find and automatically correct errors — after deployment. In the first
case, it is practically irrelevant whether the verification is performed online or
offline. Hence, it is preferable to use offline verification in such a circumstance.
At the same time, offline verification reduces the overhead of verification since
this is postponed to a later time and need not be done while the actual system
is running. It is important to note that we still need the monitors to report the
relevant events which are taking place.

2.4 Static vs. Dynamic Analysis

An important difference in software analysis is whether this is done before or dur-
ing runtime. Static analysis will be used to refer to all the techniques (including
theorem provers and model checkers) used to verify a program for all possible
execution paths before the actual execution. On the other hand, the term dy-
namic analysis is usually used to refer to all the techniques used to verify the
system’s properties for one particular execution trace obtained by executing the
program. Being able to verify properties for all possible executions paths [88, 91],
makes static analysis a very desirable objective. However, for the algorithm to

11



Chapter 2. Dynamic Analysis

be tractable when applied to systems of a practical magnitude, static analysis
depends on having a decidable domain. Various abstraction and reduction tech-
niques have been proposed to scale up static analysis, but full verification of
large-scale software systems is still largely unattainable [44, 91, 37]. In contrast,
using dynamic analysis, one checks that a given system property holds along a
particular execution path [91]. This is particularly useful to ensure that at no
time during the execution of the system, are any of the system properties vio-
lated. Conversely, it can also identify execution paths along which the properties
to be verified are not satisfied [91]. Essentially, dynamic analysis links the ab-
stract specification to the actual concrete implementation [66, 85]. Thus, dynamic
analysis can be used as a protection from potential faults at runtime, by imple-
menting monitors to react to any property violations encountered [44]. Another
motivation for using dynamic analysis is that certain information is only available
at runtime. Furthermore, behaviours of the system may possibly depend on the
environment where the system is running [25].

Although, there is this fundamental difference between static analysis and
dynamic analysis, ways have been proposed in which these two approaches can
complement each other by exploiting the benefits of one to aid the other. Ernst
[35], in fact, argues that the difference between static analysis and dynamic anal-
ysis is over-emphasized. Complementarity can be achieved by applying both
approaches and taking advantage of the “soundness” of static analysis while also
benefiting of the “efficiency and precision” of dynamic analysis [35]. Soundness
refers to the fact that any statically verified property holds for any possible path.
Dynamic analysis is efficient because it needs to verify only a single path and
precise because the properties are verified on the actual implementation and not
on an abstracted version of the system. A similar idea is used by Zee et al. [91]
by incorporating a runtime checker on top of the Jahob static verification system
[91]. The purpose of this integration, is to help the developers in identifying errors
in the system by showing concrete executions where the errors arise. Colcombet
and Fradet [24], use static analysis to avoid unnecessary runtime checking. A
similar approach is used by Aktug [2]. Havelund [51], on the other hand, sug-
gests the use of runtime verification to guide the model checker and thus reducing
the search space.

Another way in which static analysis and dynamic analysis can complement
each other is for test-case generation. Static analysis can be used to “intelligently”
generate test cases for a dynamic analysis tool to find errors during testing [8].
This is possible because static analysis provides the structure of the program and
thus it is easier to produce test cases which cover most of the program paths.

2.5 Logics and Automata for Dynamic Analysis

In the coming chapters, we will consider and use various languages and logics
which have been used for the specification of system properties. To facilitate
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their introduction later on, in this section we will provide a classification for
these logics.

2.5.1 Models of Time

Each temporal logic is based on a particular model of time. The first classifica-
tion is whether or not we specify properties with real-time quantities. Without
real-time quantities we can simply represent ordered sequences of events. Fur-
thermore, real-time quantities can either be integer or real values. The second
classification is whether we consider time in continuous real-time or simply as
discrete points. Finally, a third classification is whether we consider time to be
linear or branching. Each of these combinations provide different expressive power
and therefore different computation complexities for their verification. What fol-
lows is a discussion of these classifications with their respective characteristics,
advantages and disadvantages.

Dense, Discrete Real-Time and Non-Real-Time Models of Time

Dense real-time means that time can be specified in real-numbers and hence we
can refer to any particular moment in time. This is arguably the model closest
to the physical world, which operates in continuous time. For example, timed
automata [4] are based on this dense-time model. This provides a powerful model
which allows us to specify features such as liveness, fairness, non-determinism,
periodicity, bounded response and timing delays [4]. However, such a model
poses a number of challenges as regards to the computability and complexity of
the properties that we would like to enforce. The good news is that there are ways
to bypass this problem. For example, region automata [4] are used to mimic the
actual timed automata. Other literature [57, 16] propose digitisation to solve the
problem of handling the dense-time model. This would result in the digitisation
of the specified system and properties, thus transforming their underlying model
of time into a discrete model.

The discrete model of time is very commonly used. Metric temporal logic [6],
PSL [32] and QDDC [75] are all examples of logics based on this model. It is
much more convenient to verify real-time properties which are based on natural
numbers rather than real numbers. For example in [47], Halbwachs et al. suggest
the use of the language Lustre to verify real-time systems by issuing an event
for every second. Obviously, this can only be done for a discrete time model. A
similar approach has been suggested by Gonnord et al. [45]. Although using the
discrete time model seems to be limiting expressivity, many practical problems
involving real-time can still be effectively verified [57].

We can further abstract the notion of time and limit ourselves to time-
independent trace properties. Such logics (for example, linear temporal logic)
have been extensively studied and very efficient algorithms have been proposed
[55, 37, 42]. For many practical applications this model offers all the necessary

13



Chapter 2. Dynamic Analysis

expressivity. Hence, whenever we can limit ourselves to this time model, we will
have the benefit of more efficient algorithms.

Interval vs. Non-interval Time Models

Properties can be specified either over points in time or over a set of points in
time — an interval. Consider the following example: “Within any one hour period
hour there should never be more than three bad logins” is a property specified
on a time interval. Clearly, certain temporal properties are much more easily
specified in this manner. Specifying the same property without the concept of an
interval would be something like: “At no point should the count of bad logins,
starting from the point which is one hour before (the one being considered), exceed
three”. The idea of intervals has been proposed by various authors [90, 71]. The
advantage of looking at intervals rather than points in time stems from the fact
that there is no distinction between past and future. This is very important in
runtime verification since the “future” is not available.

However, the notion of intervals in system properties, introduces new complex-
ities for verification. This is because when we specify a property on an interval,
the number of sub-intervals in that interval is equal to the number of all possible
subsets of time points in that interval. Therefore, if we take a näıve approach in
verification, most properties specified on intervals in dense time (such as interval
duration logic) are undecidable [76]. However, this problem can be overcome by
using particular subsets [76] or some kind of conversion such as digitisation [16].

Linear vs. Branching Time

Practically in every program at any point there may be multiple possible actions
each leading to different traces. The behaviour is more like a tree than a linear
chain. However, it sometimes suffices to consider only one of these branches, i.e.
without considering all the other possible branches. Therefore, a classification of
temporal logics has emerged. This is the distinction between linear and branching
temporal logics [65]. In the linear model, a trace of the program is considered as
a linear sequence of states where each state has one possible subsequent state. In
contrast, in the branching model, at each point in time, all the possible execution
paths are considered and thus a computational tree can be generated (where
each node may have various possible successors). This distinction is however
more important in static analysis rather than in dynamic analysis since we can
only consider one execution trace (i.e. the one running at the time of verification).

2.5.2 Classifications of Logics

The literature is full of proposed formal notations for specifying system properties.
Different authors have suggested different specification notations according to the
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particular domain, trying to improve one aspect or another of the existing nota-
tions. An important trade-off that should be highlighted is that the greater the
expressivity of the formal notation used, the more complex is the algorithm for its
verification. Some systems also propose their own specific language. Other sys-
tems which have been proposed go beyond by actually providing meta-languages
which allow the user to specify other logics. For example, in the case of Eagle
[10] and Maude [22], the proposed architecture provides the basic temporal logic
constructs and then allows the user to create his own domain-specific logic.

In the following two subsections, we describe two classifications of logics.

Infinite and Finite Trace Logics

An important issue that arises with dynamic analysis is that the available trace
which needs to be verified is not a complete one. In other words, it is still
being created during the execution. Therefore, certain algorithms which work on
infinite traces cannot be used without special adjustments. For example, when
using Büchi automata (whose acceptance condition relies on infinite repetition of
a set of states which include a final state), one such possible adjustment is given
by Giannakopoulou and Havelund [43].

A number of temporal logics define their properties on infinite paths. A
problem arises with liveness properties. A liveness property is a property which
states that eventually something should happen. Therefore, it is difficult to verify
such a property on traces which are being verified while they are generated. Put
differently, while verifying we only have available a finite prefix of a possibly
infinite trace. Therefore, if an eventuality has not occurred yet, we cannot say
that the property does not hold on the actual trace (since we only know its prefix).
To tackle this issue various alternatives have been proposed. Some logics and
verification systems introduce new concepts to represent the “maybe” (or “not
yet known”) state at which we cannot yet decide whether a property holds on a
given (incomplete) path [11, 33, 30]. For example, some authors [33, 32] provide
extra operators over and above the standard temporal logic to include a strong
and a weak version of each operator. In the weak version, a liveness property
holds if the eventuality has not yet occurred (in a finite trace) while in the strong
version it does not. Similarly, a four-valued semantics [11] is defined which rather
than simply returns true or false, can also return possibly true or possibly false.
Furthermore, Finkbeiner and Sipma [37] proposed the use of statistics to be able
to give the actual number of times that eventualities were fulfilled.

Future Time vs. Past Time Logics

Using a temporal logic we can specify properties such as “in the next state, the
alarm should sound”. This property is specifying a constraint on the future.
Similarly, we can specify properties on the past such as “in the previous time
unit, we should have received a request”. Properties which can be expressed on
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the past can also be expressed on the future. In fact, it has been shown that past
time LTL and future time LTL have the same expressive power [40]. However,
one should note that past time temporal logic is more succinct than future time
temporal logic [70]. An interesting approach presented by Gabbay [39], is to
integrate the past and the future in a complementary way. This is achieved by
using the past temporal logic to express what should have happened in the past
and the future temporal logic to express what should be done in the future. For
example, this can be used to write properties of the form “if A was true, then do
B”.

In runtime verification, separating the past and the future may cause some
problems. Most notable is the problem of inconclusive results on future proper-
ties. For example, when verifying the property that eventually A will occur, and
A has not yet occurred in the current execution, one cannot conclude whether
the property is satisfied or violated. This problem can be solved by eliminating
the distinction between past and future using the concept of intervals. In fact,
this is an important advantage of interval logics which brings complete symmetry
between past and future [90].

2.5.3 Automata in Verification

Automata have been extensively used in verification [29, 42, 26, 14, 31, 86, 37,
38, 85, 15]; especially for efficiently deciding whether a property is violated at
a particular state. A very attractive advantage of using automata is that they
are a pictorial representation. Since we intend to make our architecture “easily”
usable for developers this representation may be more intuitive than other textual
representations of the security properties.

2.6 Instrumentation Approaches

The monitoring and verifying code requires that, somehow, it is instrumented
with the code of the system being verified. There are various ways of achieving
this. In Temporal Rover [30] the code is inserted in the actual system code
as if the logic is part of the system. This can be considered as though the
instrumentation is being done manually. In other cases, such as in MaC [67] and
PathExplorer [82], the instrumentation has a higher level of automation since
the specification is separated from the actual system code. We do not want to
leave the instrumentation to be done manually, because this is error-prone and
we do no want our error checking mechanism to be error-prone! Therefore, it is
desirable to find a way to automate the instrumentation of the monitoring code
[25].
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Aspect-Oriented Programming used for Runtime Verification.

Aspect-oriented programming allows the user to specify particular points in the
system code where a piece of code will be automatically inserted. The concept
of using this technique in runtime verification as a means of instrumentation is
far from new [74, 27, 86, 14, 60, 41, 24, 38]. However, there are various levels
and ways in which aspect-oriented programming can be used. For example using
AspectJ [61], the user can write the monitoring code in a separate aspect, leaving
the code of the actual system clean from monitoring code and at the same time,
the code regarding the monitoring is all concentrated in one place. As an example,
consider the scenario where we want to stop (or warn) users of a code library in
the case of wrong usage. The rule which should be verified is that the library
should be initialised before any other method is used. The code which blocks any
method call before initialisation is shown below:

Object around():(execution (* Library.*(..)) && !execution(*

Library.initialization(..))) {

if (initialized)

return proceed();

else

return "LIBRARY: Library must be initialized.";

}

Using the “*” wildcard, we have managed to check for initialisation before the
execution of any possible method apart from the one whose name is initialization.
One should note the efficiency of implementing such logic in a few line of code
rather than inserting a condition at the start of all the methods in the library.
Furthermore, adding further methods to the library does not necessitate any
modifications to the code handling the property.

Having automatic code injection and all monitoring code in one aspect is much
less error-prone, but sill requires a lot from the developer and thus, there is still a
lot of possibility for error. Hence, various authors [27, 14, 86, 74] have suggested
the creation of an automatic way to generate AspectJ directly from the system’s
specification.

A slightly different approach has been proposed [24] where the specifications
are directly weaved into the graph representing the program without going to
the intermediate stage of creating aspects. Similarly, Fradet and Hong Tuan
Ha [38] have suggested the specification of the properties in a special language
semantically equivalent to timed automata and the program to be verified is
also abstracted into timed automata. Subsequently, the weaving is performed on
timed automata. The advantage of this approach is that the weaving is visible
to the programmer. Furthermore, in specifying the properties the programmer
can focus on the semantics of the properties rather than the syntax as in the case
with using an aspect-oriented programming language such as AspectJ.
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2.7 Algorithms for Verification

Verification usually consists in executing the automaton (representing the prop-
erty) in parallel with the system being verified. If the automaton reaches an
undesirable state, then the system has reached a bad state.

In particular cases it is not possible to have the complete automaton from the
beginning; either because the automaton is infinite, or because it is too large to
fit in memory. This is the case with symbolic automata — which may be infinite
if explicitly unfolded. The reason is that symbolic automata allow the use of
variables which can take an infinite number of values. It is sometimes necessary
for automata to be generated on-the-fly. Therefore, it is imperative that whenever
we use such automata for verification, we use an on-the-fly verification algorithm.
In other cases, the conversion of the formula into automata may not be trivial or
there may exist straightforward algorithms which can be applied directly on the
formula.

On-the-fly Algorithms

Another subset of algorithms are those which divide the predicates to be verified
into two parts. The basic idea is that since we do not have the whole trace
available during runtime verification, we must satisfy the formulas as we progress
through the execution. Hence, we split the formula into two parts: the part which
we should check “now” and the part which we will check later; hence the name
“on-the-fly”. For example, verifying a formula having the 2 (always operator)
will entail the verification that the formula holds at the current state and also
that it will hold in the next state. In other words, checking that p always holds
requires that p currently holds and that in one step p always holds. Similarly, a
formula having the ⋄ (eventually operator) will require a test of whether or not the
formula holds at the current state and, if it does not, it has to be checked again in
the next state. Such algorithms exploit the recursive nature of the temporal logic
and use the results from the consecutive states to reach the result of the current
state. Using automata to represent formulas, we will in fact be generating the
verifying automaton on-the-fly according to the previous state.

The idea behind dynamic programming is the very same idea of reaching a
result based on the previous results. In fact, dynamic programming has been
suggested as a very efficient way of checking whether or not a formula holds
at a certain state of the execution [82]. This algorithm exploits the fact that
the properties can be recursively defined and hence, there is no need to test the
whole trace at each point in time; it is sufficient to consider the current state
while having the computed result of the rest of the trace. Thus, this gives a time
complexity of O(n) The main drawback is that the trace has to be traversed
backwards and hence cannot be used to monitor a trace during its execution.
However, later on, the algorithm was improved to perform verification at runtime
[55] and thus this drawback was overcome.
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Another suggested similar approach is term rewriting [23, 54, 53, 56]. In
this case, a formula is transformed (reduced) after each event (hence the word
rewriting) until it is satisfied or violated at a later state in the trace. Very similar
work has also been done [10] where the temporal formula can be separated into
three parts — past, present and future — connected with boolean connectives.

2.8 Overheads in Using Dynamic Analysis

Since dynamic analysis involves some kind of monitoring and extra verification,
then it obviously introduces an overhead to the system being monitored. Such an
overhead can have many negative consequences on the system which must react
under real-time constraints.

The kind of optimisations which are possible are very specific to the architec-
ture used and at which phase of the verification process this is carried out. For
example when using automata, there is the concept of pruning [37] or collapse
[31].

Other proposed optimisations try to avoid unnecessary checking during run-
time [38, 89]. Colcombet and Fradet [24] propose a mixture of static and dynamic
analysis so that properties which can be verified upon inspecting the source code
are not unnecessarily tested-for during runtime. Thane [87] classifies various types
of monitors and for each type explains how it can or cannot be removed from the
target system. Havelund and Roşu [56] suggest to optimise boolean functions and
evaluate the predicates such that probabilistically they would have the minimum
runtime cost.

Drusinsky [31] analyses the growth of p-trees under different restrictions. In
this way the upper-bound of the size of the tree (and hence memory usage) can be
guaranteed. To save memory usage, Courcoubetis et al. [26] propose the use of
hashing without collision detection to store program state with the disadvantage
of possibly missing some states.

In case studies carried out by Bhargavan et al. [13], the overhead of runtime
verification is quite large. Hence, two kinds of optimisations (abstractions) were
proposed in the scenario of a packet routing algorithm. One is that the verification
was limited to a certain number of nodes rather than all the nodes (population
abstraction) while the other limited the verification to a particular type of packets
(packet-type abstraction). However, these optimisations are reasonable if the aim
of the verification is that of finding errors in the testing phase instead of ongoing
monitoring of the target system.

In general, runtime verification overheads cannot be completely removed. In-
stead, the above approaches reduce the overheads to an acceptable level depend-
ing on the application.
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2.9 Conclusion

Runtime verification has evolved as a compromise to the scalability problem of
static analysis and the lack of coverage of testing. The initial idea of design by
contract has been further developed so that monitoring code is automatically in-
strumented with the target system. One approach to automatic instrumentation
is aspect-oriented programming. The spectrum of runtime verification — be it
in notations used and be it in algorithms employed — is very wide. The reason
is that each proposed approach is more targeted to particular applications. Run-
time verification introduces an overhead on the monitored system. This may be
detrimental especially in the case of real-time systems. A lot of work still needs
to be done to analyse the magnitude and effect of the overhead of monitoring
over the target system.
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3. Real-Time Logics

3.1 Introduction

This chapter introduces a number of real-time logics used in this work. Dura-
tion calculus is a formal approach to designing real-time systems. Its syntax
and semantics are introduced in Section 3.2. In the next section we introduce
counterexample traces which are an implementable subset of duration calculus.
QDDC, another subset of duration calculus, is introduced in Section 3.4. Phase
event automata which can be used to monitor counterexample traces are intro-
duced in Section 3.5 while Section 3.7 concludes the chapter.

3.2 Duration Calculus

Duration calculus [90, 49] formalises the concept of duration formulae — proper-
ties over intervals of time, which are based on the value of the underlying boolean
states (variables which change over time). The calculus is based on two main con-
cepts: integration — to measure for how long a boolean variable holds over an
interval — and the chop operator — which splits an interval into two with differ-
ent formulae which must hold on the two subintervals. Various other operators
can be defined in terms of these basic ones together with the boolean connectives,
to enable the expression of properties such as:

2(
∫

badstate > 3mins ⇒ l > 60mins)

This can be read as “for every subinterval, if the system is in a bad state
for more than three minutes, then the length of that subinterval must be greater
than an hour. In other words a system cannot be in a badstate for more than
three minutes in any interval whose length is smaller or equal to an hour”.

In this case, badstate is a state variable which changes between true and false
as time goes by. Thus, a state variable can be considered as a wire in an electrical
circuit which can have a low voltage or a high voltage. It can also be considered
as a function of time which, given a particular time, returns a boolean value.
By using 1 and 0 to represent true and false, the mathematical integral can be
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applied on a variable. This would yield the total time that the variable was true.
The term true (and false) when used as state variables are functions which return
true (or false) all the time. Thus, the integral of true returns the length of the
interval while the integral of false is always zero. The set of state variables is
represented by SVar while state variables are represented by the letters P, Q, R,
. . . .

By applying the integral, a real value is obtained from a boolean variable. This
opens up the possibility of using real operators such as + and −, and comparison
operators such as < and >. Thus, in a duration calculus formula, there are both
real functions and boolean functions with real-valued arguments. The set of real
functions is represented by FSymb while the set of boolean functions is represented
by RSymb. The elements of FSymb are referred to by f n , gm , . . . where n and m
are the number of arguments. Similarly, the elements of RSymb are referred to
by pn , qm , . . .. Real-valued arguments are not restricted to the integral function
of state variables. Rather, time-independent real-valued variables are very useful,
for example, to compare the integral of a state variable. The set of real-valued
variables is represented by GVar and the letters x, y, z, . . . are used to refer to
its elements.

The following list summarises the symbols explained above:

0 False.

1 True.
∫

The integration operator which measures the duration a state expression eval-
uates to true.

SVar The set of boolean-valued state variables P, Q, R,. . . , whose values depend
on time.

GVar The set of real-valued variables x, y, z,. . . , whose values are time-independent.

FSymb The set of real functions f n , gm ,. . . , (n,m ≥ 0) where f n takes n real-
valued arguments and returns a real value. For our purposes, the functions
are assumed to be + and −.

RSymb The set of boolean functions pn , qm ,. . . , (n,m ≥ 0) where f n takes n
real-valued arguments and returns a boolean value. For our purposes, the
relations are assumed to be <, ≤, =, ≥ and >.

Using state variables as the bases, and the usual binary operators, state ex-
pressions can be constructed. As before, the integral can be applied to yield the
time during which the expression was true. The set state expressions is defined
inductively as follows:

StateExpr ::= 0 | 1 | SVar | ¬ StateExpr | StateExpr ∨ StateExpr
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A term in duration calculus is always real-valued — it can be an integral of a
state expression, a real-valued variable, or a real-valued function. This is defined
as follows:

Term ::=
∫

StateExpr | GVar | f (Term, . . . ,Term)

Using the terms as building blocks, a duration calculus formula is a boolean
function which takes an interval as input. A duration formula is formed by using
boolean functions on real-valued terms and applying the boolean operators on
them. Note that the boolean symbols ∨ and ¬ are overloaded — used for state
expressions and formulae. An additional operator is the chop operator. The chop
operator divides an interval into two subintervals and applies the left formula on
the first subinterval and the right formula on the second subinterval. The set of
duration calculus formulae is defined inductively as follows:

Formula ::= p(Term, . . . ,Term) | ¬ Formula

| Formula ∨ Formula | Formula ⌢ Formula

3.2.1 Semantics

In duration calculus, time is modelled as the set of non-negative real numbers:

T
def

= R
+ ∪ {0}

A duration calculus formula is a composition of boolean expressions and du-
ration calculus operators specified over an interval. We define an interval as
follows:

Interval
def

= [b, e] where b, e ∈ T ∧ b ≤ e

A boolean state is a boolean variable which may change over time. Based
on boolean states, one can define boolean expressions using standard boolean
operators (∨, ¬ ). As usual the abbreviations ∧, ⇒ and ⇔ can be used. The truth
and falsity of a boolean state depends on the interpretation being considered. An
interpretation I can be seen as a function which returns the temporal behaviour
of a given boolean state:

I ∈ BooleanState → (T → B)

An interpretation can be lifted to give the value of a boolean expression by
applying the interpretation on the constituent boolean states. In other words,
I (X ∨ ¬ Y )(t) is defined as I (X )(t) or ¬ (I (Y )(t)).
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It is assumed that the boolean variables obey the finite variability property
— over any finite interval, a boolean state may only have a finite number of
discontinuous points.

The truth of a formula thus depends on the underlying interpretation of the
boolean states. Under a given interpretation I, we can define what it means for
a duration formula D to be true for a given interval [b, e], which we write as
I �[b,e] D .

The duration formula
∫

P = n holds if boolean expression P holds for a total
of n time units over the interval:

I �[b,e]

∫

P = n
def

=
∫ e

b
I (P)(t)dt = n

The boolean operators can also be lifted over duration formulae:

I �[b,e] ¬ D
def

= I 2[b,e] D

I �[b,e] D ∧ E
def

= I �[b,e] D and I �[b,e] E

I �[b,e] D ∨ E
def

= I �[b,e] D or I �[b,e] E

The chop operator is used to split an interval into two subintervals where each
subinterval satisfies the respective formula:

I �[b,e] D ⌢ E
def

= I �[b,m] D and I �[m,e] E for some m ∈ [b, e]

Based on these operators, one can define other useful operators syntactically.
The length (ℓ) of an interval can be measured and defined as follows:

ℓ
def

=
∫

1

where 1 is the boolean state constantly true.
One can define other comparison operators on the duration of boolean expres-

sions syntactically. For instance,
∫

P ≥ n can be written as
∫

P = n ⌢ true.
Using boolean operators, the other comparators can also be defined.

The duration formula stating that boolean expression P holds (almost) ev-
erywhere throughout the given interval, written ⌈P⌉, is defined as:

⌈P⌉
def

=
∫

P = ℓ ∧ ℓ > 0

Based on the chop operator one can define what it means for a duration
formula D to hold over some subinterval, written as 3D , and defined as:

3D
def

= true ⌢ D ⌢ true

The dual operator — stating that a duration formula D holds over all subin-
tervals, written as 2D , and can be defined as:
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2D
def

= ¬ 3¬ D

A duration formula is valid under an interpretation if it holds for all time
prefixes:

I � D
def

= ∀ t : T · I �[0,t ] D

Finally, a duration formula is said to be a tautology if it holds under all
interpretations.

� D
def

= ∀ I · I � D

3.3 Counterexample Traces

In general, duration calculus is too expressive to be monitored with a bounded
number of clocks. Consider the example given by Bouajjani et al. [1]:

2(↑ π ∧ (ℓ > 1) ⇒ (⌈true⌉ ∧ ℓ = 1) ⌢ ⌈¬ π⌉ ⌢ true)

where ↑ π is satisfied by an interval [b, e], if π turns to true exactly at beginning
at b:

I �[b,e]↑ π
def

= ∃ ǫ > 0 · ∀ t ∈ [b, b + ǫ] · I (π)(t) = 1, and

either b = 0 or ∀ t ∈ [b, b − ǫ] · I (π)(t) = 0

The formula in the example states that exactly one time unit after a rising
edge of π, it should turn to false. The problem is that in one time unit there may
be an unbounded number of rising edges of π. One would need an unbounded
number of clocks to verify such a property.

A class of useful implementable duration calculus formulae are known as the
class of implementables [78, 84]. Ravn [78] shows how duration calculus can
be expressed as implementables. The class implementables can be represented
by another subset of duration calculus called counterexample traces [58]. Each
counterexample trace has a corresponding phase event automaton which can be
used to monitor the satisfaction of the counterexample trace [58]. The basic
operator of the implementables is the followed-by operator F −→ ⌈P⌉, stating
that an interval which satisfies F should be followed by an interval where P
holds. Introducing time limits on the length of F makes this operator very useful

in practical applications. For example, F
≤t
−→ ⌈P⌉ defines the property that

following any interval satisfying F , whose length is less than or equal to t , P
should be true. This can be defined using duration calculus as follows:

F
≤t
−→ ⌈P⌉

def

= ¬ 3(F ∧ ℓ ≤ t ⌢ ⌈¬ P⌉)

A complete set of implementables is given by Schenke and Olderog [84].

25



Chapter 3. Real-Time Logics

3.3.1 Preliminaries

Before we give the syntax of counterexample traces, we must first introduce some
abbreviations used by Hoenicke [58] — originally suggested by Chaochen and
Hansen [17]. The formulae տ S and ր S mean that a state expression is satisfied
before (or after, respectively) a given point in time:

I[b,e] �տ S
def

= b = e ∧ ∃m : R · m < b ∧ I[m,b] � ⌈S⌉

I[b,e] �ր S
def

= b = e ∧ ∃m : R · m > e ∧ I[e,m] � ⌈S⌉

More informally, տ S holds on a point interval p such that an interval i exists
which satisfies ⌈S⌉ and where p is the end point of i . Similarly, ր S holds on
a point interval p such that an interval i exists which satisfies ⌈S⌉ and where p
is the first point of i . We can further define l S which signifies that a change
occurs in the value of S :

l S
def

= (տ ¬ S ∧ր S ) ∨ (տ S ∧ր ¬ S )

Conversely, to denote the fact that variable S does not change:

6 l S
def

= ¬ l S ∧ ℓ = 0

Finally, to denote the fact that a variable does not change within an interval:

⊟S
def

= ¬ (ℓ > 0 ⌢ l S ⌢ ℓ > 0)

Note that a variable change is allowed anywhere except at the start and end
of the interval.

3.3.2 Syntax

In short, a counterexample trace is a sequence of phases with possible events in
between. The sequence is represented by a chop operator (⌢) between each phase.
An event is the occurrence of a change of a boolean variable from true to false
or vice-versa. A phase is characterised by its predicate, which is a propositional
formula on the boolean variables. This predicate must hold “almost everywhere”
(⌈Predicate⌉) during the phase in which it is specified. The length of a phase can
be restricted by using a lowerbound or upperbound on the length of the phase
(ℓ). During a phase, we can prohibit any number of events from occurring using
⊟NAME where NAME is the event. In the following paragraphs we will expand
more on counterexample traces and give their formal syntax.

Starting from the building blocks, the events which can come in between
phases hold on point intervals as defined in the previous section. An event can
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either be a change in the state variable NAME at a particular point, written
as l NAME , or a prohibition of a change in the state variable NAME at that
point, written as 6 l NAME . Both disjunction and conjunction can be used be-
tween events. A disjunction means that either one event or the other occurs,
while a conjunction requires that both events occur simultaneously. Events are
inductively defined as follows:

event ::= l NAME |6 l NAME

event ∨ event | event ∧ event

The other type of building blocks are the phases. A phase can have three
types of restrictions. The first involves a predicate which must hold throughout
the interval. This is represented by ⌈Predicate⌉. A predicate is any boolean
expression on the state variables. It may also be true and thus, this will be
satisfied by any interval whose length is greater than zero1. In the absence of a
predicate, the phase will be defined by true which is satisfied by any interval, even
if its length is zero. Another restriction which may be applied on a phase concerns
its length. An upperbound (<,≤) or a lowerbound (≥, >) may be applied on the
length of the interval but not both. Note that counterexample traces do not
have the equality operator on ℓ. This in practise can be substituted by the other
operators2. The third restriction on a phase is a list of events which cannot occur
during that phase. This is represented by a conjunction of variables which are
not allowed to change during the phase: ⊟NAME ∧ . . . ∧ ⊟NAME . Phases are
inductively defined as follows:

∼ ::= ≤ | < | > | ≥

phase ::= (true | ⌈Predicate⌉)[∧ ℓ ∼ t ]

[∧ ⊟NAME ∧ . . . ∧ ⊟NAME ]

Finally, phases and events are connected together using the ⌢ operator. Note
that the first element of the chop must be a phase and the last element must be
true. The reason for starting with a phase is that, by definition, events cannot
occur at the start of an interval. The formula must end with true so that it is
easy to identify when the whole formula is satisfied or not. The other elements
of the chop are not restricted. As the name suggests, a counterexample trace is
a trace which should not be satisfied. Thus, the chop of phases is negated to
signify that satisfying the chop will in fact mean the violation of the represented

1Note that the definition of ⌈−⌉ requires a non-zero length interval.
2For example consider the formula: F

t
−→ ⌈P⌉

def
= ¬ 3(F ∧ ℓ = t ⌢ ⌈¬ P⌉) can usually be

replaced by: F
≥t
−→ ⌈P⌉

def
= ¬ 3(F ∧ ℓ ≥ t ⌢ ⌈¬ P⌉).
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property. The syntax of counterexample traces is as follows:

ce formula ::= ¬ (phase ⌢ (phase | event)
⌢ . . . ⌢ (phase | event) ⌢ true)

3.3.3 Examples

To illustrate the meaning of counterexample traces, we will give a few examples:

Example 3.3.1.

¬ (⌈A⌉ ∧ ℓ < 1 ⌢ ⌈B⌉ ⌢ true)

This means that an interval during which A is true for less than one time unit,
followed by B being true, should never occur.

Example 3.3.2.

¬ (true ⌢ ⌈D⌉ ∧ ℓ > 1000 ⌢ ⌈¬ Alarm⌉ ⌢ true)

Now the formula starts and ends with true. For this reason, the formula is also
disallowed for all the subintervals. Therefore, a subinterval during which D holds
and whose length is greater than 1000 time units, can never be followed by a
subinterval for which Alarm does not hold.

Example 3.3.3.

¬ (true ⌢ l B ⌢ ⌈true⌉ ∧ ℓ < 10 ⌢ l B ⌢ ⌈true⌉ ∧ ℓ < 500 ⌢ l B ⌢ true)

This means that for any sequence of three B events, the interval between the first
two cannot be less than 10 time units while the interval between the second and
the third B events cannot be less than 500 time units. For example, any three B
events which occur in less than 510 time units will surely violate this formula.

3.3.4 Relationship to Duration Calculus

Counterexample traces are based on the dense-time model like duration calculus.
However, with the restrictions placed on the syntax, counterexample traces are
implementable unlike duration calculus. Most notably, counterexample traces
do not have the integral on state variables, but only

∫

1 which measures the
whole duration of an interval. Another important issue is that the only negation
allowed is the negation of the whole formula3. This is compulsory if the formula

3Note that this does not apply to boolean expressions.
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needs to be converted into a phase event automaton. Boolean operators are also
restricted; only logical and is allowed to connect phase restrictions. In spite
of all these restrictions, counterexample traces have been shown to be at least
expressive as the set of implementables [58].

3.4 QDDC

Another approach to have an implementable subset of duration calculus is Quan-
tified Discrete Duration Calculus (QDDC) [75]. Although QDDC is based on a
discrete-time model rather than dense-time, it is still very expressive.

Syntax of QDDC Formulae

Similar to duration calculus, the bases of QDDC are the state variables which
vary between true and false with time. The difference is that in this case, the
time is discrete and thus the value of the variables is defined at discrete points,
not on continuous time. Let Pvar be the set of propositional variables. Let p, q
range over propositional variables; P , Q over propositions; and D , D1, D2 over
QDDC formulae. True and false are represented by 1 and 0 respectively. Parts
of the syntax which are not relevant to our work are not included in this overview.
The set of propositions Prop has the following syntax with the usual proposition
logic operators:

P ::= 0 | 1 | p | P ∧ Q | ¬ P

The integral equivalent in QDDC is the Σ. The integral returns a real value
while Σ returns an integer value because of the different time domains. Similarly,
η returns the length of the interval as an integer. Furthermore, because of the
discrete nature of QDDC, it is possible to constrain the value of a state variable
at a particular point. This is done by the operator ⌈P⌉0. To represent the fact
that a variable is always true throughout an interval, the operator ⌈⌈P⌉ is used.
Note that the first point of the interval is included while the last one is not.
Furthermore, there is the chop operator which intuitively has the same meaning
as in duration calculus. The rest of the operators are standard boolean operators.
The syntax of QDDC is as follows:

D ::= ⌈P⌉0 | ⌈⌈P⌉ | D1
⌢ D2 | D1 ∧ D2 | ¬ D | η op c | ΣP op c

where op ∈ {>, =} and c ∈ N

Semantics of QDDC Formulae

The behaviours of propositions and formulae are finite sequences of states (σ =
σ0σ1...σn) where each state maps the proposition (or formula, respectively) to
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{true, false}. The semantics of propositions are defined on a particular position
in the behaviour such that σi represents position i in behaviour σ:

σi � p
def

= σi(p) = 1

An interval, σ[b, e], is a sequence of states:

σ[b, e] = σbσb+1...σe , where 0 ≤ b ≤ e ≤ n

The semantics of formulae are defined on intervals:

σ[b, e] � ⌈P⌉0 def

= b = e and σb � P

σ[b, e] � ⌈⌈P⌉
def

= b < e and ∀ i , b ≤ i < e, σi � P

σ[b, e] � D1
⌢ D2

def

= ∃ i , b ≤ i ≤ e, σ[b, i ] � D1 and σ[i , e] � D2

σ[b, e] � D1 ∧ D2
def

= σ[b, e] � D1 and σ[b, e] � D2

σ[b, e] � ¬ D
def

= σ[b, e] 2 D

σ[b, e] � η op c
def

= (e − b) op c

σ[b, e] � ΣP op c
def

= Card{i | b ≤ i < e, σi � P} op c

An interval satisfies ⌈P⌉0 if its length is zero and satisfies P ; an interval
satisfies ⌈⌈P⌉ if its length is greater than zero and satisfies P throughout, except
the last state; an interval satisfies D1

⌢ D2 if it can be divided into two subintervals
where the first satisfies D1 and the second satisfies D2; an interval satisfies D1 ∧ D2

if it satisfies both D1 and D2; an interval satisfies ¬ D if it does not satisfy D ;
an interval satisfies η op c if its length satisfies the comparison op c; an interval
satisfies ΣP op c if the number of states which satisfy P , satisfies the comparison
op c.

There are various other derived operators based on the above:

⌈⌈P⌉⌉
def

= ⌈⌈P⌉ ⌢ ⌈P⌉0

⌈⌈P⌉+ def

= ⌈⌈P⌉ ∨ ⌈P⌉0

⌈⌈P⌉⌉+ def

= ⌈⌈P⌉⌉ ∨ ⌈P⌉0

3D
def

= true ⌢ D ⌢ true

2D
def

= ¬ 3¬ D

3.4.1 A Deterministic Fragment of QDDC

In this work we are particularly interested in a deterministic fragment of QDDC
[45] which can be expressed as Lustre acceptors. The basic differences from the
full QDDC are the following:

• an operator begin(P) which, given a variable P , returns true if the variable
is true at the beginning of the interval;
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• similarly an operator end(P) which, given a variable P , returns true if the
variable is true at the end of the interval;

• the operator age(P) which returns the duration for which a given variable
P has been continuously true up to the end of the interval;

• an operator G then F which works as a deterministic chop, i.e. starts to
satisfy formula F as soon as G is no longer satisfied. Because of the then
operator, any formula in fragment G which turns to false at a particular
point of an interval, never evaluates to true later in that interval. This
explains why the operators on Σ, η, and age are restricted to ≤.

The fragment is defined inductively as follows:

G ::= begin(P) | ⌈⌈P⌉ | η ≤ c | ΣP ≤ c | age(P) ≤ c | G1 ∧ G2 | G1 ∨ G2

F ::= G | end(P) | G then F | F1 ∧ F2 | ¬ F

The semantics are as follows:

σ[b, e] � begin(P)
def

= σb � P

σ[b, e] � age(P) ≤ c
def

= e − n ≤ c

σ[b, e] � end(P)
def

= σe � P

σ[b, e] � G then F
def

= ∃m : N · b ≤ m < e | σ[b,m] � G ∧ σ[b,m+1] 2 G
∧ σ[m+1,e] � F

where

n =

{

max{i | b ≤ i ≤ e, σi � ¬ P} if ¬ P occurred in [b,e]
b − 1 otherwise

The semantics of rest of the symbols remain the same as in duration calculus.

3.4.2 Relationship to Duration Calculus

Since QDDC is a subset of duration calculus, all of it can be translated to duration
calculus. This translation is useful so that the properties proved on duration
calculus can also be applied to QDDC. For example, the guarantees which will
be given later on in this work regarding duration calculus can be directly applied
to QDDC.

It is beyond the scope of this work to provide the complete translation with
the necessary proofs. However, we could define a function DC accepts a QDDC
formula and returns a duration calculus formula:
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DC(begin(P)) ≡ ր P ⌢ true

DC(⌈⌈P⌉) ≡ ր P ⌢ ⌈P⌉

DC(η op c) ≡

∫

1 op c

3.5 Phase Event Automata

Phase event automata [58] have been proposed for the purpose of amalgamating
CSP, Object-Z and duration calculus. Their main advantage is that they can
synchronize on events, handle data by using variables, represent real-time and
provide parallel composition with simple compositional semantics.

3.5.1 Syntax

Phase event automata are expressive automata able to handle events, real-time
and state-variables. Each location of the automaton has two invariants: one
which constraints the state variables and another which constraints the clocks.
On each transition, a guard constraints the state-variables and the clocks, and a
number of clocks are reset.

A phase event automaton P = 〈P ,V ,A,C ,E , s , I ,E0〉 consists of the follow-
ing components:

P : a set of locations (phases).
V ⊆ NAME : a set of typed state variables.
A ⊆ NAME : a set of boolean event variables.
C : a finite set of real-valued clocks.
E ⊆ P × L(V ∪ A ∪ C ∪ V ′) × P(C ) × P : a set of edges. An element

(p, g ,X , p ′) represents an edge from p to p ′. The current valuation of state and
clock variables and events must satisfy the guard g . All clocks in X are reset
after the transition.

s : P → L(V ): a labelling function that associates each location with a state
invariant that must hold while this location is active.

I :P → Lc(Clocks): a function assigning a clock invariant to each location.
E0 ⊆ L(V )×P : a set of initial edges. An element (g , p) allows the automaton

to start in p if the state predicate g holds.

3.5.2 Operational Semantics

A configuration of a phase event automaton is (p,Y , β, γ, t) where p is the loca-
tion, Y is a set of events, β is a valuation of variables, γ is a valuation of clocks,
and t is the duration spent in location p.

32



Chapter 3. Real-Time Logics

p

A
c<1

0 p

B
1

Figure 3.1: An example of phase event automaton.

A run is a sequence of configurations (p1,Y1, β1, γ1, t1), . . . , (pn ,Yn , βn , γn , tn)
which satisfies the following conditions:

• Y1 = ∅,

• β1 � g for some initial edge (g , p1) ∈ E0,

• γ1(c) = 0 for all c ∈ C ,

• ti > 0 for all i ∈ 1..n,

• βi � s(pi) for all i ∈ 1..n,

• γi + ti � I (pi) for all i ∈ 1..n, for all i ∈ 1..(n − 1) there is an edge
(pi , g ,X , pi+1) with βi , β

′
i+1, γi + ti ,Yi+1 � g and γi+1 = (γi + ti)[X := 0].

This means that by β1 � g the automaton starts from some initial edge such
that the valuation of variables satisfies the guard on the initial edge (g , p1) and
enters location p1. At this first instance no events can occur since, by definition,
no events can occur at the starting/ending point of an interval; hence Y1 = ∅.
The clocks are initially all set to zero and therefore we require that γ1(c) = 0 for
all clocks. ti > 0 is required to ensure that the automaton does not stay for zero
time in any location. Each location has an invariant and a clock invariant and
it must be ensured that while the automaton is in a location, these invariants
are satisfied. This explains the need for βi � s(pi) and γi + ti � I (pi). Finally,
each configuration should be related to the next through an appropriate edge
(pi , g ,X , pi+1) such that the valuations at pi (βi) and pi+1 (β′i+1), the clock val-
uations (γi + ti), and the events (Yi+1) satisfy the guard g . When an edge is
taken, the clock valuations are updated (γi+1 = γi + ti) and the clocks in set X
are reset ([X := 0]).

Example 3.5.1. Consider the simple example where the automaton accepts
traces such that A should be true for the first time unit and then B is always
true. This is shown in Figure 3.1.
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3.6 Translating Duration Calculus to Phase Event

Automata

3.6.1 An Automaton Equivalent to a Counterexample Trace

A phase event automaton will be used to represent a counterexample trace. While
generating the automaton from the trace, the negation at the start of the coun-
terexample formula is ignored. The formula which the generated phase event
automaton will accept will in reality be the prohibited formula. Therefore, the
satisfaction of the phase event automaton is the violation of the original formula.

3.6.2 A Trace Structure

To represent a counterexample formula, we will use a structure which represents
a trace. Such a trace is a sequence of phase specifications.

trace
def

= seq PhaseSpec

Each phase specification PhaseSpec represents a phase as defined in the coun-
terexample formula syntax (see Section 3.3) together with its entry events. The
entry events are the events which should occur before a phase can be entered.
This is possible because an event is satisfied by an interval of length zero, thus all
entry events should occur at the first instance of the interval being considered.

For example in the formula ⌈A⌉ ⌢ l B ⌢ true, we have two phases separated
by an event. The event is considered as the entry event of the second phase — it
should occur at the first instance of this phase.

To mathematically define a phase specification we need a definition of time.
This is defined as the set of positive reals:

Time
def

= R
+

Next, we define the time operations allowed for a phase:

TimeOp ::= none | less | lessequal | greater | greatereaqual

The structure of a phase specification is defined as follows:
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PhaseSpec
inv : L(V )
allowEmpty : B
timeop : TimeOp
bound : Time
forbidden : FA
entryEvents : L(A)

allowEmpty ⇒ (inv = [true] ∧ timeop /∈ {greater , greaterequal})
timeop = none ⇔ bound = 0

inv is the predicate which must hold true almost everywhere in the phase. If no
predicate is specified, then inv is [true]. For convenience we define allowEmpty ,
which is true if an empty interval satisfies the phase. Note that ⌈true⌉ is not
satisfied by the empty interval. timeop is the operator ∼ applied on the duration
of the phase while bound is the constant. If there is no constraint on the length
of the interval, then timeop = none and bound = 0. forbidden is the set of
forbidden events represented by the conjunction of ⊟ev while entryEvents is the
conjunction of all events which should occur before the start of the phase.

3.6.3 Prefix

At this stage, it is useful to define the concept of a prefix of a formula. The
automaton equivalent of a counterexample trace does not attempt to observe
the trace as a whole. On the contrary this is done on a phase-by-phase basis.
The function prefix (i , t) returns a duration calculus formula which includes the
phases up to and including the i th phase of trace t. For example, let t = ⌈A⌉ ⌢ l
B ⌢ true. prefix (1, t) returns the prefix ⌈A⌉ while prefix (2, t) returns the same
formula as input since the formula has two phases.

Mathematically, prefix is defined as follows:

prefix : N× Trace → DCForm

prefix (0, t) = l = 0
∀ i : N | i > 0 · prefix (i , t) = prefix (i − 1, t)
⌢ t(i).entryEvents
⌢ (t(i).allowEmpty ∨ ⌈t(i).inv⌉) ∧
ℓ t(i).timeop t(i).bound ∧
∧

{ev : t(i).forbiddenEvents · ⊟ev}

To construct each phase from its phase specification, first there needs to be
the zero-length interval which satisfies the entry events. This is followed by the
interval which satisfies the invariant almost everywhere and the time constraint,
or else it is satisfied by the empty interval. During this interval, it is ensured that
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no forbidden events occur.

3.6.4 Lowerbounds and Upperbounds

It is important to distinguish among lowerbound and upperbound phases because
of the different role that the clock has in each case. A lowerbound phase is not
active unless the clock has reached the specified constraint. On the other hand,
an upperbound phase is only active while the clock has not reached its bound.
For example, the lowerbound phase ℓ > 5 has to wait for 5 time units for it
to be observed. Conversely, for the upperbound phase ℓ < 5, the phase is only
active during the first 5 time units. The notion of an active and inactive phase
is important and will be used over and over again in the following sections.

A phase is a lowerbound (LB) phase (phase ∈ LB) if and only if it has a
lowerbound time constraint of the form ℓ > t or ℓ ≥ t . Similarly, a phase is an
upperbound (UB) phase (phase ∈ UB) if and only if it has an upperbound time
constraint of the form ℓ < t or ℓ ≤ t . This is defined as follows:

LB ,UB : Trace → PN

∀ t : Trace · LB(t) = {i : dom t | t(i).timeop ∈ {greater , greaterequal}}
∧ UB(t) = {i : dom t | t(i).timeop ∈ {less , lessequal}}

3.6.5 Prefix Detection Situations

Recall that during the execution of an automaton a phase can be either active or
inactive. In fact, this is not the complete story: it can be in any of the following
four sets: in, wait , gteq , and less .

• A phase i is in the set in if it is currently active: the phases (prefix) up to
the phase i have been observed and the phase i is still being observed.

• A phase is in wait if it is an element of LB and it is active, and the duration
of the phase is less than its lowerbound. Hence, it is waiting for the clock
to reach the bound before it can become active.

• A phase is in gteq if the time constraint is of the form ℓ ≥ t and the phase
is in wait (gteq ⊆ wait). In actual fact, there are cases where the time
constraint is of the form ℓ ≥ t but the phase is still not considered as a
member of the set gteq . This issue will be explained in Example 3.6.1.

• A phase is in less if the bound is of the form ℓ < t and the phase is active
and the duration is less than the bound. Yet, there are cases where the
time constraint is of the form ℓ ≤ t but the phase is still considered as
part of the set less . This will be explained in Example 3.6.2. There is also
another restriction on the phases in set less : ∀ i : less · i − 1 /∈ in\wait ∨
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∅ 2 tr(i).entryEvents . This will be explained when seeping and clocks are
discussed.

Relationship Between Sets

The relationship between the four sets can be summarised in the following schema:

PowerSet(t : Trace)
in,wait , gteq , less : dom t

in ⊆ dom t
wait ⊆ in ∩ LB(t)
gteq ⊆ wait
less ⊆ in ∩ UB(t)
∀ i : less · i − 1 /∈ in\wait ∨ ∅ 2 t(i).entryEvents

The four sets can be shown as a single set by flagging the elements as follows:

• If phase i ∈ in and i /∈ gteq ,wait , less then the phase is represented by i in
the single set.

• If phase i ∈ wait ⊆ in and i /∈ gteq then i /∈ less and the phase is
represented by i> in the single set.

• If phase i ∈ gteq ⊆ wait ⊆ in, then i /∈ less and the phase is represented
by i≥ in the single set.

• If phase i ∈ less ⊆ in, then i /∈ wait , gteq and the phase is represented by
i< in the single set.

If the phase does not belong to any of these four sets it is omitted from the
single set.

3.6.6 Generating Locations

The locations of the generated phase event automaton are the power set of all
the possible single sets according to the formula being translated. Each location
is labelled by the single set of phases which it represents. For example, for the
formula ⌈A⌉ ⌢ ⌈B⌉ the following locations are generated: {}, {1}, {2}, {1, 2}.

Each location of the automaton has two invariants: one on the boolean vari-
ables and the other on the clock. These will be explained in more detail in the
section about invariants: Section 3.6.15. However, at this point we need some
explanation in order to allow the reader to understand other concepts. The clock
invariant of any location is always in the form of a conjunction of clock ≤ bound .
The reason for not allowing clock < bound is that we need a well defined time at
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which a location is left. In the case of clock ≤ bound , the location is left when
clock reaches bound .

Another issue is that once the automaton enters a location, it should stay
there for some non-zero time interval. For this reason we only allow a convex clock
constraint, i.e. a conjunction of upperbound clock constraints. Furthermore, a
location is entered if and only if the clock valuations satisfy the strict version
of the clock invariant of the destination location. The strict version is the clock
constraint with the ≤ operators replaced by <.

3.6.7 Satisfying a Prefix

To define what it means for a prefix to be observed, the function complete is
defined. This function takes a trace t, a location l, and a natural number i as
inputs and returns the condition under which prefix (i , t) is observed. There are
basically three things which are relevant to observing a prefix ending with phase
i :

1. Phase i is in the active set.

2. There are any clock bounds which have to be respected.

3. Phase i is satisfied by the empty interval, the entry events have been satis-
fied, and the prefix up to i-1 has been satisfied.

One should agree that if the third condition is satisfied, then the prefix in-
cluding phase i is being observed, even though it is not active. For this to hold
we require that i > 1. Mathematically the condition can be written as:4

[i > 1 ∧ t(i).allowEmpty ] ‘∧’ complete(t , l , i − 1) ‘∧’ tr(i).entryEvents

If the conjunction of the first and second conditions holds, then the prefix (i , t)
is also being observed. In other words, a phase which is being observed is in
the active set (first condition), but should not be in the wait set (waiting for
the bound to expire). However, there are two exceptions (recall that all clock
invariants are of the form: clock ≤ bound): if i ∈ gteq (even though by definition
i ∈ wait) the phase is observed if clock ≥ bound . Note that the last instance of an
interval which satisfies an invariant clock ≤ bound , also satisfied the constraint
clock ≥ bound . The other exception is that clock < bound is not satisfied at the
last instance of an interval which satisfies the clock constraint clock ≤ bound .
Therefore, clock < bound has to be checked if the phase i ∈ less .

In summary, the condition to be checked if a phase i ∈ wait :

4Note that we use quotes to denote operators which are part of the final expression. Ex-
pressions within the square brackets are evaluated and their outcome will be part of the final
expression.
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if i ∈ l .wait then
(if i ∈ l .gteq then ci ≥ t(i).bound
else [false])

else (if i ∈ l .less then ci < tr(i).bound
else [true]

Putting all the parts together, the complete function is defined as follows:

complete : Trace × ranPowerSet × domTrace → L(A ∪ C )

∀ t : Trace; l : PowerSet(t); i : dom t ·
([i ∈ l .in] ‘∧’

if i ∈ l .wait then
(if i ∈ l .gteq then ci ≥ t(i).bound
else [false])

else (if i ∈ l .less then ci < t(i).bound
else [true]))

∨ ([i > 1 ∧ t(i).allowEmpty ] ‘∧’ complete(t , l , i − 1) ‘∧’ t(i).entryEvents)

3.6.8 Moving Through Locations

When moving from a location to another we have to ensure that the active phases
of the source location can progress into the phases of the destination location.
This progression will be explained in the following sections through the notions
of seeping, keeping, and entering.

3.6.9 Seeping

The concept of seeping is very important in observing a number of phases on
chopped intervals. An automaton is said to seep through a phase if, while starting
to satisfy a phase i, it also starts satisfying phase i+1. This is only possible if
there are no events required to enter phase i+1. For example if A ∧ B is true, the
formula ⌈A⌉ ⌢ ⌈B⌉ is said to seep through the first phase (⌈A⌉) and immediately
also start satisfying ⌈B⌉. For this reason, the function canseep is specified, which
taking a trace, location and phase i, returns true only if i can be seeped into by
phase i-1. Phase i can be seeped into, if and only if, phase i-1 is active and not
waiting (hence being observed), and phase i has no entry events. This is defined
as follows:

canseep : Trace × ranPowerSet × domTrace → B

canseep(t , l , 1) = [false]∀ t : Trace; l : PowerSet(t); i : dom t | i > 1·
canseep(t , l , i) = [i − 1 ∈ l .in\l .wait ∧

∅ � t(i).entryEvents ]

Before seeping into a phase, it must be ensured that the predicate of the
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destination phase is satisfied. Therefore, to seep, it is not enough to check that the
function canseep returns true, but there is also the condition that the predicate
of the phase being seeped into, is satisfied. For this purpose, the function seep
returns the condition to be satisfied in order to seep into a phase, given a trace, a
location and a phase. Note that the condition has to be satisfied by the variables
of the destination location (not the source location). For this reason we will mark
variables with ′.

seep : Trace × ranPowerSet × domTrace → L(V ′ ∪ A ∪ C )

∀ t : Trace; l : PowerSet(t), i : dom t ·
seep(t , l , i) = [canseep(t , l , i)] ‘∧’ (t(i).inv)′

Seeping and Clocks

Consider the formula:
⌈A⌉ ⌢ ⌈B⌉ ∧ ℓ < 5

So far we have observed that if both A and B are initially true, the second
phase can be seeped into. However, one should note that the clock of the second
phase should not be started unless B remains true and A turns to false. The
reason is that, if A ∧ B holds for more than 5 time units, the “extra” time
can be “assigned” to the first phase. This explains why a clock should not be
reset if a phase is entered through seeping (and not specifically entered). An-
other important conclusion is that a phase i should not be in the set less unless
¬ canseep(t , l , i) holds (where t is a trace and l is the location). This explains
the condition ∀ i : less · i −1 /∈ in\wait ∨ ∅ 2 tr(i).entryEvents mentioned earlier
which is equivalent to ¬ canseep(t , l , i).

3.6.10 Keeping a Phase Active

When going from one location (source) to another, a phase which was active
in one location, can remain active in the destination location as well. A phase
remains active if it is active in the source location, no forbidden events occur, and
the invariant of the destination location is satisfied. Apart from these conditions
we should check that if the phase is an upperbound, this has to be respected
unless canseep is true (recall that when seeping the clock is ignored). If the phase
is a lowerbound, we do not need to check anything since, if the phase is in wait ,
then it is also active and, if it is not in wait , then it remains active as well.
Mathematically:
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keep : Trace × ranPowerSet × domTrace → L(V ′ ∪ A ∪ C )

∀ t : Trace; l : PowerSet(t), i : dom t ·
keep(t , l , i) = [i ∈ p.in] ‘∧’

‘
∧

’ {ev : t(i).forbiddenEvents · ⊟ev} ‘∧’ (t(i).inv)′ ‘∧’
(if i ∈ UB(t) ∧ ¬ canseep(t , l , i) then ci < t(i).bound
else [true])

3.6.11 Entering a Phase

A phase can become activate when a transition is taken, in other words the phase
is entered. To enter a phase i it must be ensured that the prefix (i − 1, t) has
been completed, the entry events of phase i are satisfied, and the predicate of the
destination location is satisfied. The function is given by:

enter : Trace × ranPowerSet × domTrace → L(V ′ ∪ A ∪ C )

enter(t , l , 1) = [false]
∀ t : Trace; l : PowerSet(t), i : dom t | i > 1·

enter(t , l , i) = complete(t , l , i − 1) ‘∧’ t(i).entryEvents ‘∧’ (t(i).inv)′

3.6.12 Special Cases of gteq and less Flags

There are certain cases where a constraint of the form clock ≤ bound has to be
treated as clock < bound and others of the form clock > bound to be treated
as clock ≥ bound . To illustrate these situations the following examples are pre-
sented.

Example 3.6.1. Consider the formula:

⌈A⌉ ⌢ ⌈B⌉ ∧ ℓ ≥ 5

If initially A ∧ B holds, then by seeping, both phases start being observed.
However, when 5 time units pass, these must belong to the second phase, while
leaving the first phase with zero time. This is not acceptable and hence, when
monitoring such a property, the location entered when initially A ∧ B holds,
should be labelled by {1, 2>} not {1, 2≥}.

Example 3.6.2. Consider the formula:

⌈A⌉ ∧ ℓ < 1 ⌢ ℓ ≤ 2

By considering the formula as a whole, one can immediately conclude that an
interval whose length is greater or equal to 3 will not satisfy the formula since
for the first phase ℓ < 1. The problem when observing this formula is that the
clock for the second phase is reset upon leaving the first phase, i.e. when ℓ = 1.
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In actual fact, the clock should have been reset when ℓ < 1, but this is not a well
defined time. The solution to this problem is to mark the second phase as less
i.e. ℓ < 2.

3.6.13 Creating Transitions

The purpose of transitions is to connect locations whose phases are related through
seeping, entering or keeping. Transitions are also responsible for resetting clocks,
and therefore, it has to be ensured that clock resets are done on the appropriate
transitions. Each location has invariants, and hence, a transition should also en-
sure that the invariant of the destination location is satisfied before taking that
transition.

When generating a transition, all the phases must be considered so that the
generated automaton does not have any inconsistencies. In each of the following
paragraphs we will explain the generation of a transition from location l to l’, on
a trace t, with a set of clocks X to be reset :

All phases active in the destination location. A phase which is active in
the destination location is either entered or kept from the source location,
or seeped into in the destination location itself. If none of these are possible,
then the phase in question cannot be active in the destination location.
Mathematically:

‘
∧

’ {i : dom t · [i ∈ l ′.in] ‘⇔’
keep(t , l , i) ‘∨’ enter(t , l , i) ‘∨’ seep(t , l ′, i)}

Phases active in the destination location with lowerbound. In the case
of lowerbound phase which is active in the destination location, a clock
is reset if, and only if, ¬ keep(t , l , i) holds (where t is a trace, l a location,
and i a phase). When keeping a phase the clock should not be reset; it
should only be reset when the corresponding phase is entered. Further-
more, it cannot be an element of set less. Formally:

‘
∧

’ {i : dom t · if i ∈ LB(t) ∩ l ′.in then
([ci ∈ X ] ‘⇔’ ‘¬’ keep(t , l , i)) ‘∧’ [i /∈ l ′.less ]}

Phases marked as wait. A lowerbound phase, active in the destination
location, can only be in wait if the clock is reset on the transition (i.e.
no time has passed), or if the bound ci < bound still holds. This can
be written as:

‘
∧

’ {i : dom t · if i ∈ LB(t) ∩ l ′.in then
([i ∈ l ′.wait ] ‘⇔’

[ci ∈ X ] ‘∨’ ([i ∈ l .wait ] ‘∧’ ci < t(i).bound)}
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Note that in the case of a clock reset we rely on the clock invariant
(of the form ci ≤ bound) of the location as a condition to satisfy the
clock constraint of the phase.

Phases marked as gteq. The phase is an element of gteq in the destina-
tion location if its time operation is ≥ and the reset did not occur too
early due to seeping (see Example 3.6.1). There are no cases where
> is marked as ≥, only cases where ≥ is marked as >. Therefore, we
restrict the phases marked as gteq as follows:

• Either the clock is reset, the phase has been entered, and the time
operation is ≥. The reason is that the clock is not reset upon
keeping and in the case of seeping the phase is not marked as ≥.

• Or if the clock was not reset, then the phase should have been an
element of gteq in the source location and also an element of wait
in the destination location (gteq ⊆ wait).

In formal notation the conditions explained can be written as follows:

‘
∧

’ {i : dom t · if i ∈ LB(t) ∩ l ′.in then
([i ∈ l ′.gteq ] ‘⇔’

if ci ∈ X then [t(i).timeop = greaterequal ] ‘∧’ enter(t , l , i)
else [i ∈ l .gteq ∧ i ∈ l ′.wait ])}

Phases active in the destination location with an upperbound. Recall that
in the case of an upperbound phase which can be seeped into, there is no
need to measure time. Hence, given an upperbound phase which cannot be
seeped into in the destination location, the corresponding clock is reset if,
and only if, the phase is entered or if had been seeped into in the source
location.

We also have to ensure that any upperbound phase is not an element of
wait or gteq in the destination location. In mathematics:

‘
∧

’ {i : dom t · if i ∈ UB(t) ∩ l ′.in ∧ ¬ canseep(t , l ′, i) then
([ci ∈ X ] ‘⇔’ enter(t , l , i) ‘∨’ [canseep(t , l , i)])
‘∧’ [i /∈ l ′.wait ] ‘∧’ [i /∈ l ′.gteq ]}

Phases marked as less. An upperbound phase is an element of less in
the destination location if, and only if, it is not reset and was al-
ready marked as such in the source location, or if reset, it means that
the phase either has a < time constraint, or else, the phase has been
marked as such because a reset came too late as in Example 3.6.2. To
check for a late reset, it suffices to check that the phase could not have
been entered and hence it was seeped into (it could not have been kept
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because it was already ensured that a reset only occurs upon an enter
or a seep). Formally:

‘
∧

’ {i : dom t · if i ∈ UB(t) ∩ l ′.in ∧ ¬ canseep(t , l ′, i) then
([i ∈ l ′.less ] ‘⇔’

if ci ∈ X then [t(i).timeop = less ] ‘∨’ ‘¬’ enter(t , l , i)
else [i ∈ l .less ])}

Phases with no clock constraints. In the case of a phase i which is neither
a lowerbound nor an upperbound or for which canseep is true, it must be
ensure that the corresponding clock ci is not reset, and in the destination
location, i is not an element of any of the sets: wait, gteq, and less.

‘
∧

’ {i : dom t · if i /∈ LB(t) ∧ (i /∈ UB(t) ∨ canseep(t , l ′, i))
∧ l ′.in then

[ci /∈ X ] ‘∧’ [i /∈ l ′.wait ] ‘∧’ [i /∈ l ′.gteq ] ‘∧’ [i /∈ l ′.less ]}

Putting all the above pieces together the function guard returns the condi-
tion of a transition, given a trace, initial location, set of clocks to be reset, and
destination location. This is defined as follows:

guard : Trace × ranPowerSet × P C × ranPowerSet → L(V ′ ∪ A ∪ C )

∀ t : Trace; l : PowerSet(t); X : P C ; l ′ : PowerSet(t)·
guard(t , l ,X , l ′) = ‘

∧

’ {i : dom t ·
([i ∈ l ′.in] ‘⇔’

keep(t , l , i) ‘∨’ enter(t , l , i) ‘∨’ seep(t , l ′, i)) ‘∧’
(if i ∈ LB(t) ∩ l ′.in then

([ci ∈ X ] ‘⇔’ ‘¬’ keep(t , l , i)) ‘∧’ [i /∈ l ′.less ] ‘∧’
([i ∈ l ′.wait ] ‘⇔’

[ci ∈ X ] ‘∨’ ([i ∈ l .wait ] ‘∧’ ci < t(i).bound)) ‘∧’
([i ∈ l ′.gteq ] ‘⇔’

if ci ∈ X then [t(i).timeop = greaterequal ] ‘∧’ enter(t , l , i)
else [i ∈ l .gteq ∧ i ∈ l ′.wait ])

elseif i ∈ UB(t) ∩ l ′.in ∧ ¬ canseep(t , l ′, i) then
([ci ∈ X ] ‘⇔’ enter(t , l , i) ‘∨’ [canseep(t , l , i)])
‘∧’ [i /∈ l ′.wait ] ‘∧’ [i /∈ l ′.gteq ] ‘∧’
([i ∈ l ′.less ] ‘⇔’

if ci ∈ X then [t(i).timeop = less ] ‘∨’ ‘¬’ enter(t , l , i)
else [i ∈ l .less ])

else [ci /∈ X ] ‘∧’ [i /∈ l ′.wait ] ‘∧’ [i /∈ l ′.gteq ] ‘∧’ [i /∈ l ′.less ])}
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3.6.14 Initial Transitions

Creating the initial transitions requires the identification of locations from which
the observation of the duration formula can start. Such a location must satisfy
the following conditions:

1. All the phases with an upperbound should be waiting (i.e. no time has
passed since the beginning).

2. The only phase which can be in the set less is the first one if its time bound
is of the form clock < bound (the subsequent phases cannot be in less
because one of the conditions below is that canseep holds on phases which
are not the first phases).

3. The only phases which can be in the gteq set are those whose time bound
is of the form clock ≥ bound .

4. All the previous phases are true phases (with no predicate and no lower-
bound) i.e. can be entered immediately.5

If all these conditions hold, then a phase is active if, and only if, the invariant
holds, and the phase is the first one, or it can be seeped into. Else, if any of the
above conditions fail, it means that the location does not represent the starting
point of the observation of a formula. In summary this can be written as a
function init which given a trace and a location, returns the condition to enter
that location as the first location. This is defined as follows:

init : Trace × ranPowerSet → L(V ′)

∀ t : Trace; l : PowerSet(t) · init(t , l) =
if l .wait = l .in ∩ LB(t) ∧

l .less = if t(1).timeop = less then l .in ∩ {1} else ∅ ∧
l .gteq = {i : l .wait · t(i).timeop = greaterequal ∧

(∀ j : 1..(i − 1) · t(j ).allowEmpty)}
then ‘

∧

’ i : dom t ·
([i ∈ l .in] ‘⇔’ (t(i).inv)′ ‘∧’ ([i = 1 ∨ canseep(t , l , i)]))

else [false]

3.6.15 Invariants for the Locations

There are two invariants for each location: one which concerns boolean variables
and another which concerns clocks.

5Eg. ⌈A⌉ ⌢ ⌈B⌉ ∧ ℓ ≥ 5, if A ∧ B are initially true, upon reaching length 5, the interval
satisfying ⌈B⌉ is given exactly 5 time units while ⌈A⌉ is effectively given zero time which is
incorrect.
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The invariant concerning boolean variables is there to ensure that the predi-
cates of all the active phases are satisfied and that the predicates of the phases
which are not active but can be seeped into, are not satisfied. The second condi-
tion may seem to be useless but it is there to distinguish between A ∧ ¬ B and
A ∧ B in the case of the formula ⌈A⌉ ⌢ ⌈B⌉. Consider the locations {1} and
{1, 2}. With the first condition alone, the invariant for {1} is A while that for
{1, 2} is A ∧ B . If initially A ∧ B is true, both invariants are satisfied and can be
seeped into and this leads to non-determinism. Including the second condition the
invariant for {1} becomes A ∧ ¬ B which solves the problem of non-determinism.
Formally we define the function s which given a location, returns its invariant:

s : Trace × ranPowerSet → L(V )

∀ t : Trace; l : PowerSet(t) · s(l) = ‘
∧

’ {i : l .in · t(i).inv} ‘∧’
‘
∧

’ {i : dom t\l .in | canseep(t , l , i) · ‘¬’ t(i).inv}

The invariant concerning clocks has to include a bound (clock ≤ bound) for the
lowerbound phases which are in the wait set, and a similar bound for upperbound
phases which cannot be seeped into. (Recall that there is no need to measure time
for a phase which can be seeped into and has an upperbound.) This is defined
by the function I which given a location, returns its clock invariant:

I : Trace × ranPowerSet → L(V )

∀ t : Trace; l : PowerSet(t) · I (l) = ‘
∧

’ {i : l .in | i ∈ l .wait ∨
(i ∈ UB(t) ∧ ¬ canseep(t , l , i)) · ci ≤ t(i).bound}

3.6.16 The Complete Automaton

The complete automaton is given by the following schema:

P(t : Trace)

P
def

= PowerSet(t)

C
def

= {i : UB(t) ∪ LB(t) · ci}

E
def

= {l : P ; X : P(C ); l ′ : P | guard(t , l ,X , l ′) 6= [false]
· (l , guard(t , l ,X , l ′),X , l ′)}

s : P → L(V )
I : P → L(C )

E0
def

= {p : P | init(t , l) 6= [false] · (init(t , l), p)}

3.6.17 Example

For an example we consider the formula ¬ (⌈A⌉ ∧ ℓ > 1 ⌢ ⌈B⌉).
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Locations

First we start by generating the locations. The first phase is a lowerbound phase
and hence it starts in the wait set. Using the PowerSet schema defined above,
we get the following locations:

{∅, {1}, {1>}, {2}, {1, 2}, {1>, 2}}

Clocks

By the definitions of UB and LB respectively:

UB = ∅

LB = {1}

Hence, the only clock required for the example is the clock for the first phase
c1.

Invariants

Using the functions to generate the invariants and clock invariants we show the
result for some of the locations:

For the location {1} we get the invariant A ∧ ¬ B since the first phase is
active while the second is not, but canseep is true. On the other hand, canseep
does not hold for the second phase of {1>} since the phase is waiting.

s({1}) = A ∧ ¬ B

s({1>}) = A

The clock invariant only applies for the location {1>} where the first phase is
waiting. Using the function I we get the clock invariant as follows:

I ({1>}) = c1 ≤ 1

Initial Transitions

Applying the init function on the locations, only two locations have an initial
transition. For example location {2} cannot have an initial transition because
the active phase 2 is neither the first phase, nor can it be seeped into. Thus,
it cannot be the first location at which the automaton starts (the bi-implication
cannot be satisfied). As a positive example consider the empty set. Intuitively
the automaton can start in the empty set if initially A is false i.e. the formula can
never be satisfied if initially A is false. Using the mathematical formula: since
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A and c < 11

{1 }
A

c <1

<

1

A and not B

{}
true

A and not B

{1}
A and not B

A and B

{1,2}
A and B

B

{2}
B

A and c >= 1 and B1

A
and c >= 1

and not B
1

A

not Anot A

not A
and B

not A and B

not B

not A
and not B

not A
and not B

A and B

Figure 3.2: The phase event automaton equivalent to the formula ⌈A⌉ ∧ ℓ >
1 ⌢ ⌈B⌉.

phase 1 is not active in location ∅ it must be ensured that A is false. For the
second phase the bi-implication is already satisfied because phase 2 is not the
first phase and cannot be seeped into.

Transitions

We now give some examples of transitions. For example consider the transition
from {1} to {1, 2}. It is the point where A has been true for more than one time
unit and B is false. As soon as B turns true, both prefix (1) and prefix (2) will
start to be satisfied. This means that phase 1 will be kept while phase 2 will
be entered and seeped into. The condition for this transition is directly obtained
from the functions keep, enter, and seep which are all equal to the invariant of
the destination location: A ∧ B .

As another example we take the transition from ∅ to {1, 2}. Even though
phase 2 can be seeped into, phase 1 cannot be kept, entered, or seeped into.
Therefore, the transition can never be taken i.e. the guard is false.

Result

The equivalent phase event automaton is shown in Figure 3.2.
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3.7 Conclusion

In this chapter, we have introduced duration calculus which is a highly expressive
dense time logic. In fact, in general it is too expressive to monitor. Thus, various
subsets of duration calculus have been studied in the literature. In the above sec-
tions, we have described two such subsets: QDDC and counterexample traces. By
limiting ourselves to counterexample traces, monitoring is possible by translating
counterexample traces into phase event automata and then using these automata
as monitors. For this reason, we have explained in details the translation from
counterexample traces to phase event automata. Similarly, the QDDC subset
has been presented because it can be monitored by symbolic automata using the
Lustre syntax.

Undoubtedly there are many other real-time logics besides those described
above, for example interval temporal logic [71], timed linear temporal logic [5],
metric temporal logic [64] and timed regular expressions [9]. We choose duration
calculus mainly because it is an interval temporal logic. This means that it is
based on intervals rather than points in time. For runtime verification it is a
significant advantage that there is no distinction between past and future. For
this reason and its sound mathematical background, duration calculus is ideal
to represent real-time software properties. The advantage of duration calculus
over other interval-based real-time logics is that it gives a structure to temporal
variables using an integral operator on state variables [49].
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4. Dynamic Automata with
Timers and Events (DATE)

4.1 Introduction

In the previous chapters, we have introduced dynamic analysis with special em-
phasis on runtime verification, and we introduced various real-time logics. It
is not always easy to represent practical security properties using the reviewed
logics. From our experience we felt the need for a concise logic to express prop-
erties for real-time systems. The logic should not only have timers to represent
real-time properties but should also be dynamic so that properties can be ver-
ified for each individual object. Another feature of the logic are channels used
to allow properties to communicate with each other. Furthermore, the new logic
is devised with the aim of providing the framework for more guarantees on the
effect of monitoring. With this expressive logic and guarantees we aim to provide
a practical system which assists developers in creating more reliable and robust
software.

This chapter is organised as follows: first we establish the design aspects of
our logic in Section 4.2 through a detailed discussion based on the background
research provided in the previous chapters. Then, we give the mathematics of
the logic in Section 4.3 and we conclude in Section 4.4.

4.2 Design Choices of a Runtime Verification

Logic

Static Analysis vs Dynamic Analysis

For our intents and purposes, dynamic analysis is more attractive than static
analysis methods such as model checking because it scales up well. Furthermore,
it allows more freedom of expressivity since there is no need for the logic to be
decidable over all execution paths. To understand this point one should under-
stand that in model checking a property needs to be satisfied by all the possible
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execution paths. On the other hand, for dynamic analysis one only needs to check
the satisfaction of the property for the current execution. Being able to check a
property for a single execution path requires a different technique and much less
computational resources. For this reason the limit on expressivity is much less
for dynamic analysis than for model checking.

It would have been very interesting to integrate static analysis and dynamic
analysis in one system. For example static analysis could have been very useful to
intelligently generate test cases for a dynamic analysis tool to find errors during
testing [8]. However, we have to focus our research because of many limitations
and hence we will stick to dynamic analysis.

Choosing the Dynamic Analysis Flavour

The assertions in design by contract are made manually in various locations in the
system code. This immediately introduces the possibility of errors since humans
can easily omit or misplace some assertions. Ideally, the assertions are not man-
ually inserted into the system, but rather automatically weaved. Moreover, we
would like the security properties to be centralised rather than scattered through-
out the code. Changing a security property from a central location is much easier
and less error-prone. Considering these issues in design by contract, we will not
adopt this approach in our research.

Runtime verification is much more appropriate because it uses formal notation
for specifying security properties. Formal notation is more succinct and abstract
than the actual implementation and this makes it less error-prone — it is easier
to make mistakes in the low-level implementation details rather than in the high-
level description of a property. Another attractive aspect of runtime verification
is that it allows the user to specify extra code so that the system which finds
itself in a bad state, can revert itself back to a valid state. This is very desirable
because it eliminates the need of human intervention upon a security violation.
Developers may not like a verification system to be intrusive, therefore it should
be left up to the developer to decide what the recovery actions might be.

Exploring the possibility of having the violation mechanism as part of the
system design, as designated by monitoring-oriented programming, is a very in-
teresting area. However, in our research we plan to limit ourselves to treat the
verification as a “double-check” rather than the actual check. This decision is
mainly due to the fact that the systems under our consideration have already
been designed and implemented. Furthermore, there is the issue of synchronous
and asynchronous verification which has already been mentioned as online versus
offline verification (Section 2.3.5). However, we can also explore the possibility of
finding a compromise between total synchrony and completely offline verification.
This can be achieved by allowing a possibility of a delay between the verification
system (which can be run on a separate machine) and the target system. Fur-
thermore, the delay allowed may be dependent on the criticality of the part of
the system in which we are executing. Therefore, in a critical section we may
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wait for the verifier to synchronise, while in a non-critical section we can afford
to allow the verifier to run asynchronously. These ideas will not be developed
further in this work because they are outside the scope.

Having an explanation of how a bad state was reached, as suggested in runtime
reflection, is very desirable. This is more especially so when dynamic analysis
is used during the testing phase to identify errors. This idea is taken up and
somehow we would like to provide a means for the user to understand what went
wrong in the system.

Logics

Choosing the logic which is most appropriate for our project is not trivial. Lin-
ear temporal logic is arguably very easy to understand as a logic but it is not
expressive enough for our intents and purposes, since we have the target of ver-
ifying real-time properties. To this end there is TLTL [5] which extends LTL
with real-time. The problem remains that LTL refers to particular points in time
and distinguishes between the past and the future. This creates some problems
in runtime verification. Although there are ways [11, 33, 30] to go about this
issue, we opt for logics which refer to intervals rather than points in time. For
this reason we investigate duration calculus. However, duration calculus poses a
number of difficulties to implement monitors for it. It is also not trivial to write
properties with duration calculus. Therefore, we will try to investigate a sub-
set of duration calculus which is implementable and for which we can use easier
notation or syntactic sugaring.

Regular expressions may be much more desirable because they are so widely
used in other applications and therefore users may already be familiar with them.
Nonetheless, users may still find it strange to use regular expressions to represent
system properties. Another issue is that given a regular expression, a user will not
know whether that is an accepted sequence of events or a prohibited sequence.
Apart from these usability issues there are also expressivity issues. We may not
only be interested in a sequence of events but also in some parameters related
to those events. For example, these parameters can be used to check a condi-
tion before taking a transition. Hence, we require something which can accept
parametrized events.

This leads us to consider the use of automata to which we can add our own
extensions for the necessary expressivity. Starting with very little expressivity
and increasing it as the need arises from the practical case studies that we con-
sider has the advantage of avoiding any unnecessary expressivity which will only
result in more complexity without adding any benefit. Automata also have the
advantage of being pictorial. This may be very useful for the user to visualise the
requirements. There are various automata which we can use as our basis to which
we can add the extensions. However, some of them were automatically eliminated
because of their special features which are not applicable for our intents and pur-
poses. A case in point are Büchi automata (as used by Courcoubetis et al. [26])
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which are intended for infinite strings. When we perform runtime verification, we
can never have an infinite string because by definition, runtime verification works
on a running program which cannot produce an infinite string of events. Another
example are alternating automata (as used by Finkbeiner and Sipma [37]) which
have and and or transitions. These types of transitions are useful to represent
logics which have the boolean and and or but this is not our case.

Apart from the need of parametrized events, we also need to have local vari-
ables to store the necessary values. Without such variables, a simple automaton
has to become much larger. For example, consider the automata in Figure 4.1
and Figure 4.2.

deleteUser

deleteUser

1

too many

start

bad delete

addUser

deleteUser

2

addUser

deleteUser

3

addUser
addUser

Figure 4.1: An automaton monitoring the adding and deleting of users without
a variable.

(1) deleteUser
\cnt==0

(3) addUser\\cnt++;
(4) deleteUser\\cnt--;

start bad delete

\\cnt=0;

(2) addUser
\cnt>=3

toomany

Figure 4.2: An automaton monitoring the adding and deleting of users with a
variable.

The two automata actually both do the same thing, but one is much smaller
than the other because it uses a variable. In fact the variable allows us to encode a
very large (possibly infinite) automaton into the small automaton which is easier
to visualise and understand. Such automata (which use variables) are known
as symbolic automata. Therefore we will use symbolic automata as the basic
notation to which we will add any necessary extensions.
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Customisation of Symbolic Automata

A symbolic automaton has an alphabet, a set of states, a set of variables and a
set of transitions. The following are the customisations which we need for our
verification architecture.

Events The alphabet of the automaton are the events. The events we handle
are method calls and exception throws. Each event can have any number of
variables which are given a value upon the occurrence of that event. The assigned
value is usually related to the context of the method call. For example, it can
be directly bound to the parameters, target, or return object of the method.
However, the variable can also be assigned any arbitrary value.

Conditions It is useful to be able to distinguish between occurrences of the
same event. For example an addition of a user may trigger a transition to a good
state if the the total number of users is acceptable, but to a bad state otherwise.
Therefore, for each transition we not only need to specify the event, but also
the condition. If the condition does not hold, the transition is not taken. If no
condition is specified it is assumed that the transition should be taken in any
case. The condition can have access to both the automaton’s local variables and
the parameters of the transition’s event.

Actions Having the automaton’s local variables is of little use if we cannot
manipulate them. To this extent we provide the possibility of an action over a
transition. This action may consist of one or more statements which can ma-
nipulate the automaton’s variables. An action has also read-only access to the
event’s (on which the transition triggers) parameters and access to the under-
lying system’s variables according to their modifiers (public, static, or private).
Therefore, the action may also be used to perform operations using these vari-
ables. One should note that the action is not executed unless the condition of the
transition is satisfied. At this point we would like to highlight the extent of the
expressive power we give the user through the monitoring system: the monitoring
system does not only fully control its own state but can also modify the state of
the system being monitored. This is very powerful but also very risky. It is the
user’s responsibility to ensure that this power is correctly used without excessive
(and possibly dangerous) intrusion on the monitored system.

Actions generating Events An interesting issue is whether we should
allow actions to generate events. If we do so, there is the possibility of transitions
triggering each other. These are known as chained transitions. Once transitions
start triggering each other, there is no guarantee that no infinite loop is formed.
To avoid this, in our architecture, actions cannot generate events.
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Code in each State The possibility of putting an action on a transition is
very useful, but what if the action is more related to the state, rather than the
transition? In such a case all the incoming or outgoing transitions will have the
same action (or at least a part of it will be the same). To solve this issue, we
provide actions in states. This option will eliminate any duplication of actions in
the incoming or outgoing transitions of a particular state. The action will take
place exactly upon entry into that state. In other words, after the execution of
the action of the incoming transition.

Initialisation An important issue which we must consider is where we can
place the initialisation of the automaton’s variables. Conceptually, it should
occur before the automaton enters the first state and this idea was adopted in
our automata. The initialisation can also be used to restore the state of the
automaton from a previous run of the application. This idea is useful in practice
but is not included in the system architecture because this is not considered as a
central part of the system.

Bad States Somehow, we need to distinguish among states so that we are able
to identify bad behaviour. Therefore, we require the notion of bad states such
that if a trace reaches a bad state, this means that the property being verified
has been violated.

Accepting States In order to identify automata which have completed their
monitoring and can be considered as obsolete, we require states called accepting.
Once an automaton reaches an accepting state, no other states can be taken and
the automaton stops.

Contexts We sometimes need to have a separate automaton for each partic-
ular object. We also need some way of distinguishing which object generated a
particular event so that only the corresponding automaton is triggered. However,
it is still desirable to have common (global) variables which the automata can
update and access. These global variables will in turn be accessible to a global
automaton which does not belong to a particular object. We extend this notion
further by allowing more than one object to be specified for each automaton. We
will call these objects the context of the automaton. For example, a context can
be made up of a colour and a shape object. The context of an automaton is
what distinguishes it from other automata. No two automata can have the same
context.

Apart from having a two-level hierarchy of global and non-global (contextual)
variables, we can have different levels of context. We will refer to this as nesting.
For example, we can have a global automaton which represents the bank context,
a more specific automaton for each user, and a yet more specific automaton for
each account of each user. Similar to the concept of global variables, the more
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specific context will always have access to the higher level variables. In the above
example, from the context of the account we can have access to the variables in
user, but from the user context we cannot access the variables in account — from
the user level we do not have the context of one particular account (a user may
have many accounts).

Events from other Automata through Channels Having global variables
provides a limited way of communication among the automata. To provide a
higher level of communication we can allow an automaton to trigger events to
other automata. This concept of communication will be referred to as channel
communication. A practical application would be the monitoring of a large pro-
gram with many user functions. Some patterns of user behaviour are considered
malicious and the user in question should be blocked from the system. Such
patterns may be the sequence or frequency of particular function invocations.
For this reason, specialised automata (for each behavioural pattern) increment
a common global counter, while a global automaton monitors that counter. If
the counter reaches a particular threshold, then an action is carried out by the
general (global) automaton. To implement this, we can either use polling on the
global counter, or else, we need communicating automata. The former approach
is not efficient, but the latter is — each time the counter is incremented, the
global automaton is notified by the specialised automaton which incremented the
counter.

As with the problem of chained transitions, we need to be careful regarding
the allowed sequence of communication among automata. This is because we can
cause an infinite sequence of events and the communicating automata will end
up looping forever.

Invariants Another concept which is very useful in many practical applica-
tions is the concept of invariants. Recall that we can create an automaton for
each individual object that we are monitoring. Usually, this object should be
only modified in previously known patterns. For example, we may know that
along a sequence of states, a certain attribute of the monitored object should not
change. Consider the identification field of a transaction which should remain
fixed once it is set. In this case, the identification field is an invariant. If any
of the invariant restrictions are violated, the automaton should revert to a bad
state. The checking is done before taking a transition i.e. moving from one state
to the next. This will successfully monitor whether the object has been illegally
modified while the automaton was in a particular state.1

1Note that the state of the verifying automaton does not correspond to one state of the
executing program being monitored. Therefore, many operations could have been done on the
object during one state of the monitoring system.
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Real-time In many practical applications, we need to measure the real-time
between events. For example we have to ensure that customers get processed
within a particular period since their application for a service. For this reason
we need clocks as used in integration automata [1]. We propose allowing the user
to use a set of clocks, where each clock can generate events, respond to queries
and perform actions. A clock event should be able to trigger a transition when
the clock reaches a particular time. Furthermore, the queries will be of the form
clock operator amount, where the clock value is compared to a quantity. The basic
actions which the clock should perform are reset, pause and resume. Having these
constructs we believe that a lot of interesting properties can be specified.

4.3 The Logic

In this section, we present a theory of communicating automata with events and
timers. Each mathematical construct introduced will be related to the require-
ments explained in the previous section.

4.3.1 Dynamic Automata with Timers and Events

Events

The underlying logic we will use to define properties will be based on communi-
cating symbolic automata with timers, whose transitions are triggered by events.
Events are built as a combination of visible system actions. The possible types of
events are: system events (method calls or exception throws), timer events, and
channel communication (automata synchronisation).

Definition 4.3.1. Given a set systemevent of events which are generated by the
underlying system and may be captured by the runtime monitors, a set of timer
variables timer, and a set of channels, a composite event made up of system events,
channel synchronisation, a timeout on a timer, a choice between two composite
events (written e1 + e2), or the complement of a composite event (written e), is
syntactically defined as follows:

event ::= systemevent | channel? | timer @ δ | event + event | event
We say that a basic event x (which can be a system event, a channel synchronisa-
tion or a timeout event) will fire a composite event expression e (written x � e)
if either (i) x matches exactly event e; or (ii) e = e1 + e2 and either x � e1 or
x � e2; or (iii) x is a system event and e = e1, and x 6� e1.

Example 4.3.1. A basic event bad login and a composite event logout, where

logout = inactive clock @ 5 + illegal action

illegal action = bad login + restricted access
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Using the rules above, bad login will cause logout to trigger — first it causes
illegal action to trigger and this, in turn, causes logout to trigger (applying above
rule e = e1 + e2 twice).

The notion of firing of events can be extended to work on sets of events. Given
a set of basic events X a composite event e will fire (written X � e) if either (i)
e is a basic event expression and for some event x ∈ X , x � e; or (ii) e = e1 + e2

and either X � e1 or X � e2; or (iii) X contains at least one system event and
e = e1, and for all x ∈ X , x 6� e1.

The semantics of the complement of an event is constrained to fire when at
least one system event fires, so as to avoid triggering whenever a timer event or
channel communication happens, thus making such events to necessarily depend
on the underlying system. This constraint can be relaxed without affecting the
results in this work.

Example 4.3.2. A set of events X and a composite event illegal action, where

X = {an illegal action}

illegal action = bad login + restricted access + a legal action

In this example, illegal action will trigger in the following way: since the only
event in set X is neither the basic event bad login nor the basic event restricted access
these will not cause the triggering. However, since the event is not a legal action,
the complement construct will cause the composite event illegal action to trigger.

A special event init triggers at the start of the monitoring system. The pur-
pose of this event is to allow more flexibility in the initialisation of automata.
Later on, this event will be specifically useful for translating phase event au-
tomata into DATEs. In practical terms, the init event can be defined in terms
of a clock which generates an event automatically at the start of the monitoring
system.

Symbolic Timed Automata

In what follows, we will call symbolic timed automata a certain class of automata
with timers. However, such timers allow reset, pause and resume actions as in
integration automata [1]. Thus, these should not be confused with Alur and Dill’s
timed automata [4]. These timers enable us to meet the design decisions discussed
in the previous section (under the header real-time), allowing us to measure the
duration between events.

Definition 4.3.2. The configuration of the system timers (written CT ) is a func-
tion from timers to (i) the time value recorded on the timer; and (ii) the state of
the timer (running or paused).
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Timer resets, pauses and resumes are functions from a timer’s configuration
to another, changing only the value of one timer to zero (in the case of a reset), or
the state of one timer (in the case of pause or resume). A timer action (written
TA) is the functional composition of a finite number of resets, pauses and resumes.

Properties of a given system will be expressed as communicating timed au-
tomata. These automata will have access to read and modify the state of the
underlying system. (This is also according to our design choices regarding ac-
tions in the previous section.)

Definition 4.3.3. A symbolic timed automaton running over a system with state
of type Θ is a quintuple 〈Q , q0, →, B , A〉 with set of states Q , initial state
q0 ∈ Q , transition relation →, bad states B ⊆ Q , and accepting states A ⊆
Q ,A ∩ B = ∅. Transitions will be labelled by (i) an event expression which
triggers them; (ii) a condition on the system state and timer configuration which
will enable the transition to be taken; (iii) a timer action to perform when taking
the transition; (iv) a set of channels upon which to signal an event; and (v) code
which may change the state of the underlying system:

Q × event × (Θ × CT → B) × TA× 2channel × (Θ → Θ) × Q
We will assume that a total ordering < exists on the transitions to ensure deter-
minism.

The behaviour of an automaton M upon receiving a set of events consists of
(i) choosing the highest priority transition which fires with the set of events and
whose condition is satisfied; (ii) performing the transition (possibly triggering a
new set of events); and (iii) repeating until no further events are generated, upon
which the automaton waits for a system or timeout event.

Definition 4.3.4. For a symbolic timed automaton M , we say that a set of
system scheduled events X , system state θ ∈ Θ, timer configuration T and state
q (in which M currently resides), performs a step to X ′, θ′ and q ′, with timer
update t ′ (written (X , θ, q) ⇒T

t ′ (X ′, θ′, q ′)) if q /∈ A and (q1, e, c, t , O , f , q2)
be the largest (in terms of <) transition in → such that: (i) q = q1; (ii) X � e;
(iii) c(θ,T ), and the following hold: (i) t ′ = t ; (ii) q ′ = q2; (iii) θ′ = f (θ); (iv)
X ′ = O . If no such transition exists, we write (X , θ, q) ⇒T

id (∅, θ, q).
The notion of automata performing a step can be extended over a vector of
automata communicating via broadcast channels. Given a vector of n automata
M̄ = 〈M1,M2, . . .Mn〉, in states q̄ = 〈q1, q2, . . . qn〉 and with shared timers in
state T , we write that (X , θ0, q̄) ⇒T

t ′ (X ′, θn , q̄ ′) if (i) for each 1 ≤ i ≤ n,

(X , θi−1, qi) ⇒
T ′

i

t ′i
(X ′i , θi , q

′
i); (ii) t ′ = t ′n◦t

′
n−1◦ . . . ◦t

′
1; (iii) X ′ = X ′1 ∪ X ′2 ∪ . . .X ′n ;

(iv) T ′i = (t ′i−1◦t
′
i−2◦ . . . ◦t

′
1)(T ); (v) T ′ = t ′n(T ′n); and (vi) q̄ ′ = 〈q ′1, q

′
2, . . . q

′
n〉.

Note that the order of execution is set by the order of the automata, once again
to avoid non-determinism. Clearly, as in any programming with side-effects, the
use of actions on the transitions must be carefully handled. Also note that the
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timer actions are accumulated so as to evaluate all conditions with the same
initial timestamps.

Since no transition can be taken from an accepting state q ∈ A, once the
automaton reaches such a state, it cannot change its state.

Example 4.3.3. Consider a system where one needs to monitor the number
of successive bad logins and the activity of a logged-in user. By having access
to badlogin, goodlogin and interact events, one can keep a successive bad-login
counter and a clock to measure the time a user is inactive. Figure 4.3(a) shows
the property that allows for no more than two successive bad logins and no more
than 30 minutes of inactivity when logged in, expressed as a DATE. Upon the
third bad login or 30 minutes of inactivity, the system reverts to a bad state. In
the figure, transitions are labelled with events, conditions and actions, separated
by a backslash. It is assumed that the bad login counter is initialised to zero.

Figure 4.3(b) shows how actions can be used to remedy the situation (when
possible), instead of going to a bad state. For example, after too many bad logins,
one can block the user from logging in for a period of time, and upon 30 minutes
of inactivity, the user may be forced to logout.

interact\\t.reset();

goodlogin
\\t.reset();

t@30*60

logged out

bad logins

badlogin\\c++;

badlogin
\c>=2

logged in

inactive

logout\\c=0;

interact\\t.reset();

goodlogin
\\t.reset();

logged out

badlogin\\c++;
badlogin\c>=2
\c=0;blockUser();

logged in

logout\\c=0;
t@30*60\\logout();c=0;

Figure 4.3: (a) An automaton monitoring the bad logins and activities occurring
in a system; (b) The same automaton with recovery actions.

Example 4.3.4. Building on the previous example, we will show the use of
channels for automata communication. In this example, a good login event will
not be considered as a system event, but rather as a property being monitored by
a separate automaton. The only change in the automaton monitoring successive
bad logins (in Figure 4.3) is to listen for an event on channel ChGoodlogin rather
than the system event goodlogin. The automaton which monitors good logins and
sends an event on the channel ChGoodlogin is shown in Figure 4.4. One should
notice that there are two outgoing transitions with the same event (PressOK )
from state Prompt for PW. The transition with the higher priority is the one with
the condition checkPassword. If this fails, then the other transition is taken.
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PressOK
\ checkUserName()

PressOK
\checkPassword()
\ChGoodlogin !

Load Site Prompt
for PW

Good Login

PressOK

Figure 4.4: An automaton monitoring the good logins and sending events on
channel ChGoodlogin.

Dynamic Automata with Timers and Events

The notions of symbolic timed automata can be lifted to work on dynamic net-
works of symbolic timed automata, in which we enable the creation of new au-
tomata during execution in a structured manner. This logic will be referred to
as Dynamic Automata with Timers and Events (DATE).

Definition 4.3.5. A DATE M is a pair (M̄0, ν) consisting of (i) an initial set of
automata M̄0; and (ii) a set of automaton constructors ν of the form:

event × (Θ × CT → B) × (Θ × CT → Automaton)
Each triple (e, c, n) ∈ ν triggers upon the detection of event e, with the state
and timer configurations satisfying condition c, and creating an automaton using
function n. The triggered automata in time configuration T , with events X , in
system state θ (written tr(T ,X , θ)) is defined to be:

tr(T ,X , θ)
def

= {n(θ,T ) | (e, c, n) ∈ ν, X � e, c(θ,T )}.

Finally, the events created by the transition actions, can themselves trigger new
transitions.

When constructing new automata, there is an important issue which we have
not yet considered. Recall that there are two types of variables: global vari-
ables and local variables. Upon constructing an automaton, a set of new local
variables must be created as well. The new variables should then be passed
to the new automaton as parameters so that these variables replace the exist-
ing ones. Thus, the function which constructs automata will be of the form:

Θ × CT → (Θ → Automaton)
The same idea should be used for non-global clocks and channels. Furthermore,
a structure should be used so that when the constructed automaton reaches an
accepting state and is removed, the new variables which were created with the
construction, can also be identified and removed.

Definition 4.3.6. The configuration of a DATE contains: (i) the state of the
timers; (ii) the state of the underlying system; and (iii) the state of the currently
running automata — a vector of a state for each automaton in the network.
A DATE is said to perform a full-step from configuration (T , θ, q̄) to configura-
tion (T ′, θ′, q̄ ′), upon receiving a set of system actions X , (written (T , θ, q̄) |⇒X

(T ′, θ′, q̄ ′)) if for some number n:
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(X0, θ0, q̄0) ⇒
T ′

1

t1
(X1, θ1, q̄1) ⇒

T ′

2

t2
. . . (Xn , θn , q̄n) ⇒

T ′

n+1

tn+1
(∅, θn+1, q̄n+1),

where: (i) X = X0, q̄0 = q̄ , θ = θ0 and θ′ = θn+1; (ii) the final state of the
timer is updated according to the timer’s accumulated actions (1 ≤ i ≤ n + 1):
T ′i = (ti−1◦ti−2◦ . . . ◦t1)(T ); (iii) T ′ = tn+1(T

′
n+1); and (iv) the initial states are

updated as required by DATE triggers q̄i = q̄i−1 ⊕
⋃

j q0j
where

⋃

j q0j
is the set

of initial states — one for each automaton in tr(T ′i ,Xi , θi).
Such a step is called a good full-step, if no bad states appear in the intermediate
state vectors.

Clearly, not all situations can perform a full-step — even a single automaton
may create events on channels which trigger another transition indefinitely. To
resolve the problem of livelock, we may ensure that there is no mutual recursion
over the set of automata.

Definition 4.3.7. The output channels of an automaton M , written out(M ), is
the union of all output channels on the transitions in M . Similarly, the input
channels of M , written in(M ), are the channels appearing on the event label of
transitions in M . The dependency relation between channels for an automaton
M , written dep(M ) is defined to be in(M ) × out(M ).
A DATE structure M̄ is said to be loop-free if, for any channel c, (c, c) /∈
(
⋃

i dep(Mi))
+.

The following result states that only loop-free automata can perform a full-
step.

Proposition 4.3.1. Given a loop-free collection of automata M̄ in states q̄ , set
of system events X and system state θ, there exist states q̄ ′, system state θ′ and
timers T ′ such that (T , θ, q̄) |⇒X (T ′, θ′, q̄ ′).

Example 4.3.5. Considering the previous example, in practise one would like
to monitor the login property for each individual user. To this end, a symbolic
timed automaton does not suffice, we need a DATE which can construct a new
automaton for each new user. Thus, upon a good login or bad login event, the
user which generated these events is considered in the construction function and
if no automaton exists for that particular user, a new automaton is constructed.

Proposition 4.3.2. An automaton in an accepting state can be removed from
the DATE structure.

This clearly follows from the fact that no transition can be taken once the
automaton reaches an accepting state. This implies that such an automaton can
neither be triggered nor can it trigger anything.

4.4 Conclusion

Even though there are several tools for runtime verification, we felt the need to
work on a logic which provides better expressivity in aspects where the existing
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logics are lacking. In this chapter, first we have highlighted the needs of a typical
runtime verification scenario including events, conditions, actions, timers, etc.
Subsequently, we have considered various design aspects of a real-time logic to
specify properties of a real-time system. After making the necessary design se-
lections, we have given the mathematical basis of the DATE logic which amongst
other features uses system events, timers and channels to specify system proper-
ties.

64



5. Language Specification

5.1 Introduction

In the previous chapter, we have given the motivation and mathematical back-
ground of a runtime verification architecture. In this chapter, we will give a
concrete language designed to capture the architecture and allow a user to ex-
press system properties. This language is referred to as Larva which stands for
Logical Automata for Runtime Verification and Analysis. In the following sec-
tions, we will gradually explain the reasons behind the design of the language
and give the syntax using examples and BNF. The order of the following sections
is not with respect to the language sections as they appear in a Larva script.
Rather, they are presented in an evolutionary manner, similar to the way Larva

has evolved during its creation. The basic motivations behind the syntax chosen
were mainly expressivity, clarity and convenience for the user, and ease of parsing.

The next section gives the part of the Larva syntax which can be used to
describe an automaton. The syntax of events is explained in Section 5.3. This
is followed by an illustrative example in the next section. The Larva language
is extended with clocks and channels in Section 5.5 and Section 5.6, respectively.
Section 5.7 gives the complete BNF of the global context while Section 5.8 ex-
plains how the user can define a property for a particular context. The syntax of
the invariants’ and variables’ sections are given in Section 5.9 and Section 5.10,
respectively. Some other minor details of syntax are given in Section 5.11. To
help the reader understand the syntax, Section 5.12 gives an example of a com-
plete simple property while Section 5.13 gives an example of the language with
clocks and channels. Section 5.14 concludes the chapter.

5.2 Textual Representation of an Automaton

The natural way to represent an automaton is to draw it, but a graphical user in-
terface allowing the user to draw an automaton is beyond the scope of this project.
Instead, we aim at designing an appropriate textual notation for representing an
automaton — more specifically, a DATE structure.
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5.2.1 Transitions

When one thinks of an automaton, usually the first thing that comes to mind
are circles and arrows connecting them — transitions. A transition causes the
automaton to move from one state to another. Each DATE transition has an event
upon which it triggers, a condition which must be satisfied, and an action which
is executed upon taking the transition. A natural way for a user to represent
a transition is to use an arrow between two states. Thus a transition will be
of the form: source -> destination [ event \ condition \ action ]. The whole
set of transitions for an automaton will be given as a block enclosed with curly
brackets (similar to Java) with a label TRANSITIONS before the beginning of the
block. Consider the following example which represents an automaton monitoring
whether or not a read or write in a database is done when the user is logged in:

TRANSITIONS

{

loggedout -> loggedin [ login ]

loggedout -> loggedout [ logout ]

loggedout -> bad_state [ read ]

loggedout -> bad_state [ write ]

loggedin -> loggedout [ logout ]

loggedin -> loggedin [ login ]

loggedin -> loggedin [ read ]

loggedin -> loggedin [ write ]

}

One should note that the order of the transitions is very important since the
problem of non-determinism (when more than one transition can be taken) is
solved by taking the first transition in the list. The BNF of transitions is given
as:

StateName ::= identifier
EventName ::= identifier
Condition ::= BooleanExp
Action ::= JavaCode
Transition ::= StateName ‘→’ StateName ‘[’ EventName ‘\’ Condition ‘\’ Action ‘]’
TransitionList ::= Transition | Transition TransitionList
TransitionBlock ::= ‘TRANSITIONS ’ ‘{’ TransitionList ‘}’

5.2.2 States

Since the underlying DATE logic has a starting state, bad states and accepting
states, we need to declare the states before actually declaring the transitions.
For this purpose, a block construct similar to that of transition will be used to
enclose all the states. A sub-block will be used for each of the type of states.
Consider the example started above. We have a bad state (bad state), a normal
state (normal), and a starting state (logout):
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STATES

{

BAD { bad_state }

NORMAL { loggedin }

STARTING { loggedout }

}

If the user wants to execute some code upon reaching a particular state, the
Java code is simply put in curly brackets following the name of the state. For
example, this can be used to take a recovery action upon reaching a bad state.
It can also be used for initialisation purposes by putting Java code in a starting
state. However, one should note that this code is executed each time the state is
entered. An example of the syntax is as follows:

STATES

{

BAD { bad_state { issueWarning(); } }

}

The BNF for the declaration of the automaton’s states is as follows:

StateDecl ::= StateName | StateName ‘{’ JavaCode ‘}’
StateList ::= ǫ | StateDecl StateList
Accepting ::= ‘ACCEPTING ’ ‘{’ StateList ‘}’
Bad ::= ‘BAD ’ ‘{’ StateList ‘}’
Normal ::= ‘NORMAL’ ‘{’ StateList ‘}’
Starting ::= ‘STARTING ’ ‘{’ StateList ‘}’
StateBlock ::= ‘STATES ’ ‘{’ Accepting Bad Normal Starting ‘}’

5.2.3 Properties

For better presentation, since the set of states and the set of transition together
constitute the automaton, both blocks are enclosed in a single block called Prop-
erty. The reason for this name is that an automaton represents a property about
the system to be monitored. Furthermore, we would like to be able to monitor
more than one property at the same time. Hence, each property is given a name.
In our example the name is accessMonitoring as follows:

PROPERTY accessMonitoring

{

STATES { ... }

TRANSITIONS { ... }

}

The BNF requires the following lines to provide the definition of a property:

PropertyName ::= identifier
PropertyBlock ::= ‘PROPERTY ’ PropertyName ‘{’ StateBlock TransitionBlock ‘}’
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5.3 Events

Transitions require an alphabet on which they trigger. In the case of DATEs, the
alphabet are events which are extracted from the target system. The basic events
which we want to capture are method calls and exception throws. There are other
useful system events such as variable changes, but it requires much more of an
overhead to monitor variable changes. For a method call, there is a particular
point where the code branches to execute the method call. On the other hand,
a variable may be updated several times throughout a method execution. Thus,
the overhead of monitoring variable changes is larger. To avoid this overhead
and keep the language simple, we opted to stick to method calls and exception
throws. We also took into consideration the fact that in Java, it is suggested
that object attributes are accessed through their get and set methods. These
are both detectable through method calls. Therefore, a system event declaration
must include a method name. Furthermore, we would like to give a name to the
event so that the user will not need to specify the method name each time the
event is used. Taking these points into consideration, an event declaration would
appear as follows:

eventName = methodCall

This is very limited because a lot of useful information from the method pa-
rameters is lost. The user may also need to distinguish between different methods
with the same name. To meet these requirements, we add the possibility of spec-
ifying typed variables as parameters which can also be bound to the event. An
event declaration now becomes:

eventName(Type1 arg1) = methodCall(Type1 arg1, Type2 arg2)

In the above example, the method call methodCall must have two parameters
of type Type1 and Type2 and the event will have access to arg1. Methods with the
same name and same argument types may appear in different classes. Moreover,
a user may be interested in the object (target) on which the method is to operate.
For this reason, the syntax is further extended as follows:

eventName(Type3 target, Type1 arg1)

= Type3 target.methodName(Type1 arg1, Type2 arg2)

To continue the running example, we will declare four events: read, write,
login and logout.

write() = {DB d.writeToDb()}

read() = {DB d.readFromDb()}

login() = {DB d.loginToDb()}

logout() = {DB d.logoutFromDb()}
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5.3.1 Types

In the above declaration, the types of the variables sometimes appear more than
once. Obliging the user to put the type repeatedly would be unreasonable. It is
also not clear on which side of the declaration the type should appear. A general
declaration at the start of all the events does not seem appropriate because the
variables are particular to each event. Another question to consider at this point
is: Should we allow the user to use the same variable name in more than one event
declaration? And what if the type is different? This is resolved by allowing one
variable name to be used in any event declarations within the same set of events,
as long as the variable is of the same type throughout. The choice of where the
type should be declared is left up to the user to decide, as long as there is at least
one such declaration for each variable within a set of events. This seems to be the
most straight forward option, which is both convenient for the user and avoids
naming conflicts within a set of event declarations. The following declaration is
a valid event declaration:

eventName(target, Type1 arg1, arg2, arg3)

= Type3 target.methodName(arg1, Type2 arg2)

The running example can be modified to reduce the number of type declara-
tions as follows:

write() = {DB d.writeToDb()}

read() = {d.readFromDb()}

login() = {d.loginToDb()}

logout() = {d.logoutFromDb()}

If a variable is left without a type it is simply considered as a placeholder
(wildcard). The next subsection will tackle wildcards.

5.3.2 Wildcards

Sometimes it is convenient for the user to be able to use wildcards for method
names. For example, if the user wants to capture all the method calls of a
particular object, using the asterisk (*) this can be done as follows:

eventName(target) = Type target.*()

If we want to specify the type of the target but we are not interested in the
actual object, the asterisk can be used as a placeholder. Similarly, this can be
used to bind some arguments while leaving others unbound (putting an asterisk
instead)1. The syntax is as follows:

eventName(Type2 arg2) = Type3 *.*(*,arg2)

1This syntax was chosen because it is very similar to AspectJ and the asterisk is used
frequently as a wildcard in many applications.
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Note that instead of the asterisk, the user is allowed to use any identifier
with no declared type. This may sometimes be more convenient for clarity. In
the running example, we can use wildcards because we do not need to bind the
database (DB) object. We can also discard the type information if the method
names are unique in the context. Thus, the code becomes as follows:

write() = {*.writeToDb()}

read() = {*.readFromDb()}

login() = {*.loginToDb()}

logout() = {*.logoutFromDb()}

5.3.3 Where Clause

The syntax so far is quite straight forward and self explanatory. However, this is
not sufficient, sometimes we need some way of declaring custom event variables
which are not directly bound to the event. For this purpose, we borrowed the
keyword where which is commonly used in mathematics. The where clause can
be added after each event declaration. The user can use this clause to assign
any event variables which are not directly bound to the method call. This can
also include any declaration of temporary variables and/or any necessary method
calls. The syntax of the event declaration was adapted to be more similar to
Java by introducing the curly brackets. This is also clearer for the user to see the
connection between the method name and the corresponding where clause (espe-
cially when we introduce event collections in the next section). Furthermore, the
semicolon after the method name becomes completely redundant and is therefore
dropped. The syntax is as follows:

eventName(target, Type1 arg1, arg2, arg3)

= {Type3 target.methodName(arg1, Type2 arg2)}

where { Type4 arg3 = 0; }

Note that for convenience, the curly of the where clause can be left out if there
is only one statement (as in Java). In the database login example, imagine we
need the time at which the login occurred. The code can be modified as follows:

login(long time) = {*.loginToDb()} where time = System.currentTimeMillis();

5.3.4 Event Collections

It is convenient for the user to be able to declare collections of events. This has the
advantage that an event may be triggered by more than one method call without
the complications of precedence and concurrency (the event and the collection
it belongs to are considered to trigger simultaneously with no precedence over
each other). Another considerable advantage is that the where clause specified
for the collection is automatically applied to all the events in the collection. In
the declaration of collections the pipe symbol (|) is used because in other well
known notations (e.g. BNF) this represents choice. The syntax is as follows:
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eventCollection() = { event1 | event2 | ... }

The running example can be modified to include a definition for event access
which triggers when either a read or a write occurs:

access() = { write | read }

The sub-events need not be previously declared events. Therefore, in an event
collection the user can still declare primitive events from method calls. This may
be more convenient for the user by avoiding to declare events which will never be
used on their own (but rather as part of a collection). Another notable advantage
is that each stand-alone event requires that its where clause initialises all the
necessary variables (specifically those which are not bound to the method). As
noted earlier the where clause of a collection is applied to all the sub-events.
Therefore, allowing the user to declare the primitive events in a collection will
avoid a lot of unnecessary duplicated where clauses. The syntax is as follows:

collection() = { {methodName()} where { ... } | declaredEvent }

Consider the scenario where we need the time at which the database was
accessed. This can be defined directly on the collection as follows:

access(long time) = { write | read } where time = System.currentTimeMillis();

Parameters

A question arises from the fact that different events in the collection have different
parameters: Which parameters will be allowed to be accessed by the collection?
To resolve this dilemma one must recall that we are allowed to declare any variable
in an event as long as it is either directly bound to the method or initialised in
the where clause. Therefore, it is reasonable to keep the same policy in the event
collection. This means that any variable which is not bound by all the collection’s
sub-events, must be initialized in the collection’s where clause. Consider the
following event declarations:

event1(Type1 arg1, Type2 arg2)

= {Type1 arg1.methodName1(Type2 arg2)}

collection(Type1 arg1, Type2 arg2, Type3 arg3)

= { {Type1 arg1.methodName2()} where { arg2 = 2; } | event1 }

where { arg3 = 0; } }

In this example, event1 does not bind arg3. Therefore, it must be provided for
in the where clause of the collection. The same thing happens with methodName2.
The database login example can be modified to keep track of the name of the user
which logged in (if this is available as a parameter). The code can be modified
as follows:

login(String name) = {*.loginToDb(String name)}
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Where Clause

Repeatedly, we have reaffirmed that the collection’s where clause is applied to all
the sub-events. The problem here is: What will happen if the initialisation of a
variable is provided twice for a particular event? It will be very misleading if the
initialisation of the collection’s where clause overrides that of the individual event
(previously declared). The solution which seems to be most feasible is that the
where clause which is most specific to the event declaration is never overridden
later on. To make this clear and avoid confusion, the parser of the language issues
a warning that a part of the where clause of the collection is being ignored for a
particular event (because it has been already initialised in a more specific where
clause). Consider the following example:

event1(Type1 arg1, Type2 arg2)

= {Type1 arg1.methodName1(Type2 arg2)}

collection(Type1 arg1, Type2 arg2, Type3 arg3)

= { {Type1 arg1.methodName2()}

where { arg3 = 3; } | event1 }

where { arg2 = 2; arg3 = 0; }

In this example, an interesting conflict emerges: arg2 for methodName1 is
initialised both by the method call and also by the where clause collection. Sim-
ilarly, arg3 for methodName2 is initialised in both where clauses. In order to
solve such conflicts of duplicated initialisation we always apply the where clause
which is most specific to the event in question. This means that the initialisation
arg2=2 will not be applied on methodName1 while the initialisation arg3=0 will
not be applied on methodName2.

Using the database example, we can show how a log event can be created
using the login and logout events. In this case we want to pass a meaningful
string depending on the event being logged. Thus different where clauses have
to be defined for some sub-collections. A default message may be applied to all
the events with no specific clause. The following code shows how a specific string
is available for the event login but for the event logout the default message is
applied:

login(String name) = {*.loginToDb(String name)}

logevent(String info) = { {login} where {info = name;} | logout }

where { info = "default message"; }

Sub-collections

Purely for the sake of convenience, the user is also allowed to declare sub-
collections in collections. In fact, there is no limit to the depth of the nesting of
event collections. The syntax is as follows:

collection() = { ev1 | { ev2 | ev3 } where { ... } }

where { ... }
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Based on the running example, we can construct the following to group all
the events together:

access() = { write | read }

anyEvent() = { access | { login | logout} }

5.3.5 Event Variations

Having only a one-to-one mapping between events and method calls is too re-
strictive. For example, the user may need to verify something before the method
is called and after it returns. Therefore, we need to allow the user to specify
different types of events for the same method call. We identified four different
variations of events for the same method call. These are:

(i) before the method execution, written as:

{methodName()}

(ii) after the method returns, written as:

{methodName() uponReturning (returnedObject)}

(iii) after the method throws an exception, written as:

{methodName() uponThrowing (thrownException)}

(iv) upon the handling of an exception — the start of a catch block, written as:

{methodName() uponHandling (handledException)}

In each of the last three event types, the user can also bind to the returned
object or the thrown/handled exception accordingly.

Considering the running example, we would like to know whether the login
method had to handle an exception during its execution, or possibly thrown an
exception. Thus, we can define the two occurrences as a collection:

loginException(Exception ex) = { *.loginToDb() uponThrowing (ex)

| *.loginToDb() uponHandling (ex) }
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5.3.6 BNF

Below, we give the BNF of the Events section which is the most complex part of
the language:

Type ::= identifier
VariableDeclaration ::= ‘∗’ | identifier | Type identifier
MethodName ::= identifier
EventName ::= identifier
ArgumentList ::= VariableDeclaration | VariableDeclaration ArgumentList | ǫ

EventVariation ::= ‘uponReturning’ ‘(’ VariableDeclaration ‘)’
| ‘uponThrowing’ ‘(’ VariableDeclaration ‘)’
| ‘uponHandling’ ‘(’ VariableDeclaration ‘)’

MethodDeclaration ::= VariableDeclaration ‘.’ MethodName ‘(’ ArgumentList ‘)’
PrimitiveEvent ::= MethodDeclaration | MethodDeclaration EventVariation
EventList ::= PrimitiveEvent | CompoundEvent | EventName

| EventName ‘ | ’ EventList
CompoundEvent ::= ‘{’ EventList ‘}’ | ‘{’ EventList ‘}’ where ‘{’ statements ‘}’
Event ::= EventName (ArgumentList) ‘=’ CompoundEvent
Events ::= Event Events | ǫ

EventsBlock ::= ‘EVENTS ’ ‘{’ Events ‘}’

5.4 Database Access Example

To summarise the previous section and illustrate the running example which we
have used all along, we present the complete script together with an illustration of
the automaton in Figure 5.1. Note that by introducing the event collection access
we have removed two transitions from the original list presented in Subsection
5.2.1.

5.5 Clocks

Clocks can be used in a Larva script to define real-time properties. For example
with clocks we can define that no more than three bad logins should occur within
five minutes. Another example would be to specify that a transaction which
failed should be retried within a maximum of ten minutes. There are also a lot of
real-time applications which are related to safety critical operations. For example
it should be ensured that the train gate is closed within five seconds after the
closing signal was sent. Such a simple check may prevent a possible tragedy.

A clock may appear in various parts of a Larva script because according to
the DATE logic it can generate events, it can be used as part of conditions, and it
also supports actions. However, it cannot be treated like the other variables used
in the declaration of events because a clock may appear in the transitions without
appearing in the events section. Furthermore, a clock cannot be treated as a
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logout

logout

access

loggedin

login
access

loggedout

bad_state

login

GLOBAL

{

EVENTS

{

write() = {*.writeToDb()}

read() = {*.readFromDb()}

login() = {*.loginToDb()}

logout() = {*.logoutFromDb()}

access() = { write | read }

}

PROPERTY accessMonitoring

{

STATES

{

BAD { bad_state }

NORMAL { loggedin }

STARTING { loggedout }

}

TRANSITIONS

{

loggedout -> loggedin [ login ]

loggedout -> loggedout [ logout ]

loggedout -> bad_state [ access ]

loggedin -> loggedout [ logout ]

loggedin -> loggedin [ login ]

loggedin -> loggedin [ access ]

}

}

}

Figure 5.1: The automaton and Larva code of the database access example.

parameter of a method — it is part of the clock configuration of the automaton.
Thus, a clock should be declared before the events section. This will be done in
a section called Variables as follows:

VARIABLES

{

Clock c;

}

The BNF of the Variables section is as follows:

ClockName ::= identifier
ClockDecl ::= ‘Clock ’ ClockName ‘ ; ’
VariableDecl ::= ClockDecl
VariableList ::= VariableList VariableDecl | ǫ

VariablesBlock ::= ‘VARIABLES ’ ‘{’ VariableList ‘}’
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A simple way to declare events based on a clock, is to state the clock and
the time at which it should trigger separated by the symbol @. A clock event
triggering four seconds after the last clock reset is declared as follows:

clockEvent = {c@4}

In practical cases encountered, it is sometimes useful to have a clock which
triggers repeatedly after a number of seconds. Instead of resetting the clock after
each event, the clock can be set to trigger for every second which is a multiple of
a particular number. Therefore, one can also declare c@%4 signifying that the
clock event will occur repreatedly after every 4 seconds.

The BNF of events will be modified as follows:

number ::= positive integer
ClockEvent ::= ClockName ‘@’ number | ClockName ‘@%’ number
PrimitiveEvents ::= PrimitiveEvent | ClockEvent
EventList ::= PrimitiveEvents | CompoundEvent | EventName

| EventName ‘ | ’ EventList

A number of methods are available with the Clock and can be used just like
normal methods wherever Java code is allowed in the Larva script. These are in-
tended to make clocks more usable and versatile. For example: clockName.reset()
will cause the clock clockName to be reset.

• The reset method is the one which should be used whenever one requires to
restart the clock. Initially, the clock is automatically started as soon as its
context starts existing. This means that as soon as the monitoring system
starts up, any clock declared in the Global context is started. Similarly,
upon the start of a new automaton for a particular context, all the clocks
in that context will be automatically started.

• The current method will return a double with the number of seconds elapsed
since the clock was started/reset.

• The compareTo method accepts a double as a parameter and returns an
integer. If the integer is zero, then the current clock value and the parameter
are equal. If the integer is positive then the clock value is larger than the
parameter. Otherwise, the clock value is smaller than the parameter.

• A clock can be switched off using the method off. This can be especially
useful for clocks which are set to generate an event repeatedly for a certain
amount of time.

• A clock can be paused using the method pause.

• A clock can be resumed using the method resume.
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5.6 Channels

The DATE logic supports channels for automata communication. For exam-
ple, one would like to start an automaton upon the completion of another. Or
one would like to trigger a transition when another automaton reaches a par-
ticular state. Channels in DATEs are broadcast channels which means that all
the automata will receive the channel-triggered events. In the future this can
be improved either by adding a tag to the channel event — so that events are
distinguishable — or by introducing point-to-point channel communication.

Declaring a channel is very similar to declaring a clock — first it should be
declared in the variables section — since it is not related to any particular system
event. The declaration is as follows:

VARIABLES

{

Channel d;

}

In order to declare an event upon the channel, the question mark symbol
(?) is used because this is similar to the way other languages (such as CSP and
Occam) represent channel communication. Objects can also be sent and received
through the channel. A code example is shown below:

EVENTS

{

channelD(Object obj) = {d?obj}

}

For the same reason, the exclamation mark (!) is used to represent sending
an event over a channel. A trigger of a channel event is considered as an action
and thus, it is found as part of an action on a transition. Objects can be sent
through the channel as shown in the example below:

TRANSITIONS

{

starting -> normal [an_event\\d!obj]

}

The BNF of the variables and events will be modified as follows:

ChannelName ::= identifier
ChannelDecl ::= ‘Channel ’ ChannelName ‘ ; ’
VariableDecl ::= ClockDecl | ChannelDecl
VariableList ::= VariableList VariableDecl | ǫ

ChannelEvent ::= ChannelName ‘?’ identifier
PrimitiveEvents ::= PrimitiveEvent | ClockEvent | ChannelEvent
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5.7 The Global Context

All the sections described so far can be put in one container which will be called
the global context. A global context has a number of clocks and channels in the
Variables section, a number of events and a number of properties (automata).
The complete BNF for the global context is as follows:

VariablesBlock ::= ‘VARIABLES ’ ‘{’ VariableList ‘}’
PropertyBlocks ::= PropertyBlock PropertyBlocks | ǫ

Context ::= VariablesBlock EventsBlock PropertyBlocks
GlobalContext ::= ‘GLOBAL’ ‘{’ Context ‘}’

5.8 Context

In order to specify a property for each object of a particular type, we introduce the
FOREACH construct. For example, all the invariants, variables, and properties
within a FOREACH (User u) section will be applied for each instance of type
User. It is important to note that each event with a FOREACH must provide a
context by assigning a value to the context variable using the where clause. The
syntax is as follows:

FOREACH (User u)

{

INVARIANTS { ... }

VARIABLES { ... }

EVENTS

{

addUser() = {*.addUser(User u1)} where { u = u1; }

...

}

PROPERTY { ... }

}

The context of a property may be made up of more than one variable. For
example, a property may apply foreach user and foreach account. The set of
possible automata will be the cross product of all the users and all the accounts.
Sometimes, this approach restricts the user. Consider a scenario where we want
to declare a property about all the users, and another property about all the
accounts (in the context of their users). In the first property we do not need
the context of an account because the property concerns the user but not the
accounts. Placing this property in a context of a user and an account clearly
provides too much context. The solution is to allow a Foreach section to contain
other Foreach sections. This is referred to as nesting.
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5.8.1 Nesting

Nesting allows the user to specify exactly the necessary level of context. The
properties which concern the user without the account, are put in the user context
while the properties which concern both the user and the account are placed in
a more specific context. For example, for each user, we would like to ensure
that there are no more than five pending requests, and we may want to place an
invariant restriction on the ID of each account. For the former property the user
context is sufficient. However, the second property has to be applied for each
account of each user. Note that, each event must provide a value to the whole
context even if the context is nested. This is shown in the following code snippet:

FOREACH (User u)

{

...

FOREACH (Account a)

{

EVENTS

{

addAccount() = {User u1.addAccount(Account a1)}

where { a = a1; u = u1; }

}

...

}

}

The BNF of contextual properties is as follows:

Type ::= identifier
VariableName ::= identifier
Context ::= VariablesBlock EventsBlock PropertyBlocks SubContexts
SubContext ::= ‘FOREACH ’ ‘(’ Type VariableName ‘)’ ‘{’ Context ‘}’
SubContexts ::= SubContexts SubContext | ǫ

GlobalContext ::= ‘GLOBAL’ ‘{’ Context ‘}’

Note that the definition of Context has been modified to include SubContext.
Nesting of contexts creates the issue of referring to variables in higher-level

contexts. For example, we are monitoring the number of users using the variable
count and monitoring the number of accounts of each user using another variable
count. Although the variable names are the same, they belong to different con-
texts. Recall that the count of users is still available in the account context. To
resolve this conflict and make it clear to which variable in which context we are
referring to, we allow the user to insert special notation in the Java statements
used in Larva. This is achieved using the symbol “::” together with the name
of the context as follows:

FOREACH (User u)

{

VARIABLES { int count = 0; }
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...

FOREACH (Account a)

{

VARIABLES { int count = 0; }

PROPERTY

{

...

if (u::count > 5 || u::a::count < 6)

...

}

}

}

5.8.2 Context and Clocks

The clocks in Larva can be contextual. This means that if the clock is declared
in a Foreach context, then a separate clock will be created for each monitored
object. On the other hand, if it is declared in the Global context, only one clock
is created and it will be available for all the contexts and automata. This means
that even the generated events will be broadcast to all the sub-contexts (unlike
the other events).

5.8.3 Context and Channels

Channels in Larva are never contextual — they are always global. In other
words, they are broadcast channels whose events are received by all the automata.
As future work, we can also introduce point-to-point channels. As a compromise,
the channel specification (above) allows tags to be sent over channels. Using
these tags, the receiving end can distinguish between senders. Note that this has
been implemented in the current Larva implementation and used in the last case
study. However, the notion of tags has not been yet included in the mathematical
framework of channels.

5.9 Invariants

Invariants are aspects of the system state which we would like to remain un-
changed. For example we would like the status of the system to remain unchanged
during the verification of a particular property. We need three basic parts for such
a declaration: the Java statement to obtain the status, the name of the invariant
and the type returned by the Java statement.

The following example shows how the invariant sysStatus is declared:

INVARIANTS

{

int sysStatus = System.getStatus();

80



Chapter 5. Language Specification

}

Invariants can appear both in the global context and in the sub-context. If
it is in a sub-context it will be applied to all the replicated automata of that
context. Thus the BNF definition of context becomes as follows:

Type ::= identifier
VariableName ::= identifier
Invariant ::= Type VariableName ‘=’ identifier ‘.’ MethodName ‘(’ ‘)’
Invariants ::= Invariants Invariant | ǫ

InvariantsBlock ::= ‘INVARIANTS ’ ‘{’ Invariants ‘}’
Context ::= InvariantsBlock VariablesBlock EventsBlock PropertyBlocks

SubContexts

5.10 Variables

So far the only declarations in the variables section were of type clock and channel.
However, any type of variable may be required, especially integer variables to
be used as counters in the automata. The variables declared in the Variables
section can be considered as the local variables of the automaton. The variable
declarations allowed are the same as variable declarations in Java. For example:

VARIABLES

{

int i = 0;

boolean b = false;

}

The complete BNF of the Variables section is as follows:

Type ::= identifier
VariableName ::= identifier
VariableDecl ::= Type VariableName ‘ ; ’

| Type VariableName ‘=’ JavaStatement ‘ ; ’
VariableList ::= VariableList VariableDecl | ǫ

VariablesBlock ::= ‘VARIABLES ’ ‘{’ VariableList ‘}’

5.10.1 Initialisation

An interesting question which crops up is where we should place the initialisation
of the variables. We considered two possible approaches: provide a specific place
where the initialisations are declared, or associate the initialisation with the action
of the starting node of the automaton. Associating the initialisation code with a
starting node may be confusing — what happens if the automaton re-enters the
starting state? Will the initialisation code run again? Therefore, instead of this
option, we chose to allow the user to perform initialisation upon declaration of
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the variable as in Java. Still, the drawback may be that we want to re-initialise
the automaton to the starting state at some point in the execution. Or maybe
the user needs to perform a complicated initialisation. For these reasons, in the
future we will consider re-designing the issue of initialisation altogether.

5.11 Other Details

5.11.1 Imports

A script written in Larva does not have any context of Java packages Therefore,
it is mandatory for the user to provide the necessary classes as imports in the
imports section of the Larva script. Any object that is used in the script but
which is not part of the standard Java must be included as an import. The same
rules of a Java import section apply to the Larva import section. The syntax is
given below:

IMPORTS

{

import a_package.sub_package.ClassName;

...

}

5.11.2 Methods

For the specification of properties, sometimes various line of code may be required
for a transition’s action. This also applies to wherever there is Java code in the
Larva script. For this reason, the user is allowed to declare these statement as
a method and thus, the user can simply use the method name instead of all the
lines of code. The syntax is as shown below:

METHODS

{

boolean checkNumber (int number)

{

return true;

}

}

5.12 Illustrative Example: Bank System

To illustrate the use of Larva, consider the monitoring of a simplified banking
system. We want to monitor that there should never be more than five users in
the bank and that a deletion does not occur when there are no users. For this
purpose, we specify an automaton whose transitions trigger upon system events.
This automaton will have various types of states such as a starting state and
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some bad states which represent the violation of a property. The next step would
be to identify the system events corresponding to the method calls in the target
system. Upon the occurrence of particular events the automaton transitions
trigger, updating the state of the system. To keep track of the number of users it
is we will use a discrete variable which can be accessed and manipulated by the
automaton through actions on the transitions. For example, upon the method call
addUser we increment the variable as shown in the first transition of the code in
Figure 5.2. To check whether the number of allowed users has been exceeded, we
need to check certain conditions upon a transition. Transitions may only trigger
if an associated condition holds. Therefore, each transition will have three parts:
an event, a condition and an action. In Figure 5.2 we show the automaton used
for monitoring the addition and deletion of users, together with the equivalent
Larva code2.

5.13 Example with Clocks and Channels

In this section, we will give a small example of how the clocks and channels can
be used. First we describe a realistic scenario and we show how the property can
be expressed as a DATE.

A server should not be overloaded with traffic such that users are denied
service. If the traffic is high for a long period of time, the probability of a denial
of service is high. Thus, the server is monitored to check for long periods of high
volumes of traffic. If the traffic is repeatedly found to be high over a period of
time, then the frequency of user denial of service is checked. If a denial of service
occurs frequently, then the administrator is notified of the problem.

In the script that follows, there are two automata. The first automaton high-
Traffic triggers regularly upon a timer event. If the server is handling high traffic,
a counter is incremented, otherwise it is decremented. Once the counter reaches
5, an event is sent over channel d to automaton denial. Similarly, the automaton
keeps count of the number of denial of service occurrences. If the count exceeds
5 the automaton reaches bad state problem.

GLOBAL

{

VARIABLES

{

Clock c = new Clock();

Channel d = new Channel();

int count = 0;

}

EVENTS

2For a complete user manual of Larva and further examples please refer to
http://www.cs.um.edu.mt/~svrg/Tools/LARVA. The tool is also available for download.
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allUsers

deleteUser
\userCnt==1
\userCnt--;

deleteUser

ok

too many

addUser\\userCnt++;
deleteUser\\userCnt--;
allUsers

addUser
\userCnt>5

start

bad delete

addUser
\\userCnt++;

\\userCnt=0;

GLOBAL

{

VARIABLES

{

int userCnt = 0;

}

EVENTS

{

addUser() = {*.addUser()}

deleteUser() = {*.deleteUser()}

allUsers() = {User u.*()}

}

PROPERTY users

{

STATES

{

BAD { too_many bad_delete }

NORMAL { ok }

STARTING { start }

}

TRANSITIONS

{

start -> ok [addUser\\userCnt++;]

start -> bad_delete [deleteUser\\]

...

ok -> ok [deleteUser\\userCnt--;]

ok -> ok [allUsers]

}

}

}

Figure 5.2: The automaton and Larva code of a hypothetical bank system.

{

clockC() = {c@10}

channelD() = {d?}

}

PROPERTY highTraffic

{

STATES

{

STARTING { starting }

}

TRANSITIONS

{

starting -> starting
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[clockC\system.highTraffic() && count > 5\c.reset();d!]

starting -> starting

[clockC\system.highTraffic()\c.reset();count++;]

starting -> starting

[clockC\count>0\c.reset();count--;]

starting -> starting

[clockC\\c.reset();]

}

}

PROPERTY denial

{

STATES

{

BAD { problem }

NORMAL { normal }

STARTING { starting }

}

TRANSITIONS

{

starting -> normal [channelD]

normal -> problem [userDenied\count > 5]

normal -> normal [userDenied\\count++;]

normal -> normal [clockC\count > 0\c.reset();count--;]

normal -> normal [clockC\\c.reset();]

}

}

}

5.14 Conclusion

In this chapter we have provided a suitable language which is relatively easy to
use and parse based on the DATE logic presented in the previous chapter. The
language has evolved through experimentation in practical and even real-life sce-
narios. For this reason, the language has been presented as an evolving language
— starting from a basic symbolic automaton to the full Larva automaton. Two
examples have been given to illustrate the use of the language. In the next chapter
we will give the complete view of the proposed runtime verification architecture,
together with the implementation details involved.
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6.1 Introduction

In this chapter, we will explain the implementation details of the Larva architec-
ture. First, in Section 6.2, we explain the basic setting on which runtime verifi-
cation can be applied. In Section 6.3, we introduce aspect-oriented programming
because of its key role in the monitoring system by injecting monitoring code in
the target system. Subsequently, the architecture of Larva — the way it is inte-
grated with the monitored system — is explained in Section 6.4. In the following
section, we explain the implementation of the Larva automaton in Java. This
includes the hierarchy of classes which implement the monitoring system and
how the context of each automaton is stored. Another interesting detail is the
implementation of invariants which monitor the changes in attributes of objects.
This is explained in Section 6.6. A very challenging part of the implementation
is that concerning real-time. This is mainly because the standard Java virtual
machine does not strictly support real-time. The details are in Section 6.7. This
is followed by a section explaining another difficult implementation aspect — that
of channels. The last section concludes the chapter.

6.2 Composing a Larva Script

Larva is a system which implements DATE structures, allowing the user to
specify several properties to be verified during the execution of a system. These
properties are automatically translated into the necessary Java code using the
Larva compiler. The code will include two main components: the code which
extracts the events from the underlying system, and the code which verifies the
properties based on the generated events.

To summarize and illustrate the whole process of using Larva, we will use
block diagrams together with an example. In order to be able to verify a system,
we obviously need a system and its specification written in Larva. The Larva

specification includes the system events and the properties to be verified.1 Figure

1More information about the Larva language can be found in the Larva manual provided

86



Chapter 6. Larva Implementation Details

6.1 shows the components which must be provided by the user.

System LARVA
specification

User

Figure 6.1: The components which must be provided by the user.

As an example we will consider a logging system which ensures that a read
and write operations are only allowed when the user is logged in. In this case,
the system includes the Java classes which implement the logic. An idea of what
the system code might look like is provided in the following code snippet:

public class SystemMain

{

public void loginToDb() { ... }

public void logoutFromDb() { ... }

public void writeToDb() { ... }

public void readFromDb() { ... }

}

Given a system to be monitored, the user must provide the Larva specifica-
tion, which comprises the list of events and properties to be verified. An example
of a script related to the logging system is the following:

...

EVENTS

{

write() = {*.writeToDb()}

read() = {*.readFromDb()}

login() = {*.loginToDb()}

logout() = {*.logoutFromDb()}

}

...

TRANSITIONS

{

start -> start [ login \\ loggedin = true; ]

start -> start [ logout \\ loggedin = false; ]

start -> bad_write [ write \ !loggedin \ ]

start -> bad_read [ read \ !loggedin ]

}

...

online: http://www.cs.um.edu.mt/svrg/Tools/LARVA/.
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Before this script is of any use, it must compiled by the Larva compiler to
generate the equivalent automaton implementation in terms of Java and AspectJ
code. AspectJ is an aspect-oriented programming language which complements
Java. The following section will give a brief overview of aspect-oriented program-
ming to help the reader understand how the runtime verification architecture
works.

6.3 Aspect-Oriented Programming

Larva uses aspect-oriented programming techniques [62] to capture events. More
specifically, AspectJ technology was chosen because of the available support and
tools. The advantage of using aspect-oriented programming is that crosscutting
concerns can be defined as a separate module. For example, consider accounting
concerns: code which counts the number of resources used will be scattered wher-
ever there is a resource acquisition or a resource release. Being able to capture
the required logic as one module is very convenient: it is faster to implement and
less error-prone. Aspect-oriented programming is able to insert code in specific
points in the system code based on matching rules. Such specific points — also
known as joinpoints — are identifiable points in the code. Examples include
method calls, exception throws and so on. In an aspect file, one can define a
pointcut which is a sort of rule to which a number of joinpoints should match.
An advice is a piece of code associated with a pointcut which is executed in the
place where a joinpoint matches the corresponding pointcut. The insertion of
advice code is called instrumentation or weaving. This can occur at compile-time
or at load-time. Compile-time weaving requires the source code of the system
being weaved, while the load-time weaving works on the byte-code. The former
is faster but sometimes one may prefer not to recompile the whole system. An-
other advantage of load-time weaving is that is that the system can be run with
or without aspects with more flexibility.

As an example of how aspect-oriented programming works consider a system
which creates shapes and displays them on screen. Using the usual techniques,
keeping a count of all the shapes currently displayed, one must keep some kind of
global variable which is updated by all the objects in the system. Using aspect-
oriented programming, this task becomes much simpler. Consider the following
code for the Circle object:

public class Circle implements Shape

{

public void display() { ... }

public void hide() { ... }

}

Similar code exists for the objects Triangle, Square, and Rectangle. In the ex-
ample, Shape is an interface and hence cannot have any implementation. Further-
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more, keeping count of the shapes is not considered part of the system function-
ality. The solution given by aspect-oriented programming involves the following
few lines of code:

public aspect Shapes

{

int count = 0;

before():(execution(* *.display())) { count ++; }

before():(execution(* *.hide())) { count --; }

}

The actual semantics of the code upon weaving would be equivalent to the
following code:

public class Circle implements Shape

{

public void display() { count ++; ... }

public void hide() { count --; ... }

}

Note how the statements in the pieces of advice, have been inserted in the
code of the system at the specified joinpoints. Aspect-oriented programming is
very useful for runtime verification. Through this technology, code which checks
the state of the system can be inserted in the required parts without the need
to actually alter the code. This makes it both easier and less error-prone. More
importantly, the weaving is done automatically with no effort from the part of
the runtime verification designer.

In the case of Larva, the automaton which monitors the system, is given
control upon the occurrence of specific events which are relevant to the monitor-
ing. Subsequently, the automaton performs the necessary operations and passes
control back to the system. The necessary operations include the initialisation
of automata, logging of information, update of the state of automata, and taking
appropriate actions to remedy particular situations as specified by the user.

6.4 Larva for Runtime Verification

In the previous two sections, we have first laid out the setting of a typical sys-
tem which will be augmented with runtime monitoring, and then, we introduced
aspect-oriented programming. In this section, we will show how the Larva script
introduced in Section 6.2 is compiled in order to generate the necessary Java and
AspectJ code. The input and outputs of the compilation process are shown in
Figure 6.2.

Building on the example, the Larva code (a part of which is shown above)
is compiled and the Larva compiler generates an aspect file which captures the
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Figure 6.2: Generating the Java code using the compiler.

events, and a class file with the logic of the automaton. Upon capturing an
event, the code in the aspect triggers the automaton to perform relevant steps.
A snippet of the aspect code is the following:

before () : (call(* *.loginToDb(..)) && !cflow(adviceexecution()))

{

_cls_property _cls_inst = _cls_property._get_cls_property_inst();

_cls_inst._call(thisJoinPoint.getSignature().toString(), 4 /*in*/);

}

Note that the method call implements the automaton logic through a series
of if-then-else statements. A snippet of the automaton code is the following:

...

else if (_state_id_badAccess == 2 /*start state*/)

{

if (1==0) {}

else if (_occurredEvent(_event,4 /*in*/))

{

loggedin = true;

_state_id_badAccess = 2; //moving to start state

_goto_badAccess(_info);

}

...

Note that each state and each event are given an identification number. The
above code is checking that if the automaton is in the start state and the event
in occurs, then, the variable logged is set to true and the automaton goes again
to the start state. This is in line with the Larva definition of the transitions.
The last method call goto badAccess saves some useful logging information for
the user.

Once the user has the Larva compiler-generated code, this is recompiled
together with the system code using the AspectJ compiler. The latter automat-
ically weaves the monitoring and verifying code with the system code. The end
configuration will be like the one shown in Figure 6.3.

When the monitoring code is weaved with the system code, the system is in
fact modified with additional code in the strategic places indicated by the as-
pect code. Considering the above two code snippets, the monitoring code will
be injected exactly before the call to the method loginToDb indicated in the
first code snippet. This mechanism will update the automaton according to the
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Figure 6.3: Larva in practise.

system events taking place. In case a login occurs, the variable logged is set
to true and the automaton performs the steps as described above. Similarly, if
the method readFromDb is called and the variable logged is false, the monitor-
ing system immediately reaches a bad state before the method readFromDb is
actually invoked. Using the same technique, a report of the monitoring situation
(including the states through which the system is going through and any bad
states encountered) is issued in a text file (see Figure 6.3). This information also
provides the stack trace where the bad state was encountered.

6.5 Implementation of the Automaton

The implementation of the automaton in Java is very straight forward: it is
implemented as a series of nested if-then-else statements which represent the
selection of the source location (according to the current state of the automaton)
and the selection of the destination location (according to the current events
and variables). The if-then-else construct also allows us to easily implement the
priority of the transitions. Recall that for the sake of determinism, transitions
are ordered by priority. A simple integer variable is used to keep track of the
current state of the automaton. The more complex part of the implementation
involves automata with contexts. A context refers to the replication of automata
according to their uniqueness. The following subsections explain the structure
used to represent contexts, how we keep track of the different automata, and how
the uniqueness of the objects is decided.

6.5.1 Structure of Contexts

In order to keep track of a context we have to associate an automaton with the
object (context) being monitored by that automaton. In this way the automaton
itself inherits the uniqueness of the object — this is what distinguishes it from the
other automata. Another important point is that a context should have access to
the variables of all the higher-level contexts. For example a user context, which
keeps track of the number of accounts, should also have access to the global
context (above the user context) which keeps track of the number of users. For
this reason, we require that, at least, each context has access to its immediate
parent context. Furthermore, the uniqueness of a context also depends on the
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Figure 6.4: The implementation structure of contexts.

uniqueness of its parent. Therefore, this should also be included in the equals
method which decides the uniqueness of the automaton.

In summary, the basic references required for a context include: (i) a refer-
ence to its immediate parent (and thus a reference to the parent’s context and
variables); (ii) a reference to the objects which make up the context of the au-
tomaton; and (iii) a reference to the local variables. As an example consider
a global context (which monitors the number of users), a user context (which
monitors the number of accounts each user has), and an account context (which
monitors the transactions in each account). This is shown in Figure 6.4.

6.5.2 Dynamic Triggers

To monitor properties with context, we must trigger a new automaton for each
unique object encountered. For this purpose, a hash table is used to store the
objects being monitored. Upon receiving an event, the monitoring system checks
whether the object, responsible for the event, is already in the hash table; if not,
a new automaton is created and initialised. To use the same example, consider
a scenario where a login/logout is done on a per user basis. The following code
snippet illustrates what we have been saying:

public static HashMap <_cls_property, _cls_property>

_cls_property_instances = new HashMap <_cls_property, _cls_property>();

...

public static _cls_property _get_cls_property_inst (User u)

{

_cls_property _inst = new _cls_property(u);

if (_cls_property_instances.containsKey(_inst))

{

_cls_property tmp = _cls_property_instances.get(_inst);

return _cls_property_instances.get(_inst);

}

else

{

_cls_property_instances.put(_inst,_inst);

return _inst;
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}

}

In the above code, a HashMap is used to store all the active instances of a par-
ticular automaton. Both the key and the value of the HashMap are the automaton
itself because the automaton object has an equals method which is able to dis-
tinguish automata from each other. The static method get cls property inst in
the code, accepts a context (in the example, a User object) as input and returns
its corresponding automaton. First, the method tries to find the automaton in
the HashMap; if not found, it creates a new one and puts it in the HashMap. This
code is called each time an event is received so that the event is applied to the
appropriate automaton. Recall that each event is related to a context through its
where clause. The actual code called before the event loginToDb is the following:

before (User u1) : (call(* *.loginToDb(..)) && args(u1)

&& !cflow(adviceexecution()))

{

User u;

u = u1;

_cls_channelexample1 _cls_inst

= _cls_channelexample1._get_cls_channelexample1_inst(u);

_cls_inst.u1 = u1;

_cls_inst._call(thisJoinPoint.getSignature().toString(), 4 /*in*/);

}

Note how the context variable u is first obtained from the method param-
eter, and then passed as a parameter to obtain the corresponding automaton.
Unfortunately, this approach requires the storage of all the monitored objects.
The consequence may be a considerable overhead on the system’s resources. The
solution for this problem is to use accepting states. Upon reaching an accept-
ing state, an automaton is considered to have reached its purpose and can thus
be removed from memory. Recall that in the definition of DATEs (Section 4.3)
an accepting state cannot have any outgoing states. Thus, once the automaton
reaches such a state, it can be discarded.

In the case of nested contexts, a part of the context passed to the cre-
ation/retrieval of an automaton is actually used to create/retrieve the parent
context. Recall that a context has reference to its parent’s context. The fol-
lowing code shows the process of creating an automaton with a nested context
(transaction context within a user context):

public _cls_property (Transaction t, User u)

{

parent = _cls_property._get_cls_property_inst(u);

this.t = t;

}

Note that the first line of code in the method, retrieves a pointer to the
parent automaton. The subsequent line of code sets the context of the current
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automaton. Two identical contexts can still be distinguishable because of different
parents. The code for comparing two automata with a nested context is as follows:

public boolean equals (Object o)

{

if ((o instanceof _cls_property)

&& (context == null || t.equals(((_cls_property)o).context))

&& (parent == null || parent.equals(((_cls_property)o).parent)))

{

return true;

}

else

{

return false;

}

}

6.5.3 Equality of Objects

An interesting implementation issue is the problem of comparing objects, i.e.
which objects should be considered to be the same object. This is very impor-
tant when monitoring properties according to a context. For example, consider
monitoring a property for transactions which are serialised and deserialised dur-
ing their life cycle because of communication. From a practical perspective, these
should be considered as the same object even though they are not the same in-
stance. For this reason, we do not construct automata upon the construction of
objects. Rather, Larva uses the equals method of objects in order to decide their
uniqueness. Thus, if two objects are not equal, they should each have a sepa-
rate automaton. If the default equals method is not appropriate for the purpose
of runtime verification, the user can implement a custom equals method in the
Larva script.

The following example will be used to highlight the need for this flexibility.
Consider a transaction object which is created without an identification but which
is given this identification at a particular stage in its life cycle. Furthermore, this
object is serialized and sent over a communication channel. Subsequently, the
object is received and deserialised. Also assume that the transaction object does
not have an implemented equals method (it will inherit the equals method of
Object). The only solution is to provide a custom equals method in the Larva

script. A possible equals method is the following:

public boolean compareTransactions (Transaction t1, Transaction t2)

{

if (t1.getID() == null)

return t1.equals(t2);

else

return t1.getID().equals(t2.getID());

}
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Note that the custom equals methods requires two instances of the the com-
pared object as inputs. To notify Larva to use this method, instead of the
default equals method, the equateUsing construct should be used as follows:

...

FOREACH (Transaction t equateUsing compareTransactions)

...

The actual comparison of the context is done automatically by the HashMap
mechanism. For this reason, we have used the automaton object as the key of
the HashMap. Before adding any objects to the HashMap we check whether
the HashMap already contains the key using the containsKey method. This
automatically invokes the equals method of the automaton object. Automaton
objects are compared according to the objects which constitute their context.
Recall that if the user does not specify an equals method, the comparison is
done using the default equals method. On the other hand, if the user specifies
a comparison method, this is used instead. The following code shows a context
which is made up of a Transaction and a User. The former is compared using the
standard default equals method, for the latter the user-specified method comparer
is used:

public boolean equals (Object o)

{

if ((o instanceof _cls_property)

&& ( transaction == null || t.equals(((_cls_property)o).transaction))

&& ( comparer(user, ((_cls_property)o).user))

&& (parent == null || parent.equals(((_cls_property)o).parent)))

{

return true;

}

else

{

return false;

}

}

6.6 Invariants

Recall that invariants are attributes of an object which should not change through-
out a number of transitions. In order to keep track of the violation of invariants,
a variable is used to store the last known value of the invariant attribute. Be-
fore taking a transition, the stored value is compared to the current value of the
entity. If they match, the transition is taken as usual; if a discrepancy is found,
the automaton reverts to a bad state. In mathematical terms this means that
we have added another condition on each outgoing transition which checks the
invariant, and also adding another transition which goes to a bad state upon the
violation of the invariant.
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Figure 6.5: The implication of invariants on the automata.

To illustrate this, we will use an example. Consider the following snippet of
Larva script with an invariant and a transitions:

FOREACH (Transaction t)

{

INVARIANTS {

Long idInvariant = t.getID();

}

...

TRANSITIONS {

start -> start [ process ] [ enable idInvariant ]

}

}

The invariant checks that the return value of the method getID never changes
throughout all the life cycle of the transaction. The invariant is named idInvariant
and is enabled by the construct enable upon a particular transition. As soon as
the invariant is enabled, the automaton modifies itself — the automaton with
originally one transition and no conditions becomes as shown in Figure 6.5.

More concretely, an invariant is monitored using two variables: a boolean and
an object which stores the last known value of the monitored attribute. The
boolean variable is initially false, but it is set to true as soon as the invariant
is enabled. The enabling of an invariant is always associated with a transition.
Upon enabling the invariant, the current value of the invariant is stored in the
designated variable. The following code is performed upon taking the transition
which enables the invariant in the above example:

else if ((_occurredEvent(_event,1/*setID*/)))

{

_state_id_settingAmount = 3; //moving to state ...

idInvariant_enb = true;

idInvariant_temp = t.getAmount();

...

}

Once the invariant is enabled and a value of the method is available, this
is compared each time the automaton is retrieved from the hash table of active
automata (before taking a transition). The following code shows the comparison
taking place between the current value of getID and the value stored in the
designated temporary variable:
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_cls_property tmp = _cls_property_instances.get(_inst);

if ( tmp.idInvariant_enb && !tmp.idInvariant_temp.equals(t.getID()))

{

_cls_property.pw.println(" Invariant Check: idInvariant Failed:

t.getID()!: " + new _BadStateException().toString());

}

6.7 Real-Time in Larva

In this section we will explain how Larva treats real-time in its current implemen-
tation, and discuss the challenges of runtime verification of real-time properties.

Larva provides a clock construct which can trigger events after at particular
time intervals. The clock can also be used to measure the time elapsed between
occurrences of events. This is done by resetting the clock at the occurrence of the
first event and then read the clock value when the second event occurs. Larva

clocks are implemented as a Java thread which uses the wait operation to allow
the required time to pass without keeping hold of the CPU. This approach is not
totally accurate because of the scheduling mechanism used among Java threads.
This does not guarantee the time at which the thread is given back control of
the CPU. A solution to this problem is the use of the Java real-time virtual
machine. However, this was not an option in our case because we cannot impose
the real-time virtual machine on the monitored system.

6.7.1 Firing Events

A clock has a number of known points in time at which it is expected to trigger
an event. This information can be extracted from the list of events concerning a
particular clock. For example consider the following set of events on clock clk :

clkAT1() = {clk @ 1}

clkAT3() = {clk @ 3}

clkAT7() = {clk @ 7}

In this case, the clock clk is expected to trigger three events: one after a
second, another after three seconds, and final event after seven seconds. Note
that these duration are measured since the last clock reset. Each time the clock
is reset, it starts measuring the time from zero and triggers the events accordingly.
For efficient implementation, each of these time values (1, 3, 7) is put in an ordered
list so that after each event the clock is immediately put in waiting mode for the
next event. A clock is initialised by storing the current system time in a variable
called starting. This is used as a reference point when the system time is later
used to calculate the elapsed time. A loop is used to go through the ordered
list of time values. At each iteration, the clocks waits for the necessary time
for the next event. Taking the previous example, the clock should first wait for
one second, then for two seconds (3-1) and finally for four seconds (7-3). Note
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that these operations are performed in a synchronized block to avoid data race
conditions. The following code shows the code in the loop responsible for putting
the clock to wait. Registered is the list of time values (in milliseconds) at which
the clock is expected to trigger.

long nextMilli = registered.get(i);

synchronized (o) {

long cur = System.currentTimeMillis();

long tmp = nextMilli - (cur - starting);

if (enabled && tmp > 0)

o.wait(tmp);

if (enabled && starting + tmp <= System.currentTimeMillis())

new ClockEvent(this,nextMilli);

}

6.7.2 Resetting the Clock

The clock is reset by performing two simple steps: first the starting time of the
clock is set to the current system time, and second, the loop which goes through
the events is restarted. The only difficulty in doing these steps is to avoid data
race conditions. For this purpose, when a reset is required, a boolean variable
is set and the method notify is called. If the clock is currently waiting, the
notification will cause the clock to exit the waiting mode and proceed with the
loop. Note that the clock does not trigger the event unless the expected time has
indeed elapsed. This is ensured by comparing the current time with the expected
time of the event: starting + tmp <= System.currentTimeMillis(). The method
reset is given below:

public void reset()

{

resetc = true;

synchronized (o) {

o.notify();

}

}

This above reset method causes the clock to exit the waiting state, but is not
sufficient for the reset process. Thus, the code below sets the loop counter i to
-1 (restarting the loop) and setting the clock starting time to the current system
time.

if (resetc)

{

i = -1;

starting = System.currentTimeMillis();

resetc = false;

}

98



Chapter 6. Larva Implementation Details

6.7.3 Pausing and Resuming

Pausing and resuming work in a similar way to resetting. The method pause
sets a boolean variable paused to true, while the method resume sets the same
variable to false. In this case, the notify method is also used to free the clock
from the wait method. When the loop of the clock finds the paused variable set
to true, it enters a loop waiting to be released (when the paused variable is set
to false). The time of entering this loop is very important because this has to
be used to update the elapsed time of the clock — no time passes for the clock
while it was paused. For this purpose the starting time of the clock is modified
to reflect the time the clock was paused. The code is as follows:

whenPaused = System.currentTimeMillis();

synchronized (o) {

while (enabled && paused)

o.wait();

}

starting += System.currentTimeMillis() - whenPaused;

6.7.4 Time Comparison

Sometimes, conditions on transitions compare the current timer value (the time
elapsed since the last reset) to some constant. In the current implementation,
this is simply done by obtaining the current system time, deducting the timer’s
starting time, and comparing the result to the constant. At a first glance this
works fine, but in the case where more than one transition is taken upon the same
event, the illusion should be given that all the comparisons on the transitions are
performed at the same instance. Theoretically, transitions should take no time to
execute. Also, if for example, a transition is triggered at time 50 by a timer event,
any comparison on that transition should be done as if the clock was temporarily
paused at 50. However, the current implementation does not cater for these
details due to lack of time. The necessary modifications would need to be done
in future work. Currently, the code is as follows:

public long current()

{

if (paused) return (whenPaused - starting);

else return (System.currentTimeMillis() - starting);

}

public int compareToMillis(long milli)

{

return new Long(current()).compareTo(milli);

}
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6.8 Channels

Channels in Larva are implemented as threads with a queue. The reason for
using a queue, is that no events can be lost. Recall that since Larva has timer
events, any arbitrary number of channel events can be triggered at any moment.
The channel waits until a notification is received, which signifies that an event
has been placed on the queue. A timeout on the wait is also used to avoid any
deadlocks in case the notification does not arrive. Upon receiving an event, this is
broadcast to all the automata. The code which receives and processes the channel
events is as follows:

while (queue.isEmpty() && enabled)

{

synchronized (queue) {

queue.wait(1000);

}

if (on)

new ChannelEvent(this,queue.remove(0));

}

The code on the sending side simply places the event on the queue and sends
a notification:

synchronized (queue) {

queue.add(s);

queue.notify();

}

6.9 Conclusion

An automated way of injecting code at particular points in a program executions,
allows us to capture events which can be used to trigger transitions on automata.
These automata are easily implemented as a class which can also keep a reference
to the object (or objects) which form the context of the automaton. The actual
logic of the automaton is implemented as a method with a series of if-then-else
statements carrying out the required actions where appropriate. In the case of
clocks, the events driving the automaton are not fired by the monitored system.
Instead, a separate clock thread is used to trigger events upon particular timeouts.
Similarly, channels are used so that automata can send events to each other. Upon
each event, particular checks can be carried out on the context of an automaton
to check that particular attributes of the monitored object remain unchanged.

This chapter has explained the low level details of Larva. The following
chapter will relate Larva to other logics, formulating translations from these
logics to Larva. Translations preserve the advantages of the translated logics
while the Larva architecture can still be used.
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7. Larva and Other Logics

7.1 Introduction

Duration calculus is sometimes more appropriate than DATEs to express certain
properties. For example, duration calculus makes it very easy to express prop-
erties which must hold on all subintervals of an interval. This may not be so
straightforward to do in DATEs. Thus, if a translation from duration calculus to
DATEs is available, certain properties can be written in duration calculus and at
the same time monitored by Larva. However, the full duration calculus cannot,
in general, be monitored. This leads us to translate a subset of duration calculus
called counterexample traces and prove the correctness of the translation. Sim-
ilarly, the Lustre language is also translated into DATEs to gain guarantees on
the memory and temporal overheads induced by the monitors. Another subset of
duration calculus — QDDC — is both useful to express particular properties and
translatable into Lustre. Thus, QDDC also inherits the advantage of guaranteed
overheads upperbound.

In this chapter, we will show the relationship of DATEs to two subsets of
duration calculus: counterexample traces and QDDC. The translation of the
former into DATEs is explained in Section 7.2, while Section 7.3 explains how
the deterministic fragment QDDC can be monitored by Larva by going through
Lustre. The contract language is shown to be monitorable by Larva in Section
7.4 while Section 7.5 concludes the chapter.

7.2 Larva, Duration Calculus and Phase Event

Automata

In the chapter about real-time logics (Chapter 3), we have already given an
explanation of the translation of a subset of duration calculus into phase event
automata (originally given by Hoenicke [58]). In the next sections, we will give a
short summary of the translation from duration calculus to phase event automata
followed by the complete translation from phase event automata to DATEs.
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7.2.1 Translating Duration Calculus to Phase Event Au-
tomata

The translation of a counterexample formula starts by representing the formula
into mathematical structures. The negation at the start of the counterexample
formula is ignored. The generated phase event automaton will, in fact, accept
the prohibited formula. The equivalent mathematical structure of a formula is a
trace while the equivalent of a phase is a phase. Thus, a trace is a sequence of
phase structures, where each phase corresponds to a phase in the formula. The
phase structure also includes the entry events of the corresponding phase in the
formula. These include any events which should occur before a phase can be
entered.

Each phase is numbered according to its position in the sequence. A phase is
a lowerbound (phase ∈ LB) if and only if it has a lowerbound time constraint of
the form ℓ > t or ℓ ≥ t . Similarly, a phase is an upperbound (phase ∈ UB) if
and only if it has an upperbound time constraint of the form ℓ < t or ℓ ≤ t .

During the execution of an automaton, a phase can belong to a number of
the following sets: in, wait , gteq , and less . A phase is in in (phase ∈ in) if it is
currently active, i.e. the phases up to this phase have been detected. A phase is
in wait (phase ∈ wait) if it is an element of LB and it is active, and the duration
of the phase is less than its lowerbound. A phase is in gteq (phase ∈ gteq) if
the bound is of the form ℓ ≥ t and the phase is in wait . A phase is in less
(phase ∈ less) if the bound is of the form ℓ < t and the phase is active, and the
duration is less than the bound.

A location in the generated phase event automaton is labelled by the phases
which are an element of in, wait , gteq , and less accordingly. If a location contains
the last phase of the trace in its in and this phase is not in wait , then the last
phase has been detected. This means that a counterexample has been detected,
i.e. the original counterexample formula has been violated.

For example, consider the formula ¬ (⌈A⌉ ∧ ℓ > 1 ⌢ ⌈B⌉). The equivalent
phase event automaton is shown in Figure 7.1.

7.2.2 Translating Phase Event Automata into DATEs

Assumptions

There are a number of assumptions without which the translation to DATEs will
not hold:

1. It is assumed that the last phase is a true-phase. Without this assumption
the bad states translation would not work. The reason is that for a non-
true-phase a number of conditions must be checked to ensured the phase
is completed. For a true-phase it is enough that the phase number is an
element of the label of the location.

103



Chapter 7. Larva and Other Logics

A and c < 11

{1 }
A

c <1

<

1

A and not B

{}
true

A and not B

{1}
A and not B

A and B

{1,2}
A and B

B

{2}
B

A and c >= 1 and B1

A
and c >= 1

and not B
1

A

not Anot A

not A
and B

not A and B

not B

not A
and not B

not A
and not B

A and B

Figure 7.1: The phase event automaton equivalent to the formula ⌈A⌉ ∧ ℓ >
1 ⌢ ⌈B⌉.

2. We also assume totality of the automaton so that there exists a transition for
any possible state variable configuration. In other words, for each location of
the automaton, the disjunction of the conditions on the outgoing transitions
should be equivalent to true.

Translation

In this section, we will give the translation of a phase event automaton into
a DATE. First, we will list a number of functions required for the translation.
Then, we give the construction of a DATE from a phase event automaton. Finally,
we give the translation of a phase event automaton configuration into a DATE
configuration.

Preliminary Functions First we define the following two functions which will
be used in the translation. These functions take elements from the phase event
automaton and return elements for the DATE. To make this clear we will denote
the elements from the phase event automaton with P and elements from the
DATE with D. Furthermore, we refer to the nodes of the phase event automaton
as locations and those of the DATE as states.

Φ generates exactly one DATE event for each variable and event in NAMEP .
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The DATE event will trigger upon the rising edges of the variable NAMEP or
upon the occurrence of an event NAMEP . For the translation, we will require
the union of all the generated events. Thus, for convenience, this collection will
be referred to as AllEventsD.

Γ generates exactly one DATE event for each clock constraint in the phase
event automaton. The event will be based on the constant to which the clock
is compared. For example, for a constraint: c1 ≤ 10, an event will be raised by
clock c1 ten time units after its last reset. This will be useful to detect the time
at which the constraint c1 ≤ 10 will no longer be satisfied.

Another function required for the translation is the function RR which given
a clock invariant CI , and a set X of clocks, returns the strict1 clock invariant CI ′.
Furthermore, the clock constraints which apply to any of the clocks in the set
X are modified as follows: the current value of the clock is added to the bound.
The purpose is that the modified constraint will behave as if the clock has been
reset. This is very useful because, in the case of DATE, the condition has to be
checked before the clocks are reset while in a phase event automaton, it is the
other way round.

Finally, we require two other functions. DATEs do not allow events in the
conditions on the transitions while phase event automata do. Thus, we need these
functions to bridge the difference. This is achieved in two steps. In the first step,
for each event, we create a boolean variable which is true if the event has occurred
and false if it has not. In other words, it is true if the active configuration contains
the particular event and false if it does not. In the second step, we modify the
transitions’ conditions by replacing each event with its corresponding boolean
variable. The first function will be referred to as BV while the second will called
RE . BV will take a set of events and returns a set of variables while RE while
take a condition with events and returns a condition without events.

Constructing a DATE The translation (Ψ) from a phase event automaton
P = 〈P , V , A, C , E , s , I , E0〉 to a DATE D = 〈Q , q0, → , B , A〉 is defined as
follows:

1Note that the strict is a function which replaces constraints of the type ≤ and ≥ into <

and > respectively, while keeping the rest of the constraints unchanged.
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Q = P ∪ {s0}

q0 = s0

→ = for each (p, g ,X , p ′) ∈ EP , we construct :

(p,AllEvents ∪ Γ(I (p)),

(s(p ′) ∧ RR(I (p ′),X ) ∧ RE (g)), (X , ǫ, ǫ), ǫ, ǫ, p ′).

The following transitions handle initialization locations :

for each (g , p) ∈ E0 we construct : (s0, init2, g , ǫ, ǫ, ǫ, p).

B = {p ∈ P | #(tr) ∈ p.in}

Given a phase event automaton P , we create an equivalent state for each
location in set P . We create a new state s0 which will be the starting state of the
DATE. For each edge of the phase event automaton, we create a corresponding
transition by obtaining the relevant events using the functions Φ and Γ, the
condition as the conjunction of the guard and the invariant of the destination
location, and the resets remain unchanged. The last group of transitions are
created to correspond with the initial locations of the phase event automaton.
The set of bad states includes all the location of the phase event automaton
which have detected the whole trace. Recall that we are monitoring the violation
(not the satisfaction) of the formula. The construction of transitions is depicted
in Figure 7.2.

invariant
guard resets

clock invariant

event condition

action

LARVA Automaton

Phase Event Automaton

label

label

invariant
clock invariant

Figure 7.2: Generating DATE transitions from a phase event automaton.

The above translation is labelled Ψ such that applying the translation on a
phase event automaton P yields a DATE D: D = Ψ(P).

Translating Configurations A configuration of a phase event automaton is
a quintuple (p,Y , β, γ, t) where p is the location, Y is a set of events, β is a

2This refers to the init event which triggers automatically at the start of the monitoring
system (see Subsection 4.3.1)
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valuation of variables, γ is a valuation of clocks and t is the duration spent in
location p.

A configuration of a DATE is (X , θ, q) where X is a set of events, θ is the
system state, and q is the automaton state. Such a configuration moves to the
next configuration according to a timer configuration T and timer update t ′. This
is written as follows: (X , θ, q) ⇒T

t ′ (X ′, θ′, q ′). Note that T and t ′ are written
on the arrow but for the purpose of proofs these will be written in the brackets.
Thus, the first configuration would become: (X , θ, q ,T , t ′).

Overloading the translation Ψ to be applicable to configurations, a DATE
configuration cpD is obtained by applying Ψ on a phase event automaton config-
uration cpP : cpD = Ψ(cpP).

For any phase event automaton configuration (p,Y , β, γ, t), the corresponding
DATE configuration is: (Y ∪@Φ∪@Γ, β, p, γ, +t), where the symbol @ represents
all the events occurring during the duration of that configuration for all the
events being monitored, i.e. all the events generated by the functions Φ and Γ
respectively. The timer increment t is converted to the function +t because the
timer updates of DATEs are functions.

The initial configuration of a DATE is written as icpD = (∅, θ, q0, γ, 0). In a
translation, q0 = s0 and θ = β where β is the initial configuration of the phase
event automaton.

Example

We use the example given earlier where the phase event automaton which mon-
itors the formula ⌈A⌉ ∧ ℓ > 1 ⌢ ⌈B⌉ was generated. This was then translated
into a DATE. This result is shown in Figure 7.3.

7.2.3 Proof of Correctness of Translation

The proof of showing that the translation from a phase event automaton to a
DATE is correct is divided into five steps:

1. First, we will show that a one-step run for a phase event automaton, has
a corresponding one-step run in the corresponding DATE. Note that this
one-step run does not start from an initial state and assumes that the step
is a non-stuttering step.

2. Once we have proved the translation for one step, we prove the translation
for any number of steps given that the run does not start from an initial
state and does not include stuttering steps.

3. The next step in the proof is to show that a non-stuttering run starting
from an initial state, has a corresponding run in the corresponding DATE,
also starting from an initial state.
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Figure 7.3: The DATE equivalent which monitors the property ⌈A⌉ ∧ ℓ >
1 ⌢ ⌈B⌉.

4. Up to this point, we have shown that for every non-stuttering run in a
phase event automaton there is a corresponding run in the DATE generated
by the translation. Thus, we also need to show that there are no other
configurations which can be reached by the DATE, except the one obtained
by the translation Ψ.

5. The final step is to lift the condition of considering only non-stuttering runs
and prove the translation for all the runs of the automata.

The following steps correspond to the above five steps:

1. As the first step of the proof, we will show that each one-step run in a phase
event automaton has a corresponding one-step run in the DATE. This is
shown in the following proposition:

Proposition 7.2.1. If a non-stuttering transition can be taken in a phase
event automaton P from a non-initial configuration cp to another config-
uration cp ′, then there exists a corresponding one-step run in the DATE
Ψ(P) which starts from the corresponding configuration Ψ(cp) and ends
with configuration Ψ(cp ′) (Note that in a non-stuttering run, the state of
the automaton changes from a configuration to the next.):
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P/cp
trans
=⇒ P/cp ′ ⇒ Ψ(P/cp)

Ψ(trans)
=⇒ Ψ(P/cp ′)

Proof. Let us assume that there exists a single-step run in a phase event
automaton P which starts from configuration cp and ends at configuration
cp ′:

P/cp
trans
=⇒ P/cp ′

By definition of a configuration:
cp = (p,Y , β, γ, t), and cp ′ = (p ′,Y ′, β′, γ′, t ′)

By translation Ψ of a configuration:
Ψ(cp) = (Y ∪ @Φ ∪ @Γ, β, p, γ, +t)

and
Ψ(cp ′) = (Y ′ ∪ @Φ ∪ @Γ, β′, p ′, γ′, +t ′)

By definition of a transition (assuming that cp is a non-initial configura-
tion):

trans = (p, g ,X , p ′)

By translation of a transition Ψ(trans):
Ψ(trans) = (p, Φ(s(p)) ∪ Γ(I (p)) ∪ Φ(s(p ′)) ∪ Γ(I (p ′)),

(s(p ′) ∧ RR(I (p ′),X ) ∧ g), (X , ǫ, ǫ), ǫ, ǫ, p ′)

For a DATE transition to be taken, the source location p must be the same
location of the configuration. Thus, this condition is satisfied.

The second condition is that the event of the transition is triggered. By
the assumption that the run is non-stuttering, one of the following is true
for two subsequent configurations: (i) a global variable changed; (ii) an
event occurred; or (iii) the invariant of the location is no longer satisfied.
Considering the first two possibilities, we have included variables’ changes
and events in AllEvents. Thus, a variable change or an event, will cause one
of the events in the collection AllEvents to trigger. For the third possibility,
the invariant of the location is no longer satisfied either because of a variable
change or because the clock has exceeded its bound. Variable changes have
already been catered for. For the second case, the clock exceeds its bound
when it reaches the bound. At this moment, an event generated by the
function Γ(I (p)) triggers. Thus, we have considered all the possibilities
and it is clear that an event will trigger:

Y ∪ @Φ ∪ @Γ � Y ∪ AllEvents ∪ Γ(I (p))

The third condition for a DATE transition to trigger is that the condition
holds. For this part of the proof, we will use the three conditions which
hold for each step in a phase event automaton run:

(β′, γ + t ,Y ′) � g , β′ � s(p ′) and (γ + t) � strict(I (p ′))

By the translation Ψ(trans) we get the following condition on the DATE
transition:
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s(p ′) ∧ RR(I (p ′),X ) ∧ RE (g)

Taking the condition in parts: s(p ′) holds because β′ is kept in the DATE
configuration by the translation Ψ. RR(I (p ′),X ) holds because (γ + t) �

strict(I (p ′)), and by definition, RR(I (p ′),X ) is less restrictive than strict(I (p ′)),
thus (γ + t) � RR(I (p ′),X ). The function RR has the purpose of adjusting
the constraints on clocks which will be reset on the transition action. This
adjustment is required because, in DATEs, the clock constraint is applied
before the clock is reset, while in the phase event automaton, the invariant
is applied after the clock is reset. Finally, RE (g) will be satisfied because
β′, γ + t ,Y ′ satisfy g , β′ and γ + t were kept in the DATE configuration,
and for each event in Y ′ we have created a corresponding variable (using
BV ) which is used by the function RE to produce RE (g).

Thus, we conclude that the translated transition is taken and the corre-
sponding clocks in set X are reset. Consequently, for each single-step run
in the phase event automaton, there is a corresponding run in the generated
DATE.

2. In this step, we will use the previous proof of one-step runs to prove that a
non-stuttering run, with any number of steps in a phase event automaton,
has a corresponding run with the same number of steps in the DATE. The
assumption that both runs start from a non-initial configuration is still
required.

Theorem 7.2.1. Given a phase event automaton P : starting from a config-
uration cp, another configuration cp’ can be reached in a number of steps n:

cp
P

=⇒n cp ′. The generated DATE Ψ(P) can start from the corresponding
configuration Ψ(cp) and reach Ψ(cp ′) in a number of steps.

cp
P

=⇒n cp ′ ⇒ Ψ(cp)
Ψ(P)
=⇒n Ψ(cp ′)

Proof. Using induction on n:

Prove theorem for n = 0:

Note that in zero number of steps (
P

=⇒0) the configuration does not change.
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cp
P

=⇒0 cp ′

=⇒ By definition of
P

=⇒0

cp
P

=⇒0 cp

=⇒ By definition of
Ψ(P)
=⇒0

Ψ(cp)
Ψ(P)
=⇒0 Ψ(cp)

Inductive hypothesis: assume theorem holds for n = k .

Prove theorem for n = k + 1:

cp
P

=⇒k+1 cp ′

=⇒ By definition of
P

=⇒

cp
P

=⇒k cp ′′ and cp ′′
P

=⇒1 cp ′

=⇒ By inductive hypothesis

cp
Ψ(P)
=⇒k cp ′′

=⇒ There is a one-step run in Ψ(P) for each one-step run in P

(Proposition 7.2.1)

cp ′′
Ψ(P)
=⇒1 cp ′

=⇒ Combining together we get

cp
Ψ(P)
=⇒k cp ′′ and cp ′′

Ψ(P)
=⇒1 cp ′

=⇒ By definition of
Ψ(P)
=⇒

cp
Ψ(P)
=⇒k+1 cp ′

3. In this part of the proof, we will also include runs which start from an initial
state. Note that the run must still be a non-stuttering run. The idea of the
proof is to show that the first transition taken in a phase event automaton
has a corresponding behaviour in the DATE. Subsequently, we connect the
first step of a run to the rest of it and we will extend the result of the
previous theorem to apply to complete runs.

Theorem 7.2.2. Given a phase event automaton P , starting from an initial
configuration icp, another configuration cp can be reached in a number
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of steps n. The generated DATE Ψ(P) can start from the initial DATE
configuration Ψ(icp) and reach Ψ(cp) in a number of steps n+1.

(icp
P

=⇒n cp) ⇒ (Ψ(icp)
Ψ(P)
=⇒n+1 Ψ(cp))

=⇒ By definition of a phase event automaton

icp = (p, ∅, β, γ, t), s .t . β � g where (g , p) ∈ E0

=⇒ By definition of a DATE initial configuration

icpD = (∅, β, s0)

=⇒ By translation Ψ of initial transitions, init event, and β � g

icpD
Ψ(P)
=⇒1 Ψ(icp)

=⇒ By Theorem 7.2.1

(icp
P

=⇒n cp) ⇒ (Ψ(icp)
Ψ(P)
=⇒n Ψ(cp))

=⇒ By catenation of
Ψ(P)
=⇒

icpD
Ψ(P)
=⇒1 Ψ(icp)

Ψ(P)
=⇒n Ψ(cp)

=⇒ By definition of
Ψ(P)
=⇒

icpD
Ψ(P)
=⇒n+1 Ψ(cp)

4. In the previous steps, we have shown that for every non-stuttering run in
a phase event automaton, there is a corresponding run in the translation-
generated DATE. To prove the translation correct, we also need to show that
there is no other configuration which the DATE can reach except the one
generated by the translation. More formally, we have shown completeness
but not soundness.

Proposition 7.2.2. The DATE generated by the translation Ψ has only
one run for each corresponding non-stuttering run in the phase event au-
tomaton.

Proof. This is easy to show because DATEs are deterministic by their def-
inition (see Section 4.3). Thus, there is no possibility of reaching any con-
figuration other than that obtained by the translation (proved in Theorem
7.2.2).

5. The final step is to lift the condition that only non-stuttering runs can be
translated.
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Proposition 7.2.3. Every run in the phase event automaton has a single
corresponding run in the generated DATE.

Proof. The solution is to use the fact that phase event automata are stutter-
ing invariant (see Hoenicke’s [58] Lemma 4.10 on pg. 78). This means that
for every stuttering run, we can construct a non-stuttering run by removing
the stuttering configurations. All non-stuttering runs have been shown in
Proposition 7.2.2 to have a single corresponding run in the corresponding
DATE. Thus, this final step concludes our proof of the correctness of the
translation.

7.2.4 Future Work

In this section, we will give an account of possible developments in the work
presented above.

Context

With very little modification, the dynamic aspect of DATEs can also be exploited
by translated counterexample traces. In other words, the counterexample trace
will be applied on each individual object rather than on a global context. This
can be achieved by introducing constructs similar to the FOREACH construct in
Larva. Otherwise, the modification can be done manually on the Larva script
output of the translation from a counterexample trace.

Bounded Memory

In the future, the memory upperbound for phase event automata monitoring
counterexample traces can be investigated. Our intuition is that the required
memory for a phase event automaton does not increase during the monitoring.
Thus, the upperbound can be known at compile time. The reason is that the
phase event automaton uses a fixed number of clocks, a fixed number of state
variables, and a fixed number of states.

Proposed Extension — Experiments with Counters

We have done a number of experiments to add counters to phase event automata.
The idea is to introduce counters as a kind of clocks which count occurrences of
events rather than the real time. Therefore, each phase is allowed to have a re-
striction on one of these counters. Two problems arise here: the first is that this
inherently creates a number of additional states which the current algorithm can-
not handle (i.e. one timer can be satisfied, the other may not — there are 4 pos-
sibilities); the second is that there are cases where the number of timers required
would be infinite. Consider the formula: true ⌢ len < 10 and cnt(badlogin) > 3
— there are an unbounded number of intervals whose length is less than 10 for
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which the counter can exceed 3. Although we have tried some experiments with
counters at this stage, it is too early to give any results. This may be an inter-
esting addition to phase event automata for the future.

7.3 DATEs, QDDC and Lustre

7.3.1 Synchronous Programming

When employing runtime verification, we usually do so for systems where errors
are highly undesirable. The simple applications which we use daily are not usually
verified but software controlling railways or other expensive machinery are. Most
systems which we would like to verify fall under the class of reactive systems. Such
systems react to inputs from their environment by changing some outputs at real-
time. A class of languages which have been specifically designed for programming
reactive systems are known as synchronous languages. The synchronous nature of
these languages lies in the fact that the reaction time of the system is considered
to be negligible (i.e. the system reacts instantaneously to the inputs). One such
language is Lustre [46]. A very important advantage of Lustre is that the memory
and temporal requirements for the monitoring code can be measured at compile
time. This is very important in security-critical systems since it enables us to give
guarantees on the upper bound of the monitoring overhead. A small example of
Lustre code is shown below:

node BadAccess(w,r,i,o:bool)returns(bw,br:bool);

var l:bool;

let

l = if (o) then false

else if (i) then true

else false->pre(l);

bw = w and not(l);

br = r and not(l);

tel

What this piece of code does is that it monitors four events: write (w), read
(r), login (i) and logout (o). It keeps track of whether a user is logged in or
logged out in the local variable l. If a read or write event occurs while login (l)
is false, br (or bw respectively) is set to true.

Another interesting point of view is that Lustre can be considered as an ex-
ecutable temporal logic [47]. This has motivated the specification of both the
system and its properties to be in Lustre [47]. A similar concept which is intro-
duced is the concept of observers [48]. An observer is a program which checks
that the main program keeps to its specification. Hence, the verification problem
then simply involves: (i) the composition of the two programs, and (ii) ensuring
that the observer never reaches an undesired state. This concept has been ex-
tended some years later [79], adding the expressive power of regular expressions.
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More specifically, properties including the regular constructs sequence and itera-
tion are translated into an equivalent boolean dataflow network in the language
Lustre. Another recent development was the synthesizing of Lustre observers
from QDDC [45]. Recall that QDDC is a very expressive interval logic based on
the discrete model of time. Furthermore, a deterministic subset of QDDC was
used to show how this can be verified using deterministic observers. Imagine we
want to implement the

∑

q QDDC operator which counts the number of times q
was true during a particular interval. Using the simple Lustre code shown below,
we can count the number of times q was true since the start of a particular period
(indicated by p being true).

after_p = p or (false -> pre(after_p));

nb_q_since_p = if p then (if q then 1 else 0)

else if after_p then

(pre(nb_q_since_p))+(if q then 1 else 0)

else 0

7.3.2 Translating QDDC to Lustre

The conversion from QDDC into Lustre is already given by Gonnord et al. [45].
Here we will give a short description of the process. For each QDDC formula we
need to specify a node which returns true if the formula is satisfied and false if
otherwise. This is achieved by using a number of basic Lustre nodes. These are
then called by more complex nodes. The following list includes the basic nodes
required for the conversion:

Node name Description
after(p) Returns true at the occurrence of p and afterwards
strict after(p) Returns true after p but not at the occurrence of p
first(p, b) Returns true at the first occurrence of p after b occurs
always since(p, b) Returns true if b has not been true, or p has always been

true after b
age(p, b) Counts the number of instances p has been continuously

true after b
nb since(p, b) Counts the number of occurrences of p after b

Using these basic nodes we construct more complex ones. For example, con-
sider the QDDC formula begin(p) which is satisfied if the first state of the interval
satisfies p. The acceptor of begin(p) if at the beginning of the interval (when b
is true) p is also true. Thereafter, the acceptor should return true till the end of
the interval. For this purpose, we use the node after on the conjunction of p and
b. Thus, the acceptor for begin(p) will be after(b and p). However, note that
the input of begin can be a boolean expression. To cater for this possibility, the

115



Chapter 7. Larva and Other Logics

acceptor of begin(P) may require a number of inputs. These inputs will be rep-
resented by I. The resulting acceptor, denoted by Abegin(P)(b, I), will be defined
by after(b and AP(I)), where AP represent the acceptor of P .

The above example of creating the begin acceptor shows how acceptors are
used by other acceptors. Adopting this approach we can recursively define ac-
ceptors for all the propositions. The simplest acceptor is the one which accepts
an atomic proposition p — if p is true, then p is accepted; otherwise p is not
accepted. The complete list is defined as follows:

Proposition Acceptor
p p
¬ P not AP(I)
P1 ∧ P2 AP1

(I) and AP2
(I)

P1 ∨ P2 AP1
(I) or AP2

(I)

Next, we will consider acceptors for the fragment G (see definition of the deter-
ministic QDDC fragment Section 3.4):

G formula Acceptor
begin(P) after(b and AP(I))
⌈⌈P⌉ strict after(b) and pre(always since(AP(I), b)
η ≤ c nb since(true, b) ≤ c
ΣP ≤ c nb since(AP(I), b) ≤ c
age(P) ≤ c age(AP(I), b) ≤ c
G1 ∧ G2 AG1

(I) and AG2
(I)

G1 ∨ G2 AG1
(I) or AG2

(I)

Finally, we define the fragment F :

F formula Acceptor
end(P) after(b) and AP(I)
G then F AF (first(not AG(b, I), I))
F1 ∧ F2 AF1

(I) and AF2
(I)

¬ F not AF (I)

7.3.3 Translating Lustre into DATEs

A Lustre program is a symbolic automaton. Therefore, the translation to DATEs
is very straight forward. The whole translation is as follows:

• The Lustre program is flattened in one node.
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• An equivalent state main is created in the DATE with a single circular
transition whose action is the code in the Lustre flattened node.

• To handle the initialization of the Lustre variables, a starting state is created
in the DATE with a single outgoing transition to state main. The action
on this transition will include all the necessary initialisations.

• The only remaining part is to set up the events in the Larva script. First,
we need an event which represents the initialisation of the system so that
the initialisation transition is taken. Secondly, we need to relate the input
streams in the Lustre program to events in Larva. Upon any of these
events, input streams are set accordingly, and the transition of the main
state should be taken.

The end result of the translation process is shown in Figure 7.4 and illustrated
with an example in the next section.

all_events\\main();

initialize_event
\\initialize();

start main

Figure 7.4: The DATE equivalent to a Lustre program.

7.3.4 Example

Consider the mine pump example. The following property written in the QDDC
fragment states that 1000 time units after the water reaches the dangerous level,
the alarm should have started. When the alarm stops, the water should no longer
be over the dangerous level. It is written as:

age(D) < 1000 then

((⌈⌈Alarm⌉ ∨ (begin(Alarm) ∧ (len ≤ 0))) then

(⌈⌈¬ D⌉ ∨ (begin(¬ D) ∧ (len ≤ 0))))

When converted into Lustre we obtain the code below:

then_19(_b:bool;_rt_clock:int;D:bool;Alarm:bool)returns(_p:bool);

let

_p = then_16_34;

...

strict_after_88 = if (false->pre_1_89) then (true) else (false->pre_2_90);

pre_4_27 = temptime_26;
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...

pre_2_90 = strict_after_88;

tel

This in turn generated the Larva code shown below:

GLOBAL {

VARIABLES {

Clock _clock;

boolean pre_8_30;

...

boolean never_p_31;

}

EVENTS {

_b_event(boolean _b, boolean D, boolean Alarm) = {***.***()}

where { _b = true; D = false; Alarm = false;}

D_event(boolean _b, boolean D, boolean Alarm) = {***.***()}

where { _b = false; D = true; Alarm = false;}

Alarm_event(boolean _b, boolean D, boolean Alarm) = {***.***()}

where { _b = false; D = false; Alarm = true;}

initializationEvent() = {***.***()}

periodicEvent(boolean _b, boolean D, boolean Alarm)

= {_b_event | D_event | Alarm_event}

}

PROPERTY then_8 {

STATES {

NORMAL { lustre }

STARTING { initilization }

}

TRANSITIONS {

initialization -> lustre

[initializationEvent\ \

pre_4_27 = 0;

...

pre_0_55 = false;]

lustre -> lustre

[periodicEvent\ \

_rt_clock = _clock.current_long();

p_0_51 = D;

never_p_31 = (_b)?(true):((pre_8_30)?(false):(pre_9_29));

...

pre_0_55 = after_54;]

}

}

}
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7.3.5 Modifying the Framework to Handle Real-Time

To modify the framework to handle real-time, no extensions are required to Lus-
tre. The only requirement is a stream of timestamps. At each occurrence of an
event, we have a timestamp available which gives the current time as an integer
in a given time unit (e.g. milliseconds). We will call this stream rt clock and it
will be available to all the nodes as if it was another parameter.

To incorporate this with the work done by Gonnord et al. [45], we give the
definitions of the real-time integral and the real-time age. The real-time integral
given in the code below returns the total number of time units for which the
boolean expression P was true.

node integral (rt_clock:int; P: bool; b: bool) returns (realtime: int);

let

realtime = if (strict_after(b) and false -> pre P)

then (0 -> pre(realtime)) + rt_clock - (0 -> pre(rt_clock))

else (0 -> pre(realtime));

tel

The Definition of age

The definition of the real-time age is quite tricky. The problem is to decide
when the timer of age is started. If we reset it to zero at the first occurrence,
then the behaviour would be different from the non real-time age. Consider for
example age(P) > 0. This would evaluate to true in the first occurrence of P
using the non real-time version of age. However, using the real-time version,
age(P) > 0 evaluates to false at the first occurrence of P . The alternative would
be to start the timer from the last time P was false, but this does not seem very
reasonable. Thus, the timer is reset at the first occurrence with the restriction
that age(P) > 0 is not used to check whether P is true at the current point in
time. Therefore, we propose the node below:

node age (rt_clock:int; P: bool; b: bool) returns (realtime: int);

var

temptime: int;

let

temptime = if (not (after(b) and (p))) then rt_clock else (0->pre(temptime));

realtime = rt_clock - temptime;

tel

7.3.6 Extending the Fragment with Counters

Extending the framework with counters entails the creation of function count.
This function gives the number of times a proposition has been true since the
beginning of the interval. The equivalent node in Lustre is given in the code
below:
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node count(p,b:bool)returns(count_p_b:int);

let

count_p_b = if (after(b) and p)

then (0->pre(count(p,b)))+1

else if (after(b)) then (0->pre(count(p,b)))

else 0;

tel

This can be used to count the number of events by counting the number
of rising edges of a proposition. For this reason, we also introduce the rising
construct which returns true upon a rising edge of a particular proposition.

7.3.7 Defining More Complex Constructs

Writing the formula in the example is quite cumbersome. Therefore, we pro-
pose some syntactic sugaring to make the formula more readable. First, we will
start with some basic additions which will make it easier to later introduce more
complex constructs.

7.3.8 Building Blocks

First, we will introduce the point construct which is satisfied if and only if the
given proposition is true for the first point in the interval. This will be written
as [P ]0 and will be defined by (begin(P) ∧ (len ≤ 0)).

The second addition will be the disjunction of the point (⌈P⌉0) and the interval
(⌈⌈P⌉). This will be written as ⌈⌈P⌉+ and will be defined by ⌈P⌉0 ∨ ⌈⌈P⌉.

⌈⌈P⌉⌉ by definition is ⌈⌈P⌉ ⌢ ⌈P⌉0. The translation of ⌈⌈P⌉ ⌢ ⌈Q⌉0 into the
deterministic fragment is given as ⌈⌈P⌉ ∧ end(Q). However, we will not use this
conversion because this raises the formula to an F fragment (end is part of F not
G). This is not desirable. Therefore, we give the direct definition of ⌈⌈P⌉⌉ as
follows: strict after(b) and always since(b,P). This is identical to the definition
of ⌈⌈P⌉ except that we use always since rather than pre(always since). In this
way, we will also include the last point when P is true.

We define ⌈⌈P⌉⌉+ using its standard definition of ⌈⌈P⌉⌉ ∨ ⌈P⌉0.

Proposed Operators

Leads To The leadsto operator can be used to define properties where a propo-
sition Q should be true whenever P has been true for more than delta time
units. This is written as P leadsto(delta) Q and defined in Lustre by: age(P) <
delta or Q (as given by Gonnord et al.).

Persist The persist operator can be used to define properties where a proposi-
tion Q has to be true while P has been true for less than delta time units. This is
written as P persist(delta) Q and defined in Lustre by: age(P) ≤ 0 or age(P) >
delta or Q .
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Stable Stable is the property that when a given proposition becomes true,
it remains true for a given amount of time. This is defined as: not((false →
pre(P)) and not(P) and (false → pre(age(P) < delta))). This will return false
on any instance where P turns false after being true for less than delta. This
definition can be modified so that once the property is violated, the acceptor will
keep returning false throughout the interval. The necessary modification is the
addition of or pre(stable output) to the previously given statement.

The strong version for stable will not return true if P is true and the age is
not greater than delta. This can be monitored by the acceptor: repeat(age(P) <
delta then ⌈⌈P⌉⌉+ then ⌈⌈¬ P⌉⌉+).

Always In Lustre there is no way we can run more than one copy of the same
acceptor. To check that a property always holds, we would have to start a copy
of the acceptor on each state. Thus, always cannot be applied on formulae but
only on propositions, giving it the equivalent meaning of ⌈P⌉ in duration calculus.
always(P) means that the property should be true throughout the whole interval.
This will be defined by always = (true → pre always) and P .

Eventually The case of eventually is very similar to always — it can only be
applied to propositions. The property states that the proposition should be at
least true for one instant throughout the whole interval. Note that this meaning
of eventually is equivalent to true ⌢ ⌈P⌉ ⌢ true in duration calculus. Thus,
eventually(P) is defined by eventually = (false → pre eventually) or P .

Bounded The bounded property accepts 3 parameters: a proposition P, a count
alpha and a duration delta. The meaning of such a property is that the proposition
cannot be true for more than alpha number of times within the given duration
of delta time units. In order to apply this for the number of events, we apply
the rising operator on the proposition. This can be useful for example to verify
that no more than 5 bad logins occur within any period of 10 minutes. This
can be written as: bounded(rising(badlogin), 5, 10 ∗ 60 ∗ 1000). The generated
node to monitor such a property requires alpha variables to be able to store the
timestamp at which each of the events occurred. In this way the node can ensure
that the number of allowed events occurred within the allowed time interval.

Iteration

Another issue is that some of the acceptors as defined by Gonnord et al. [45]
assume that the begin of an acceptor becomes true only once in the lifetime of
the acceptor. Iteration of any kind requires the same acceptor to be used over
and over again. Hence, this requires an important modification in a number of
nodes because these were designed with the assumption that they will only be
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used once. In the modified version, it is assumed that an interval can be restarted
by setting the starting parameter to true more than once.

For example consider the strict after node (which is used in various other
nodes):

node strict_after(p:bool)returns(strict_after_p:bool);

let

strict_after_p = if (false -> pre(p)) then true

else (false -> pre(strict_after(p)));

tel

node strict_after(p:bool)returns(strict_after_p:bool);

let

strict_after_p = if (p) then false

else if (false->pre(p)) then true

else (false -> pre(strict_after(p)));

tel

We also revise our nodes such that for example the count node becomes as
follows:

node count(b,p:bool)returns(count_p_b:int);

let

count_p_b = if (b and p) then 1

else if (b) then 0

else if (after(b) and p) then (0->pre(count(b,p)))+1

else if (after(b)) then (0->pre(count(b,p)))

else 0;

tel

This modification can be further extended such that each acceptor can have
another parameter to indicate the end of the interval. In this way the acceptor
can return back to the state it was before the first start occurred. However, this
was not implemented.

Repeat Sometimes it is desirable to repeat the satisfaction of a formula such
that as soon as it is satisfied, it is restarted for the following interval. To this
end we added the repeat construct. This is simply defined as repeated output =
repeated acceptor(b or (false → pre(repeated output)), params). By modifying
the begin parameter of the acceptor, we will restart the acceptor exactly at the
point after an interval was found to satisfy the formula.

7.3.9 Future Work

Further Extensions

The suggested extensions to the QDDC fragment suggested above are far from ex-
haustive. Other useful extensions may also be required to the Lustre synchronous
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language. For example, a notable limitation in the current framework is the in-
ability to trigger timer events. This may be very useful in monitoring real-time
properties. However, this requires extensive work and is beyond the scope of this
work.

Context

With very little modification, the proposed architecture can be extended to rep-
resent properties which are verified for individual objects. The same modifi-
cation suggested for counterexample traces can also be suggested in this case:
introducing constructs similar to the FOREACH construct in Larva or manual
modification of the Larva script output by the translation.

7.4 Larva and Contract Language

7.4.1 Contract Language

With the advancement of service-oriented architecture (SOA), a lot of services
are automatically given to customers against a payment. In SOA, this basic idea
is extended such that a service can use other services while serving a customer.
The interoperability and compositionality issues among services is already a big
problem. But security, reliability and trust issues are also very complex. In com-
merce, there is always a contract between the customer and the service provider,
even though it may be implicit. For example, the customer expects to pay the
amount written on the price tag of the object being bought; or, if an object just
bought does not function, then the customer expects some kind of compensation.
It is not easy to represent a contract in logic. However, this would be very ben-
eficial since contracts may be automatically compared against each other and a
behaviour may be automatically verified against the agreed contract.

Contract Language (CL) [77] is one of the proposed notations to represent
electronic contracts. The advantage is that this language has a logic as a basis
— a variant of µ-calculus — thus enabling automatic processing of contracts.

Brief Overview

The basic building blocks of the CL are obligations, permissions and prohibitions.
Obligations are actions which must be performed, permissions are actions which
may be performed while prohibitions are action which cannot be performed. One
should note that permissions and prohibitions are mutually exclusive because
they are the negation of each other. Furthermore, it is assumed that what is
obligatory is also permitted. An obligation to perform action α is written as
O(α). Similarly, P(α) signifies a permission while F (α) signifies a prohibition to
perform action α.
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Contrary-to-duty obligations (CTDs) and contrary-to-prohibitions (CTPs) are
the reparation actions which must be carried out if an obligation is not fulfilled
or a prohibition is violated, respectively. An obligation to perform ϕ in case of
the violation of F (α) is written as Fϕ(α).

7.4.2 Monitoring CL with Larva

Monitoring of contracts is useful because the violation of a contract can thus be
detected as soon as it occurs. In this way, the obligations in case of a violation
can be enforced.

In yet unpublished work, done by Stephen Fenech [36], CL has been converted
into automata. Thus, it is quite easy for these automata to be converted into
DATEs. Once the automata are available, the next step would be to select the
system events which trigger the automaton. One should note that DATEs do
not support concurrent actions which CL supports. This is not really a problem
because, in a single-threaded system, concurrent method calls are not possible.
To show the practicality of monitoring a contract with Larva we provide the
example in the following section.

7.4.3 Example

Consider the scenario where we want to ensure that a user logs into a system
before being able to request data. Eventually, the user is also allowed to log out.
This would be written in CL as:

[login
∗
]F (request) ∧ [∗][logout][login

∗
]F (request) ∧ F (request)

The automaton generated would be as seen in Figure 7.5.

S1

Init

S2

Vout

req

req

in

out

req

in

out

in

Figure 7.5: Automaton generated from the CL clause [login
∗
]F (request) ∧

[∗][logout][login
∗
]F (request) ∧ F (request).

From this automaton we automatically generate the following Larva code:
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PROPERTY clcontract

{

STATES

{

BAD { V }

NORMAL { S1 S2 }

STARTING { Init }

}

TRANSITIONS

{

Init -> S1 [login]

Init -> V [request]

Init -> S2 [logout]

S1 -> S1 [login]

S1 -> S1 [request]

S1 -> S2 [logout]

S2 -> S2 [logout]

S2 -> V [request]

S2 -> S1 [login]

}

}

The final step is to relate the contract actions to method calls. This will need
to be done manually since knowledge of the system is required. Let us assume
that in order to login into the system a method named login is called; in order
to logout of the system, a method named logout is called; whereas the method
requestItem is called in order to request information. We specify the events using
the code:

EVENTS

{

login = {*.login()}

logout= {*.logout()}

request= {*.requestItem()}

}

Using aspect-oriented programming, the monitoring framework will be noti-
fied when the methods login, logout or requestItem are called on any object. This
would trigger the automaton which, in turn, would monitor the contract which
we specified.

7.5 Conclusion

DATEs are not always the most appropriate logic to express certain properties.
Thus, in this chapter, we have considered other logics which can be translated
into DATEs. A highly expressive logic is duration calculus which is very useful to
express real-time properties. The full duration calculus cannot be translated into
DATEs but a subset called counterexample traces can. For this reason, we gave
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the translation of counterexample traces into DATEs and proved it correct. Using
this translation, one can still use Larva as the underlying framework and, at the
same time, express properties in counterexample traces. Another useful subset
of duration calculus is QDDC. This has also been shown to be translatable into
Larva by going through Lustre. The consequence is that both QDDC and Lustre
can be used to write properties which can be monitored in Larva. A notable
advantage of Lustre is that its nodes keep modularity which allows quite complex
properties to be written clearly. Furthermore, Lustre has the advantage that
upperbounds for memory and temporal overheads can be calculated at compile
time.

For users which are used to duration calculus, QDDC may be a good option,
especially by using the syntactic sugaring suggested in this chapter.

Finally, we have shown CL — a language to describe electronic contracts —
to be translatable into Larva automata. Using this translation, Larva can also
be used to monitor contracts.
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8. Slowdown and Speedup Truth
Preservation

8.1 Introduction

Runtime verification of real-time properties introduces new challenges since the
system is usually slowed down by the parallel execution of the monitor, affecting
the verification result. The ideal solution for this problem is to use monitors which
are so lightweight, that the overhead they introduce is negligible. This is, however,
virtually impossible. Thus, the possibility of monitoring real-time properties
without affecting their satisfaction or violation seems to be very remote. However,
we claim to have found a compromise by which we can identify a class of properties
which are not affected by the overhead of monitoring. More specifically, if a
property holds for a particular execution of a system, it will also hold in a slowed
down version of the same execution — the property preserves truth. For this
purpose, we analyse duration calculus to identify such a subset of slowdown truth
preserving properties. Conversely, there is also a subset of speedup truth preserving
properties. For example, the property “no more than 3 bad logins are allowed
in 5 minutes” is a slowdown truth preserving property, i.e. if the system is
slowed down, the number of bad logins may only decrease (not increase). Thus,
if the property is satisfied, it will still be satisfied when overheads are introduced
through monitoring.

In the following section, we will give a whole theory of slowdown (and speedup,
respectively) truth preservation. Section 8.3 explains the applications where this
theory may be useful. The last section concludes the chapter.

8.2 Duration Calculus and Slowdown Truth Preser-

vation

In this section, we define the notion of slowdown and speedup truth preservation.
We show that many interesting properties (in duration calculus) are slowdown
truth preserving (SDTP) or speedup truth preserving (SUTP). For example, con-
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sider the formula: ¬ 3(⌈Danger⌉ ∧ ℓ > δ ⌢ ⌈¬ Alarm⌉). This means that it is
never the case that, after the Danger signal has been on for more than δ time
units, the Alarm signal is off. This property is speedup truth preserving, i.e.
if the property holds on a slow system, the Alarm can only turn on earlier in
the speeded-up system. Thus, the property will still hold. We also show that the
negation of a slowdown truth preserving property is speedup truth preserving and
vice-versa. Identifying slowdown truth preserving properties for duration calculus
is very useful since, as we will see in next section, we know how to translate a
fragment of duration calculus into phase event automata and then into Larva.

8.2.1 Slowdown and Speedup Truth Preservation

Slowing down a system means that events happen at a slower rate. The behaviour
of the slower system will be identical to the original one, except that time will be
continuously transformed in a monotonic fashion. In a similar way, speeding up a
system means that the behaviour remains the same but happens in a shorter time
frame. In this subsection we will give a mathematical framework for slowdown
and speedup properties. Once this ground work is ready, in the next subsection
we will prove a number of formulas to be slowdown or speedup truth preserving.

We will start our definitions by giving the notion of a time transformation
function which transforms the time at which events occur. Time transforms pos-
sess a number of useful properties which allow us to prove interesting properties
later on.

Definition 8.2.1. A continuous total continuous function s ∈ T → T is said to
be a time transformation (s ∈ TT ) if (i) s(0) = 0; (ii) limt→∞ s(t) = ∞; (iii) s is
monotonic (t1 < t2 ⇒ s(t1) < s(t2)).

The simplest time transform is the identity function which, given time t ,
returns t as output: s(t) = t .

Given a time transformation s , and an interpretation I , we define the trans-
formed interpretation of I with respect to s , written Is , as follows:

∀P , t · Is(P)(s(t)) = I (P)(t)

A useful property of the identity function is that when applied to an inter-
pretation, the latter remains unchanged. This property will by useful in other
proofs.

Proposition 8.2.1. If the identity function is applied to an interpretation I , the
resulting interpretation Iid is equal to I .

Proof. This follows easily by using the definition of the identity function s(t) = t :

∀P , t · Iid(P)(t) = I (P)(t)

Thus,
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Iid = I

In a number of proofs, we require functional composition of time transforms,
i.e. that more than one time transform is applied on an interpretation. This is
particularly useful when using the equivalence s◦s

−1 = id .

Proposition 8.2.2. Applying time transform f on an interpretation, followed
by the application of time transform g is equivalent to applying the functional
composition g◦f :

(If )g = Ig◦f

A näıve way of defining a time transform to be a time-stretch, is to insist
that s(t) ≥ t . However, this would only guarantee that all event timings of an
interpretation I occur earlier than those of the Is — this is not what we require,
since it does not guarantee that the intervals between events are always longer in
the slow interpretation than the fast counterpart1.

Definition 8.2.2. A time transformation s ∈ TT is said to be a time-stretch

(s ∈
←→

TT ) if it is monotonic on intervals: s(t2) − s(t1) ≥ t2 − t1 (for t1 < t2).

Similarly, it is said to be a time-compression (s ∈
→←

TT ) if it is anti-monotonic on
intervals: s(t2) − s(t1) ≤ t2 − t1 (for t1 < t2).

By the above definition of a time-stretch, we are also adhering to the näıve
definition s(t) ≥ t . The proof is as follows:

Proposition 8.2.3. The constraint s(t2) − s(t1) ≥ t2 − t1 (for t1 < t2) implies
that s(t) > t

Proof. Let t2 = t and t1 = 0.

s(t2) − s(t1) ≥ t2 − t1

=⇒ By substitution

s(t) − s(0) ≥ t − 0

=⇒ By definition of a time transform s(0) = 0

s(t) − 0 ≥ t − 0

=⇒ Basic calculus

s(t) ≥ t

1Consider the case when the first two changes of a boolean variable X occur at times 5 and
10 under an interpretation I , but at times 9 and 11 under Is . All other events occur at the
same time in the two interpretations. Although all events of I ′ occur no later than the events
in I , if one looks at the time between the first and second event, it is actually smaller in the
case of I . If causality of events is seen to start building up from the previous event, we need to
look at lengthening intervals between events, not at delays in the events on an absolute time
line — this requires interval-monotonicity.
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To show the relationship between time-stretch functions and time-compression
functions, we require the inverse of these functions and thus, first we need to show
that time transforms are bijective. To prove that a function is bijective, first we
require to prove that it is injective and secondly, that it is surjective.

Lemma 8.2.1. Time transforms are injective.

Proof. Assume that f (t1) = f (t2). The three possibilities are that either t1 < t2,
t1 > t2, or t1 = t2. However, by monotonicity of a time transform, t1 < t2 ⇒
f (t1) < f (t2). This contradicts f (t1) = f (t2) and thus, the possibility of t1 < t2 is
eliminated. Similarly, we can show that t1 ≯ t2. Hence, t1 = t2.

Lemma 8.2.2. Time transforms are surjective.

Proof. Given the limits f (0) = 0, limt→∞ s(t) = ∞, and continuity of function f ,
surjectivity follows as an application of the intermediate value theorem [50].

Corollary 8.2.1. Time transforms are bijective. This follows easily because
we have already shown that time transforms are injective (Lemma 8.2.1) and
surjective (Lemma 8.2.2).

Proposition 8.2.4. The inverse of every time-stretch transformation is a time-
compress transformation:

s ∈
←→

TT ⇒ s−1 ∈
→←

TT
The inverse of every time-compress transformation is a time-stretch transfor-

mation:

s ∈
→←

TT ⇒ s−1 ∈
←→

TT

Proof. To prove s ∈
←→

TT ⇒ s−1 ∈
→←

TT we will start by s ∈
←→

TT and arrive at s−1 ∈
→←

TT .
A time compression function is a time transform. Thus, by the definition of a time
transform (Definition 8.2.1) the following conditions must hold: (i) s−1(0) = 0;
(ii) limt→∞ s−1(t) = ∞; and (iii) s−1 is monotonic (t1 < t2 ⇒ s−1(t1) < s−1(t2)).
By definition of a time compression function (Definition 8.2.2), the condition (iv)
s−1(t2) − s−1(t1) ≤ t2 − t1 (for t1 < t2) must hold.

(i) By Definition 8.2.1, s(0) = 0 and thus, s−1(0) = 0.

(ii) By Definition 8.2.1, limt→∞ s(t) = ∞ and thus, limt→∞ s−1(t) = ∞.

(iii) We will prove monotonicity by contradiction. Initially, we will assume that
t1 < t2 ⇒ s−1(t1) ≥ s−1(t2)
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s−1(t1) ≥ s−1(t2)

=⇒ Applying the function s on both sides — s is monotonic

s(s−1(t1)) ≥ s(s−1(t2))

=⇒ Functional composition and id = s◦s
−1

id(t1) ≥ id(t2)

=⇒ The id function returns its input

t1 ≥ t2

=⇒ Contradiction (t1 < t2) — s−1 is monotonic

s−1(t1) < s−1(t2)

(iv) Let t1 = s(k1) and t2 = s(k2). Thus, since s is bijective (Corollary 8.2.1),
k1 = s−1(t1) and k2 = s−1(t2).

s ∈
←→

TT

=⇒ By definition of a time-stretch (Definition 8.2.2)

s(k2) − s(k1) ≥ k2 − k1 (for k1 < k2)

=⇒ By substitution

t2 − t1 ≥ s−1(t2) − s−1(t1)(for k1 < k2)

=⇒ By definition of a time-compression

s−1 ∈
→←

TT

The proof is similar for s ∈
→←

TT ⇒ s−1 ∈
←→

TT .

The integral operator in duration calculus is very useful and serves as a basis
for other operators. The following proposition will be used later on when we
prove truth preservation properties on the integral operator.

Proposition 8.2.5. Given a time-stretch s ,
∫ s(e)

s(b)
α(t)dt ≥

∫ e

b
α(s(t))dt . Simi-

larly, given a time-compression f ,
∫ f (e)

f (b)
α(t)dt ≤

∫ e

b
α(f (t))dt .

Proof. The informal argument of the proof is the following:
By the finite variability property of α, there are only a finite number of dis-

continuous points. Thus, we can choose a sequence b, t1, t2, . . . , tn , e such that
the function α is constant from α(s(b)) till α(s(t1)), from α(s(t1)) till α(s(t2))
and so on. The integrals can be divided into small parts as follows:
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∫ s(e)

s(b)

α(t)dt =

∫ s(t1)

s(b)

α(t)dt +

∫ s(t2)

s(t1)

α(t)dt + . . . +

∫ s(e)

s(tn )

α(t)dt

∫ e

b

α(s(t))dt =

∫ t1

b

α(s(t))dt +

∫ t2

t1

α(s(t))dt + . . . +

∫ e

tn

α(s(t))dt

A discontinuous function between any two points s(t1) and s(t2), either con-
tinuously evaluates to 1, or continuously evaluates to 0. Let us consider the first
case such that the value of α between the limits evaluates to 0:

∫ s(t2)

s(t1)

α(t)dt = 0

∫ t2

t1

α(s(t))dt = 0

It is clear that
∫ s(t2)

s(t1)
α(t)dt ≥

∫ t2

t1
α(s(t))dt . Now let us consider the second

case such that between the points s(t1) and s(t2), α evaluates to 1:

∫ s(t2)

s(t1)

α(t)dt = s(t2) − s(t1)

∫ t2

t1

α(s(t))dt = t2 − t1

By definition of a time-stretch s(t2)−s(t1) > t2−t1, it follows that
∫ s(t2)

s(t1)
α(t)dt ≥

∫ t2

t1
α(s(t))dt . This leads us to conclude that, since both possibilities (α evaluat-

ing to 1 and α evaluating to 0) imply that
∫ s(t2)

s(t1)
α(t)dt ≥

∫ t2

t1
α(s(t))dt , then this

holds for all parts of the integrals. Thus, by considering the addition of all the

parts of both integrals, we can conclude that
∫ s(e)

s(b)
α(t)dt ≥

∫ e

b
α(s(t))dt .

The proof is similar in the case of a time-compression.

The previous propositions and definitions provide the ground work for the
proofs that will follow. The next step is to provide formal definitions of the terms
which will be used in the rest of this chapter.

Although we have given an informal explanation of slowdown truth preserva-
tion, the following definitions give the exact definition which will be used in the
proofs. In the first definition we explain the meaning of truth preservation.

Definition 8.2.3. A duration formula D is said to be slowdown (speedup) truth
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preserving sdtp(D) (sutp(D)) if, for any interpretation I on which D holds for
all finite prefixes of time, D also holds for all finite prefixes of time under any
slowdown (speedup) of the interpretation Is (If ):

sdtp(D)
def

= ∀ s , I · I � D ⇒ Is � D

sutp(D)
def

= ∀ f , I · I � D ⇒ If � D

The counterpart of truth preserving is falsity preservation, i.e. that a formula
which does not hold, remains unsatisfied in the modified interpretation.

Definition 8.2.4. A duration formula D is said to be slowdown (speedup) false
preserving sdfp(D) (sufp(D)) if, for any interpretation I on which D is violated
on all finite prefixes of time, D is also violated on all finite prefixes of time under
any slowdown (speedup) of the interpretation Is (If ):

sdfp(D)
def

= ∀ s , I · I 2 D ⇒ Is 2 D

sufp(D)
def

= ∀ f , I · I 2 D ⇒ If 2 D

Combining the two previous definitions, a formula is slowdown or speedup
invariant if it preserves both the truth and the falsity. Such formulas can be very
useful when monitoring real-time properties.

Definition 8.2.5. A duration formula D is said to be slowdown (speedup) in-
variant sdi(D) (sui(D)) if sdtp(D) and sdfp(D) (sutp(D) and sufp(D)).

sdi(D)
def

= sdtp(D) and sdfp(D)

sui(D)
def

= sutp(D) and sufp(D)

So far, we have considered the satisfaction of formulas on all the prefixes of an
interpretation. This can be more generalised so that we consider the satisfaction
of a formula on all the subintervals of an interpretation. Formulae which preserve
truth under interval stretching will be called interval-stretch truth preserving,
and interval-compress truth preserving if they preserve truth under compression
of intervals. This is more powerful and it can be easily shown (see Theorem 8.2.1)
that prefixes are simply a particular subset of subintervals. Apart from proving
these properties on formulae for their own sake, they are also useful because the
properties proved on intervals, also apply for prefixes. The following definition
explains what it means for a formula to preserve truth on stretched intervals.

Definition 8.2.6. A duration formula D is said to be interval-stretch (interval-
compress) truth preserving isdtp(D) (isutp(D)) if, for all interpretations I on
which D is satisfied on all subintervals, D also holds for all subintervals under
any slowdown (speedup) of the interpretation Is (If )

isdtp(D)
def

= ∀ s , I , b, e · I �[b,e] D ⇒ Is �[s(b),s(e)] D

isutp(D)
def

= ∀ f , I , b, e · I �[b,e] D ⇒ If �[f (b),f (e)] D

After considering truth preservation, we similarly consider the preservation of
falsity.

133



Chapter 8. Slowdown and Speedup Truth Preservation

Definition 8.2.7. A duration formula D is said to be interval-stretch (interval-
compress) false preserving isdfp(D) (isufp(D)) if, for any interpretation I on
which D is violated on all subintervals, D is also violated on all subintervals
under any slowdown (speedup) of the interpretation Is (If ):

isdfp(D)
def

= ∀ s , I , b, e · I 2[b,e] D ⇒ Is 2[s(b),s(e)] D

isufp(D)
def

= ∀ f , I , b, e · I 2[b,e] D ⇒ If 2[f (b),f (e)] D

When we combine the above two definitions, we get a formula which is interval-
stretch (or interval-compress) invariant, i.e. we preserve both truth and falsity.

Definition 8.2.8. A duration formula D is said to be interval-stretch (interval-
compress) invariant isdi(D) (isui(D)) if isdtp(D) and isdfp(D) (isutp(D) and
isufp(D)).

isdi(D)
def

= isdtp(D) and isdfp(D)

isui(D)
def

= isutp(D) and isufp(D)

As explained before the definitions of interval-based properties, the result
of interval-based properties is more general than prefix-based properties. The
following theorem proves that an interval-stretch truth preserving formula is also
slowdown truth preserving.

Theorem 8.2.1. A duration formula D which is interval-stretch (interval-compress)
truth preserving isdtp(D) (isutp(D)), is also slowdown truth preserving sdtp(D)
(sutp(D)):

isdtp(D) ⇒ sdtp(D)

Proof. In order to prove sdtp(D) we have to prove the implication:
I � D ⇒ Is � D

I � D

=⇒ By definition of �

∀ t : T · I �[0,t ] D

=⇒ isdtp(D)

∀ t , s : T · Is �[s(0),s(t)] D

=⇒ s(0) = 0

∀ t , s : T · Is �[0,s(t)] D

=⇒ s is total

∀ t ′, s : T · Is �[0,t ′] D

=⇒ By definition of �

Is � D
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Using the above theorem, the operators and duration formulas shown to be
interval-stretching (respectively interval-compression) truth (respectively false)
preserving are also slowdown (respectively speedup) truth (respectively false)
preserving.

The following two propositions show the relationship between preservation
of truth and falsity. Informally, a formula which preserves truth on a stretched
interval, preserves falsity on a compressed interval. This conclusion will be used
later on to show the relationship between the negation and truth preservation.

Proposition 8.2.6. Every interval-stretch truth preserving formula isdtp(D), is
also interval-compress false preserving isufp(D) and vice-versa:

isdtp(D) ⇔ isufp(D)

Proof. First we will show that, assuming isdtp(D), isufp(D) is true. In other
words, using the definition of isufp(D) we have to show that:

I 2[b,e] D ⇒ If 2[f (b),f (e)] D

I 2[b,e] D

=⇒ Proposition 8.2.1

Iid 2[b,e] D

=⇒ f ◦f
−1 = id (f being a time compress function)

If ◦f −1 2[f ◦f −1(b),f ◦f −1(e)] D

=⇒ Function composition (Proposition 8.2.2)

(If )f −1 2[f −1(f (b)),f −1(f (e))] D

=⇒ isdtp(D), f −1 is slowdown (Proposition 8.2.4),

contrapositive (Is 2[s(b),s(e)] D ⇒ I 2[b,e] D)

If 2[f (b),f (e)] D

For the other direction, we will show that, assuming isufp(D), isdtp(D) is
true. In other words, using the definition of isdtp(D) we have to show that:

I �[b,e] D ⇒ Is �[s(b),s(e)] D
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I �[b,e] D

=⇒ Proposition 8.2.1

Iid �[b,e] D

=⇒ s◦s
−1 = id (s being a time stretch function)

Is◦s−1 �[s◦s−1(b),s◦s−1(e)] D

=⇒ Function composition (Proposition 8.2.2)

(Is−1)s �[s−1(s(b)),s−1(s(e))] D

=⇒ isufp(D), s−1 is speedup (Proposition 8.2.4),

contrapositive (If 2[f (b),f (e)] D ⇒ I �[b,e] D)

Is �[s(b),s(e)] D

The next proposition is very similar to the previous one. It states that a
formula which is interval-compress truth preserving is also interval-stretch false
preserving and vice-versa. We do not give the actual proof of this proposition
because it is very similar to that of the previous proposition.

Proposition 8.2.7. Every interval-compress truth preserving formula isutp(D),
is also interval-stretch false preserving isdfp(D) and vice-versa:

isutp(D) ⇔ isdfp(D)

Proof. Proof is similar to that for Proposition 8.2.6.

An immediate consequence of the two previous propositions is that a formula
which is both interval-compress truth preserving (isutp(D)) and interval-compress
false preserving (isufp(D)) — interval-compress invariant (isui(D)) — is also
interval-stretch invariant (isdi(D)) and vice-versa.

Corollary 8.2.2. A formula which is interval-compress invariant is also interval-
stretch invariant and vice-versa:

isui(D) ⇔ isdi(D)
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Proof.

isui(D)

⇐⇒ By definition of isui(D)

isutp(D) ∧ isufp(D)

⇐⇒ Proposition 8.2.6, 8.2.7

isdfp(D) ∧ isdtp(D)

⇐⇒ By definition of isdi(D)

isdi(D)

An interesting theorem which follows easily from the above regards the re-
lationship of truth preservation and negated formulae. In fact, the negation of
a formula which is interval-stretch truth preserving, is interval-stretch false pre-
serving. This similarly applies to interval compressions. Intuitively, the truth
preservation of a formula is equivalent to the falsity preservation of its negation.

Theorem 8.2.2. The negation of a formula which is interval-stretch truth pre-
serving, is interval-stretch false preserving:

isdtp(D) ⇔ isdfp(¬ D)

Proof. In order to show that isdfp(¬ D) (assuming isdtp(D)), we have to prove
the following implication:

I 2[b,e] ¬ D ⇒ Is 2[s(b),s(e)] ¬ D

I 2[b,e] ¬ D

=⇒ definition of ¬ D and 2

I �[b,e] D

=⇒ isdtp(D)

Is �[s(b),s(e)] D

=⇒ definition of ¬ D and �

Is 2[s(b),s(e)] ¬ D

To show that isdtp(D) (assuming isdfp(¬ D)), we have to prove the following
implication:

I �[b,e] D ⇒ Is �[s(b),s(e)] D
The proof is similar to the one above.
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Similarly, the negation of a formula which is interval-compress truth preserv-
ing, is interval-compress false preserving:

isutp(D) ⇔ isufp(¬ D)
The proof is similar to the one above.

Using the relationship between truth preservation and falsity preservation,
the previous theorem can be used to show further interesting results. This time,
we will prove that the negation of an interval-stretch truth preserving formula
is interval-compress truth preserving. Similarly, the negation of an interval-
compress truth preserving formula is interval-stretch truth preserving. This may
not be immediately clear. However, using the previous theorem, Proposition 8.2.6
and Proposition 8.2.7, the proof follows easily. This result is important because it
shows that the negation transforms an interval-stretch truth preserving formula
into an interval-compress truth preserving formula. Recall that this can also be
applied to prefixes such that the negation transforms a slowdown truth preserving
formula into a speedup truth preserving formula. This result is also very useful
for proving other important operators later on such as the 2 operator.

Theorem 8.2.3. The negation of an interval-stretch truth preserving formula is
interval-compress truth preserving:

isdtp(D) ⇒ isutp(¬ D)

Proof.

isdtp(D)

=⇒ Proposition 8.2.6

isufp(D)

=⇒ Theorem 8.2.2

isutp(¬ D)

Similarly, the negation of an interval-compress truth preserving formula is
interval-stretch truth preserving:

isutp(D) ⇒ isdtp(¬ D)
The proof is similar to the one above.

A corollary of the above results is that since an interval-compress invariant
formula preserves both truth and falsity, then its negation also preserves truth
and falsity. This also applies for interval-stretches. This follows easily from the
fact that the negation of a formula which preserves truth, preserves falsity and
vice-versa.

Corollary 8.2.3. The negation of an interval-compress invariant formula is also
interval-compress invariant:

isui(D) ⇔ isui(¬ D)
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Proof.

isui(D)

⇐⇒ By definition of isui(D)

isutp(D) ∧ isufp(D)

⇐⇒ Theorem 8.2.2 and Theorem 8.2.3

isufp(¬ D) ∧ isutp(¬ D)

⇐⇒ By definition of isui(¬ D)

isui(¬ D)

Similarly, the negation of an interval-stretch invariant formula is also interval-
stretch invariant:

isdi(D) ⇔ isdi(¬ D)
The proof is similar to the above.

This subsection has provided the necessary ground work for the actual proofs
considering duration calculus fragments. The following subsection will consider
parts of duration calculus and show which of the properties defined above hold
on each fragment.

8.2.2 Duration Calculus Fragments which Preserve Truth

The first duration calculus formula which we will consider is the most simple one
— true. This formula is satisfied by all the intervals and will be written as tt . A
similar, yet opposite formula, is the formula ff which is violated by any interval.

Definition 8.2.9. Let tt be the duration formula which is satisfied by all inter-
vals:

tt
def

= ℓ ≥ 0
Let ff be the duration formula which is not satisfied by any interval:

ff
def

= ¬ tt

Intuitively, it is clear that the above formulae are not affected by time stretches
or compressions. These formulae will be useful as building blocks for other for-
mulae. The following theorem formally shows that tt and ff are not affected by
time transforms.

Theorem 8.2.4. tt is interval-stretch truth preserving: isdtp(tt) and interval-
compress truth preserving: isutp(tt). Similarly, ff is interval-stretch truth pre-
serving: isdtp(ff ) and interval-compress truth preserving: isutp(ff ).
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Proof.

I �[b,e] tt

=⇒ definition of tt

Is �[s(b),s(e)] tt

=⇒ definition of isdtp(tt)

isdtp(tt)

Similarly for isutp(tt), isdtp(ff ), and isutp(ff ).

An important building block in duration calculus formulae is the integral
operator. The following theorem shows that the inequality

∫

P > c is interval-
stretch truth preserving. Intuitively, stretch an interval means that the length of
time a variable is true increases. On the same lines, it is shown that the inequality
∫

P < c is interval-compress truth preserving.

Theorem 8.2.5. The inequality
∫

P > c is interval-stretch truth preserving:

∀ s :
←→

TT · I �[b,e]

∫

P > c ⇒ Is �[s(b),s(e)]

∫

P > c

Proof.

I �[b,e]

∫

P > c

=⇒ definition of
∫

∫ e

b

I (P)(t)dt > c

=⇒ definition of Is
∫ e

b

Is(P)(s(t))dt > c

=⇒ Proposition 8.2.5
∫ s(e)

s(b)

Is(P)(t)dt ≥

∫ e

b

Is(P)(s(t))dt

=⇒ transitivity of >
∫ s(e)

s(b)

Is(P)(t)dt > c

=⇒ definition of
∫

Is �[s(b),s(e)]

∫

P > c
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The inequality
∫

P < c is interval-compress truth preserving:

∀ f :
→←

TT · I �[b,e]

∫

P < c ⇒ If �[f (b),f (e)]

∫

P < c
The proof is similar to the previous one.

The next operator to be considered is almost everywhere operator ⌈−⌉. It is
shown in the following theorem that this operator is both interval-stretch and
interval-compress truth preserving.

Theorem 8.2.6. ⌈P⌉ is interval-stretch truth preserving: isdtp(⌈P⌉):

I �[b,e] ⌈P⌉ ⇒ ∀ s :
←→

TT · Is �[s(b),s(e)] ⌈P⌉

Proof.

I �[b,e] ⌈P⌉

=⇒ definition of ⌈−⌉
∫ e

b

I (P)(t)dt = e − b ∧ e > b

=⇒ definition of Is and monotonicity of time transforms
∫ e

b

Is(P)(s(t))dt = e − b ∧ s(e) > s(b)

=⇒ Basic Calculus
∫ s(e)

s(b)

Is(P)(t)dt = s(e) − s(b) ∧ s(e) > s(b)

=⇒ definition of ⌈−⌉

Is �[s(b),s(e)] ⌈P⌉

A similar proof can be used to show that ⌈P⌉ is interval-compress truth pre-
serving: isutp(⌈P⌉).

A very important connector in duration calculus is the chop operator. Showing
that such a connector is interval-stretch truth preserving means that if the chop-
connected formulae are interval-stretch truth preserving, this is further preserved
in the whole formula.

Theorem 8.2.7. If duration formulae D and E are interval-stretch truth preserv-
ing isdtp(D) and isdtp(E ), then D ⌢ E is also interval-stretch truth preserving
isdtp(D ⌢ E ):

I �[b,e] D ⌢ E ⇒ Is �[s(b),s(e)] D ⌢ E
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Proof.

I �[b,e] D ⌢ E

=⇒ By definition of ⌢

∃m : [b, e] · I �[b,m] D ∧ I �[m,e] E

=⇒ isdtp(D) and isdtp(E )

∃m : [b, e] · Is �[s(b),s(m)] D ∧ I �[s(m),s(e)] E

=⇒ By monotonicity of f

∃m ′ : [s(b), s(e)] · Is �[s(b),m′] D ∧ I �[m′,s(e)] E

=⇒ By definition of ⌢

Is �[s(b),s(e)] D ⌢ E

A similar proof can be used to show that if duration formulae D and E are
interval-compress truth preserving isutp(D) and isutp(E ), then D ⌢ E is also
interval-compress truth preserving isutp(D ⌢ E ).

Using the chop and the duration formula tt , we can construct the operator
eventually D : 3D . Since we have already proved these constructs to be truth
preserving, the proof of 3D follows easily.

Theorem 8.2.8. If a duration formula D is interval-stretch truth preserving
isdtp(D), then 3D is also interval-stretch truth preserving isdtp(3D):

I �[b,e] 3D ⇒ Is �[s(b),s(e)] 3D

Proof.

I �[b,e] 3D

=⇒ By definition of 3

I �[b,e] tt ⌢ D ⌢ tt

=⇒ Theorem 8.2.4, 8.2.7

Is �[s(b),s(e)] tt ⌢ D ⌢ tt

=⇒ By definition of 3

Is �[s(b),s(e)] 3D

A similar proof can be used to show that if a duration formula D is interval-
compress truth preserving isutp(D), then 3D is also interval-compress truth
preserving isutp(3D).

142



Chapter 8. Slowdown and Speedup Truth Preservation

Using the eventually operator and a pair of negations, the always operator is
constructed. This is a very powerful operator because the satisfaction of always
D (2D) means that the formula D holds on all subintervals. Recall that the
negation changes an interval-stretch truth preserving formula into an interval-
compress truth preserving formula. In this case however, since there are two
negations, the effect of each negation cancels the other’s.

Theorem 8.2.9. If a duration formula D is interval-stretch truth preserving
isdtp(D), then 2D is also interval-stretch truth preserving isdtp(2D):

Proof.

isdtp(D)

=⇒ Theorem 8.2.3

isutp(¬ D)

=⇒ Theorem 8.2.8

isutp(3¬ D)

=⇒ Theorem 8.2.3

isdtp(¬ 3¬ D)

=⇒ By definition of 2

isdtp(2D)

A similar proof can be used to show that if a duration formula D is interval-
compress truth preserving isutp(D), then 2D is also interval-compress truth pre-
serving isutp(2D).

The following theorem considers the conjunction of two duration formulae.
This operator also preserves truth if the sub-formulae do so.

Theorem 8.2.10. If duration formulae D and E are interval-stretch truth pre-
serving isdtp(D) and isdtp(E ), then their conjunction is also interval-stretch truth
preserving isdtp(D ∧ E ):

I �[b,e] D ∧ E ⇒ Is �[s(b),s(e)] D ∧ E
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Proof.

I �[b,e] D ∧ E

=⇒ By definition of validity of conjunctions

I �[b,e] D and I �[b,e] E

=⇒ isdtp(D) and isdtp(E )

Is �[s(b),s(e)] D and Is �[s(b),s(e)] E

=⇒ By definition of validity of conjunctions

Is �[s(b),s(e)] D ∧ E

Similarly, it can be shown that if duration formulae D and E are interval-
compress truth preserving isutp(D) and isutp(E ), then their conjunction is also
interval-compress truth preserving isutp(D ∧ E ).

Finally, we consider the disjunction of two duration calculus formulae and
show that this operator also preserves truth.

Theorem 8.2.11. If duration formulae D and E are interval-stretch truth pre-
serving isdtp(D) and isdtp(E ), then their disjunction is also interval-stretch truth
preserving isdtp(D ∨ E ):

I �[b,e] D ∨ E ⇒ Is �[s(b),s(e)] D ∨ E

Proof.

I �[b,e] D ∨ E

=⇒ By definition of validity of disjunctions

I �[b,e] D or I �[b,e] E

=⇒ isdtp(D) and isdtp(E )

Is �[s(b),s(e)] D or Is �[s(b),s(e)] E

=⇒ By definition of validity of disjunctions

Is �[s(b),s(e)] D ∨ E

Similarly, it can be shown that if duration formulae D and E are interval-
compress truth preserving isutp(D) and isutp(E ), then their disjunction is also
interval-compress truth preserving isutp(D ∨ E ).
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8.2.3 Events on Boolean Variables

In our case studies (see Chapter 9), particularly the second one, we show the
usefulness of events in practical situations. The advantage of considering events
is that they are not affected by slowing down and speeding up because they take
zero time. For the definition of events we will use the definition as adopted for
counterexample traces (see Subsection 3.3.1).

Before proving that l P is interval-stretch invariant, we show that both տ P
and ր P are interval-stretch invariant. They are thus interval-compress invariant
as well.

Proposition 8.2.8. տ P and ր P are interval-stretch invariant.

Proof. First we start by showing that տ P is interval-stretch truth preserving:
I �[b,e]տ P ⇒ Is �[s(b),s(e)]տ P

I �[b,e]տ P

=⇒ By definition of տ P

b = e ∧ ∃m : R · m < b ∧ I �[m,b] ⌈P⌉

=⇒ Applying function s

s(b) = s(e) ∧ ∃m : R · m < b ∧ I �[m,b] ⌈P⌉

=⇒ ⌈P⌉ is interval-stretch truth preserving

s(b) = s(e) ∧ ∃m : R · s(m) < s(b) ∧ I �[s(m),s(b)] ⌈P⌉

=⇒ Substitution by n = s(m)

s(b) = s(e) ∧ ∃ n : R · n < s(b) ∧ I �[n,s(b)] ⌈P⌉

=⇒ By definition of տ P

Is �[s(b),s(e)]տ P

It is very similar to show that տ P is also interval-compress truth preserving.
By Proposition 8.2.7, we know that an interval-compress truth preserving formula
preserves falsity on interval-stretches. Thus, տ P is interval-stretch invariant.
Using Corollary 8.2.2, տ P is also interval-compress invariant.

The same reasoning can be used to prove that ր P is also interval-stretch
invariant and interval-compress invariant.

Finally, we show that l P is also interval-stretch invariant and interval-
compress invariant.

Theorem 8.2.12. The formula l P is interval-stretch invariant:
I �[b,e]l P ⇒ Is �[s(b),s(e)]l P
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Proof.

I �[b,e]l P

=⇒ By definition of l P

I �[b,e] (տ ¬ P ∧ր P) ∨ (տ P ∧ր ¬ P)

=⇒ տ P and ր P (Proposition 8.2.8), conjunction (Theorem 8.2.10) and

disjunction (Theorem 8.2.11) are slowdown truth preserving

Is �[s(b),s(e)]l P

Using Corollary 8.2.2, l P is also interval-compress invariant.

This concludes the set of proofs showing which duration calculus fragments
preserve truth on interval-stretches and which preserve truth on interval-compressions.
In the next section, we will discuss practical applications of this theory.

8.3 Proposed Applications of SDTP/SUTP

Runtime verification may be used to monitor a third party system which was
not created with runtime verification in mind. If we introduce monitoring on the
system, we will slowdown its execution. This may result in violating properties
which would hold if the monitoring was not introduced. Similarly, this may result
in satisfying properties which would not have been satisfied if the system was not
slowed down. If the properties used for such a system are SDTP properties then,
no matter how much the system is slowed down, if a property used to hold in the
normal running of the system, it will also hold in a slowed down version of the
same run. However, if a SDTP property did not hold in the normal execution
of the system, it may hold on the slowed down version. To avoid this, one must
use a property which is false preserving. There is a subset of properties which
are both slowdown truth preserving and slowdown false preserving: slowdown
invariant. In this case the result (satisfaction/violation) of properties will remain
intact when the system is slowed down.

Runtime verification may be used during testing and then removed from the
system upon deployment to get rid of the overhead. In this case the target system
will presumably work faster without monitoring than with monitoring. Ensuring
that properties are SUTP, would provide the assurance that the properties which
were verified during testing will still remain true when the system runs faster. As
in the case of verifying third party systems, this does not guarantee that a prop-
erty which was violated in a normal execution, cannot be satisfied in the faster
version. In order to obtain this guarantee as well, speedup invariant properties
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should be used. One should note that the set of slowdown invariant and speedup
invariant properties are in fact the same set of properties.

8.4 Conclusion

Considering the difficulty of monitoring real-time properties, we consider our
approach of slowdown/speedup truth preservation as a good compromise which
can be useful in practical situations. The subset of duration calculus which falls
under slowdown (speedup) truth preservation is substantial. Furthermore, there
is also a subset of properties about events which is slowdown (speedup) invariant.
We can identify a lot of useful properties which simply ensure that something
occurs after a particular number of events. We also feel that this area of research
is still in its infancy. We hope that the idea is taken up and further developed to
make the monitoring of real-time properties more practical.
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9. Case Studies

9.1 Introduction

To show the practicality of a system it is essential to use it in real-life scenarios.
In this section, we apply the Larva architecture to two practical systems: a
transaction processing system and a network monitoring system. The first case
study was carried out before Larva was completed and therefore, not all the
features of Larva were used. Some features of Larva were, in fact, motivated
by this case study. Furthermore, the transaction processing system is a real-life
system which belongs to an industrial company with high security concerns. This
fact enables us to comment on the place of runtime verification in an industrial
software-developing company. The second case study is more focused on the ap-
plicability of real-time properties in real-life scenarios. The network monitoring
system was developed with runtime verification in mind. Therefore, the chal-
lenges are more focused on the correct expression of properties, rather than the
implementation and technical aspects of integrating the monitoring system with
the target system.

In the following two sections we will go into the details of both case studies.
The last section concludes the chapter.

9.2 A Transaction Processing System

During its development, Larva was used on an real-life system which handles
credit card transactions. The complexity of this system lies, not only in the size
of the underlying code (which is over 26,000 lines of code), but also in the security
implications and communication required among various components (including
third party systems, such as banks). The system is designed to hold sensitive
information of thousands of people, so the implications of a single leak of sensitive
information could undermine the confidence of the users in the system, leading
to drastic consequences.

The system is composed of two parts: one handling the transactions in a
database and the other handles the communication to the entity which is involved
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in the transaction. These will be referred to as the transaction handling system
and the processor communication system, respectively. The whole system will be
referred to as the transaction system.

9.2.1 Verified Properties

A number of properties which were verified on the transaction processing system
using Larva are described below.

Logging of Credit Card Numbers

During the development of the original transaction system, credit card numbers
were logged for testing purposes. This is, however, not in line with standard
practice of secure handling of credit card numbers. These logging instances were
manually removed from the code. However, to ensure that no instances remained,
a simple verification check is applied to ensure that no data resembling a credit
card number is ever logged.

The logic involved can be easily represented by the Larva automaton shown
in Figure 9.1.

log(ccn)\\System.out.println("This Log may contain a CC No: " + ccn);

log(ccn)\notCCN(ccn)

start bad state

log(ccn)\\System.out.println("This Log may contain a CC No: " + ccn);

log(ccn)\notCCN(ccn)

Figure 9.1: Combining all the components.

In this case, the transitions of the automaton are all triggered by the event log
which represents any method call involving the Logger. A condition is required
on each transition (after the first backslash) to distinguish those strings which
potentially contain a credit card number from those which surely do not. To
this end, a method NotCCN was implemented which, given a string, returns true
if the string does not contain any credit card numbers. The automaton starts
looping on the start state. Once a potential credit card number is found, the
automaton moves to the bad state and outputs a message to the console.

A snippet of the script which monitors this property is as follows:

GLOBAL

{

EVENTS {

log(String ccn) = {Logger l.*(ccn)}

}
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PROPERTY logging

{

STATES {

BAD { bad_state }

STARTING { start }

}

TRANSITIONS

{

start -> start [log(ccn)\NotCCN(ccn)]

start -> bad_state [log(ccn)\\

System.out.println("This Log may contain a CC No: " + ccn);]

bad_state -> start [log(ccn)\NotCCN(ccn)]

bad_state -> bad_state [log(ccn)\\

System.out.println("This Log may contain a CC No: " + ccn);]

}

}

}

When this script is translated to Java with the Larva compiler, two main files
will be generated: an AspectJ file which “gathers” the relevant events from the
system, and a class file which implements the automaton. The following shows
the pointcut which the AspectJ file contains when the above script is translated:

before(String ccn, Logger l) : (call(* Logger.*(..)) && target(l)

&& args(ccn)

The following shows a part of the automaton implementation in the generated
class file, which handles what happens when the system is in the start state.

else if (_state_id_logging == 1)

{

if (1==0) {}

else if ((_occurredEvent(_event,0/*log*/)) && (NotCCN (ccn)))

{

_state_id_logging = 1; // moving to state start

_goto_logging(_info);

}

else if ((_occurredEvent(_event,0/*log*/)))

{

_cls_Logger0.pw.println("This Log may contain a CC No: " + ccn );

_state_id_logging = 0; // moving to state bad_state

_goto_logging(_info);

}

}

The generated Java files are assumed to belong to a package named larva.
Therefore, these should be put in a folder with this name and the system should
be re-compiled. Once this is completed, the system will be monitored by the logic
described in the script.
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Output of the Verification System The output of the monitoring code is
all redirected to a text file with the name “output Logger.txt” (this includes any
System.out.println in the script file and any automaton-generated text).

The following shows that a bad state has been reached when “Transaction
2008032011254001901 Passthrough Pair Stored” is logged. In this case the trans-
action id, incidentally, is a valid credit card number and the verification system
detected it. Upon detection, the automaton reverts to a bad state and outputs
the stack trace of the code which triggered the bad state. This is shown below:

AUTOMATON::> logging() STATE::>start

MOVED ON METHODCALL: Logger.debug(Object) TO STATE::> start

AUTOMATON::> logging() STATE::>start

MOVED ON METHODCALL: Logger.debug(Object) TO STATE::> start

AUTOMATON::> logging()

STATE::>start

This Log may contain a CC No: Transaction

2008032011254001901 Passthrough Pair Stored

MOVED ON METHODCALL: Logger.debug(Object) TO STATE::> bad_state

Transaction Execution

Transactions are processed by going through a number of stages, including au-
thorisation, communication with the user interface, insertion of the transaction
in the database and communication with the commercial entity involved in the
transaction. The stages taken depend on the type of transaction. It is quite
straightforward to design a property to ensure that a transaction goes through
the proper stages. This is especially true since the states of our automata-based
language can be used to model the stages of the transaction. Other properties
regarding the life cycle of a transaction are defined as explained below.

Events We first require an event to detect the start of a transaction execution.
This is the method call processTransaction. Then we need to detect when the
state id is being set and when each state is being processed (setCurrentStateID
and State.process respectively). Finally, we need to detect when the processTrans-
action method completes, to check whether the transaction was approved or not.
The complete list of events is shown below:

proc(RunnableObject ro) = {ro.processTransaction()}

where {t=ro.getTransaction();}

setid(Transaction t1,int sid)= {t1.setCurrentStateID(sid)}

where {t=t1;}

procState(RunnableObject ro) = {State.process(tsm)}

where {t=tsm.getTransaction();}
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afterproc(RunnableObject ro) = {{ro.processTransaction()

uponReturning()}|{ro.processTransaction() uponThrowing()}}

where {t=ro.getTransaction();}

all() = {proc | setchain | setid | procState | afterproc}

Worth noticing in this list are the two events which are collections: after-
proc and all. For example, afterproc includes the two ways of completing the
method processTransaction: either through a normal return or through an ex-
ception throw.

Comparing Transactions To implement this property we need to be able to
distinguish among the transactions which are being currently executed. There-
fore, we need some way to compare transactions and decides on their equality.
This is not as trivial as it may seem because the transaction object does not
have an equals method. Comparing the pointer value of the object is also useless
because the pointer changes during the communication of the transaction. The
reason is that serialisation (used for communication) reconstructs a new instance
of the transaction. Therefore, a transaction’s uniqueness should be based on its
id. However, this is not available at the time of the transaction construction.
Thus, before an id is actually assigned to the transaction, we need some other
way to decide equality.

This issue was resolved by allowing the user to define a custom method which
compares two transaction objects and decide whether they are the same object or
not. The custom equals method implemented (named equalT ), first uses pointer
equality and then, when the generated id is available, the id is used instead.
Furthermore, we also need a way to represent the transaction for the display pur-
poses of the automaton. Hence, we also allow the user to specify a method which
turns a transaction into a string (named toStringT ). To express the fact that we
need an automaton for each transaction the user must enclose the declaration of
events, states and transitions within a FOREACH section. The declaration is as
follows:

FOREACH (Transaction t equateUsing equateT stringUsing toStringT)

Transitions After the events have been chosen, and the context is settled, the
next step is to formulate the actual automaton. In this example, we have to
check that the current state of the transaction is the right one. Each transaction
has to go through a list of states. If one of these states is repeated or skipped,
the automaton should report a bad state. The checking starts upon the call of
processTransaction. At this point, the variable state is set to the transaction’s
current state id. Eventually, when the method setCurrentStateID is called, it is
ensured that the id being set is one greater that the current id (stored in our
local variable). The transaction is considered ready when the state id reaches the
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number of states in the list. Finally, the automaton reaches the complete state
when the transaction is approved.

To give an idea of how the above logic would be encoded, we give the following
snippet of transitions:

TRANSITIONS

{

start -> process_trans [proc\\if (state==-1)

state=ro.getTransaction().getCurrentStateID();]

process_trans -> set_state [setid\sid == state + 1\state = sid;]

set_state -> process [procState\tsm.getTransaction().equals(t) &&

t.getCurrentStateID()==state]

set_state -> bad_state [all()]

...

}

Detecting a Violation To simulate a possible violation of this property we
altered the code in the processor communication system. The alteration incre-
mented the current state id of the transaction. When the transaction is com-
municated back to the transaction handling system, the violation is detected as
shown below:

AUTOMATON::> generaltransaction(2008032016135012701)

STATE::>process MOVED ON METHODCALL:

Transaction.setCurrentStateID(short) TO STATE::> set_state

AUTOMATON::> generaltransaction(2008032016135012701)

STATE::>set_state MOVED ON METHODCALL:

State.process(TSMRunnableObject) TO STATE::> process

AUTOMATON::> generaltransaction(2008032016135012701)

STATE::>process MOVED ON METHODCALL:

Transaction.setCurrentStateID(short) TO STATE::> bad_state

One may argue that the possibility of such a violation occurring is remote.
However, since the transaction is being communicated to another entity, the
external code may be maliciously altered. Furthermore, it may still be useful to
keep “extra” checks during testing. In this way, any unintentional alteration of
code, which causes a violation of the verified properties, will be detected.

Authorisation transactions

Authorisation transactions have to be checked to ensure that all the stages are
processed in the correct order, keeping certain values unchanged — for instance,
one must ensure that the transaction amount is not changed after being set.
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An aspect of this property which was not used so far in the case study is
the use of invariant. These allow the user to specify the relationship between a
transaction before it goes through a transition and the transaction after it goes
through it. In our case, we wanted to check that the amount of the transaction
remains unchanged. Thus, the invariant is applied on the method getAmount as
shown in the following code:

INVARIANTS {

Double amountInvariant = t.getAmount();

}

The check on the amount is useless unless the amount has been set. For this
reason the invariant is enabled after a particular transition as shown below:

merchant_loader --> trans_inserter [transIns]

[enable amountInvariant]

This means that after the call to process the transactionInserter state, the
getAmount method will be called whenever the automaton moves to a new state
and its return value will be compared to the transaction amount as it was at the
last transition.

Detecting a Violation The verification mechanism was tested by altering the
amount of a transaction to “123456” at the system of a third party. As soon as
the transaction returns through communication, the violation is detected and the
output of the automaton is as shown:

Amount being compared: 123456

Invariant Check Failed

Backlog

A particular feature of the system under scrutiny, is that if communication with
a third party fails, the request is retried a number of times. After each com-
munication failure, a delay is allowed before the next attempt. This process is
called backlogging. The backlogs in the transaction handling system introduces
new properties. For example, we must ensure that the backlog process is per-
formed for the expected number of times or until the transaction is approved. A
limitation is real-time in Larva was not yet implemented at the time of the case
study. If we had this possibility, we could use timeout mechanisms to ensure that
retries occur within a given interval of time.1

To test the violation detection mechanism, we altered the transaction handling
system to decrement the number of retries by two instead of one each time a retry
is performed. This is detected as shown below when the number of expected
remaining retries is 3 while the actual number in the transaction is 2.

1We had access to the proprietary code only for a limited period of time. Therefore, we were
not able to try the latest version of Larva on this case study.
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AUTOMATON::> backlog(2008032414073001301 )

STATE::>BACKLOGCHAIN MOVED ON METHODCALL:

Transaction.setCurrentChainID(ChainID)

TO STATE::> set_chain

AUTOMATON::> backlog(2008032414073001301 )

STATE::>set_chain

Mismatch found...Expected: 3 but found: 2

MOVED ON METHODCALL:

State.process(TSMRunnableObject) TO STATE::> bad_state

9.2.2 Evaluation

Considerations

Considering that the transaction system is a very big system, which is the product
of weeks of work by a considerable number of developers, it was not easy to even
get used setting up the necessary environment for it to run. Therefore, the
evaluation should be taken into the context of the steep learning curve to get
used to running and testing the transaction system. The time was also a notable
issue especially when considering the time needed to simply compile and start a
single test. Furthermore, there were various memory issues with the Java virtual
machine when the AspectJ compiler was used with other technologies.

Another crucial consideration is that the experiment was carried out on a
ready made system. As will be later discussed in the recommendations, it is
suggested that the runtime verification progresses hand-in-hand with the software
development life cycle.

While we were conducting the case study, we had to repeatedly ask informa-
tion from the developers and testers of the transaction system. This was necessary
because the code is not very well commented since the transaction system was
initially meant to be a prototype not a complete system. Probably, the newer
version would have been easier to work with because it is work-in-progress and
developers would be better able to answer questions. Furthermore, the logic in
the transaction system is mainly at the database level using stored procedures,
while in new version the logic is in Java. This would have been a great advantage
because Java is the language which we can verify with Larva. Although we did
not uncover any unknown errors in the transaction system, we found all the errors
which were intentionally placed in the code when we ran the appropriate tests.

Impact of the Case Study on Larva

Besides the intended objective of using a runtime verification tool for testing a
real example, the case study served the purpose of testing Larva. In this sense,
we got feedback showing the limitations of our tool. The current incarnation
of Larva contains various features not in the original version, and which were
identified to be necessary through the case study.
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1. Larva was extended to handle two extra types of events: one which matches
an exception throw and another which matches the handling of an exception
(i.e. a catch block in Java), which were necessary for some properties.

2. The need for invariants was identified — a recurring property in a real-life
scenario is to check that certain attributes are not changed when they are
not supposed to change. Therefore, we extended our language to allow the
user to specify such invariants and enabling/disabling them as necessary.

3. When handling invariants and context-sensitive properties Larva depends
heavily on being able to calculate equality of objects — such a method
may not necessarily be available for all objects, or a custom equality may
be necessary to use. This issue was solved by allowing a user to specify a
custom equals method.

4. No timeouts nor other real-time properties were supported. We have re-
cently extended Larva to include clocks and stopwatches.

Appraisal of the Case-Study

We feel that the verification of the transaction system was an excellent academic
exercise because we were in a good position to understand what language ex-
pressivity is required to verify real-life systems. Moreover, using our compiler to
translate Larva properties into Java code, has acted as a good testing ground
for our compiler, making it better as problems were uncovered and resolved.

Although, more interesting properties might have been checked if there was
more time available, overall, the case-study has demonstrated the benefits of
using this type of runtime verification. After all, our main aim was a proof of
concept on an old version of the transaction system. One might still argue that
the verified properties simply verify basic programming logic. However, checking
the programming logic has various benefits:

• First, writing the properties helps the writer to understand the system
specification better.

• Secondly, once a verification script is written, any future alteration of code
can automatically be tested to still adhere to the system specification. This
increases the reliability of both the current and the future code.

• Thirdly, (and from the transaction system experience, most importantly)
the verification can act as an aid for testing. This can help as an easier alter-
native to manual line-by-line debugging by reporting the necessary output
from the appropriate method calls.
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Measurements

Given the nature of the system, with different components communicating and
synchronising their behaviour, it was difficult to measure the overhead of the
monitoring system for the case study. This, and the lack of time are the reasons
why we do not have any concrete measurements of the resources used by the
system under consideration.

9.2.3 Recommendations

From the experience we had in this case study, we will give our opinion as to why
runtime verification with Larva is beneficial for software development. Then,
we will further discuss where in the development life cycle runtime verification
should take place.

Motivations for Employing Runtime Verification with Larva

Sound software specification is the initial prerequisite for a successful software
life cycle. We believe that an important aspect of runtime verification is that it
forces the system architect/developer to reflect on the system properties so that
they are explicitly declared. This in itself is a very healthy exercise which is very
important for any software system. Once the system properties are clearly stated
in an appropriate formal notation, then runtime verification comes almost for
free. The only required step would be to relate the events of the system (used in
the specification of properties) to concrete method calls in the implementation.
The system can then be automatically verified and checked that it abides to the
properties in the specification. Therefore, for such a little overhead we feel that
the advantage of runtime verification is substantial.

Placing Runtime Verification in the Development Life Cycle

If we agree to introduce runtime verification in the development life cycle, the
next question would be: where? In the previous section we have suggested that
the specification of system properties should start from the beginning of the
development life cycle. However, with no implementation yet available, we cannot
relate the properties to the concrete events of the system. Therefore, runtime
verification has to evolve alongside the implementation of the system.

We also observe an interesting relationship between runtime verification and
testing. The reason is that without an actual execution of the system (be it
a simulation as in testing or a real deployment) runtime verification cannot be
performed. In fact, runtime verification can greatly help testers because it au-
tomatically deduces whether the test was successful or not. In some companies
it is now a custom to start designing and implementing tests before the imple-
mentation of the system. This complements our idea that the system properties
(for which we test) should be specified at the start of the software development
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life cycle. Eventually, when the implementation is ready for the tests to run,
the runtime verification mechanism would be in place, automatically verifying
whether the test was successful or not.

Who should come up with the System Properties?

This discussion leads to the question of who should come up with the system
properties. The system architect? The developer? The tester? From our ex-
perience, it is first and foremost the task of the architect to draw up a set of
system properties. This is backed up by the fact that for the system properties
to be as complete as possible, their author should have a very intimate knowl-
edge of the system as a whole. However, as already pointed out, the architect
will have to base the properties on abstract events of the system, because the
system has not yet been created. Therefore, it is then up to the developer to put
the final connection between the relevant properties and his concrete part of the
code. This ensures that the code being created adheres to the system properties.
Furthermore, the tester should have a good enough knowledge of the properties
so that he understands what the system is being verified for. Yet, this is implicit
in the tester’s role in the development life cycle.

If runtime verification is integrated to the development life cycle as proposed
above, it should be seamlessly integrated with little effort. Moreover, keeping the
system properties as the main focus of the life cycle (from the architecture to the
testing) will undoubtedly help the stakeholders remain attentive to adhere to the
specification.

A Two-Level Approach to System Properties

During the above discussion, we admitted that when the system is being speci-
fied, the properties have to be based on abstract events, which have not been yet
implemented. This leads us propose a two-level approach to the system prop-
erties. Consider the property which checks that there should not be more than
three bad logins in an hour. There are an infinite ways of implementing it in
the system. For example if the developer blocks the user for an hour after two
bad logins, the property will be satisfied. However, one can note that there may
be quite a gap between the initial property stated at the system design stage
and its implementation. Therefore, we propose that whilst the developer is im-
plementing the system, he can formulate other properties which must be in line
with the more abstract system properties. We argue that the more explicit the
system properties are, the more clear it is how the system should behave and
subsequently, the easier it is to monitor and verify that behaviour.

How Intrusive should the Verification Mechanism be?

An important issue is how intrusive should we allow the verifying mechanism
to be. There is no simple answer to this dilemma. The work presented in the
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two previous chapters has the aim to give guarantees on the effect of introducing
monitoring. These include guarantees on the memory and temporal requirements,
and the effect of slowing down/speeding up a system on the satisfaction/violation
of real-time properties. Another possible approach to reduce the impact of ver-
ification is to do it on a separate machine which is not necessarily in sync with
the monitored system. This will be further investigated in future work.

9.2.4 Conclusion

Using Larva as a runtime verification language has so far proved to help the
understanding and the explicit declaration of the system specification. The ad-
vantage of verification is that the implementation is automatically verified against
the specification, bridging the gap between the two. This helps creating a top
view of the system where the verification code is written in a centralized location
without altering the system code. Using this approach we have caught errors
which we have placed in the system ourselves. Given more time and better un-
derstanding of the system specifications, we might have also uncovered unknown
errors. Nonetheless it is still useful to keep the verification mechanism in place
so that whenever the code is altered no unintended errors are propagated.

This experience, has helped us to understand the practical side of runtime
verification. Upon reflecting on this experience, we suggest a feasible way to in-
tegrate runtime verification with the software development life cycle. In a few
words, we recommend that the system properties should be given prominence
from the start of the life cycle by being explicitly declared. Having these decla-
rations in place is the first and most important part of the runtime verification
process. At the same time, declaring the system properties is part of any se-
rious software development life cycle. With the little extra effort of specifying
the properties formally in the Larva language, the system will be automatically
monitored and verified to adhere to its specification.

We hope that this case-study will contribute towards better understanding
and appreciation of runtime verification. We hope even more that the principles
and techniques described will contribute to better software especially with respect
to reliability and robustness.

9.3 Network Monitoring System

Effective network monitoring is a priority for any entity which relies on a network.
Automatic intrusion detection systems are popular but these may not allow the
user to program custom security properties and extend the detection system. Us-
ing the Larva architecture it is relatively easy to provide such an extensible and
programmable monitoring system. Creating and testing a network monitoring
system is a very valuable to test the expressivity and applicability of the Larva

architecture.
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A simple packet sniffer was created using Jpcap technology to capture packets
being sent and received on a particular network interface. Depending on the
sequence of packets, events are generated to be monitored by the system. In total,
five different properties where constructed and tested: four using counterexample
traces (translating them into Larva) and another using Larva directly. Three
of the four were also implemented using QDDC or Lustre and then translated
into Larva. Recall that a fragment of QDDC can be translated into Lustre, and
Lustre can be translated into Larva. QDDC is quite limited and in the examples
below it is usually more convenient to write the properties directly in Lustre. The
reasons will be highlighted later on.

All of the properties featured in this case-study have been tested and the
attacks were detected as expected. More details about each property will be
given in the following subsections.

9.3.1 Properties in Counterexample Traces and QDDC/Lustre

Truth Preservation and Memory Upperbound

For the properties which have been written in counterexample traces and involve
real-time, we applied the theory we developed to identify which properties are
slowdown truth preserving or speedup truth preserving. In this case study, since
the aim is to limit the frequency of certain types of packets, all of the properties
are slowdown truth preserving: i.e. if the property holds on a particular run of
the system it will also hold on a slowed-down version of that run. A practical
implication is that monitoring the system (and possibly slowing it down) will not
violate any of the properties which used to hold on the faster sequence of packets.
Note that the first property, which does not involve real-time, is both slowdown
and speedup truth preserving.

For some of the properties, we also provide the equivalent logic in QDDC/Lustre.
This is not possible for all the properties because both QDDC and Lustre have
a number of limitations. The limitation will be explained for each property in
the following subsections. The advantage of writing properties in QDDC/Lustre
is that they can be monitored with an upperbound memory known at the time
of compilation. However, this guarantee only applies for a single automaton. For
the properties where the automata are replicated for each context, the guarantee
still holds for each automaton but the memory required grows with the number
of unique contexts.

Initiating Connections

For strict security concerns, one may wish to disable any incoming TCP packets
which do not belong to connections initiated by the host machine being moni-
tored. The problem with this property is that if the packet sniffer is started while
a connection is ongoing, the property will be violated when in fact the connection
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might have been initialised from the host machine earlier on. The initialisation of
a TCP connection requires a complete three-way handshake: first a synchroniza-
tion packet from the client, then a synchronization and acknowledgement packet
from the server and another acknowledgement from the client. If the host ma-
chine receives a synchronization packet without having sent one beforehand, then
an outsider is trying to open a connection. This property may be written as a
counterexample trace:

¬ (⊟ sendSYN ⌢ l receiveSYN ⌢ true)

Since a TCP connection is a four tuple (an address and port for the server
and the client), this property has to be monitored for each distinct tuple. This
means that if the host machine is connected on a particular port with a server,
the server cannot initiate a connection through another port to the host machine.

Details The counterexample formula was first translated into a Larva automa-
ton. Subsequently, the events required to trigger the automaton were defined.
Each of these events is also responsible of changing the value of the state vari-
ables. State variables are required by the automaton to choose a destination state
from the current state. In this example, both sendSYN and receiveSYN are ini-
tially false. If sendSYN turns to true, then the property cannot be satisfied for
the connection being considered. In a counterexample formula there is no notion
of context which in this case is the four-tuple connection. Thus, another required
modification is to add context to the Larva script (the output of the translation
from the counterexample formula). With these modifications the network traffic
can be monitored for incoming TCP connection requests. A snippet of the mod-
ified Larva script is shown below (Note the four-tuple context and the events
assigning a value to the state variables rSYN and sSYN representing received
and sent (respectively) synchronisation packets.):

FOREACH(InetAddress ip, InetAddress ip2, Integer port1, Integer port2) {

EVENTS {

receiveSYN(boolean rSYN, boolean sSYN)

= {*.receiveSYN(InetAddress src, InetAddress dst, int src_port, int dst_port)}

where {rSYN = true; sSYN = false; ip = src; ip2 = dst; port1 = src_port;

port2 = dst_port;}

sendSYN(boolean rSYN, boolean sSYN)

= {*.sendSYN(InetAddress src, InetAddress dst, int src_port, int dst_port)}

where {rSYN = false; sSYN = true; ip = src; ip2 = dst; port1 = src_port;

port2 = dst_port;}

all() = {receiveSYN | sendSYN}

}

QDDC/Lustre Monitoring for incoming connections is quite simple and this
can be easily represented in QDDC:
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⌈⌈¬ sendSYN ∧ ¬ receiveSYN ⌉⌉ then begin(receiveSYN )

Note that this formula must also be monitored for each connection context.
Therefore, after the translation into Larva, the necessary modifications should
be carried out to provide the context and relate the variables with the system
events.

Redirect Messages

In the case of a machine with a routing table, a lot of ICMP redirect messages
can cause the system to slow down. Therefore, if a lot of ICMP redirect messages
are received in a relatively short time interval, this may be considered as a threat
to the system. The property can be written as follows:

¬ (true ⌢ l redirectMsg ⌢ ⌈true⌉ ∧ ℓ < 2
⌢ l redirectMsg ⌢ ⌈true⌉ ∧ ℓ < 2 ⌢ l redirectMsg ⌢ true)

Note that ⌈true⌉ between the events is not redundant because this ensures that
the length of the interval is greater than zero (by definition of ⌈−⌉). Allowing an
interval with zero length between two events would mean that the events are in
fact the same event. With little modification, the property can be used to monitor
against repeated ping messages and other unwanted (possibly malicious) traffic.
In the case of the redirect packets, we do not feel the need to monitor the same
property for each individual ip address. If the redirect messages are arriving
repeatedly without sufficient time interval between them (no matter what the
source ip address is), then a property violation is signalled so that the user can
take the appropriate action.

Details The compilation process of this property into the monitoring code is
very straight forward since there is no need of a context. The only modification
required is to relate the appropriate system events with the variables monitored.

QDDC/Lustre For this property it is difficult to construct the equivalent
QDDC formula. This is because only the deterministic chop is available in QDDC
fragment being considered. Thus, a property which should be checked for each
subinterval cannot be represented in QDDC. In such a case, it is easier to use the
Lustre language directly. The code would be as follows:

node redirectMSG (_rt_clock:int; redirect:bool) returns (violated:bool);

var

cnt :int;

time :int;

163



Chapter 9. Case Studies

let

time = if (false -> pre redirect) then (0 -> pre _rt_clock)

else if ((0 -> pre cnt) == 0) then _rt_clock

else (0 -> pre time);

cnt = if (redirect and ((_rt_clock-time) < 2000)) then ((0 -> pre(cnt)) + 1)

else if (_rt_clock - time < 2000) then (0 -> pre cnt)

else if (redirect) then 1

else 0;

violated = if (cnt >= 3) then true else (false -> pre violated);

tel

Connection Failure Retries

A possible denial of service attack is to initiate an excessive number of connection
initialisations to a server and then leaving the handshake incomplete. The server
will have to wait for each of these initialisations to timeout. Sometimes these
timeouts can cause serious availability problems for the server because connection
requests can be issued at very high speeds. A simple check would be to limit
the number of subsequent failed connection retries originating from the same ip
address. (In Section 9.3.2 we explain how a more advanced property can be used
against more sophisticated denial of service attacks) The property that prohibits
three subsequent failed connection attempts, which occur in a short period of
time, may be written as follows:

¬ (true ⌢ l failedConn(ip) ⌢ ⌈true⌉ ∧ ℓ < 1 ∧ ⊟ successConn(ip)
⌢ l failedConn(ip) ⌢ ⌈true⌉ ∧ ℓ < 1 ∧ ⊟ successConn(ip)
⌢ l failedConn(ip) ⌢ true)

To monitor the above property, we can use two sub-properties which define
what it means for a connection to be successful or to fail. A successful connection
should always violate the following counterexample formula:

¬ (true ⌢ l SYN (ip) ⌢ ⌈true⌉ ⌢ l serverSYNACK ⌢ ⌈true⌉ ∧ ℓ < 5
⌢ l ACK (ip))

Similarly, a TCP handshake which is not acknowledged within 5 seconds
should always violate this formula:

¬ (true ⌢ l SYN (ip) ⌢ ⌈true⌉ ⌢ l serverSYNACK
⌢ ℓ > 5 ∧ ⊟ ACK (ip))

Using these two sub-formulas we can more clearly monitor successive connec-
tion failures from a particular ip address. For this purpose Larva channels can
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be used to connect properties together as explained in the following details.

Details The compilation of this property is more complex than the previous
example because three properties must communicate together to form one more
complex property. Furthermore, the sub-properties monitoring the successful or
failed handshake must be “restartable” for each context. This means that as soon
as the monitoring automaton reaches a particular state, it must be discarded so
that later, the same automaton can start again from the starting state. In our
example, as soon as a valid handshake is found, the automaton restarts so that
another connection with the same context can be monitored.

Apart from these features, this property is particularly interesting because the
different properties require different levels of context. A TCP handshake must
be monitored at a connection level with the usual four parameters (ip addresses
and port numbers) while the monitoring of successive failed connection retries is
performed for each individual ip address.

The compilation of this property was carried out as follows: first the three
sub-properties were separately translated into Larva automata and then placed
into one Larva script file. Two channels were declared: successChannel and
failureChannel. The property monitoring successful handshakes sends an event
on the successChannel while the property monitoring failed handshakes sends
an event on the failureChannel. The channels both transmit the events to the
property which monitors the frequency of failed handshakes. Note that the events
sent on the channel contain the ip address which initiated the handshake. This
is important because the frequency of connection failures is monitored for each
ip address.

QDDC/Lustre As with the case of redirect messages, QDDC is not useful to
monitor such a property. Furthermore, it is not possible to represent a failed
handshake in Lustre because this requires a check upon a timeout. In Lustre,
time events cannot be generated. Thus, for this property we do not have the
equivalent property in QDDC/Lustre.

Port Scan

A port scan is the discovery of open ports on a system by trying to initialise
connections on a range of (usually) well-known ports. To monitor a port scan one
should monitor frequent unsuccessful connections from an ip address to different
ports. This can be written as follows (port1, port2, port3 signify different ports):

¬ (true ⌢ l connectTry(ip, port1) ⌢ ⌈true⌉ ∧ ℓ < 2
⌢ l connectTry(ip, port2) ⌢ ⌈true⌉ ∧ ℓ < 2
⌢ l connectTry(ip, port3))
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Details Although this property seems very similar to the property concern-
ing redirect messages, there is a significant difference because the port in each
connection try must be different from the others. This prerequisite cannot be
expressed as a counterexample formula. Thus apart from translating the above
formula into a Larva automaton, another automaton must be used to receive the
raw events, check their port numbers, and forward the event only if the port is
different from the last three ports numbers available. For this property to make
sense, it has to be monitored for each ip address. Therefore, another modification
is required in the Larva script to take this into consideration. A code snippet
showing the changes is shown below (Note the channel distinctPort required for
the communication between the two automata.):

FOREACH (InetAddress ip)

{

VARIABLES {

Clock c2;

Clock c3;

int port1 = -1;

int port2 = -1;

int port3 = -1;

Channel distinctPort;

}

EVENTS {

receive(port) = {*.packetReceived(InetAddress ip1, int port)}

where {ip = ip1;}

distinct(boolean rPckt) = {distinctPort.receive(Object ip2)}

where { rPckt = true; ip = (InetAddress)ip2;}

c3AT0_01(boolean rPckt) = {c3@5} where {rPckt = false;}

c2AT0_01(boolean rPckt) = {c2@5} where {rPckt = false;}

all() = {distinct | c3AT0_01 | c2AT0_01}

}

PROPERTY ports {

STATES {

NORMAL { normal1 normal2 }

STARTING { start }

}

TRANSITIONS {

start -> normal1 [receive\port1 != port && port2 != port

&& port3 != port\port1 = port;distinctPort.send(ip);]

normal1 -> normal2 [receive\port1 != port && port2 != port

&& port3 != port\port2 = port;distinctPort.send(ip);]

normal2 -> start [receive\port1 != port && port2 != port

&& port3 != port\port3 = port;distinctPort.send(ip);]

}

}

}
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QDDC/Lustre In Lustre, the modularity is inherent in the nodes. Thus, the
two automata required in Larva are reflected by two nodes in Lustre. The
following Lustre code shows a node which upon receiving a port number, returns
true if the port number is different from the last three port numbers received.
The second node returns true if three packets with unique ports are received with
less than 2000 milliseconds between each two subsequent packets.

node uniqueport (receive: bool; port: int) returns (unique:bool);

var

port1,port2,port3 :int;

cnt :int;

let

unique = if (receive and port != pre port1 and port != pre port2

and port != pre port3) then true else false;

port1 = if (unique and pre cnt==0) then port

else (-1 -> pre port1);

port2 = if (unique and pre cnt==1) then port

else (-1 -> pre port2);

port3 = if (unique and pre cnt==2) then port

else (-1 -> pre port3);

cnt = if (unique) then ((0 -> pre cnt)+1)%3 else (0 -> pre cnt);

tel

node portscan (_rt_clock:int; unique:bool) returns (violated:bool);

var

cnt :int;

time :int;

let

time = if (false -> pre unique) then (0 -> pre _rt_clock)

else if ((0 -> pre cnt) == 0) then _rt_clock

else (0 -> pre time);

cnt = if (unique and ((_rt_clock-time) < 2000)) then ((0 -> pre(cnt)) + 1)

else if (_rt_clock - time < 2000) then (0 -> pre cnt)

else if (unique) then 1

else 0;

violated = if (cnt >= 3) then true else (false -> pre violated);

tel

node main (_rt_clock:int; receive: bool; port: int) returns (violated:bool);

let

violated = portscan (_rt_clock, uniqueport (receive, port));

tel

9.3.2 More Complex Properties Written in Larva

A common denial of service attack is to initiate an excessive number of connec-
tion initialisations.A well crafted attack can be distributed among thousands of
machines, causing a high volume of traffic to the target server. It is not easy
to detect such an attack. A possible approach is to use statistics. These can
be used to elicit patterns of normal usage. Useful statistics include the number
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of pending connection requests, the number of open connections, the number of
distinct ip addresses currently connected, and so on. These can be used to detect
abnormal use and possibly identify all malicious users. The approach we chose
is relatively simply and may not be able to identify malicious users, although as
explained below it is able to detect abnormal use if an attack is carried out using
TCP synchronisation packets.

Details

The main purpose of this property is to be able to detect that a host is under
attack and possibly identify ip addresses which are conducting an attack on the
monitored host. The approach to achieve this goal is to use the relationship be-
tween the number of pending connections and the number of open connections. If
the number of pending connections remains larger than the number of open con-
nections for a long period of time, this means that connections are not succeeding.
Connection failures may be purposely used for a denial of service attack. There-
fore, for each ip address, the number of pending connections can be compared to
the average number of pending connections. If the number of pending connec-
tions remains higher than the number of open connections for a sufficient period
of time, then the ip addresses whose number of pending connections exceed the
average can be blocked. Blocking an ip address is relatively easy by using IPSec
to modify the security policy being applied. This is done by executing operating
system calls from Java.

This property is made out of three automata: (i) an automaton which mon-
itors a TCP handshake, detecting a successfully open connection or a pending
connection, and updating the corresponding count; (ii) an automaton which reg-
ularly monitors and compares the number of pending connections against the
number of open connections; and (iii) an automaton which upon the detection
of an attack, blocks the ip address which it monitors, if the number of pending
connections is greater than the average pending connections.

Note that a copy of the first automaton is required for each TCP connection.
Similarly, a copy of the third automaton is required for each ip address trying to
initiate a connection. An attack is detected in the following number of steps: (i)
copies of the first automata are continually monitoring connections and updating
counts of pending and open connections; (ii) the second (global) automaton is
repeatedly comparing the number of open and pending connections maintained
by the connection automata; (iii) if the number of pending connections is found
to be sufficiently high for a repeated number of times, an event is sent to the
copies of the third automaton; (iv) as soon as automata of the third type receive
an event, they check whether the number of pending connections is higher than
the number of open ones for the individual ip address they monitor; finally (v) if
a particular ip address has a number of pending connections which is higher than
the average, it is block by its corresponding automaton (of the third type).

This property will not be able to block a very well distributed denial of service
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attack. If each ip address only has one pending connection, then this property
will not be able to block the attack, but it will still detect it because the total
number of pending connections will still be greater than the total number of open
connections.

The compilation of this property is easier than the rest of the properties
because it was written directly in Larva and thus no translations were required.

9.3.3 Evaluation

There are many other kinds of attacks which can be monitored. Other properties
would have to be written in order to protect against these threats. As usual, the
trade-off is high level of security against the overhead incurred by monitoring.
However, one would normally prefer to incur a little slowdown in the system
and be able to automatically monitor and possibly mitigate any attacks on the
system. A little slowdown is acceptable even more because of the guarantee that
the properties being verified in this case study are all slowdown truth preserving.

One should also keep in mind that the current Larva implementation is more
of a proof of concept rather than an industrial system. The implementation of
clocks and channels uses threads and the overall monitoring infrastructure uses a
considerable amount of memory. Having said this, we believe that there is a lot
of room for improvement on the implementation level and more attention can be
given to efficiency and more careful use of resources.

One simple approach to go about the problem of resource consumption is to
write the properties in Lustre. This is much more efficient because communication
is done using variables rather than channels and it only uses a single global clock
rather than an arbitrary number of clocks. Furthermore, the upperbound of
memory and temporal requirements for a Lustre program can be calculated at
compile time. The limitation is that timer events are not available in Lustre.

Another possible approach to provide extra processing resources is to perform
the monitoring on a separate machine and send the events generated to this
machine. Even with this configuration there may still be insufficient resources
to be able to monitor all the events instantly. The practical solution is to adapt
according to the situation by making best use of the available resources without
adversely affecting the system’s usability.

9.3.4 Conclusion

Using Larva architecture as a means of network monitoring has proved to be
relatively easy and effective. The advantage is that different notations can be
used according to the need. Furthermore, these different notations offer different
expressive powers and also different guarantees regarding the effect of the mon-
itoring on the system. Another positive aspect is that the network monitoring
system can be configured not only to detect attacks but also to take action against
such attacks as in the last property.
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9.4 Conclusion

Both case studies have been positive in their respective ways: the first from an
industrial and very practical aspect, the second as a proof of the usefulness of real-
time properties in desktop applications. The first case study gave us an idea of
what to expect when trying to apply a runtime verification on a third party system
with no planning for runtime verification. This gave us insight into how runtime
verification can be more easily integrated in the process of software development.
The first case study also helped us understand the required expressivity of Larva.
For the second case study, the Larva architecture was fully developed with all
the necessary translation algorithms. The system monitored was created for the
purpose of monitoring and therefore we experimented with different notations
and showed the usefulness of runtime monitoring of real-time properties.
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10. Comparison to Other Work
in Runtime Verification

10.1 Introduction

In this chapter we will consider logics and automata which have been used for
runtime verification. These will be classified under a number of headings in Sec-
tion 10.2. For logics and automata to be useful, they are incorporated into tools.
Larva is one such tool which we have created. In Section 10.3 the tools used for
runtime verification are compared in a benchmark. The chapter is concluded in
Section 10.4.

10.2 Logics and Automata

The literature is full of proposed formal notations for specifying system properties.
Different authors have suggested different specification notations according to
the particular domain, trying to improve one aspect or another of the existing
notations. An important trade-off that should be highlighted is that the greater
the expressivity of the formal notation used, the more complex is the algorithm
for its verification.

10.2.1 Meta-languages

Some of the logics which have been proposed are actually meta-languages which
allow the user to specify other logics. For example, in the case of Eagle [10] and
Maude [22], the proposed architecture provides the basic temporal logic constructs
and then allows the user to create his own domain-specific logic.

We investigated two meta-languages: Maude and Eagle. Maude [23, 21] is a
metalanguage interpreter which supports equational and rewriting logic compu-
tation based on the principle of reflection. Thus, during execution, the specified
logic of a system is concurrently rewritten until, possibly, a fully evaluated value
is reached. From a computational point of view rewriting rules can be consid-
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ered as transition rules. From a logical point of view they can be considered as
inference rules. The rewriting process is in fact continually modifying the system
of properties along the execution path — hence the term reflection. This has
successfully been used in the runtime verification tool Java PathExplorer [52].

Eagle [10, 44] is a runtime verification tool comprising a rule-based language
and an interpreter for it. This has been specifically designed to support future
and past time logics, interval logics, extended regular expressions, state machines,
real-time and data constraints, and statistics. To define this variety of logics and
constraints, Eagle only requires the basic logical operators and two primitive
temporal logic operators next (©) and previous (

⊙

). Other operators can then
be expressed using these primitive operators. Eagle is implemented as a Java
library and also allows parametrisation of rules. This means that if one would like
an acknowledgement to be associated with a particular sent message, the message
id can be used to distinguish the corresponding acknowledgement. This provides
the logic with expressive power which propositional temporal logic does not have.
Another advantage of Eagle is that a lot of its properties can be expressed in
state machines which users tend to find more intuitive. Each transition has a
condition and an action on the variables of the state. The condition is not only
based on the input of the state machine but also on the variables which constitute
the state of the machine. Furthermore, the rules expressed in Eagle, can be either
maximal or minimal fix-point semantics. This allows more flexibility in expressing
weak and strong versions of the same operators. To make this clearer, we will
illustrate it using an example. We will define a weak and a strong version of the
until operator (Until(F1,F2) means that F1 has to hold until F2 holds). The
following is the strong version (which is not satisfied unless F2 becomes true):

min Until(FormF1,FormF2) = F2 ∨ (F1 ∧ ©Until(F1,F2))
The weak version is the same but with max instead of min. All these features

make Eagle very versatile for runtime verification.
Hawk [27] is a programming-oriented extension of the Eagle logic. It provides

the means to capture program events with parameters which can be used in
Eagle formulas. Parameters can be executing threads, the objects that methods
are called upon, arguments to methods, and return values. Hawk is also able
to create a monitor for a given formula and automatically instrument it to the
target system.

10.2.2 Tool-Specific Logics and Specification Languages

Some systems also propose their own specific language. These have been investi-
gated so that we get an idea of what other designers have found useful to include
in their languages. The following is the list which we have explored:

• A simple language designed by Fradet and Hong Tuan Ha [38] is easily
transformed into timed automata. A particular feature of this language is
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that it allows the specification of real-time properties. It also uses aspect-
oriented programming to weave the verification with the actual system being
monitored. An example of how the architecture works is as follows:

Consider the following two lines:

a1 = M.get \rhd start(t); a2

a2 = M.get \rhd \{wait(t, 20); start(t)\}; a2

M .get simply means that if the method M .get is called, then, the system
enters the first state a1. Consequent, a timer t is started and the system
moves to state a2. This time, if M .get is called, we have to wait for 20
seconds, and then the timer t is re-started and the state machine goes once
more to a2. The architecture also supports other timer functions such as
reset and cancel . Another interesting feature is that from one state, we can
have a possibility of going into more than one state by adding other en-
tries starting with a specific method call and followed by a clock operation.
However, it is important to note that it is assumed that the possibilities are
exclusive so that the system remains deterministic. Another suggested way
of keeping the system deterministic (but not yet implemented) is by giving
priority according to the order in which the transitions are listed.

• The Policy Specification Language (PSLang) [34] is used in the Policy En-
forcement Toolkit (PoET). In PSLang, the security state is stored in named
and typed variables. This makes the system more transparent to the user
because there is no hidden variables of which the user is not aware. Further-
more, it is able to use low-level actions to synthesize higher-level security
events according to the specified policies. Consequently, these events can
trigger the required enforcement activities. This hierarchy of actions and
events makes it possible to make policies reusable and more clear without
unnecessary details. PSLang has been specifically designed to be easily used
and thus the syntax and semantics are based on Java and JVML.

• ConSpec [2] is inspired by PSLang, but restricted to mobile devices with
limited resources. It is assumed that a contract is defined for each appli-
cation. Upon installation of an application, the contract is checked against
the policies of the device on which it is being installed. If the application’s
contract does not comply with the device’s policies, the application cannot
be installed on the device. In other cases, where the application’s con-
tract cannot be definitively checked before installation, a runtime monitor
is inlined to the application.

• Java-MOP [20] is a monitoring-oriented development environment for Java.
The motivation behind this paradigm is to combine the specification and
the implementation of a system. It is different from runtime verification
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because the monitoring system is itself part of the design of the system’s
functionality. Hence, the monitoring is not simply an extra check on top of
the system but an integral part of the system’s design. For example, Chen
et al. [18] give an example of a system which does user authentication using
a security policy in monitoring-oriented programming. An appealing fea-
ture of Java-MOP is that it can be extended with different logics including
FTLTL, PTLTL, ERE and Jass.

• Polymer [12] was developed to help users enforce security policies on un-
trusted Java applications. A Polymer policy is implemented by extending
the Policy object which contains decisions (queries) and actions, security
state of the running application and methods to update the policy’s security
state. Furthermore, policies can be used to compose higher-order security
policies which in turn will combine the sub-policies in a semantically mean-
ingful way.

• Tempura [73] has been proposed specifically to describe interval temporal
logic. An example of a Tempura formula is as follows: (M = 4) ∧ (N =
1) ∧ halt(M = 0) ∧ (MgetsM − 1) ∧ (Ngets2N ). This means that in the
current state, M should be equal to 4, and N should be equal to 1. Then for
the interval to satisfy the formula, in the next state, M should be equal to 3
(because MgetsM −1) and similarly N should become 2. In the subsequent
states the constraints on M and N should hold until the halt condition is
met. If all the states within the interval satisfy the resulting values of M
and N , then the interval satisfies the formula.

• The Primitive Event Definition Language (PEDL) and Meta Event Def-
inition Language (MEDL) used in the Monitoring and Checking (MaC)
architecture [67] are two complementary languages which allow for a clear
separation between the definition of primitive events (using PEDL) and sys-
tem properties (using MEDL).The motivation for this separation is that it
makes the system easier to adapt to other programming languages, leaving
the higher level definition language (MEDL) intact. For example, using
PEDL we may specify a primitive event as follows:

Event OpenGate = StartM( GateController.open() );

Then, using MEDL we write:

Cond GateClosing = ( CloseGate when !Gate\_Down, OpenGate )

=> lastClose + 30 > currentTime;

The example is a simplified version of the one given by Lee et al. [67]. It
checks that the time being taken by the gate to close is not longer than 30
time units.
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An implementation of the Monitoring and Checking architecture for Java
is Java-MaC [63]. Using Java-MaC involves the following steps: (i) the
PEDL and MEDL scripts are compiled for the event recogniser and the
runtime checker respectively; (ii) the program is automatically instrumented
to gain access to the system events; (iii) instrumented programs send an
event stream to the event recogniser; (iv) the event recogniser identifies the
higher-level activities; (v) the event recogniser communicates the recognised
events to be processed by the runtime checker — raising an alarm if any of
the specified properties are violated.

• Lola [28] is a synchronous language which allows the user to specify the
properties of a program in past and future LTL. The advantage of Lola is
that as a synchronous language it guarantees bounded memory to perform
online monitoring, but differs from most other synchronous languages in
that it is able to refer to future values in a stream. This is not possible in
other synchronous languages which can be executed — Lola is descriptive
rather than executable. Lola is similar to Eagle in its expressivity, and
both past and future LTL are supported in Eagle, but they differ in their
descriptive nature. Lola allows the user to collect statistics at runtime
and to express numerical queries. Triggers can also be defined in Lola to
generate notifications when a particular boolean expression becomes true.

• PSL (Property Specification Language) [32] allows the user to specify sys-
tem properties which are mathematically rigorous and automatically veri-
fiable. An interesting aspect of PSL is that it provides two versions of the
temporal operators — the weak and the strong. Sometimes during monitor-
ing it is not possible to decide whether a property holds or not because only
a part of the trace is available at runtime. For example, consider the rule
eventually(p) in a trace being executed where p has not yet occurred. It is
considered to hold in the weak version and violated in the strong version.
Furthermore, PSL also includes other features such as Sequential Extended
Regular Expressions and clocks.

10.2.3 Other Logics

• We will first start by the basic linear temporal logic (LTL) proposed by
Pnueli (as reported in [65]). In LTL we define properties which hold on a
sequence of states without branching (unlike computational tree logic. This
is ideal when we consider a single execution path as in runtime verification.
An example of a property which can be specified in LTL is G(p) (globallyp)
which states that p should hold for all the states in the trace. We can restrict
LTL to consider only past states in an execution trace. The resulting logic
is known as past time LTL. Similarly, we can consider only the future states
using future time LTL. In various cases it is much more convenient to express

175



Chapter 10. Comparison to Other Work in Runtime Verification

certain temporal properties using past time LTL rather than future time
LTL [70], even though they have the same expressive power [40]. Another
variation of LTL is finite trace LTL [54]. This is an adaptation of LTL
which is applicable to a trace with a finite number of states rather than an
infinite trace. This is especially useful for runtime verification because only
a part of the execution trace is available at runtime.

The metric temporal logic (MTL) [6]was introduced as an extended LTL
which can represent real-time properties. MTL with some extensions has
been successfully used in Temporal Rover [30]. Basically, it uses the same
notation as LTL and adds real-time quantities as additional constraints.
For example, the MTL property 2[0,5]p means that p must hold throughout
the interval [0, 5]. Note that this property is the same as the LTL property
G(p) but applied to particular interval.

• Regular expressions have been suggested as an extension to the MEDL
language [83] in the MaC architecture. The motivation of adopting regular
expressions is that they are more convenient to express certain complex
orderings of events. In fact, a considerable number of temporal logics and
architectures have been specifically designed or extended to include regular
expressions’ expressiveness. Examples include: ForSpec Temporal Logic
(FTL) [7], the logic supported in monitoring-oriented programming [19],
PSL [32]. Other logics such as QDDC [75] have been shown to be able to
encode regular expressions. A very positive aspect of regular expressions is
that they are used for other applications such as string matching. Thus,
developers are familiar with the way patterns can be represented by regular
expressions. For example imagine we want to denote a simple rule: any
number of occurrences of event a can occur before event b. Using regular
expressions this can be written simply as: (a∗)b. Using another logic such
as linear temporal logic it can be written as:

AsThenB(ϕn)
def

= b ∨ (a ∧ Next(AsThenB(ϕn−1)))

The latter can be much more difficult to come up with, especially for some-
one who is not accustomed to temporal logics. However, regular expressions
also have their drawbacks and may not be intuitive even for someone who
is accustomed to use them in other domains. For example, upon seeing
a regular expression made up of system events, the user may get confused
whether the represented sequence is an accepted or a non-accepted sequence
of events.

• Other logics have already been introduced in detail in Chapter 3. These
include duration calculus, QDDC, and counterexample traces.
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Automata in Verification

Automata have been extensively used in verification especially for efficiently de-
ciding whether a property is violated at a particular state. A very attractive
advantage of using automata is that they have a pictorial representation. This
representation may be more intuitive than other textual representations of secu-
rity properties. Another advantage of automata is that a lot of notation conver-
sions (see the following list) use automata and therefore, automata may be an
ideal way of integrating different notations together.

• In the case of regular expressions as used with MEDL [83], they are first
converted into a finite state automaton. This is then used for the actual
verification algorithm. Finite state automata are proposed [81] to efficiently
monitor temporal properties written in Allen temporal logic. Automata are
also proposed to check finite traces [43].

• Büchi Automata (as used by Courcoubetis et al. [26]) has been suggested
to check finite traces by generating the corresponding labelled generalised
Büchi automaton (LGBA) from LTL [29, 42]. A similar approach is used
in [14] and [26] where the Büchi automata are used for efficient verification
of temporal properties. Also, the properties specified in the model checker
SPIN [59] are converted to Büchi automata. Subsequently, the whole sys-
tem together with the specified properties becomes the asynchronous inter-
leaving product of automata. However, a number of problems have been
identified [82] which arise from the use of Büchi automata. Most notori-
ous are the problem of converting LTL formulas into Büchi automata and
secondly, the problem of checking finite traces when Büchi automata are
thought to handle infinite strings. This explains why a number of other
verification systems [82, 67, 30] do not use Büchi automata.

• Alternating Finite Automata (AFAs) (as used by Finkbeiner and Sipma
[37]) have also been very commonly suggested for the verification of tem-
poral properties [31, 86, 37]. The advantage of using AFAs is that it has
and -states and or -states which can be exploited to represent the recursive
definitions of LTL which also involves ands and ors. Another advantage is
the visual appeal of AFAs [31] and more importantly, that AFAs are lin-
ear in size to the corresponding LTL formula [37]. Once we have the AFA
equivalent of the LTL formula, the AFA is reconfigured according to each
online input, minimising the AFA where appropriate.

• Timed automata [3, 4] have been repeatedly proposed for verifying real-time
temporal properties [38, 85, 15]. On the transitions, apart from an event,
we can define clock operations. Figure 10.1 shows a simple example of a
timed automaton.
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Gate_closed
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Figure 10.1: An example of a timed automaton which handles the closing system
of a gate.

It represents the logic required to ensure that a gate closes within 1000 time
units. Thus, as soon as a Close gate event is received, a timer is reset to
zero. If 1000 time units elapse and the gate is still open, then we proceed to
an alarm state. If the gate is closed within the given time, then we proceed
to an accepting state.

The literature contains various applications where timed automata where
used. In [38], the architecture involves the translation of both the system
and its properties into separate timed automata. Subsequently, these are
both weaved together to produce a single timed automaton. There are other
examples of applications of timed automata [85, 15]. Interestingly, Bouyer
[15] adds weights as an extension of timed automata with costs. This is
especially useful for simulating resource consumption in timed systems.

• Mode automata [69] have the purpose of providing a two-level automaton
(multi-level if a composition is used). The motivation behind this structure
is the need to separate logic which runs at a particular instant (say only dur-
ing take-off) from other logic that runs at another instant (say only during
landing). The need of separation occurs frequently in many applications.
For example, mode automata may prove to be very useful in separating the
verification of states in a transaction from the internal logic necessary for
each state. Hence each state represents a possible mode in which we can
be.
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10.3 A Benchmark

A Java program representing a bank processing a number of transactions for a
number of users has been developed to experiment with the use of the different
systems. The reason for using such a system is two-fold. Firstly, a number of in-
teresting properties can be specified easily. Secondly, a bank system can be easily
understood because we are familiar with bank systems. In our bank system there
are a number of users and each user can have a number of transactions. More-
over, the bank system has a database which is used to simulate communication
and time delays in the system. When a transaction is executed there are three
possible results: success, failure and exception. Upon a failure, the transaction
is successively retried for another four times. No retries are performed in case of
an exception. Note that the intention of the benchmark case study is primarily
to compare property specification and monitoring.

We have identified a number of classes of properties, and concrete examples
for the bank processing system, to compare and contrast the use of the different
tools.

Scope: The type of scope which can be specified. Types of scope include object
(denoted by O in Table 10.1), session (denoted by S in Table 10.1) — one
run of the application, multisession — current and previous runs, global
— all running applications of a system. This is used to specify on which
level the property is verified. For example if the scope is ‘object’ then the
property will be verified for each individual object.

Exceptions: Exception handling and throwing in an application usually rep-
resent important events in a system. This aspect represents whether or
not the user can express properties which include exception throwing and
handling.

Real-time: Real-time refers to whether or not the monitored properties can
include real-time. This means that the verification system is able to trigger
checks at particular time intervals and compare clock values upon particular
system events.

Invariants: We use the term invariants to refer to inbuilt mechanisms in the
verification system to monitor the changing of values of variables. The
purpose is to be able to verify that certain variables only change when they
are supposed to do so.

Feedback: It refers to the capability of the monitoring system to return feedback
to the target system. This usually takes the form of a mitigation action in
case a violation is found. In other cases this may be limited to stopping the
program’s execution (denoted by St in Table 10.1).
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Table 10.1: Expressivity features of various tools.
Tool LARVA ConSpec MOPa MaCb Hawk Lola

Scope S/O Xc S/O S S S
Exceptions X X × × × ×
Temporal Logics × × X × X X

Real-Time X × × Xd Xe ×
Mob. App. Policies × X × × × ×
Invariants X × X X × ×
Feedback X St X X × ×
Conditions X X Xf X × ×
Numerical Queries × × × × × X

aJava-MOP
bJava-MaC
cin specification it supports all the mentioned scopes but currently only session is supported
drestricted (cannot trigger clock events)
ecan be extended to support real-time
frestricted to implementing conditions in violation/validation handling method

Conditions: This refers to the ability to filter events by applying a condition on
the parameters and/or monitoring variables.

Temporal logics: It represents the fact that the tool supports specification writ-
ten in temporal logics such as LTL.

Mobile application policies: We refer to the ability of defining a security pol-
icy which can be partially verified before runtime if the application also
specifies its policy. Verifying applications for mobile devices require the
monitoring system to be as lightweight as possible.

Numerical queries: This refers to explicit support to expressing numerical
queries about statistics of the program being verified.

Table 10.1 shows which tool have explicit support for the aspect being consid-
ered. Note that the meaning of the scope object is sometimes referred to as class.
In the case of Larva, the same object need not necessarily be the same instance,
but be equated through the (optional) use of a user-provided equality method.
One advantage of this approach is that when monitoring objects which are seri-
alised and de-serialised, the object before serialisation will still be considered the
same as the object afterwards (even though they are not the same instance).

Although with its own limitations, Larvacan express a number of interesting
classes of properties, not all of them expressible directly in the other tools. Two
limitations of Larvaare that it cannot support different temporal logics (Hawk,
Java-MOP and Lola do have this capability), and it is not suitable for security
of mobile devices (where ConSpec excels).
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Table 10.2: Larva overheads for the benchmark example.
Test Reference Number 0 1 2 3 4

System without Monitoring
time(ms) 4 4 6303 3 9

memory(Kb) 23 23 23 70 161

System with Monitoring
time(ms) 123 120 6395 161 176

memory(Kb) 453 209 160 467 434

System with Monitoring without Clocks
time(ms) 55 60 n/a n/a 36

memory(Kb) 432 477 n/a n/a 378

10.3.1 Performance of Larva

Five tests have been built for the evaluation of the performance of Larvain terms
of overheads. Test 0 executes a number of transactions but does not violate any
of the given properties. Subsequently, Test 1 violates the invariant property by
trying to change the transaction amount. Test 2 violates the property that a
retry should occur within two seconds. Test 3 violates the property the a user
cannot have more than five transactions. Finally, Test 4 violates the property
that upon an exception the transaction is not retried.

Table 10.2 shows statistics for the benchmark when the five tests were run
under three different configurations: (i) without monitors; (ii) with monitors
for all the properties; (iii) removing the monitors which include clocks with the
purpose of investigating the impact of clocks on the monitoring system.

The numbers presented may be a bit distorted because of the operating system
scheduler and the Java garbage collector. If the garbage collector is called before
measuring the used memory, the numbers would be much smaller than the ones
presented in the following tables.

Although the resources required for the program to run without monitors as
compared to when it was run with monitors seems huge, the overhead is linear in
the size of the automaton used to describe the properties. For example compare
4 milliseconds to 123 milliseconds and 23 kilobytes to 453 kilobytes for Test 0.
Also, one should notice the impact of having clocks in the program execution
time. For example compare 55 milliseconds to 123 milliseconds. However, if we
analyse the figures in more depth we realize that the situation is not so dull
and grim. The reason being that the monitors were added to a dummy system
with empty methods and empty objects. Therefore it is not surprising that the
overhead of monitoring seems to be so relatively large. What we did to proof our
intuition that the overhead seems unrealistically large is to increase the size of
the system with regards to the required memory and processing time preserves
the complexity as shown in Table 10.3, in which Test 0 is used.
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Table 10.3: The statistics obtained by trying Test 0 on variations of the bench-
mark.

Test Variation Normal Time Cons. Big Obj. Many Obj.

System without Monitoring
time(ms) 4 4722 4874 53849

memory(Kb) 23 23 260 2384

System with Monitoring
time(ms) 123 5321 5458 65153

memory(Kb) 453 418 458 3509

Table 10.4: The benchmark statistics for various tools.
Test Ref. No. 0 1 4 0 1 4

Larva
1 ConSpec

time(ms) 27 23 30 7 n/a n/a
memory(Kb) 91 136 208 54 n/a n/a

Java-MOP Java-MaC
time(ms) 23 23 52 7 n/a n/a
memory(Kb) 174 173 312 26 n/a n/a

The first experiment was to increase the processing time which the system
without monitors require to complete the execution. One should notice how the
gap between 4722 and 5321 milliseconds is relatively much smaller than the gap
between 4 and 123 milliseconds. The second experiment was to increase the
amount of memory which each object requires. In this case the total memory
used was 458 kilobytes which is very close to the memory initially used for the
initial experiment (453 kilobytes).

In order to investigate the real relationship between the size of the monitoring
system and the monitored system, we multiplied the number of monitored objects
by 10. The result obtained substantiates the intuition that the size of the monitor
is directly proportional to the number of monitored objects.

It is difficult to have a true comparison among the tools since they do not
have the same expressive power. Therefore, we could not implement all the
monitors for all the tools. For example none of the other tools handle real-
time properties. For this reason we intentionally removed the monitors for these
properties from our program. Another interesting issue is that Larva issues a
report regarding the status of the monitoring system. This is not done by other
tools. Therefore, we modified our code and removed the logging system so that
the comparison is done on level ground. The results obtained are shown in Table
10.4. Note that Hawk and Lola are not in Table 10.4 (nor in the subsequent
tables) since we did not have access to the tools. The results concerning their
expressiveness were based on descriptions of the tools from research papers and
personal communications.
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The most similar tool to Larva is undoubtedly Java-MOP since it can im-
plement the same properties in a very similar fashion and both Larva and Java-
MOP use AspectJ as the underlying framework. Compared together, the statis-
tics show that there is little difference. ConSpec is restricted to security properties
on mobile devices so we could not go further in our comparison. To give an idea
of how much resources ConSpec uses, we implemented the property which limits
the number of users rather than the number of transactions per user. This ex-
plains why the time and memory required were much less than Larva and Java-
MOP. Finally, we tried Java-MaC. Again, it is difficult to compare the results
because none of the properties could be implemented in Java-MaC. Furthermore,
Java-MaC uses a different technology – it transmits the event stream to other
applications running simultaneously. These factors explain the difference in the
amount of resources used.

10.4 Conclusion

In this chapter, we have first given an overview of the work done in the field of
runtime verification. Most notably, we have considered a number of logics which
have been proposed over the years for various runtime verification architectures.
Subsequently, we have compared Larva to other similar architectures. This com-
parison has the purpose of highlighting the various levels of expressivity according
to a number of criteria. The result of this study shows Larva to be a highly ex-
pressive logic. Towards the end of the chapter, we have also used a benchmark to
compare the resource utilisation of different architectures. In this regard, when
compared to tools with similar expressivity, the performance of Larvais good.
However, one should note that the current implementation of the tool has not
been optimised.
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11. Conclusion

In this chapter, we will start off by giving a summary of the work presented in this
thesis, followed by an exploration of the possible future direction of this research.
Furthermore, we will propose numerous possible extensions to the work presented
in this thesis. The final section will conclude the work with some final remarks.

11.1 Summary

With the ever growing need of robust and reliable software, formal methods are
increasingly being employed. A recurrent problem is the intractability of exhaus-
tively verifying software. Due to its scalability to real-life systems, testing has
been used extensively to verify software. However, testing usually lacks coverage.
Runtime verification is a compromise whereby the current execution trace is ver-
ified during runtime. Thus, it scales well without loss of coverage. Substantial
work has been already done in the area of runtime verification. Thus, we first
presented an overview of the work carried out so far so that our work can be
placed into perspective. A particular area of interest is the specification of real-
time properties. There are various logics whose underlying model of time varies
from points in time to continuous real-time. After presenting some of the logics
available, we have argued in favour of a clear and succinct logic which is able to
express a wide range of properties. Such a logic would include the expressivity to
represent properties with context, invariants, and real-time amongst other things.
This was the motivation behind the creation of the DATE logic. DATEs are dy-
namic automata with timers and channels. Being dynamic, DATE automata can
be replicated for each active object to monitor properties with context. Using
timers, they can monitor real-time properties. Channels allow DATEs to remain
modular such that each automaton can perform a single specialised task. DATEs
are triggered by system events and are also able to send back feedback to the
system according to the property being monitored. For this logic, we created the
Larva architecture. This includes a language specification for the description
of DATEs and a compiler which translates the Larva script into the necessary
Java code. The Larva script is designed to be as clear and succinct as possible,
while at the same time maintaining the necessary expressivity. The compilation
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of the script generates AspectJ code — to capture useful system events — and
Java classes which implement the automata described in the script.

We must admit that DATE is not the most appropriate logic to represent all
the possible properties of software. Sometimes, it is easier to represent a property
in some other logic such as duration calculus. For this reason, we created a
translation from a subset of duration calculus, called counterexample traces, into
Larva. Thus, our architecture can still be used while at the same time expressing
properties in another, possibly more appropriate logic. Similarly, a translation
was devised the language, Lustre. Its advantage is that both the memory and
temporal requirements of a Lustre program can be calculated at compile time.
Another useful subset of duration calculus is QDDC. This can be translated
into Lustre. Therefore, using QDDC, one will have both the advantage of a
more appropriate logic for particular cases and the guarantees on the size of the
overhead given by Lustre. Finally, we also have a translation from the contract
language CL into Larva. This allows contracts to be monitored by Larva.

Monitoring introduces an overhead on the system and thus slows it down.
This is a serious issue in monitoring real-time properties. It is virtually impossi-
ble to remove this overhead, but guarantees can sometimes be given regarding the
impact of the overheads on real-time properties. Some real-time properties which
are satisfied will not be violated by a slowdown of the system. We call these prop-
erties slowdown truth preserving properties. Similarly, there are speedup truth
preserving properties which are not violated when the system is speeded up. By
considering fragments of duration calculus, we have shown which fragments pre-
serve truth on slowing down or speeding up a system. If one uses slowdown truth
preserving properties, we can guarantee that the properties which are satisfied
cannot be violated by introducing monitors. Similarly, for speedup truth preserv-
ing properties, we can guarantee that the properties which are satisfied cannot
be violated by removing monitors.

As a test of the usefulness of Larva, we tried it on two real-life case studies:
an industrial system which handles financial transactions and a network intrusion
detection system. Larva was found to be useful in both cases and interesting
properties were formulated and verified. Finally, we have compared Larva to
other similar tools on two aspects: expressivity and resource consumption. As
regards expressivity, a number of aspects were selected and we showed whether
each tool is expressive in each aspect. As regards resources, we set up a benchmark
with a number of typical but non-trivial properties and a number of tools were
used to represent these properties. It was found that Larva compares well with
similar tools.
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11.2 Future Work

11.2.1 Off-line Runtime Verification

If the overhead of runtime verification is too large for the available resources,
the best alternative may be that verification takes place off-line — the properties
are not checked synchronously as they occur, but some time later when there are
resources available. This has the disadvantage that any mitigation actions cannot
take place instantly. There are, however, numerous applications where a few
seconds or minutes delay is perfectly acceptable. For example, consider a rollback
in a database; if the rollback occurs a few seconds after an error is identified,
this still keeps the integrity of the database. In such cases, the verification of
properties can be carried out on a separate machine, with the possibility that the
machines do not keep up with each other. For this reason there needs to be some
kind of protocol by which the machines can, for example, decide to synchronise,
or raise an alarm if the discrepancy is more than a particular amount of time.
A possible feature may be that, if the target system enters a critical section, the
monitoring system will synchronise, leaving less priority verification for later.

11.2.2 Extensions to Logics/Languages

A possible extension to counterexample traces and phase event automata would
be to further consider the introduction of counters. Their behaviour will be
similar to that of clocks but instead of measuring real-time, they measure event
occurrences. In a number of practical situations, counting events may be very
useful to detect malicious usage patterns. A case in point is the intrusion detection
system in the second case study.

Another improvement may be to extend the Lustre language to include timers.
In this work we simply pass a timestamp as a parameter which allows us to verify
a number of interesting real-time properties. However, this has the limitation
that the system cannot perform any steps without an external event. A timer
should be able to trigger the verification so that as time elapses the system can
automatically detect a bad state, without waiting for an external event.

11.2.3 Extensions of the Theory

The theory developed in this work can be extended to other logics. For example
the theory of slowdown/speedup truth preservation, which was so far developed
for duration calculus, can be extended to QDDC. Similarly, the work on memory
upperbounds, which was so far developed for QDDC, can be possibly extended
for phase event automata.

Thus far, in our work about slowdown/speedup truth preservation, we have
always assumed that all state variables are affected by the same time function.
However, this is not always the case. For example, in a distributed real-time
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system the state variables on different machines/threads may have a different
time function. In other words, the slowing down on one thread may be different
from another. This is much more challenging than simply considering the affect
of one time function on a single machine/thread.

11.2.4 Industrial Applications

On a more practical level, it would be very useful if more real-life case studies are
carried out. With more experience in the field, the research community would
be in a better position to understand the needs of the industry and it would be
easier to gain more confidence from the industry. More experience would also
contribute towards the maturity of the field and software engineers will be more
willing to integrate runtime verification with the software development life cycle.

11.3 Concluding Thoughts

The vast literature in the area of runtime verification is a proof of the growing
interest in the subject. Nevertheless, the subject is still relatively new and there
is a lot of space for research. The ideas which we have proposed so far have
already brought up considerable interest from the local industry and this is a
very positive sign. We are very optimistic that the research will evolve with a
lot of more innovative ideas and possibly provide practical solutions for current
security issues.
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A. Publications

The work presented in this thesis includes the work presented in the following
published and unpublished papers. The contribution of the respective authors is
explained below.

Published Papers

1. Christian Colombo, and Gordon J. Pace. Aspect-Oriented Programming
Runtime-Enforcement of Temporal. In CSAW 2007: Proceedings of the
Computer Science Annual Workshop, pages 150-161, Malta, 2007.

Pace reviewed the document and rewrote parts of it.

2. Christian Colombo, Gordon J. Pace and Gerardo Schneider. Dynamic
Event-Based Runtime Monitoring of Real-Time and Contextual Properties,
FMICS 2008, Italy.

Pace wrote Section 2.1 and reviewed the document and rewrote parts of it,
Schneider reviewed the document several times rewriting parts of it.

3. Christian Colombo, Gordon J. Pace and Gerardo Schneider. A Practical
Approach to Runtime Verification of Real-Time Properties for Java Pro-
grams, WICT 2008, Malta.

Pace reviewed the document and rewrote parts of it, Schneider reviewed
the document.

Papers in Progress

1. Christian Colombo, Gordon J. Pace and Gerardo Schneider. Monitoring
Slowdown and Speedup Truth Preserving Real-Time Properties at Runtime,
2008.

Schneider wrote the introduction and reviewed the document rewriting
parts of it. Pace wrote Section 2.4 and the majority of Section 3. He
also reviewed the document and rewrote parts of it.
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