
University of Malta

Runtime Monitoring of Duration Calculus

Assertions for Real-Time Applications

by

Karlston D’Emanuele

A dissertation submitted in fulfillment of the degree of Masters of Science

Department of Computer Science and A.I.
Faculty of Science

University of Malta
September 2006

Supervisor:
Dr. Gordon Pace

External Examiner:
Dr. Raymond Pascal

Other Examiners:
Dr. Kevin Vella
Mr. Mike Rosner

“If in other sciences we should arrive at cer-
tainty without doubt and truth without er-
rors, it behooves us to place the foundations
of knowledge in mathematics.”

Roger Bacon
English Mathematician (1220–1292)

[Opus Majus, bk. 1, ch. 4]

Abstract

An open question which is commonly asked in software development is whether
the implemented artefact follows the requirements specified. From the early days
of computing, a number of projects, ideas and techniques have been proposed to
prove software correctness. One of these techniques is validation, which verifies
the system during execution.

Duration Calculus is a powerful logic notation that evaluates property satisfaction
by applying the Reimann integral over property values within an interval. There-
fore, Duration Calculus not only determines whether a property is being satisfied
but also the duration of the property satisfiability. Duration Calculus notation
considers time as a real valued variable, which together with the evaluation of cal-
culi formulae becomes undecidable. In this dissertation, we restrict the notation
to a subset that is decidable, discrete-time and deterministic. The decidability
property is important in order to evaluate the system correctness at runtime. On
the other hand, the restriction to discrete-time together with the determinism of
the notation reduce the side-effects of the inserting observers in the actual system
thus guaranteeing the correctness of the verified program.

After restricting Duration Calculus notation to the suitable subset of operators, we
propose a framework for defining monitors and integrating them with the system
code. Our framework allows monitors to be defined using the mathematical nota-
tion, which through a pre-compiler is converted to its Lustre semantics and stored
inside Abstract Syntax Trees. The synchronous data-flow programming language
Lustre is used for the notation semantics because the resource requirements for the
monitors can be predetermined. To keep the benefits obtained by using Lustre, the
monitoring platform is also defined in Lustre. The final step before executing the
system is to integrate the monitors inside the code. The weaving of monitors with
the system is performed through the concept of annotated assertions, which are
converted into function calls to the Lustre based evaluation engine to determine
the properties satisfiability.

We conclude our research by showing the concept of Interval Temporal Logic vali-
dation as an aspect, within the Aspect-Oriented Programming (AOP) framework.
This concept can be used to facilitate the design of more robust and flexible vali-
dation engine simply by defining notation semantics.

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Gordon Pace
for his continuous assessments, guidance and knowledge sharing during the en-
tire stages of the dissertation. I also thank him for forwarding the concepts of
synchronous programming and Aspect-Oriented Programming that were of major
help for the dissertation.

Thanks go to Mr. Joseph Cordina for his assistance in checking the mathematical
formulae and for his support. I would also like to thank my colleagues for their
support and the good time passed at the University during the research. I take this
occasion to thank the Semantics and Verification Research Group for their useful
comments and knowledge sharing. I am grateful to the Department of Computer
Science and Artificial Intelligence for providing the necessary space and facilities
to perform this dissertation with the least inconveniences as possible.

My greatest gratitude goes to my parents who have always given their support
and help whenever was possible. I also thank my brother who although not well
literate on the subject has shared his ideas and for proof reading the dissertation
from the grammatical side. Finally but not least I would like to thank my friends
for their support and help throughout the dissertation.

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Objectives . 3

1.2 Report Layout . 5

I Background 6

2 Duration Calculus 7

2.1 Duration Calculus Syntax and Semantics 7

2.1.1 Duration Calculus examples . 15

2.2 Quantified Discrete-time Duration Calculus 15

2.2.1 QDDC syntax and semantics . 15

iii

2.2.2 QDDC examples . 20

2.3 Conclusion . 20

3 Validation 21

3.1 Assertions . 21

3.1.1 Atemporal assertions . 22

3.1.2 Temporal logic assertions . 24

3.1.3 Interval temporal logic . 26

3.2 Related projects . 27

3.2.1 Eagle Flier . 27

3.2.2 Java-MaC . 28

3.2.3 Temporal Rover . 30

3.2.4 RTMAssertions . 32

3.2.5 Other projects . 34

3.3 Monitoring-Oriented Programming . 37

II Discrete and Deterministic subset of Duration Calculus Assertions 40

4 QDDC to Symbolic Automata 41

4.1 Deterministic QDDC . 42

4.2 Lustre environment . 45

4.3 Helper functions . 47

4.4 Determinstic QDDC Operators Semantics 49

4.5 Conclusion . 50

iv

5 Validation Engine 51

5.1 Symbolic Automata Initialisation . 51

5.1.1 Space complexity . 52

5.2 Evaluation Process . 53

5.2.1 Time complexity . 55

5.3 Validation Process . 55

5.3.1 Monitoring System . 56

5.3.2 Interface . 57

5.4 Conclusion . 58

6 Prototypes of D3CA 59

6.0.1 Getting to AST . 59

6.1 D3CA – C++ . 61

6.1.1 Lustre Environment . 61

6.1.2 Initialising . 62

6.1.3 Validation Engine . 62

6.1.4 Analysis . 63

6.2 #D3CA . 63

6.2.1 Weaver . 63

6.2.2 Annotations . 65

6.2.3 Lustre environment . 66

6.2.4 Validation Engine . 67

6.3 Analysis . 67

v

7 Case Studies 69

7.1 Mine Pump . 69

7.2 QDDC Specifications . 70

7.2.1 Creating the validation engine . 72

7.2.2 Simple Test Scenario . 72

7.3 A Simple Answering Machine . 73

7.3.1 QDDC Specifications . 74

7.4 Creating the validation engine . 75

7.5 Simple Test Scenarios . 76

7.6 Conclusion . 79

III Validation and Aspect-Oriented Programming 80

8 ITL validation as an aspect 81

8.1 Validation as an Aspect . 82

8.2 Defining D3CA weaver in AOP terms . 84

8.3 Conclusion . 85

9 Conclusions 86

9.1 Research Overview . 87

9.1.1 Monitoring System . 87

9.2 Possible future enhancements . 88

9.2.1 Multiple Validation Interfaces . 88

9.2.2 Logic Domains . 89

vi

9.3 Summary . 90

A “leads to” operator in terms of age() 91

B Case Studies Properties in XML format 92

B.1 Mine Pump . 92

B.2 Answering Machine . 95

Bibliography 98

vii

List of Tables

3.1 Assertion Classification . 22

3.2 Eagle vs. D3CA . 28

3.3 MaC vs. D3CA . 30

3.4 Temporal Rover vs. D3CA . 31

3.5 RTMAssertions vs. D3CA . 34

viii

List of Figures

1.1 Abstracted view of monitors evaluation during program execution. 2

1.2 Overview diagram of dissertation work. 4

3.1 Linear and branching temporal logic diagram 25

3.2 Overview of the MaC architecture. 29

3.3 Evaluation decomposition of begin(P) . 33

3.4 MoP and D3CA workflow comparison. 38

4.1 Block diagram for then operator . 43

4.2 Counter example in Lustre with variable initialisation 47

5.1 Abstracted view of the validation engine. 52

5.2 Evaluation decomposition of begin(P) . 52

5.3 AST representation of begin(P) . 53

5.4 ddP e then end(P) – Evaluation tree representation 54

5.5 System composition diagram . 55

5.6 Lustre constant to system state relation . 56

5.7 Validation process flowchart . 57

5.8 Sequence diagram for synchronise. 58

ix

6.1 AST representation . 60

6.2 D3CA Architecture Overview. 64

6.3 #D3CA Lustre Interface and Enumeration UML Diagram 66

7.1 Mine Pump Diagram . 70

7.2 Mine Pump Simulation . 72

7.3 Answering Machine State Diagram . 74

7.4 A Simple Answering Machine – Sequence Diagram 77

7.5 Answering Machine Simulation . 78

7.6 Answering Machine Simulation – Error Reporting 78

8.1 Aspect-Oriented Programming Architecture Overview. 82

8.2 Synchronise communication diagram . 83

8.3 States representing an execution path. 83

8.4 Lustre constant to system state relation . 85

9.1 Multiple Validation Interfaces Architecture. 89

x

Chapter 1

Introduction

“...unexpected behavior, by definition, vio-
lates an application’s formal specification, the
specification casts a wide net for catching soft-
ware exceptions, exceptions that you might
miss. Therefore, using formal specifications
to generate exception handling routines pro-
duces a robust hybrid program having multi-
ple levels of recovery paths. The additional
levels shield the application from worst-case
scenarios that would otherwise crash it.”

Doron Drusinsky [Dru01]

A common question that arises during software development is whether the system being
implemented is correct according to the given specifications. With the complexities reach-
able today in software development, guaranteeing correctness of the software is becoming
more intractable. Over the past years a number of projects have been commenced in order
to propose possible solutions to manage and control software correctness.

From the many projects and ideas proposed in other papers, a solution which is of prime
interest to us is about executing runtime monitors in parallel to software code. Runtime
monitors can be of different nature ranging from simple propositional statements inserted
as conditional checks to the use of temporal logic based automata. Runtime monitors
verify the software along its execution path, thus they only guarantee the correctness of
the system along a single path. Although this is a drawback of the approach it pays off in
resource requirements when compared to the more elaborate process of formal verification.
Formal verification consists in performing logical inference over the system specifications to
determine their correctness.

1

Figure 1.1: Abstracted view of monitors evaluation during program execution.

In this research we are concerned with performing validation using runtime monitors based
on a subset of Duration Calculus. Duration Calculus is an Interval Temporal Logic that
applies the Reimann integral over properties values to determine their satisfiability. This is
possible by considering time over the real numbers. Duration Calculus is highly expressive
and its consideration of time as a real number makes it undecidability. Undecidability
is surmounted by restricting Duration Calculus notation to its discrete and deterministic
subset.

The runtime monitors presented in the dissertation require a library that provides a platform
for evaluation. The platform proposed is based on the synchronous data-flow programming
language Lustre. Lustre endows the runtime monitors with the capacity of predetermining
the real memory and time requirements to evaluate properties. Therefore, runtime monitors
are not only suitable for real-time applications due to the mathematical notation but endow
the user to predetermine the impacts of the system over the actual system implementation.

2

1.1 Objectives

Time dependent behaviour is best captured using temporal logics. The purpose of this
dissertation is to study the use of Duration Calculus, an interval temporal logic, as a runtime
monitor for capturing the correctness of system behaviour. Temporal logics can specify time
in both abstract and real-time notation. Abstract notation hides the clock time dimension
and gives a means of abstract measure, like clock cycles. Real-time notation provides a
means of clock time measurement, say five seconds. Real-time specification is very difficult
to handle because one has to take into consideration the temporal side-effects of introducing
a monitoring system. Thus, for the purpose of this study the validation engine is designed
to handle only abstract description of time.

General Duration Calculus is undecidable and thus requires to be restricted to a decidability
subset. This dissertation uses the set named as Quantified Discrete-Time Duration Calculus
(QDDC) [Pan00] as the decidable subset of Duration Calculus.

Gonnord et al [GHR04] showed that QDDC requires the use of non-deterministic automata.
The evaluation of non-deterministic automata requires the tracing of different paths at
non-deterministic branches as to determine the system correctness. As a direct result the
system requirements increase drastically. For the purpose of this dissertation, deterministic
automata are preferred as to predetermine the resource requirements of monitors. Endorsing
the work of Gonnord et al, the dissertation concentrates on defining a suitable deterministic
subset for the monitoring system.

The objectives of the dissertation are summarised below:

1. to identify the discrete and deterministic subset of duration calculus (based on the
work done by Gonnord et al [GHR04]);

2. define a validation engine for the discrete and deterministic subset of duration calculus
using Lustre as a platform;

3. propose a generic and platform independent framework for integrating the validation
engine inside the system code; and

4. analyse the outcome to propose suitable enhancements for the validation engine in
general.

Figure 1.2 provides an overview of how the dissertation combines the discrete and deter-
ministic subset of duration calculus and Lustre to provide the monitoring solution.

An extended objective of the dissertation is to propose the concept of Interval Temporal
Logic-based validation as an aspect in terms of the new arising concept of Aspect-Oriented

3

Figure 1.2: Overview diagram of dissertation work.

4

Programming. This concept frees the design of validation from the complexities involved
in the weaving of monitors.

1.2 Report Layout

The dissertation consists of three parts – Background, Discrete and Deterministic subset
of Duration Calculus Assertions, and Validation and Aspect-Oriented Programming.

The first part consists in providing the necessary background and a review of related
projects. The logic notations, both Duration Calculus (DC) and Quantified Discrete Du-
ration Calculus (QDDC), are defined in terms of Church’s lambda calculus, as it provides
fundamental relations to practical computing [Pen99]. The literature review introduces the
traditional assertion as basic monitoring systems. The chapter continues by reviewing re-
lated projects while comparing their approach with our solution. The chapter concludes by
fitting the proposed real-time monitoring in the Monitoring-Oriented Programming (MoP)
concept.

Part II is the dissertation contribution to the Interval Temporal Logic validation area.
Chapter 4 proposes a monitoring restricted logic based on QDDC together with both math-
ematical and execution semantics. The execution semantics of the logic are then used in
Chapter 5 to perform state-by-state validation. The chapter also details the design of a
validation engine to monitor systems using a Lustre simulated environment. The second
part ends by illustrating two validation engine prototypes. The power of the monitoring
system and easiness to use in prototyping is founded by two case studies – a mine pump
and an answering machine – as depicted in Chapter 7.

The last part of the report shows how validation is an aspect and how Aspect-Oriented
Programming (AOP) tools can be used to weave the monitoring system with a program.

5

Part I

Background

6

Chapter 2

Duration Calculus

Duration Calculus is a formal notation introduced by Chaochen et. al. [CHR91]. Duration
Calculus is based on Interval Temporal Logic (ITL) by Moszkowski [Jos01], thus its notation
removes the necessity of quantifying and explicitly mentioning time in the formulae. As
with ITL, Duration Calculus uses intervals to determine property satisfaction, which is
determined by applying the Reimann’s integral over the property truth-time values.

In this chapter we introduce the Duration Calculus notation using Church’s lambda calculus
(λ-calculus). λ-calculus is adopted as it provides good understanding of how the Duration
Calculus notation is evaluated and it simplifies the mapping from mathematical notation
to implementation.

The high expressiveness of Duration Calculus leads the notation to be undecidable. In
order to define a runtime Duration Calculus monitoring system the second section of this
chapter restricts the notation to discrete-time, based on the work done by Pandya [Pan00].

2.1 Duration Calculus Syntax and Semantics

A number of Interval Temporal Logic notations exist [BMN00, Pet99] but they share a
common drawback – the fact that time is considered as a discrete variable. In reality, time
is continuous and using the notations mentioned before may lead to some system state
loss. On the contrary, Duration Calculus models time and behaviour over the real number
line [Jos01, CHR91, Rav94]. This is possible through the use of Reimann’s integral as a
measure of satisfiability over time.

7

Definition 2.1. (Time.) Time is a real valued variable that indicates an instance in the
system’s life-cycle.

Time
df
= R

Verifying systems throughout their entire life-time is very difficult especially if they do not
have any terminating condition. To surmount this problem time is divided into a number of
sections referred to as intervals. The following are some important definitions and lemmas
that relate to intervals. The interval definitions are later used to define the notation of
Duration Calculus.

Definition 2.2. (Set of intervals.) The collection of possible divisions of a system timeline.

Intv
df
= {[b, e] | b, e ∈ T · b 6 e}

For simplification, the boundaries defining the interval are indicated by subscripts b and
e. Subscript b represents the start boundary and subscript e represents the end boundary.
For example, given any interval, I, Ib denotes the interval start point and Ie the end point
of the same interval. Formally, for any interval [s, f],

[s, f]b
df
= s

[s, f]e
df
= f

Lemma 2.3. (Set of point intervals.) Let I be an interval. Then the set of intervals
consisting of a single point is given by:

Intv0
df
= {I | Ib = Ie}

It must be noted that Intv0 ⊂ Intv .

Definition 2.4. (Length of interval.) Time is modelled as a real number. Therefore, the
difference between the start and end points of an interval denotes the length of interval.

#(I) df
= Ie − Ib

Definition 2.5. (Interval meeting.) Two intervals are said to meet, or consecutive, if and
only if the end point of the first interval and starting point of the second interval are the
same.

I;J df
= I ∪ J provided that Ie = Jb

8

Definition 2.6. (State variables.) A state variable is an atomic boolean variable whose
truth varies over time.

state variable∈ T 7→ B

Definition 2.7. (True.) The state variable true returns true irrespective of time.

1
df
= λt : T ·true

Likewise,

Definition 2.8. (False.) The state variable false returns false irrespective of time.

0
df
= λt : T ·false

Definition 2.9. (State expressions.) Expressions consisting of logic operators applied to
state variables.
For any state variables P and Q

¬P
df
= λt : T · ¬P (t)

(P ∨Q)
df
= λt : T · P (t) ∨Q(t)

(P ∧Q)
df
= λt : T · P (t) ∧Q(t)

(P ⇒ Q)
df
= λt : T · P (t)⇒ Q(t)

(P ⇔ Q)
df
= λt : T · P (t)⇔ Q(t)

Definition 2.10. (Duration formula.) A duration formula is a mapping of state expressions
evaluated over an interval to boolean values.

Duration formula ∈ Intv 7→ B

Duration Calculus definitions are now introduced based on the definitions given above. An
important assumption considered here is that variables have finite variability in a finite in-
terval. In other words, a variable can change its truth value for a finite number of times over
finite intervals. This assumption aids in avoiding the Zeno’s dichotomy paradox [Wei05].

Definition 2.11. (Duration.) The duration of a state expression P in an observation
interval I ∈Intv is obtained by calculating the area under the behaviour-time graph covered
by the interval. In mathematics the area is obtained by taking the Reimann boundary
integral of the curve. Therefore,∫

P = n
df
= λI :Intv ·

∫
t∈I

P (t) dt = n

9

Definition 2.12. (Duration expressions.) Duration expressions consists of duration for-
mulae bound with basic logic operators.
For any duration formulae D and E

¬D
df
= λI :Intv · ¬D(I)

D ∨ E
df
= λI :Intv ·D(I) ∨ E(I)

D ∧ E
df
= λI :Intv ·D(I) ∧ E(I)

D ⇒ E
df
= λI :Intv ·D(I)⇒ E(I)

D ⇔ E
df
= λI :Intv ·D(I)⇔ E(I)

Definition 2.13. (Chop.) The chop operator is an arbitrary interval divisor where the
left duration formula holds in the first subinterval and the right duration formula in the
remaining interval.
For any D and E duration formulas

D̂E
df
= λI :Intv · ∃J ,K :Intv · I = J ;K ∧D(J) ∧ E(K)

Using the definitons above a number of duration operators can be introduced.

Definition 2.14. (Not of duration equal to.) The duration of a state expression P in an
observation interval I ∈Intv is not equal to a constant.∫

P 6= n
df
= ¬

(∫
P = n

)

Definition 2.15. (Duration of at least.) In an observation interval I ∈ Intv the duration
of state expression P is at least of n units.∫

P > n
df
=

(∫
P = n

) ̂true

Definition 2.16. (Of greater duration than.) A state expression P has a duration greater
than a constant value. ∫

P > n
df
=

(∫
P > n

)
∧

(∫
P 6= n

)
Endowed with the above formulae the comparison operators are lifted to compare duration
formulae.

Definition 2.17. (Duration equality.) Two state variables are of equal duration if their
duration value is identical for the same interval.∫

P =
∫

Q
df
= λI :Intv · ∃n : R+ · (

∫
P = n) ∧ (

∫
Q = n)

10

Definition 2.18. (Duration 6=.) Two state variables are said to be of non-equal duration
if their duration are of different length for the same observational interval.∫

P 6=
∫

Q
df
= ¬

(∫
P =

∫
Q

)

Definition 2.19. (Duration >.) A duration of a state variable is greater than or equal to
another state variable’s duration if for the same interval, the number of truths of the first
state variable is at least equal to the number of truths of the second state variable.∫

P >
∫

Q
df
=

(∫
P =

∫
Q

)̂true

Definition 2.20. (Duration >.) A duration of a state variable is greater than another’s
state variable duration if and only if for the same interval the first state variable evaluates
to true more frequently than the second state variable.∫

P >
∫

Q
df
=

(∫
P >

∫
Q

)
∧

(∫
P 6=

∫
Q

)
Other comparison operators can be defined in a similar way.

Theorem 2.21. (Duration of true.) A tautological state variable is equal to the length of
the observational interval. (∫

1 = n
)
(I) ⇔ #(I) = n

Proof. The proof is obtained directly from Definitions 2.11 and 2.4.

(∫
1 = n

)
(I) df

=
∫

t ∈ I 1(t) dt = n Definition 2.11.
= [t]I = n Evaluation of integral.
= Ie − Ib = n Expanding integral result.
= #(I) = n Definition 2.4.

To simplify the reading of duration formulae, len will be used interchangeably with
∫
1.

len
df
=

∫
1

Corollary 2.22. (Upper duration limit.) The duration of a state variable P can reach its
maximum value if and only if it is a tautology within the interval.∫

P 6
∫
1

11

Lemma 2.23. (Duration of a negated state variable.) For any state variable P the duration
of P ’s complement within an interval is equal to the length of the interval less the duration
of P . (∫

¬P = n
)

=
(∫
1−

∫
P = n

)

Theorem 2.24. (Duration of false.) A contradictory state variable is equal to the constant
function zero. ∫

0(I) = 0

Proof. The proof is again obtained directly from Definition 2.11.

∫
0(I) =

∫
t ∈ I 0(t) dt Definition 2.11.

= [0t]I Evaluation of integral.
= 0 Expanding integral result.

Corollary 2.25. (Lower duration limit.) The duration of a state variable P can reach its
least value if and only if it is a contradiction within the observation interval.∫

P >
∫

0

Theorem 2.26. (Addition of durations.) The combined duration of two state variables is
the sum of the values where either P or Q is true together with the values where both are
satisfied simultaneously.
For any state variables P and Q∫

P +
∫

Q =
∫

(P ∨Q) +
∫

(P ∧Q)

As with any logic-based models, state variables are not enough to describe all the features
and properties within a system. To extend the expressiveness of Duration Calculus, state
variables are lifted to predicates as in interval temporal logic [CHR91].

Definition 2.27. (Almost everywhere true predicate.) A state formula P is true for the
entire non-point intervals.

dP e df
=

(∫
P =

∫
1
)
∧

(
len > 0

)

12

Definition 2.28. (Point interval predicate.) A predicate that is true only for a point
interval is denoted by d e.

d e df
= len = 0

Definition 2.29. (True predicate.) When a predicate holds for both continuous and point
intervals it is said to be a tautological predicate.

tt
df
= len > 0

Theorem 2.30. (Predicate implication.) Given a predicate P

dP e ⇒
∫
¬P = 0

d e ⇒
∫

P = 0

Theorem 2.31. (Duration monotonicity.) For any states P and Q if P ⇒ Q then the
duration of P must be less or equal to that of Q.

dP ⇒ Qe ⇒ (
∫

P ≤
∫

Q)

Proof. The order preservation in duration formula is conserved through the duration nota-
tion semantics.

dP ⇒ Qe⇒d¬P ∨Qe Implication equivalence
⇒

(∫
(¬P ∨Q) =

∫
1
)
∧

(∫
1 > 0

)
Definition 2.27

⇒
∫

(¬P) +
∫

Q−
∫

(¬P ∧Q) =
∫
1 Theorem 2.26

⇒
∫
1−

∫
P +

∫
Q−

∫
(¬P ∧Q)−

∫
1 = 0 Theorem 2.23

⇒
∫

P =
∫

Q−
∫

(¬P ∧Q) Basic algebra
⇒

∫
P ≤

∫
Q For some

∫
X ≥ 0

Using the definition of chop, the two basic time operators of modal logic can be defined as
follows.

Definition 2.32. (Eventually.) A duration formula D is said to become true if there is a
subinterval where it evaluates to true.

3D
df
=tt̂D̂tt

13

Definition 2.33. (Always.) A duration formula D is always true if it holds over all
subintervals within the observation interval.

2D
df
= ¬3¬D

Theorem 2.34. (Duration in subintervals.) The duration of a state in an interval is the
duration of the state in each subinterval.

Given a state formula P and an interval divided into two subintervals of length r and s

respectively. (∫
P = r + s

)
⇔

(∫
P = r

)̂(∫
P = s

)

Duration Calculus syntax

<state variable> ∈ T 7→ B

<natural number>
df
= N

<state expression> ::= <state variable>

| <state expression> ∨ <state expression>

| <state expression> ∧ <state expression>

| <state expression>⇒ <state expression>

| <state expression>⇔ <state expression>

| ¬ <state expression>

<d.c. formula> ::=
∫

<state expression>=<natural number>

|
∫

<state expression>><natural number>

|
∫

<state expression>=
∫

<state expression>

|
∫

<state expression>>
∫

<state expression>

| d<state expression>e
| <d.c. formula> ∧ <d.c. formula>

| <d.c. formula> ∨ <d.c. formula>

| <d.c. formula>⇒ <d.c. formula>

| <d.c. formula>⇔ <d.c. formula>

| ¬ <d.c. formula>

| <d.c. formula> ̂ <d.c. formula>

| 3(<d.c. formula>)
| 2(<d.c. formula>)

14

2.1.1 Duration Calculus examples

Consider a simple property stating that over a given interval a loop will not exceed the 30
seconds run in total. The property is represented in Duration Calculus as,

∫
loop 6 30seconds

A less rigid control over the loop can be specified as,

2 (dloope ⇒ len 6 30seconds)

The latter formula states that the loop can be executed several times given that every
execution never exceeds 30 seconds. On the contrary, the earlier version allows the loop to
enter and exit its body for a number of times given that the total execution time does not
exceed the 30 seconds interval.

Now consider a more elaborate example. A printer device is designed to determine whether
the printer is working smoothly or requires a service. Assume that the printer prints 14
pages per minute. The property that determines the printer state can be specified as

2

(
dspooling êdprinting êdprinter spool clearing e ⇒ len =

pages
14

+ k
)

The constant, k, is the time required by the device to prepare for printing and to clear the
resources used.

2.2 Quantified Discrete-time Duration Calculus (QDDC)

Duration Calculus considers time over the real-numbers thus making it undecidable [Rav94,
Pan02b]. In this section Duration Calculus is restricted to discrete-time intervals, in order
to make it decidable. The definitions presented are based on the work of Pandya [Pan00].

2.2.1 QDDC syntax and semantics

Duration Calculus is restricted to discrete-time thus the notation is lifted over discrete
values.

Definition 2.35. (Discrete-time.) Time defined as one dimensional variable ranging over
natural numbers.

TimeN
df
= N

15

Definition 2.36. (Length of interval.) The length of an interval is the natural number
difference between the start and end points.

ηop c
df
= λI :Intv ·

(
Ie − Ib

)
op c

where, op∈ {=, 6=, >, >, <, 6} and c is a numeric constant.

QDDC inherits the definitions and properties of state variables and expressions from Dura-
tion Calculus. However, since dealing with discrete-time, the definition of state expressions
is extended to provide means for determining the previous and next values of state expres-
sions.

Definition 2.37. (Previous value.) The previous operator, −P , provides the immediate
past value of a state expression, P . That is, given a state expression, P , at time, t, then
the immediate previous value of P is the truth of P at time t− 1. Using λ-notation this is
defined as

−P
df
= λt : TN ·

{
P (t− 1) t > 0
undefined t = 0

The following table illustrates the relation between current and previous value of a state
expression using the previous operator.

time 0 1 2 3 4

P true false true false true

−P undefined true false true false

Definition 2.38. (State expressions.) State expressions consist of boolean logic operators
applied over state variables.
For any state variables P and Q

¬P
df
= λt : T · ¬P (t)

P ∨Q
df
= λt : T · P (t) ∨Q(t)

P ∧Q
df
= λt : T · P (t) ∧Q(t)

P ⇒ Q
df
= λt : T · P (t)⇒ Q(t)

P ⇔ Q
df
= λt : T · P (t)⇔ Q(t)

Discrete-time endows QDDC to determine the number of times a predicate is satisfied within
an interval. This provides an alternative way of dealing with the duration (

∫
) operator of

Duration Calculus. Section § 2.1 showed the equivalence between the duration operator
and Reimann’s bounded integral, which in case of frequent and consistent sampling can be
evaluated as the summation of values.

16

Definition 2.39. (Number of occurrences.) For any predicate P , the number of occurrences
of P is equal to the number of times P evaluates to true.

ΣP op c
df
= λI :Intv ·

Ie−1∑
i=Ib

{
1 if P (i)
0 otherwise

 op c

where, op∈ {=, 6=, >, >, <, 6}.

Duration Calculus predicates are defined over the notation of duration. The restriction to
discrete-time invalidates the duration notation, hence, predicates are redefined.

Definition 2.40. (Continuous time predicates.) A predicate P is satisfied if for any obser-
vational interval the state variable P is constantly true except for the interval end point.

ddP e df
= (η > 1) ∧ (ΣP = η)

Contrary to Duration Calculus where one cannot reason about the truth values of state
variables at point intervals, in QDDC it is possible to verify the satisfaction of predicates
within a point interval.

Definition 2.41. (Point interval.) For any predicate P ,

dP e0 df
= λI :Intv · Ie = Ib ∧ P (I)

Definition 2.42. (Duration formula.) A duration formula is the mapping of a state ex-
pression to a boolean value over an interval.
For any duration formulae D and E

¬D
df
= λI :Intv · ¬D(I)

D ∨ E
df
= λI :Intv ·D(I) ∨ E(I)

D ∧ E
df
= λI :Intv ·D(I) ∧ E(I)

D ⇒ E
df
= λI :Intv ·D(I)⇒ E(I)

D ⇔ E
df
= λI :Intv ·D(I)⇔ E(I)

The chop and modal operators, sometimes and always, are inherited from Duration Calculus
and lifted to discrete-time. The introduction of these three temporal operators empowers
the notation with a number of additionally derivable operators.

17

Definition 2.43. (Chop.) Like in Duration Calculus the chop operator is an arbitrary
interval divisor where the first duration formula is true in the first subinterval and the
second formula is true in the second subinterval.
For any D and E duration formulas

D̂E
df
= λI :Intv · ∃J ,K :Intv · I = J ;K ∧D(J) ∧ E(K)

Definition 2.44. (Eventually.) A duration formula D is eventually true if there exists a
subinterval in which D evaluates to true.

3D
df
=tt̂D̂tt

Definition 2.45. (Always.) A duration formula D is true for all subintervals within an
interval if there is no subinterval where D is false.

2D
df
= ¬3¬D

Definition 2.46. (True for the entire intervals.) For any interval consisting of two subin-
tervals, where the second interval is a point interval equal to the first interval end point, a
predicate P is true for the entire interval if and only if it constantly holds in both subin-
tervals.

ddP ee df
=

(
ddP êdP e0) ∨ dP e0

Pandya enriches the QDDC notation by introducing two arrow operators. The arrow op-
erators endow the calculus with means to define dependency behaviour between two state
variables.

Definition 2.47. (Leads to.) Given two predicates P and Q, P leads to Q as soon as and
after P has been true for at least δ time.

ddP ee δ→ ddQee df
= 2

((
ddP ee ∧ η > δ

)
⇒

(
(η = δ)̂ddQee))

Definition 2.48. (For at least.) Given two predicates P and Q, Q is true at least for the
first δ time of P ’s validity.

ddP ee δ←↩ ddQee df
= 2(d¬ − P e0̂(ddP ee ∧ η < δ)⇒ ddQee)

Sometimes it is required that a state variable is checked for stability in order to provide
reliability and consistency.

18

Definition 2.49. (Stable.) A predicate is said to be stable if when it becomes true it
remains true for at least δ time.

stable(P, δ)
df
= 2(d¬P e0̂ddP eêd¬P e0 ⇒ (η > δ + 2))

QDDC syntax

<natural number>
df
= N

<state variable> ∈ T 7→ B

op ∈ {=, >,≥, <,≤}

<state expression> ::= <state variable>

| <state expression> ∨ <state expression>

| <state expression> ∧ <state expression>

| <state expression>⇒ <state expression>

| <state expression>⇔ <state expression>

| ¬ <state expression>

| − <state variable>

<qddc formula> ::= dd<state expression>e
| d<state expression>e0

| <qddc formula> ∧ <qddc formula>

| <qddc formula> ∨ <qddc formula>

| <qddc formula>⇒ <qddc formula>

| <qddc formula>⇔ <qddc formula>

| ¬ <qddc formula>

| <qddc formula> ̂ <qddc formula>

| ∃ <state variable> · <qddc formula>

| Σ <state expression> op <natural number>

| η op <natural number>

| <qddc formula>
δ→ <qddc formula>

| <qddc formula>
δ←↩ <qddc formula>

| 3(<qddc formula>)
| 2(<qddc formula>)

19

2.2.2 QDDC examples

Consider again the simple property stating that a loop should never exceed the 30 seconds
run. The property can now be represented in QDDC as,

2(ddloope ⇒ η 6 30seconds)

The formula specification above is similar to the second specification in section §2.1.1.

The restriction on property specification can also be seen in the printer device example.
The design of the printer provides a mechanism to determine whether the printer is in good
condition or requires a service. The printer is assumed to print 14 pages per minute. The
property that determines the printer state can be specified as

2

((
dspooling e0̂ddprintingêdprinter spool clearing e0

)
⇒

(
η =

pages
14

))
The constant, k, introduced in the Duration Calculus example has been removed because
the restriction to discrete-time allows point intervals to be specified. Thus, properties can
be further fine-grained around the critical property.

2.3 Conclusion

Duration Calculus provides a powerful notation for expressing specifications over real-time
intervals, however, it is undecidable. The undecidability property is controlled by restrict-
ing the notation to discrete-time. Nevertheless, the restriction eliminated certain flexibility
of the original notation. As a payoff to this restriction, particular fine-graining and unam-
biguity are obtained.

20

Chapter 3

Validation

Validation is a runtime mechanism for checking systems behaviour during execution us-
ing formal specifications. From the early days of computing, validation always played a
major role in developing correct and reliable systems. The first half of the chapter is a
brief overview of the validation history. The chapter proceeds with a discussion on some
projects that provide tools for using temporal logic specifications as runtime checks on
system behaviour.

3.1 Assertions

Assertions are boolean functions describing the semantics of software elements in formal
conditions [Mey97] placed at specific points inside the code. The conditions are placed
where they are expected to be always true [Hoa01, Voa97, AS01]. In other words, they are
placed as traps for detecting errors at an early stage in order to minimise their propagation
during implementation and execution [MV04, Ziv03, Ros95]. To highlight their distinction
from the code defining the program functionality, assertions are typically annotated as
comments.

The concept of assertion testing for proving function correctness has been around from the
early days of computing. The first historical appearance of the concept is in 1949 during a
conference in Cambridge by Alan Turing. Around two decades later in the late 1960s Floyd
and Hoare, independently, introduced formalisms as a driving mechanism for assertions
and were the first to propose that assertions must be formulated as part of a program
specifications and proven during design.

In the early days, the use of assertions had been limited to programs with a serial structure,
that is non-concurrent systems. This was the case until Hehner showed that using Com-
municating Sequential Processes (CSP) model, the nature of programming is irrespective

21

to assertion modelling [Hoa01, MV04].

Assertions can be either weak or strong. Weak assertions are traps to detect errors related
to the current execution state. A typical weak assertion checks a variable for correct ini-
tialisation (checks that it contains a valid value). Strong assertions are more expressive and
provide a suitable description of the surrounding functionality. When strong assertions are
used, they can be considered as interfaces between different parts of the system [Hoa01].

In general assertions define what functionality the surrounding code is supposed to do rather
than how the functionality is performed [MV04, BJHL96, Ros95, Mey97], leading assertions
to be typically used as preconditions and post-conditions of functions. Preconditions, post-
conditions and also invariants are strongly emphasised in the programming language Eiffel,
which implements the concept of Design by Contracts [AS01, Mey97].

Bellini et. al. [BMN00] generalises the classification of assertions in two categories: static
and dynamic. Static assertions are atemporal, that is, their evaluation is fixed and time
independent. Opposite to static assertions there are dynamic assertions, which are temporal
formulas whose truth depends on the evaluation time. The latter type of assertions can be
categorised on whether they describe safety or liveness properties. Safety properties state
that “something bad” should never occur, while liveness properties state that eventually
“something good” will happen [Pet99].

Assertion Type Assertion Properties
static Fixed and Time independent.
dynamic Temporal formulas and Time dependent values.

Classification of dynamic assertions:
safety – “something bad” should never happen.
liveness – “something good” will eventually happen.

Table 3.1: Assertion Classification

3.1.1 Atemporal assertions

Atemporal assertions consist of propositional logic formulae placed wherever they are ex-
pected to evaluate to true. Propositional logic consists of a set of elementary facts, that
can be assigned either a true or false value, on which the basic boolean operators can be
applied. These are the classical assertions found in programming languages. An atemporal
assertion in ANSI-C looks like

assert(c >= ’a’ && c <= ’z’); // the character is in the English alphabet.

Propositional logic assertions are suitable when the programmer requires to place an as-
sumption before executing any particular code. For example, taking a function that evalu-

22

ates the Fibonacci numbers up to a particular number n, a typical atemporal assertion is
that the value of n is greater than zero.

Fibonacci Numbers(n)

1 assert(n > 0)
2 if n = 0
3 then return 0
4 if n = 1
5 then return 1
6 else return Fibonacci Numbers(n− 1) + Fibonacci Numbers(n− 2)

A common atemporal assertions framework is Design by Contract, which is discussed next.

Design by Contract

The methodology of Design by Contract was introduced by Meyer for object-oriented pro-
gramming languages. It was introduced as a tool for building software with “built-in reli-
ability”, that is, integrating assertion specification in analysis, design, implementation and
documentation [Mey97]. The idea followed from Harlan Mills’ article of 1975, which was
titled “How to write correct programs and know it”.

Design by Contract methodology views the system requirements as the application of a
relation (the contract) between service providers (the routine performing a task) and clients
(the callee of the routine). The word “contract” has significant meaning because it describes
the rights (preconditions) and obligations (post-conditions) of the parties [Mey97]. The
application of contracts endow Design by Contract methodology with the application of
the non-redundancy principle, or as Meyer states it “guaranteeing more by checking less”.
This principle is opposed to what had been in practice and emphasised in that time, whereby
to guarantee correctness of routines every step required the introduction of new checks.

Preconditions, typically labelled with the keyword require, provide an interface to the
callee, which specify under which ideal conditions the routine is bound to return good
results. For example, in the Fibonacci algorithm above, the assertion statement (line 1)
can be placed as a precondition. This will allow the callee to know that the value passed
as a parameter to the routine must be a positive integer number.

Post-conditions, labelled as ensure, on the other hand guarantee the callee that the value
returned is in the correct range of results and format. Returning again to the Fibonacci
algorithm a post-condition can be that the value returned is a positive number.

Design by Contract also introduces two additional types of assertions: class and loop in-
variants. Class invariants are properties that are expected to hold throughout the class

23

life-cycle and in all its instances. That is, the invariant is expected to hold on the creation
of the instance, before and after every call to the class routines and exactly before the
disposal (deletion) of the instance [Mey97, MV04].

Loops are a common construct in many programs, which result in the introduction of
looping related problems – for example, a loop that never terminates or when the operations
performed in the loop leads to an empty structure. To help in avoiding these problems Meyer
uses loop invariants. Loop invariants define properties that are expected to hold in every
loop iteration. For example, if a loop is defined to empty a stack instance, then a loop
invariant would state that at the beginning of every loop the stack is not empty. Another
invariant would be to check that at the end of the loop the stack is empty.

By emphasising the use of the four different types of assertions as an aid for avoiding large
amount of conditional checking, Design by Contract provides a methodology to increase
reliabilty of the software [Mey97].

The application of Design by Contract in Eiffel produced good results when compared
to the simple propositional assertions provided by programming languages. Hence, a
number of projects have been undertaken to port the Design by Contract principle into
other languages. Some of these projects are Jass (Java with Assertions) [BFMW01], iCon-
tract [Kra98], .NET Contract Wizard [AS01], Spec# by Microsoft [BRLS04], Contract in
C++ [PP99] and a simple implementation of Design by Contract for C++ [Gue00].

3.1.2 Temporal logic assertions

Atemporal assertions are independent of time. In reactive and real-time systems, time is
very important. In order to expand an atemporal assertion to time, a new variable for time
has to be introduced in order to apply quantification. For example, a predicate P that is
expected to hold for the next 5 time units is defined as

∀x ∈ [t, t + 5] · P (x)

In the above formula the variable t represents time. Quantification over time in large prop-
erties and systems will become awkward to deal with. Hence, to surmount the intractability
arising by quantification over time, temporal logic was introduced.

Temporal logic introduces four new operators to atemporal logic, which substitute quantifi-
cation over and direct reference to time. The four operators deal with past and future time
and allow the specification of whether the property holds for the entire time or will even-
tually hold. The introduction of the operators is possible because temporal logic considers
the next possible value relationship between the domain and the range [BMN00].

24

Generally the future operators are denoted as G and F to mean the property holds for the
entire interval and will eventually hold in the future, respectively. On the other hand, the
past operators are denoted as H and P, where H implies that the property was always true
in the past and P indicates that sometime in the past the property was true. Formally the
operators can be defined as

Definition 3.1. (Always in the future.) A property P holds for the entire future.

GP (t)
df
= ∀t′ : TN · t′ > t⇒ P (t′)

Definition 3.2. (Eventually true in the future.) A property P will eventually evaluate to
true.

FP (t)
df
= ∃t′ : TN · t′ > t ∧ P (t′)

Definition 3.3. (Always true in the past.) A property P was always truein the past.

HP (t)
df
= ∀t′ : TN · t′ < t⇒ P (t′)

Definition 3.4. (Sometime in the past.) A property P was truesometime in the past.

PP (t)
df
= ∃t′ : TN · t′ < t ∧ P (t′)

Temporal logics can be categorised as either linear or branching. Linear temporal logics
consists of the subset of operators and transitions which have only one possible next or
previous value. On the contrary, branching refers to the subset of logics where the previous
or next values are determined by the input formulae. When the previous value is linear the
logic is said to be left linear temporal logic, while if it branches then it is left branching.
Right linearity and right branching refer to the next value [BMN00].

Figure 3.1: Linear and branching temporal logic diagram

Temporal invariants

Class invariants are atemporal, therefore, they lack in providing a mechanism to properly
handle satisfiability related to time. Temporal invariants introduce four quantification
operators over class invariants – always, eventually, never and already [MV04, GM03].

25

An “always” valid invariant is similar to class invariant, however it enforces the invariant
check at the termination of the program if the instance is still in memory. An “eventually”
valid invariant is an assertion that is expected to become valid during the instance execution.
In other words, it must become true before the instance is deleted from memory. The
“never” valid invariant is opposite to the “always” valid, thus, it must never evaluate
to true during the class execution. The last type of invariants are the “already” valid
invariants. “Already” valid invariants ensure that before executing some particular task
a number of required tasks has been completed. For example, before reading a file an
“already” valid invariant might assure that the file is first opened.

3.1.3 Interval temporal logic

Interval temporal logic extends propositional logic by defining a temporal structure that
is bound in the past, unbound in the future, discrete and linear. The temporal structure
measures time in terms of intervals, which provide a higher degree of abstraction; hence
leading interval temporal logic to be ideal for specifying real-time systems in which time
plays an important role.

The new operators introduced by interval temporal logic are: next (©(φ)), always (2),
eventually (3) and chop (̂). The “next” operator states that in the next interval the
property enclosed in the brackets evaluates to true, this is different from the next operator
in propositional temporal logic where it states that the property is true in the next
evaluation sequence.

The operator “always true” states that the formula following the operator should never
evaluate to false. The “always” operator also states that its truth should hold in all pos-
sible subintervals within the observation interval, whereas the “eventually true” operator
indicates that the formula will become true before the end of the interval.

The “chop” operator1 was first introduced in Choppy logic by Rosner and Pnueli [1986] as
an extension to propositional temporal logic and is a binary operator. The “chop” operator
allows an interval to be subdivided into any arbitrary two subintervals, where the left-
hand side of the operator is satisfied in the first subinterval and the remaining part of the
expression is satisfied in the second interval.

Finally interval temporal logic introduces an operator to measure the length of interval,
Len(I). The operator returns the number of state transitions in the sequence enclosed
by the interval. This endows the notation with the ability to determine and specify the
duration of the observational intervals.

1The chop operator is defined formally in Definition 2.13

26

3.2 Related projects

The weaving of temporal based properties with application code has been under consider-
ation for quite a long time. This section discusses some of the projects and compares them
to the framework described in this dissertation.

3.2.1 Eagle Flier

The Eagle project consists of a general framework providing its own logic (named Ea-

gle), which monitors a program on state basis [BGHS04a, BGHS04b, BGHS03]. The Ea-

gle logic is rich enough to allow other temporal and real-time logics to be expressed on
top of the notation. The logic also endows the framework with the capacity of performing
checks without storing any execution traces.

The Eagle framework is based on the MetateM project. The major difference is that
MetateM builds traces state-by-state, whereas Eagle checks traces state-by-state. There-
fore, the Eagle framework avoids the use of expensive operators such as backtracking and
loop-checking. The framework can be used with any logic notation, given that the logic
can be translated into Eagle logic underneath.

The logic consists of a set of primitives which in combination with recursive parametrised
equations and minimum/maximum fix-point semantics of three temporal operators can be
used to construct formulae. The temporal operators provided are “next-time”, “previous-
time” and “concatenation”. The “concatenation” operator is similar to the “chop” opera-
tor (Definition 2.43). As with temporal logics the Eagle logic is extended with the until
and unless operators.

The generalisation of the Eagle framework makes it more expressive and powerful when
compared to the Deterministic Discrete Duration Calculus Assertions (D3CA) framework
presented in this dissertation. However, D3CA uses intervals to determine property satis-
faction, thus making it ideal for real-time and reactive systems.

An outstanding difference in the implementation of Eagle when compared to D3CA is
the explicit specification of whether a property is a safety or a liveness property. The
necessity of such explicitness arises from the ambiguous use of false. In safety properties
the boolean value false indicates that the property failed to be satisfied. However, in a
liveness property the value false can indicate either the property has not been satisfied yet,
or that the property failed to be satisfied. In D3CA only safety properties are considered.
However, the “eventually” (3b) operator is introduced (as one of the extensions to the logic)
to allow certain liveness properties.

27

Table 3.2 summarises the equivalences and differences between the Eagle and D3CA.

Eagle D3CA

Eagle logic statements. QDDC statements.
Eagle provides a platform for using
different logics.

Deterministic QDDC specific frame-
work.

Eagle logic is a point logic (like
LTL)

QDDC is an interval temporal logic.

No execution traces are stored. No execution traces are stored.
Applies a state-by-state concept. Adopts the synchrony hypothesis.
Deterministic execution. Deterministic execution.
Evaluates properties by expressing
them into simpler formulas.

Evaluates properties by expressing
them into simpler formulas.

Explicit description of liveness and
safety (using min/max prefixes).

Implicit description of liveness and
safety (depending on the use of
“eventually” or not).

false meaning depends on whether
a liveness (“always”) or safety
(“eventually”) is used.

false has only one meaning – the
property was not satisfied.

Minimal separation of concerns. Applies separation of concerns by
defining properties in a separate
XML file.

Combined with test cases generator
(Extension [ABG+04]).

Testing is performed manually or
during actual system execution.

Table 3.2: Eagle vs. Deterministic Discrete Duration Calculus Assertions

3.2.2 Java-Monitoring and Checking (Java-MaC)

Java-MaC is a prototype implementation of the more generic Monitoring and Checking
(MaC) framework [KKL+01]. The section succinctly describes the MaC framework and
later compares it with D3CA framework.

The MaC architecture, depicted in Figure 3.2, consists of two phases. The phases are
referred to as static and run-time.

During the static phase the MaC architecture generates three modules that are used to
monitor and check the program. The first module is a filter that observes changes in the
program variables and reports the change to the second module, which identifies interesting
events. The filter also acts as a mapping mechanism between the implementation variables
and the high-level variables used in the formal specifications.

In MaC, formal specifications are described in two languages, primitive event definition
language (PEDL) and meta event definition language (MEDL). The usage of two separate
languages aid in separating concerns related to the high-level end of specifications and the

28

Figure 3.2: Overview of the MaC architecture [KKL+01].

low-level end of implementation.

The event recogniser is defined over PEDL-defined properties. On event recognition, an
event instance is initialised and time-stamped. The event instance initialisation consists
of the trace that caused the event together with a related value. The value of the event
is then used by the run-time checker to determine the state’s validity. The time-stamp is
used to reflect the time when the event has been raised. The timestamp reflects the time
in relation to the monitored program.

The run-time checker evaluates the system description described in MEDL with the event
values received. When a property is not satisfied the run-time checker takes care of reporting
the issue.

The run-time phase caters for execution of the system and performing the process of infor-
mation gathering and flow between the different MaC modules.

MaC architecture and D3CA framework have a number of similarities. Some of these are the
use of three-valued logic variables, a mapper from implementation variables to specification
variables and two phases of execution. The static phase is similar to the weaving performed
by D3CA. MaC and D3CA generate the validation engine from a properties description file.
The run-time phase where low-level changes are reported to the high-level checker is also
quite similar. However, the MaC filter watches for changes in variables and calls/returns
to/from functions, whereas the D3CA framework requires the user to specify the interesting
points of observation.

Although the general architecture of D3CA and MaC is similar, both frameworks approach
the solution from different angles. The MaC framework provides two description languages
to specify the properties. The use of different languages and the duplication of property

29

specification becomes cumbersome in maintaining large systems. On the contrary, the use
of QDDC properties in D3CA is effortless.

The property checker provided by MaC and D3CA also differs. In MaC the checker program
is a separate process which communicates with the program using the TCP protocol. The
separation of the validation engine from the system lessens the space and time requirements
of the system. Nevertheless, it removes the direct synchrony provided by D3CA between
current state in implementation and automata state.

MaC D3CA

Uses two languages PEDL and
MEDL to formally define the sys-
tem.

Uses only QDDC for specifying
properties.

Programming language independent
framework.

Programming language independent
framework.

Linear Temporal logic Interval temporal logic.
Executes remotely over TCP. Part of the program execution code.
Uses dedicated language Uses programming language to-

gether with XML.
Thread safe. Current implementation is not

thread safe.
Uses three-valued logic variables. Uses three-values logic variables.
Two phases: static and run-time. Two phases: pre-compilation and

run-time.

Table 3.3: MaC vs. Deterministic Discrete Duration Calculus Assertions

3.2.3 Temporal Rover

Temporal Rover is a propriatary project by Time-Rover. The project consists of three
modules, Temporal Rover which performs run-time checking, DBRover which allows remote
monitoring and ATG-Rover, which generates test cases for the high-level specifications being
tested.

Temporal Rover specifies the properties to be observed in linear-time temporal logic (LTL)
and metric temporal logic (MTL) [Dru00, Dru01, DF04]. LTL is used to specify the prop-
erties under test, however it lacks an adequate representation of time. To equip Temporal
Rover with relative or real-time constraints, MTL is used in conjunction to LTL. The use of
two temporal logics contrasts with D3CA, which through the use of Discrete QDDC attains
both time description and most of the power endowed by LTL. Nevertheless, MTL endows
Temporal Rover with the ability to define properties in bounded time.

The properties are expressed as commented assertions. The logic used for describing the
assertions does not provide adequate interval containment, hence the assertion has to be

30

Temporal Rover D3CA

Linear Temporal Logic statements. QDDC statements.
LTL to explicit automata leading to
exponential growth.

QDDC to symbolic automata lead-
ing to fixed sized automata.

Assertions as comments. Assertions as comments.
Comments are converted to code in
a new and identical file.

Comments are converted to code in
a new and identical file.

Clock on call to assign. Clock on call to synchronise.
Throws exceptions. Reports error but can easily be en-

hanced to throw exceptions.
Support validation on separate pro-
cesses using DBRover.

Only synchronous (same thread) val-
idation is provided.

Assertions execute every cycle
whether or not an exception occurs
(can huamper performance).

Assertions execute every cycle if the
assertion is valid for the observa-
tional interval, whether or not an ex-
ception occurs (can hamper perfor-
mance).

Handles non-determinism Non-determinism is not supported
through QDDC restrictions.

Table 3.4: Temporal Rover vs. D3CA

placed where their observation starts. Temporal Rover utilises a pre-compiler which given
an annotated program creates a similar copy with the assertions replaced with the respective
observation code.

The design of Temporal Logic allows non-deterministic or time-unbounded properties to be
specified, which increase the validation’s degree of complexity. The problem is surmounted
by having each property provide some of the four action conditions. The conditions available
are:

1. Successful so far – A log message indicating that the property has been satisfied till
now. This condition is useful when checking safety properties.

2. Failed so far – A message reporting that the property has not yet been satisfied. Ideal
for determining the satisfiability of liveness properties.

3. Finalise – A condition specifying the action to be taken when the assertion is consid-
ered to hold for the future once satisfied.

4. Next run – This condition specifies what property should be checked on the next
encounter with the assertion.

The first two conditions are provided to keep a trace of the properties that are being
evaluated and whether they are being satisfied or not. These properties are useful in
situations where the boolean value false has an ambiguous meaning. The third condition,
“finalise”, provides a suitable option for optimising validation. Consider a formula that is

31

expected to become true during the execution, 3Property. When the property evaluates
to true it is considered to have been satisfied. Therefore, in the “finalise” condition the
property can be forced to be removed from the validation system as it will always return
true. The “next run” condition allows the property to be rechecked on every encounter.
The ‘next” condition also allows a property to be checked once and pass control to another
assertion.

A dissimilarity between Temporal Rover and D3CA is that the former provides remote
monitoring, which aims for embedded systems. In embedded systems, memory and pro-
cessing power are typically very small and limited. With the use of DBRover, Temporal
Rover splits the monitoring in two separate entities. The first entity runs on the embedded
system which takes care of computing small sub-property satisfaction and sending new in-
formation to the second entity. The second entity runs on a hosting PC, located anywhere,
and takes care of running the run-time checking.

Concurrent systems are a common trend in applications. Temporal Rover allows concurrent
systems to be specified, however this leads to race-conditions and deadlocks. Therefore
Temporal Rover extends the assertions language with the capacity of defining locks at
the specification level. The locks are used by assertions to check that while part of the
specification is holding a lock, no other concurrent section gets the lock in the meantime.

In Drusinsky [Dru00] the algorithm used by Temporal Rover to perform run-time is reported
to be of complexity O(n2) where n is the size of the temporal formula being checked.
Table 3.4 summarises the comparison between Temporal Rover and D3CA.

3.2.4 Runtime Monitors Assertions (RTMAssertions)

Most of the work in validation consists in defining a framework for verifying properties at
runtime, which provides its own mechanism for adding temporal properties and observation
points. Thaker [Tha05] shows how temporal logic assertions can be integrated using tradi-
tional assertions and aspect-oriented programming, which developers of large scale systems
are already used to.

LTL properties can be classified as past or future. Past properties require to keep infor-
mation about the state variables as they go along. An example of a past property is HP

which states the “the property P must have been always true in the past”, Definition 3.3.
On the contrary, future properties tend to specify the expected behaviour of the system. In
most of the cases, future properties are easier to evaluate because once initialised they can
constantly be checked for validity. An advantage of future properties over past properties
is that no extra space is consumed for storing a trace of the execution. Thaker [Tha05]
concentrates on future properties, although states that the same approach can be also taken

32

for the past properties.

When performing validation, it is important to specify what defines a state. In RTMAsser-
tions, a state is defined as the tuple (interesting point, {variable values}), where the in-
teresting point is defined by an annotation that breaks the program execution to perform
validation. The set of variable values passes the current state to the monitoring assertions.

An emerging technique for separating different concerns is Aspect-Oriented Programming
(AOP). AOP allows aspects that cross between execution points to be defined separately
and then through annotations dynamically weaved into the targeted source code. LTL
properties tend to stand globally over the system, therefore AOP is a good technique for
providing a two layer programming; the The lower layer being the actual implementation
and the top layer representing the system in LTL formulae.

The top layer of RTMAssertions is composed of two modules. The first module converts LTL
formula into a representative Abstract Syntax Tree (AST), which is then dispatched to the
second module. The AST is constructed by using standard compiling techniques over LTL
formulae. The second module generates an RTM tree equivalent to the AST received. The
RTM tree is then combined with an RTM framework, which provides the implementation
of the RTM tree nodes. The coalescence of the tree, framework and program source code
is performed by the AOP weaver.

Figure 3.3: Evaluation decomposition of begin(P)

RTMAssertions are evaluated by initially decomposing them into tangible subformulae,

33

mainly to their atomics, Figure 3.3. Starting from the atomics leaves of the RTM tree, and
moving back to the original formula parent node of the tree, the formulae are evaluated
using the current system state variable values. The result of the formula evaluation can be
either one of the traditional boolean values true or false, or pending, that is the formula
cannot yet determine its final result. A formula is considered to be valid only if at the end
of the execution its value is true.

Thaker [Tha05] has extended the system implementation with Java PathFinder, a model
checker. The final results of RTMAssertions and Java PathFinder were compared and it
was found that RTMAssertions are limited in their coverage. The results also showed that
if the assertions are well placed around the code, the result over a single execution path is
nearly equivalent to that of a model checker over the same execution path.

RTMAssertions and D3CA are very similar. These similarities are outlined in Table 3.5.
The main difference between the two is that RTMAssertions uses AOP to achieve separation
of concerns while D3CA uses a simple AOP like engine. Another difference is in the logic
used to represent the system. RTMAssertions uses LTL which defines time as unbounded
in the future, hence all properties must be constantly checked. On the contrary, D3CA
define properties over intervals, allowing properties to be checked within their respective
interval.

RTMAssertions D3CA

Linear Temporal Logic statements
are used to define properties.

QDDC statements are used to define
properties.

LTL statements represented as AST. QDDC statements are converted to
Lustre expressions that are stored as
AST.

Assertion point defined as a mark-up
annotation.

Assertion point defined as a mark-up
annotation.

Assertion comments are converted to
code in a new and identical file.

Assertion comments are converted to
code in a new and identical file.

Uses AOP tools. Defines its own weaving engine.
Does not check for order of events –
it is assumed in logic.

Checks for order of events us-
ing interval concatenation operator
(“chop”).

Table 3.5: RTMAssertions vs. D3CA

3.2.5 Other projects

The three projects mentioned above are considered to be on the same lines of D3CA.
However, a number of other projects have been undertaken in the attempt to define a
generic framework for using formal specifications at run-time. This section describes some
other validation projects in a succinct way.

34

Temporal Specifications in Parallel Debugging. The projects described above, as
well as D3CA, require that the developer and the tester either be the same person or the
tester has a good knowledge of the development process. They also increase the space and
time requirements of the system. Kusper et. al. [KSL02] proposed the idea of using runtime
assertions as part of a parallel debugger.

This idea consists in creating a program like structure which describes a state machine
representing the system. Each state consists of the formulae that are expected to hold
inside the state. During the debugging stage the debugger executes the program as usual
in parallel to the state machine program. This allows both the visualisation of the program
states together with an underlying runtime verification on the program.

The benefit of the approach is that the program tested and the program released are iden-
tical. It also releases the tester and developer from the mathematical knowledge imposed
by temporal logics because the temporal specifications can be prepared by a third person.
Therefore, the tester can concentrate in detecting errors, which may differ from the user’s
actual needs.

Java PathExplorer (JPaX). JPaX is a large project carried out by NASA in the at-
tempt to define a framework that uses temporal logic specifications as part of runtime
debugging [HR04]. JPaX modifies the Java bytecode through JTrek such that whenever
observation points are encountered, an execution trace (a stream of events) is generated and
submitted to the JPaX validation engine either through a plain file or over sockets. The
validation engine checks the execution trace received with the temporal logic specifications
provided. An additional feature supported by JPaX is concurrent analysis, which checks
the execution trace for possible deadlocks and race conditions.

RT-MaC: Runtime Monitoring and Checking of Quantitative and Probabilistic
Properties. RT-MaC extends the MaC framework with time-bound temporal operators.
The introduction of time-bound operators endow the MaC framework with the ability to
specify quantitative properties required by real-time systems [SLS05]. MaC handles concur-
rent systems that introduce non-determinism. Non-determinism in real-time specifications
is a complex issue to handle. RT-MaC surmounts the problem by allowing the use of
probabilistic properties, on which it applies statistical analysis.

The MaC framework uses two languages, PEDL and MEDL, to describe properties, sec-
tion §3.2.2. PEDL is a low-level specification language thus it is tied to the implementation
and requires no changes. On the contrary, MEDL is a high-level specification language
and is used to define mathematical-like notation. MEDL lacks in supporting time-bound
operators that allow quantitative properties to be defined. RT-MaC extends MEDL with
time-bound opertors similar to Metric Temporal Logic (MTL).

35

RT-MaC is more expressive and flexible than D3CA. However, the use of MTL operators
and the lack of supporting domain specific notation leads RT-MaC to be more difficult to
use.

Monitoring Algorithms for MTL Specifications. Thati et. al. [TR04] presents a
solution for using MTL properties at runtime without having to store the execution trace.
That is, events are consumed whenever they are raised therefore releasing the application
from having to store the execution trace. This produce/consume procedure is similar to
the parallel debugging project.

The MTL properties are translated into executable code through the use of a tableaux,
where each operator is represented by an algorithm. The use of a tableaux and the nature
of MTL properties leads the monitoring system to grow exponentially with the size and
number of MTL properties. The exponential growth contrasts with the linear growth of
D3CA. D3CA achieves a linear growth by converting the QDDC formulae into symbolic
automata.

Jassda. The Java library implementing Design by Contract, Jass, lead reserchers to try to
develop something more robust. The first attempt was JassTA (Jass with Trace Assertions),
which like Temporal Rover and D3CA, uses a pre-compiler to integrate specifications inside
the execution code. However, as resulted from all the projects using a pre-compiler, the
space and time requirements of the system under test increase drastically.

Jassda manages to reduce the space requirements of the observed system through the use
of CSP channels that enhance the observing system with a suitable mechanism to describe
concurrent systems. The CSP channels are integrated with the Java Debugger, hence, do
not form part of the monitored system. A drawback of Jassda is that it does not provide
time operators which are of critical necessity for checking real-time systems.

Runtime verification of Concurrent Haskell programs. Haskell is a lazy functional
language that is hard to debug. The project proposes an LTL library which simplifies the
debugging of concurrent Haskell programs [SH04]. The developer is in charge of defining
the LTL properties as Haskell programs, and to insert verification points whenever they are
necessary. Relying on the expressiveness of Haskell, the LTL library endows the developer
with the ability to dynamically insert new LTL properties at runtime. The library in subject
provides a powerful debugging mechanism, which on violation of an error returns a trace
of the execution.

36

3.3 Monitoring-Oriented Programming (MoP)

A number of validation projects have been undertaken in the last decade. Each project pro-
vides its own mechanism and engine to integrate and evaluate formal specifications during
the system execution. Chen and Roşu [CR03] suggest a generic and abstract framework,
which attempts to simplify the integration of formal specifications written in any math-
ematical notation into monitoring code. The framework emphasises the concept of using
monitors to validate program executions, hence, its name Monitoring-Oriented Program-
ming (MoP).

MoP integrates the monitoring system without modifying the host language and compiler.
This issue is similar to D3CA and Temporal Rover but different from Java-MaC and Java
PathExplorer that modify the compiler generated bytecode.

The integration of formal specifications as runtime monitors is likely to be required only
during development and testing phases, and might not be present in the final product. To
simplify the move from testing to release version, MoP suggests that formal specifications
be introduced as annotations. An annotation is a tuple [CR03] consisting of

{logic specifier, logic specification, failure handler}.

The use of annotated tuples is similar to D3CA and other validation tools, although the
logic specifier entity in the annotation tuple is not required because they handle a single
logic notation.

MoP concept enforces the need of a basic platform on which to define any logic notation.
The platform endows the framework to be generic, flexible and provides a simple specifi-
cation language, mainly primitive predicates and formulae. D3CA also provides a similar
platform by using a simple simulated Lustre environment that allows any logic notation to
be encoded into symbolic automata with a predefined cost. MoP separates the monitoring
code in two modules. The first module is the “code generator”, which converts the supplied
observation formulae into their representative code recognisable by the second module, the
“logic engine”. The code generator in D3CA consists of two modules; the parser generating
the abstract syntax tree of the formula that is used by Lustre to evaluate property validity.

MoP specifications separates the two concepts of generation and evaluation. The separation
of concepts leads MoP to be more flexibile in the integration of new logic notations. MoP
flexibility is furtherly enhanced by allowing the interaction between the code generators and
logic engines free from any standardisation. D3CA provides a similar separation by having
the Lustre platform for low-level integration and the QDDC logic engine for defining the
formal specifications.

37

Figure 3.4: MoP [CR03] and D3CA workflow comparison.

38

An important issue when using monitors for observing system behaviour is whether to
use inline or offline monitoring. Inline monitoring is when the annotations are replaced
with the monitoring program code by using the monitored system resources. The benefit
of using inline monitoring is that the actual program state is used during the evaluation
and the falsity of a property is immediately reported. The major disadvantage of inlining
is that deadlocks or unexpected terminations are not triggered by the monitors. In most
systems, especially embedded systems, the resources are limited and therefore inlining is
infeasible. Offline monitoring allows the monitoring code to run as a separate entity from
the monitored system. In offline monitoring the annotations are replaced with code that
transmits the state to the monitoring program. An advantage of using offline monitoring is
that it allows multiple programs to be checked simultaneously, which is ideal for concurrent
systems where the execution path is non-deterministic. Nevertheless, it requires adequate
program state representation in order to identify the instance when the program failure
occurred. MoP does not specify whether the monitors generated by the code generators are
inline or offline but rather leaves the decision to the person designing the code generator for
the specific logic. The reason for no specification about the type of monitor is that each logic
is specific to a particular domain, therefore whether inline or offline monitoring is chosen
cannot be predetermined. D3CA is specific to deterministic QDDC properties defined as
inline properties. In order to use the determinstic QDDC presented later, Section §4.1,
some of the notation semantics require to be changed.

The motivation behind MoP is to provide a general framework that can be considered as
a light-weight formal method. Formal methods tend to analyse a system from all possible
execution paths and view, therefore they are expensive and highly non-scalable. MoP
provides a light version of formal methods where the analysis is performed on a single
execution path and at runtime. The disadvantage is that although the verified path can be
guaranteed to be correct, the system in general still cannot be guaranteed. On the other
hand, scalability is obtained as a payoff of the approach.

From the above description of the MoP conceptual framework and its parallel relation
with D3CA, it is clear that the foundations of D3CA maps exactly to the MoP concept,
Figure 3.4. Therefore, D3CA can be considered as a specific implementation of MoP with
Deterministic QDDC as the testing logic notation.

39

Part II

Discrete and Deterministic subset

of Duration Calculus Assertions

(D3CA)

40

Chapter 4

QDDC to Symbolic Automata

One of the solutions to model a system is by modelling it as automata. This chapter
outlines the approach for defining a system model using automata generated using QDDC
properties.

The first step towards defining runtime monitors, is to translate the formal specifications
into automata. A common technique for defining (interval) temporal logic monitors as
automata is to provide a number of transformation rules. The rules describe how the
notation can be simplified in order to reflect program execution sequence. A detailed
analysis of how logic notation semantics can be used to define the transformation rules
is provided by Geilen [Gei01]. Following the principle proposed by Geilen and the work
done by Gonnord et al, the monitors introduced in this dissertation are defined as symbolic
automata. A symbolic automaton is a collection of formulae that represent the automaton
states.

In section §2.2, Duration Calculus notation has been restricted to its decidable subset,
QDDC. The non-determinism of QDDC makes it inappropriate for runtime monitors [GHR04]
because handling non-determinism requires elaborated solutions. Non-determinism han-
dling requires complex solutions because at a non-deterministic branch the correct execu-
tion path must be chosen before knowing what occurs in the future. Henceforth, to simplify
the adoption and integration of QDDC monitors, the monitors presented are restricted to
the deterministic subset of QDDC.

As to avoid QDDC non-determinism, we propose a further restricted Duration Calculus
notation, which is deterministic and discrete. The obtained notation is defined in terms of
QDDC and its execution semantics are provided in Lustre syntax. The synchronous data-
flow programming language Lustre is used for the semantics as it allows resources required
by monitors to be predetermined. The chapter provides a simple introduction to Lustre as
to facilitate the understanding of the semantics presented.

41

4.1 Deterministic QDDC

The non-deterministic nature of QDDC requires the monitoring system to be equiped with
knowledge about the future. During software executions states are created once they are
entered, therefore, the past is known. The restriction of having only past values leads us
to restrict QDDC to its deterministic subset.

It is necessary to define the concept of propositions that is the bases of the deterministic
QDDC notation.

Definition 4.1. (Propositions.) Let us first define propositions as the bases of the notation.
A proposition is a simple statement that can be either true or false.

P ::= false
| true
| p (p ∈variable 7→ B)
| ¬P (notP)
| P ∨ P (P or P)
| P ∧ P (P and P)
| P ⇒ P (P implies P)
| P ⇔ P (P iff P)
| P ⊗ P (P xor P)

The first restriction over QDDC is that the point interval, dP e0, can only be used at the
boundaries of intervals.

Definition 4.2. (True at the beginning of the interval.) A proposition, P , evaluates to
true at the beginning of the interval.

begin(P)
df
= dP e0̂tt

Definition 4.3. (True at the end of the interval.) A proposition, P , is true at the end of
the interval.

end(P)
df
= tt̂dP e0

The QDDC length (η 6 c), the number of true evaluations of P (ΣP 6 c), constantly true
for non-point intervals (ddP e) are deterministic, thus they are left in our restricted subset.
Here it must be noted that the set of comparison operators is restricted the less than (<),
less than or equal to (6) and equal to (=) operators.

Definition 4.4. (Age of a proposition.) The age of a proposition, P , is determined by the
number of consecutive true values at the end of the interval.

age(P) 6 c
df
= ¬(tt̂ ddP ee ∧ η > c)

42

Definition 4.5. (Eventually true in the initial prefix.) A duration formula is expected to
become true during the initialisation of a subinterval.

3bD
df
= λI :Intv ·D t̂t

Definition 4.6. (True for every initial prefix.) A duration formula is expected to be true
during the initialisation of a subinterval.

2bD
df
= ¬3b¬D

The chop operator in QDDC is non-deterministic as the interval division cannot be pre-
determined. Nevertheless, the chop operator can be used deterministically [GHR04]. The
chop is deterministic when the interval division is determined by the first false evaluation
of the right hand side expression.

Definition 4.7. (then operator.) The “then” operator provides a deterministic chop op-
erator where the LHS of the operator is only executed on the first false occurrence of the
RHS.

The definition of the “then” operator is composed of two expressions separated with the or
operator. The first expression states that the formula D1 is initially constantly true. After
an interval of at least length 1 time unit, the formula D1 evaluates to false for the first
time. The instance when it evaluates to false, D2 must evaluate to true.

In discrete-time intervals, the minimum length of an interval is of 1 time unit. Therefore,
on the occasions where formula D1 is false at the beginning of the interval, the first ex-
pression evaluates to false irrespective of D2’s value. To counter for these situations, the
definition is extended with the second expression. The second expression states that if D1

is initially false, then D2 must be true for the entire interval.

¬D1(J ;m)

2bD1(J) 2bD2(m;K)

¬D1(Ib)

2bD2(I)

Figure 4.1: Block diagram for then operator

The “then” operator defined in QDDC terms can be misleading thus it is defined formally.

D1 then D2
df
= λI :Intv · ∃J ,K :Intv · ∃m ∈ I ·

I = J ;m;K ∧
(
2bD1(J) ∧ ¬D1(J ;m) ∧2bD2(m;K)

)
∨(

¬D1(Ib) ∧2bD2(I)
)

43

Deterministic QDDC formulae can be combined using boolean logic operators.

Definition 4.8. (Deterministic QDDC expression.) An expression consists in the applica-
tion of basic logic operators on deterministic QDDC formulae.
For any two formulae D1 and D2

¬D1
df
= λI :Intv · ¬D1(I)

(D1 ∨D2)
df
= λI :Intv ·D1(I) ∨D2(I)

(D1 ∧D2)
df
= λI :Intv ·D1(I) ∧D2(I)

(D1 ⇒ D2)
df
= λI :Intv ·D1(I)⇒ D2(I)

(D1 ⇔ D2)
df
= λI :Intv ·D1(I)⇔ D2(I)

A number of derivable operators can be introduced without loss of determinism. The first
derivable operator is the “eventually true”, whose semantics are restricted to the “eventually
true in the initial prefix” as to keep determinism. Here it must be noted that although the
“eventually true” operator can be defined with minor losses, the “always” operator cannot
be introduced because it requires fresh counters to be created for each subinterval.

Definition 4.9. (Eventually true.) A deterministic QDDC formula must evaluate to true
at least once within the interval.

3D
df
= dd¬DêdDe0 ̂tt

Definition 4.10. (True for entire interval
(
ddP ee

)
) A state expression P holds for the entire

interval including at the end point.

ddP ee df
= ddP êdP e0

Using the initial deterministic subset it is defined as,

ddP ee df
= ddP e ∨end (P)

Definition 4.11. (Must hold before
(
<̃

)
) Given any two basic deterministic QDDC for-

mulae F1 and F2, F1 <̃ F2 states that F1 must evaluate to true exactly one step before
F2 evaluates to true.

F1 <̃ F2
df
=

(
dF2e0 ⇒ d−F1e0

)

44

Definition 4.12. (For at least
(δ←↩

)
) Given any two basic deterministic QDDC formulae F1

and F2, F1
δ←↩ F2 states that from the first instance formula F1 becomes true and remains

true then F2 must also hold for at least δ steps.

F1
δ←↩ F2

df
= 2(d¬ − F1e0̂(ddF1ee ∧ η < δ)⇒ ddF2ee)

Definition 4.13. (Consecutive repetition.) Consider a formula D that defines a cyclic
behaviour. Given that the behaviour can be defined recursively then the formula can be
said to apply for a number of times.

D1 df
= D

Dk df
= D then Dk−1

Definition 4.14. (Kleene Plus Closure.) Sometimes it might be necessary that a duration
formula is checked repeatedly for a number of times. The Kleene star closure specifies that
a formula can hold for an unspecified number of consecutive intervals.

D+ df
= ∃n : N · n > 1 ∧Dn

4.2 Lustre environment

Lustre is a dataflow synchronous language [HCRP91]. Synchronous programming languages
apply the synchrony hypothesis, which states that each reaction is performed instanta-
neously to external events [Hal98, BG92, Hou02]. In other words, the hypothesis states
that programs and actions are considered to be atomic and take no time to execute.

Dataflow programming languages are ideal for implementing reactive and real-time systems
because people from these fields are traditionally oriented in using network of operators
for transforming flows of data [Hal98]. However, Lustre provides a restricted subset of
dataflow primitives and structures. This subset consists of memory bounded constructs as
to allow memory and time requirements to be predetermined and to be easily simulated
in other languages.

For better understanding of algorithms presented in this report, a fragment of Lustre is pre-
sented in this section. It is beyond this section’s scope to discuss Lustre as a programming
language. Details on Lustre can be obtained from [HCRP91, Hal98, BCE+03].

The synchrony hypothesis refers to time where the definition of time must include two
aspects from the three charateristics of a chronological clock. A chronological clock provides
partial ordering of events, simultaneity of events and delays between events [LG91]. Lustre

45

as a synchronous programming language provides a concept of clock that uses the program
cyclic behaviour to define clock ticks (1 time unit). This type of clock is referred to as
the basic clock. The binding of clock ticks with the programs cyclic behaviour allows the
n th tick to provide the n th system state configuration, enforcing the no time concept
of the hypothesis.

Lustre provides three basic data types: boolean, integer and real. Each variable is required
to be declared and to be associated a data type on declaration. Expression variables are
declared as “X = E” where X is the variable name and E the equation (expression) that
provides the only possible definition for variable X.

A number of basic operators are provided, which include the traditional operators on data
types, relational operators and the if..then..else conditional operator. The set of op-
erators also contains some special operators, such as the “previous” and “followed by”
operators amongst others.

Definition 4.15. (Previous.) The “previous” (pre()) operator returns the value of the
state variable at the previous cycle except at the start of an interval where the previous
value of a state variable is undefined. Formally,

pre(X)
df
= λt : TN ·

{
X(t− 1) t > 0
undefined t = 0

Definition 4.16. (Followed by.) The second special operator is the “followed by” (→).
The operator is used to concatenate two streams together, where the first stream is taken
as an initial value of the second stream.

X → Y
df
= λt : TN ·

{
X(0) t = 0
Y (t) t > 0

Example 4.17. Consider a simple counter that add 1 to the previous value of a variable X.
For the purpose of illustrating the effects of using the “followed by” and pre() operators,
the previous value of X is initialised to 1.

X = 1→pre(X)+1

cycle 0 1 2 3 4

X 1 2 3 4 5

pre(X) undefined 1 2 3 4

Lustre allows well initialised memories to be used. To simplify the reading of algorithms,
the pre operator is taken to be a well initialised. When the pre() is applied over a boolean
variable then the initial value is taken as false while for integer variables the initial value
is taken as 0.

46

Figure 4.2: Counter example in Lustre with variable initialisation

In D3CA, Lustre is used to simplify the validation process into an infinite loop over the se-
quence of dataflow primitives and structures. Also, by simulating Lustre in D3CA allows the
adoption of Gonnord et. al. transformations – from QDDC to symbolic automata [GHR04].

4.3 Helper functions

Programming languages, including Lustre, provide propositional logic, and some logic and
numeric operators, which are enough to directly translate determinstic QDDC to their
sematic code. Hence, a number of generic helper functions are defined as an aid to simplify
the translation process.

Definition 4.18. (after(p).) An important function in interval temporal logic is to
determine whether a state variable p is true or has been true at least once in the past. The
after(p) is lazily evaluated as,

after(p) = pre(after(p)) ∨ p

The after method returns true if the state variable P is true in the current clock tick.
However, some properties might be required to hold in the past for the current proposition
to hold. The after method would not directly suite this situation, therefore, a more
restricting after is defined next.

Definition 4.19. (strict after(p).) The state variable p has been true in the past.

strict after(p) = pre(p) ∨ pre(strict after(p))

Definition 4.20. (always since(p, b).) A state variable p has been true for the entire
interval started at clock cycle b. The formula is lazily encoded as,

always since(p, b) = (pre(always since(p, b)) ∨ b) ∧ p

Definition 4.21. (first(p, b).) The first method returns true only on the first oc-

47

currence of the proposition p from the start of interval, denoted as b. Defined in Lustre
as,

first(p, b) = if after(b)
thenp ∧ ¬(strict after(p))
else false

The above helper functions all return either true or false, nevertheless QDDC notation
makes use of summation hence requiring methods to return numbers.

Definition 4.22. (nb since(p, b).) The first method required is to count the number of
times a state variable is true within an interval. The counting is achieved as follows,

nb since(p, b) = if after(b) ∧ p

then pre(nb since(p, b)) + 1
else pre(nb since(p, b))

Definition 4.23. (age(p, b).) The age method determines the number of consecutive
clock cycles the state variable P is true.

The age(p, b) operator is evaluated as,

age(p, b) = if after(b) ∧ p

then 0→ pre(age(p, b)) + 1
else 0

Definition 4.24. (Rising Edge.) The rising edge operator indicates when the state variable
becomes truefrom false.

In Lustre syntax the function can be defined as,

rising edge(p) = if ¬(pre(b)) ∧ p

then true
else false

Definition 4.25. Distance between identical events. Some safety requirements require
that an event becomes true only if it has been false for a number of clock cycles.

The distance between identical events can be programmed as,

distance between events(D, δ, b) =
if rising edge(D) ∧ age(¬D, b) > δ

then true
else if D ∧ ¬(after(¬D))

then true
else false

48

4.4 Determinstic QDDC Operators Semantics

The logic tools provided by programming languages allows only evaluation of simple propo-
sitions. The following table shows how a proposition can be evaluated recursively in order
to determine its truth value. The column AP (I) shows how the value of property P is
obtained for interval I, where in the case of propositions it is a point interval referring to
the current clock cycle.

P AP (I)

p p

¬P not AP (I)
P1 ∧ P2 AP1(I) and AP2(I)
P1 ∨ P2 AP1(I) or AP2(I)
P1 ⇒ P2 not AP1(I) or AP2(I)
P1 ⇔ P2 (not AP1(I) and not AP2(I)) or (AP1(I) and AP2(I))
P1 ⊗ P2 (not AP1(I) and AP2(I)) or (AP1(I) and not AP2(I))

Using propositions and the helper functions introduced in the previous section the trans-
formation rules for the remaining deterministic QDDC notation can be defined.

49

Notation ANotation(I)

begin (P) after(AP (I) and Ib)

ddP e strict after(Ib) and pre(always since(AP (I), Ib))

ddP ee always since(P, Ib)

η 6 c nb since(true,Ib) 6c

ΣP 6 c nb since(AP (I), Ib) 6 c

age (P) 6 c age(AP (I), Ib) 6 c

end (P) after(Ib) and AP (I)
D1 then D2 AD2(first(not AD1(I), Ib))

D1 ∧D2 AD1(I) and AD2(I)
D1 ∨D2 AD1(I) or AD2(I)
¬D not AD(I)
3D if first(D, Ib)

then true
else pre(eventually(D))

D1
δ←↩ D2 if after(Ib) and age(true, Ib) < δ

then always since(D1 ∧D2, δ)
else pre(for least(F1, F2, δ))

D1 <̃ D2 if first(D2, Ib)
then if pre(D1)

then true
else false

else pre(hold before(F1, F2))

4.5 Conclusion

This chapter introduced a subset of QDDC notation restricted to deterministic operators,
together with their execution semantics. The chapter does not provide any proofs related to
the equivalence between our restricted notation and QDDC. The syntax of the synchronous
data-flow programming language Lustre has been introduced as a background for better
understanding of the notation semantics. Lustre notation is used extensively in the next
chapters.

The next chapter describes how the execution semantics presented here are used to monitor
systems during runtime.

50

Chapter 5

Validation Engine

This chapter builds on the deterministic QDDC introduced in the previous chapter by
describing a validation engine over the notation. The purpose of the validation engine is to
extract system states during runtime and determine their correctness. Correctness checking
is performed on a state-by-state bases by comparing the state with the deterministic QDDC
properties obtained from the specifications.

The validation engine is defined through three modules:

1. The initialisation of the deterministic QDDC formulae as symbolic automata;

2. The integration of properties inside the system code; and

3. The validation process during runtime.

5.1 Symbolic Automata Initialisation

Writing properties in mathematical notation is cleaner and easy when compared to nested
function calls. To keep validation writing as simple as possible, the formal specifications are
specified in a separate file using a suitable representation, for example using XML syntax.

The formal specifications are passed to the symbolic automata generator. The automata
generator output consists in a symbol table and a collection of Abstract Syntax Trees
(ASTs). The symbol table contains the variables used by the symbolic automata. While
the ASTs store a representation of the properties.

The most practical way of evaluating formulae is by evaluating the simplest parts first fol-
lowed by the application of operators over the results. This evaluation process continues to
evolve until the result of the original formula is obtained. Figure 5.2 depicts the evaluation

51

Figure 5.1: Abstracted view of the validation engine.

process of begin(P). From Figure 5.2 it is clear that ASTs are a suitable data structure
for storing symbolic automata.

Figure 5.2: Evaluation decomposition of begin(P)

5.1.1 Space complexity

A formula represented in an AST consists in a number of operators, represented by non-
leaf nodes, and propositions, the leaf nodes. Therefore, the amount of space required by
the AST representation is O(n), where n is the number of nodes. The linearity in space
complexity combined with the use of Lustre endows the validation engine with the capability
of predetermining memory requirements.

Example 5.1. Consider the simple property begin(P). Using the transformation rules
provided in Section §4.4, the property is transformed into after(b∧P). Thus the memory
required is,

52

space needed =


1 Boolean variable to store after result.
1 To store the b ∧ P result.
2 Boolean variables to store the propositions.

= 4 Boolean variables

Boolean variables are typically represented using a byte1, therefore, four bytes are required.
Applying some simple optimisations, the space required can be reduced to three bytes by
storing the b ∧ P value directly in the after variable.

Figure 5.3 illustrates the AST representing the formula.

Figure 5.3: AST representation of begin(P)

5.2 Evaluation Process

The heart of validation is the process of verifying formal properties using the current sys-
tem state. During the initialisation of the monitoring system the formal properties are
converted into symbolic automata. The symbolic automata are stored as Abstract Syntax
Trees (ASTs).

Evaluate(Symbolic Automaton)

1 for each node starting from the leaf nodes
2 do expression variable ← evaluation node expression
3 Symbolic automaton validity result ← root node value

A practical way of evaluating a composite formula is by determining the values of atomic
variables and then to apply operators over the obtained results. In the AST represen-
tation (Figure 5.2) the leaf nodes are the simplest to evaluate, as they are propositions.
After evaluating the leaf nodes, the parent nodes of the leaves can be evaluated. Lines 1–2
perform the evaluation process starting from the simplest evaluations and move up along
the tree hierarchy. The evaluation of the node expression is performed using the helper

1Some programming language defines boolean as bit, nevertheless, due to memory management tech-
niques a byte gets reserved.

53

functions, of Section §4.3, over the Lustre environment, Section §4.2. The property validity
is determined by the result of the root node evaluation.

Example 5.2. Consider an evaluation tree representation of the property ddP e then end(P),
Figure 5.4.

Figure 5.4: ddP e then end(P) – Evaluation tree representation

Starting the evaluation from the leaf nodes, the first evaluation to take place is to determine
P ’s value. For the scope of the evaluation, the value of P is taken as being constantly
true and the evaluation is taking place after the beginning to the interval.

Having determined the value of P as true, the evaluation process moves to the parent nodes.
The node at the first branch specifies that P must hold for the entire interval. Using the
execution semantics of Section §4.4, the node must evaluate the expression

strict after(b) and pre(always since(AP (I), b))

The function call strict after(b) returns true because it is not the first evaluation of the
property. always since(AP (I), b) also returns true as the value of P is assumed to be
constant. By anding the obtained results, the satisfiability of property ddP e is determined.
The next step is to evaluate the second branch. The evaluation of end(P) also results to be
valid.

Given the values of the two child branches, the evaluation of the root node can take place.
The then node is evaluated as AD2(first(not AD1(b, I)), I). The expression AD1(b, I)

54

is assigned the value of ddP e, which is true. Therefore, first(not AD1(b, I)) will return
false. The false value indicates the second interval has not yet been started, therefore, the
value of the root node is set to indeterminate. The value of end(P) associated with the
then’s AD2 parameter, is ignored. The result of the property satisfiability is indeterminate

because the first interval is still being satisfied.

5.2.1 Time complexity

The time complexity of the evaluation process consists on the number of nodes and the
total number of functions called. On the assumption that each node visit consists in at
least one function call then the time complexity is reducible to the number of function
calls. This assumption is likely to hold because the leaf nodes are normally compensated
by the indirect function calls.

#(node visits) 6 #(function calls)

The system time complexity is effected by an O(f), where f is the number of function calls.
Note that the evaluation time complexity also absorbs the cost of performing the function
calls.

5.3 Validation Process

The validation process consists in two modules: the monitoring system, and a communica-
tion interface linking the validation engine and monitoring systems, Figure 5.5.

Figure 5.5: System composition diagram

55

5.3.1 Monitoring System

The monitoring system consists in two modules: a run-time checker and the Lustre envi-
ronment. The run-time checker contains the list of the symbolic automata to be used by
algorithm Validate. The algorithm calls the evaluation process described earlier, which is
executed on the Lustre environment.

Validate

1 Stop system execution. // Required for variable integrity
2 Update non-expression variables
3 for each symbolic automaton
4 do Valid ← Evaluate(Symbolic automaton)
5 if Valid == false
6 then Error(Symbolic automaton)
7 Resume system execution. // On the assumption that the system

was not aborted due to errors.

The validation engine determines the current system correctness by analysing the current
system state. The state analysis is achieved by having the non-expression variables, the leaf
nodes, updated before computing the expression variables, the non-leaf nodes. During the
update it is important that the constant variables get updated too as to reflect the current
state with respect to the previous states, Figure 5.6. In algorithm Validate the updating
of variables is performed on line 2.

Figure 5.6: Lustre constant to system state relation

An important feature of validation is its ability to provide information about the system
state violating the specifications. Lines 1 and 7 in Validate ensures that if the system
state is incorrect it is immediately trapped and reported before it propagates. The breaking
of the system execution is also important to keep the validation variables integrity.

The core of validation is the evaluation of formal specifications over the current system state.
The monitoring system performs validation by traversing the list of symbolic automata and
for each automaton invokes the evaluation process, lines 3–6.

56

The monitoring system performs the above process for each new state encountered. The
use of Lustre environment for performing the validation endows the monitoring system with
the synchrony hypothesis. That is, assuming that the monitoring engine’s time is based
on the traversal of states than before performing the transition all properties has to be
checked. Flowchart 5.7 shows the execution flow of the monitoring system.

Figure 5.7: Validation process flowchart

5.3.2 Interface

The interface provides control over the monitoring system from the system under test. For
an appropriate control over the monitored system, three control methods are required:

1. A synchronising call to the monitoring system to synchronise the state with the current
system state;

2. Start/End the observation of a property; and

3. Update a variable to reflect new configuration.

The first control method, “synchronise”, is the validation driving mechanism. Whenever
the “synchronise” control is encountered during the system execution, the validation process
is performed. The second control instructs the validation engine that it must start or stop

57

observing a property. The last control passes the system state information to the validation
engine. The information passed is used during the variable update step, line 2 in algorithm
Validate.

Figure 5.8: Sequence diagram illustrating flow control between the validation engine and
the system.

5.4 Conclusion

This chapter detailed a validation engine for the discrete and deterministic subset of Dura-
tion Calculus. The validation engine has a space complexity of O(n) where n is the number
of subformulae to be evaluated. The time complexity of the system consists in a number
of iterations over the properties. Therefore, the time complexity is of O(n), where n is the
number of function calls required to determine a property validity.

Although the logic notation used within this dissertation is specific for the synchronous
evaluation, the validation engine presented is of generic nature.

58

Chapter 6

Prototypes of D3CA

Chapters 4 and 5 provide a theoretical design for a validation engine whose properties are in
discrete and deterministic subset of Duration Calculus. This chapter fills the gap between
the theoretical part and the actual implementation of the validation system.

This chapter details two implementation approaches to the validation engine, a raw ap-
proach and a “three state” approach.

The first approach is implemented using the C++ language. The implementation highlights
the difficulties that raise if the validation engine integration is performed as part of the
system code writing. Another point highlighted in the implementation is the difficulties
that raise when using the boolean value false to indicate that a property has not been
satisfied till now.

After detailing the C++ implementation, the theoretical framework is reimplemented in
C#. The new implementation uses 3-valued logic variables instead of the boolean variables.
The C# implementation provides an additional tool, which abstracts the user from the
validation engine function calls through the use of annotations by automating the weaving
process.

Before starting detailing the implementations, the transformation of the mathematical for-
mulae to the Abstract Syntax Trees (ASTs) data structure is provided in the next section.

6.0.1 Getting to AST

Abstract Syntax Trees (ASTs) are chosen because their structure perfectly reflects the way
a property is evaluated. In ASTs the leaf nodes cannot be decomposed further, therefore,
they are considered to be atomic, simple propositions. The relation between the AST data

59

structure and the way properties are evaluated is best described through examples. The
ASTs of the examples are illustrated in Figure 6.1.

Example 6.1. Consider the simple property begin(P). The property is evaluated by first
determining the truth of the propositions, P and b. The value of P is then passed to the
function after(P ∧ b), which will determine the property satisfiability.

Example 6.2. Now, consider the composite property ddP e then end(P). The evaluation
of the property is more complex due to the then operator. The then operator determines
the satisfiability of the property by evaluating the RHS of the property, in our case end(P).
So the root of the AST has to be set to the return of end that according tot he transfor-
mation rules is the and of two functions. The RHS of the root node is simply evaluated by
determining the value of state variable P . On the contrary the value of the LHS consists in
the evaluation of a subtree. The root node of the subtree is the function call to after(b)),
related to the initial (end(P) expression. Because the end(P) expression is called as
a result of the then operator, the variable b is replaced by the call to the first function. The
value of first is dependent on the value of expression ddP e. Using the transformation rules
expression ddP e is evaluated by anding the result of two function calls – strict after(b)
and always since(P, b). Because expression ddP e is bound with the start of the interval,
the variable b of the latter formulae indicates the start of the interval. Figure 6.1 shows the
optimised AST generated for the property ddP e then end(P).

The above two examples provides the relation of the AST structure to the evaluation flow
of the properties.

Figure 6.1: AST representation

60

The use of ASTs for property evaluation is more efficient in terms of performance. The
conversion from the mathematical notation to ASTs is performed through the use of an
external parser generator. The parser class is generated using the ANTLR Parser Genera-
tor [P+05]. The ANTLR Parser Generator is chosen because using the same grammar it is
able to generate the parse code in different programming languages.

6.1 D3CA – C++

The C++ version presented helps in understanding the drawbacks of a raw implementation.
This prototype also intends to show places where optimisation can take place.

The next three sub-sections discuss the C++ implementation. The discussion commence
with the description of the Lustre Environment implementation. It then proceeds by de-
scribing the validation engine and concludes with a brief analysis. The next section describes
the second prototype.

6.1.1 Lustre Environment

The Lustre environment consists in a library providing the definition of basic datatypes
and the two Lustre special operators, pre and followed by. To allow the use of pre over
variables, the datatypes are extended with a linked list, where the head of the list refers to
the previous value.

The three basic datatypes have the same structure, as the one depicted below. The data
field “Value” is used to hold the current value associated with the variable. Accessing the
data field to perform operations can be tedious, especially if the number of variables is high.
The classes defining the Lustre datatypes override the C++ type operators to reduce the
efforts required to perform operations over the “Value” field.

Data Structure “Lustre Integer”:

int Value; {The value associated with the variable.}
Lustre Integer∗ Previous ← nil ; {Pointer to the variable’s previous value.}

The followed by operator is used to initialise a variable’s value. In the C++ implementa-
tion the variables are initialised as classes, therefore, the followed by operator is hidden
inside the datatype constructor. For example, the Lustre expression 1→ X is programmed
in Lustre as, Lustre Integer X = new Lustre Integer(1).

In Lustre the pre method is more like an operator, example pre(X). In our Lustre library

61

the operator is implemented as a method of the variable datatype, for example, X →pre().
The result of the method call is an object of the same type as the variable. Using recursive
calls, X →pre()→pre(), one can traverse the history of the variable.

The use of a linked list to hold the variable’s history consumes space. To limit the space used
for history records, the constructor of each datatype is extended by a parameter defining
the number of previous values to be held. Example,

Lustre Integer X = new Lustre Integer(1, 3)

states that the variable X is initialised to 1 and has a history log of up to 3 previous values.

6.1.2 Initialising

The initialisation of a monitoring property consists in converting the property to an AST,
Section §6.0.1. During initialisation, the variables used by the evaluation process are stored
into a symbol table. The symbol table consists in a vector holding a number of symbol

datatypes.

Data Structure “symbol”:

string Name; {The variable’s reference name.}
short int Type; {The Lustre type of the variable.}
void* Data; {A pointer to the memory location holding the variable instance.}
void* Address; {A pointer to the memory address mapped to the variable.}

6.1.3 Validation Engine

The validation engine consists in an interface to the evaluation process. The symbolic
automata evaluation is performed by traversing the AST structure in a bottom-up fashion.
The ANTLR Parser Generator allows the tree traversal to be defined using the parser
grammar. For the traversal class generation the parser file is modified to bind the logic
function calls to the node visit algorithm.

The most important method call in the validation engine is synchronise. However, to com-
pute the current state validity the state variables need to be updated. The user is supplied
with a method that allows the variables to update their value. Before the synchronise

method is called, the input and constant variables have to be updated by placing a call to
the variable’s Update() method.

The synchronise method is a direct implementation of the Validate algorithm, described

62

in Section §5.3.1. In the evaluation loop the tree traversal method is called for every AST.

6.1.4 Analysis

The design of the validation engine and the C++ implementation are quite similar. The
use of Abstract Syntax Trees (ASTs) for storing the properties resulted in an efficient way
and easy way of performing validation.

Although the monitoring system is efficient there is still room for improvement. The first
drawback in the implementation is the use of false to indicate undecidability. Although
the drawback is not visible to the end user, the complexity of evaluating the properties
validity effects the computation performance. A solution to surmount the problem is to use
three-valued variables, as described in the design chapters.

Another major drawback in the approach is the manually insertion of variable updates
before synchronising. In systems where the number of variables is high, the process of
inserting the update method calls becomes intractable. The problem is easily avoided
through the use of a pre-compiler, which allow annotations to be placed instead of the
actual validation controls.

In the next section the same system is reimplemented using C#. The new implementation
follows more strictly the design and implements the solutions presented above for the two
drawbacks mentioned. Note that a new language is chosen as to evaluate the benefits
and abstraction obtainable from using ASTs and Lustre as the validation implementation
platform.

6.2 #D3CA

The #D3CA is a reimplementation of the C++ prototype, however, it is extended with a
weaver and three-valued variables.

6.2.1 Weaver

The weaving process consists of two phases. The first phase generates a validation class
based on the assertions, which are passed through an external XML file1. The validation
class generated is then linked to the project during compilation. The second phase consists
in parsing the system source code for annotations, defined later. The annotations found
are replaced with the actual validation code. Figure 6.2 illustrates the D3CA architecture.

1Refer to Appendix B for samples of the XML file format.

63

Figure 6.2: D3CA Architecture Overview.

64

The generation of the validation class consists in copying the class template. However,
the constructor is extended such that it contains the validation engine calls to convert the
properties into ASTs. During the parsing of the XML file, the variables that are marked as
constant or as effected from the system execution are listed into a text file. The generated
text file is used during the second phase of compilation. Note that a text file is used because
the first and second phase are performed using two separate programs.

The parsing of annotated files is performed using a simple algorithm, which reads the input
on a line by line bases. When an annotation is read, it is replaced with the appropriate
code. The most complex part of the weaver is to handle the variables update when the
synchronise annotation is found. Using the text file generated during the first phase, the
variables listed in the file are added for update.

6.2.2 Annotations

The use of a weaver allows the insertion of annotations to manage the validation code inte-
gration. The weaver is able to identify five different annotations that provide instructions
about managing the assertion evaluation. Note that the assertions per sè are not integrated
into the code, like the traditional assertions, but placed as part of the validation engine.
The five annotations are:

1. <validation engine: bind variable name variable value>

2. <validation engine: unbind variable name>

3. <validation engine: start assertion name>

4. <validation engine: stop assertion name>

5. <validation engine: synchronise B >

The first parameter of all annotations identify the validation engine(s), which must receive
the annotated instruction.

Localisation of variables in the system code is a problem when it comes to validation. The
validation properties require to access the system variables values from different segments
of code. A simple solution is to declare all the variables in the global scope but global
scoping leads the software to loss maintainability and clearness. The solution adopted in
the #D3CA is to provide two annotations that allow validation variables to be bound to
the system variable while it is in scope and to be unbound when the variable scope ends.
The bind annotation takes two parameters, the name of the validation variable and the
value to be assigned. The value can also refer to a system variable. The unbind annotation
sets the variable to refer to its current value. Note that, the variable is still updated on
every synchronisation to reflect the state transitions.

65

Interval Temporal Logic assertions require to define where the interval starts and ends.
The user who adds the annotations is supplied with two annotations, a start and stop, to
control when and where an assertion should be checked.

The most important annotation is synchronise. Whenever this annotation is encountered
the weaver replaces it with the code to update the validation variables. The last code
statement to be added is the call to the synchronise method defined by the validation en-
gine. The annotation takes a boolean parameter which specifies whether the errors trapped
should terminate the system execution.

6.2.3 Lustre environment

The Lustre environment consists in a library providing the basic datatypes definition and
the two Lustre special operators, pre and followed by. The datatypes are inherited from
a common interface, which allows basic operations to be performed without the need of
type casting.

The three basic datatypes have the same structure, as the one depicted below. The data
field “Value” is used to hold the current value associated with the variable and its type
reflects the programming language related datatype, example int for Lustre Integer.
Accessing the data field to perform operations can be tedious, especially if the number of
variables is high. To lighten the use of the Lustre datatypes, the classes override the type
operators.

�interface�
ILustre

+ Value(): object
+ Set(in dValue: decimal): void
+ Set(in lValue: long): void
+ Set(in bValue: bool): void
+ Set(in oValue: object): void
+ Type(): LustreType
+ ToString(): string
+ HasPre(): bool
+ Pre(): object

�enumaration�
LustreType

+ LustreInt
+ LustreReal
+ LustreBoolean
+ Lustre3Value

Figure 6.3: #D3CA Lustre Interface and Enumeration UML Diagram

The Lustre environment is extended with a new datatype, 3-valued variables. The Value-
Type is an enumeration over the three possible values: true, false and indeterminate.

66

Data Structure “Lustre 3Valued”:

ValueType Value; {The value associated with the variable.}
object Previous ← nil ; {Pointer to the variable’s previous value.}

Like in the C++ implmentation the Lustre special operator, pre, is programmed as a
method of the class. For example, to access the previous value of variable X the syntax is
X.Pre(). The followed by is encoded as part of the variable type contructor.

6.2.4 Validation Engine

The validation engine consists in the combined implementation of the evaluation and vali-
dation processes described in Chapter 5. The evaluation of property validity is performed
by executing the formula semantics on a Lustre environment. For efficiency reasons the for-
mulae are stored as Abstract Syntax Trees (ASTs) which provide a clear flow structure to
represent how the property is evaluated. As described in algorithm Evaluate, on page 53,
ASTs are traversed bottom-up because the leaf nodes consist of atomic propositions or
numeric constants. On node traversing the Lustre environment is called to evaluate the
semantics related to the operator node. The current validity of a property is determined
by the result of the root node.

The validation process provides a loop over the ASTs and is responsible of reporting violated
properties to the user. The synchronise boolean parameter is used by the validation
method to control the action taken when an error is trapped.

6.3 Analysis

Through the use of ASTs as a data structure for storing formulae and Lustre as a platform
for the evaluation of properties, D3CA prototypes achieve the benefits of implementation
independence from the logic point of view. The Lustre and AST methods need to be defined
in the host programming language, nevertheless, new logic operators can be introduced
without any need of further modification in the validation mechanism.

The AST creation and traversing mechanisms are generated using the ANTLR Parser Gen-
erator [P+05], which through the use of a language definition tag is able to use the same
grammar to generate classes in different languages. This leads the system to be more
portable to different programming languages.

The Lustre environment provides a suitable abstraction from the programming language.
By implementing the few Lustre methods in the desired programming language, the same

67

validation mechanism can be used without any need for modifications. The validation
engine can also be less dependent on the programming language if it is defined as a shared
library on Unix or a DLL in Windows.

The pre-compiler introduced in the C# prototype is the only programming language de-
pendent module. The use of a pre-compiler and annotations for inserting the monitoring
system provides a clean separation between the validation and the actual system code.

The two prototypes are far from perfect. One of the main drawbacks is in how the validation
variables are created. When the system creates a new internal variable, it is labelled
according to the information it is holding. This is a problem if the system requires to
check different copies of the property because there is only one global symbol table and the
variable will be created only once. Hence, the integrity of the validation states is lost.

Another drawback in the approach is that it lacks support for concurrent systems. When
the validation starts its process only the execution branch calling the engine is stopped.
This might lead to deadlocks if the branch being checked is holding a lock when an error is
trapped.

Altough the implementations have some drawbacks, the design is more generic. The vali-
dation design provides a clean and easy solution for using formal specifications as runtime
monitors over a system. An important feature provided by the validation system presented
is that the space and time requirements for validation can be predetermined.

68

Chapter 7

Case Studies

Another aim of the dissertation is to show how systems can be observed through QDDC
properties. The generic implementation of the D3CA framework allows various scenarios
to be observed.

This section presents two real-life scenarios, a mine pump alarm system and a simple
answering machine. Throughout the dissertation, two simulation programs (one for each
system) are used. Simulating a system gives various advantages such as the ability to
introduce errors, pause the system to analyse the current state and control the environment.

The mine pump alarm system is common example [Pan00, GHR04, Jos01]. The purpose of
the system is to test the state verification aspect of determinstic QDDC properties.

The answering machine system is used to show the expressiveness of the deterministic
QDDC notation over state transitions which describe the assumptions on the system ex-
ecution. The answering machine system shows that deterministic QDDC properties are
expressive enough to monitor these assumptions.

7.1 Mine Pump

A widely used example in Duration Calculus literature is an automated alarm system for
a mine pump. This case study shows the expressiveness of the discrete and deterministic
Duration Calculus presented earlier. Figure 7.1 shows a graphical representation of the
mine pump context as assumed in the system specifications1.

A mine has a leakage of water (H2O) and methane (CH4) that in certain circumstances
become a treat to the workers. The water leakage is collected in a sump on which a pump

1The figure is adopted from the work by Mathai [Jos01]

69

Figure 7.1: Mine Pump Diagram

is operated to lower the water level when it reaches critical levels. To operate the pump
safely, the methane level has to be low otherwise it will be dangerous for the miners. In
situations where the pump cannot be operated an alarm is activated to prepare the miners
for evacuation.

7.2 QDDC Specifications

A number of properties can be defined for the mine pump operation. The pump is operated
if the level of water is high and the amount of methane permits the operation. Let assume
that the pump takes δ time to start pumping water. Then the condition to start the pump
is,

ddHigh H2O ∧ ¬High CH4e
δ→ ddPump One

Informally, the condition says that given the water level has been high for the last δ time and
the methane is under control then the pump should be pumping water out. The condition
above is not enough on its own to guarantee that the pump is operating correctly as it does
not check that the pump is really pumping water out. The pump takes at most ε time to
lower the water level.

ddPump One ε→ ddLow H2Oe

Given the condition to operate the pump and the condition to verify the pump operation,
another condition has to be placed to stop the pump. The pump is stopped in two situations:

70

either the level of water has lowered and there is no need to pump further water or the
methane level has increased.

ddLow H2O ∨High CH4e
δ→ dd¬Pump One

Monitoring the pump is not sufficient since the environment provides no guarantees. To
validate the system completely it is useful to place some checks on the environment. The
first set of conditions define the assumptions related to the water levels. The pump takes
some time to start and it is important to provide some time variation due to methane
release. Therefore, the water level to start the pump has to be lower than the dangerous
level.

ddHigh H2Oe
ω←↩ dd¬Dangerous H2Oe

The above property states that for the first ω time the high water level should not be
dangerous for the workers. In relation to the last property another condition can be placed
that verifies that when the water level is dangerous than it must also be high. This property
provides a check on the water level sensor.

2(ddDangerous H2O⇒ High H2Oee)

The miners work on three shifts and the objective of the mine pump system is to guarantee
that only one shift is lost over a large number of shifts, say 10,000 shifts. This condition as-
sumes that methane is released infrequently and that the distance between two consecutive
methane releases is at least ζ time.

2(d−High CH4e0̂dd¬High CH4êdHigh CH4e0 ⇒ η > ζ)

The methane release is taken to be of short duration and that it takes a short time to
disperse in air.

2(ddHigh CH4ee ⇒ η < κ)

The pump and the environment are under control. However, the pump configuration has
an alarm that alerts the miners in case of danger. The alarm is activated when the water
level is dangerous or the methane level is high for some time.

ddDangerous H2Oee
δ→ ddAlarm Onee

ddHigh CH4ee
δ→ ddAlarm Onee

Like with the pump, the alarm must be checked that it turns off when the danger has

71

passed. The alarm is turned off once the water level and the methane level are no more
dangerous.

dd¬Dangerous H2O ∧ ¬High CH4ee
δ→ dd¬Alarm Onee

7.2.1 Creating the validation engine

The validation engine is described by rewriting the properties and constraints in determin-
istic QDDC using XML syntax. Appendix B lists the properties as supplied to the #D3CA.
The XML file is passed through the AST generator module of the validation engine that
creates the respective AST representations inside a C# class.

The next step is to insert the synchronise points inside the mine pump code. The artefact
produced is a simulation, thus, the user is left to define a synchronise by forcing the
system into a new state. Referring to Figure 7.2, a set of buttons are provided in the lower
left part of the window to allow the user to instruct the simulation to advance a number of
steps. For each step the synchronise method is invoked.

Figure 7.2: Mine Pump Simulation

The annotated source code and the generated C# class are compiled and link together.
The final result is a simulation to test the mine pump properties.

7.2.2 Simple Test Scenario

The test scenario presented forces the mine pump methane environment assumption to
be violated. This shows that the mine pump properties are enough powerful to capture
changes in the environment. This case study also shows that the validation engine captures
error on occurrence.

72

The test environment variables are initialised to:

Variable Value

δ 2

ε 7

κ 2

ω 17

ζ 25

The mine has been operating fine until methane level has raised high. On normal circum-
stances the level of methane settles back to safe after 2 steps. For the purpose of simulation,
we decided that the methane level should stay high for 5 steps. On the 3rd iteration over
the properties the environment assumption about the methane release is violated. The
D3CA validation engine traps the error as soon the property returns false.

On trapping the error the validation engine generates a report, which displays the property
that evaluated to false. In the scenario above the property reported is

2(ddHigh CH4ee ⇒ η < κ)

Together with the property, the values of each subexpression are returned to allow the user
to trace the origin of the error.

Expression Value

High CH4 True

ddHigh CH4ee True

η 3

κ 2

η < κ False

Analysing the reported results, it is clear that the property returned false because the
expression η < κ wasn’t satisfied. Using the results of η and κ, one can determine that the
length of the interval was longer than expected.

7.3 A Simple Answering Machine

The mine pump case study covers a lot of the D3CA features. However, a less complex case
study is useful to further understand the power of the validation engine. The operation of
a simple answering machine can easily be represented as an automaton, Figure 7.3. In this
case study the observation properties are placed over the state’s transitions.

A characteristic of the answering machine operation is that the time intervals are measured

73

Figure 7.3: Answering Machine State Diagram

using different metrics. For example, the interval of the “ringing” state is determined by
the number of tone rings. While the “recording” interval is measured in seconds. A feature
of D3CA is that metrics are irrelevant, since it all depends on the synchronise annotation.
Note that this feature is only applied because the answering machine flow is sequential,
that is, there is no concurrency in the execution.

7.3.1 QDDC Specifications

The simplest operation in the answering machine is that it is “idle”. In other words, it is
not performing any tasks.

idle = ¬ringing ∧ ¬playing ∧ ¬recording

When an incoming call arrives, the telephone starts ringing, therefore the machine enters
the “ringing” state. There are two possible situations that can arise: either the call is
answered by picking the receiver or the telephone continues to ring. In the later case, the
length of the interval will determine when the answering machine should start operating
by playing the recorded message. The transition from the “ringing” state to the “playing”
state is defined as,

ddringingee ⇒ η = 9̂ddplayingee

When the recorded message is played the next task of the answering machine is to start
recording the caller message. The message left by the caller is expected to be of at most 30
seconds.

ddplayingeêddrecordingee ⇒ η 6 30

Combining the operating states of the answering machine, a single property can be placed

74

over the operation flow of the answering machine.

operating = (ddidleeêddringingee ⇒ η = 9̂ddplayingeêddrecordingee ⇒ η 6 30)+

The property states that the answering machine can be considered as working well if it loops
indeterminately over the operation state. The above formula doesn’t capture constraints
in the transitions. Therefore, three additional constrains are introduced:

1. The “ringing state” can only be entered from the “idle” state.

idle <̃ ringing

2. The recorded message is only played if the telephone has been rang 9 times.

ringing ∧ η = 9 <̃ playing

3. The caller message is recorded only after the answering machine message has finished
playing.

playing <̃ recording

The last assumption is that when the receiver is up the answering machine is in the “idle”
state, in other words inoperative.

ddreceiver upee ⇒ ddidleee

The pulling up of the receiver at any time interrupts the operation. Therefore, the answering
machine is said to be working correct according to the specifications if it is either operating
or the receiver is up.

ddoperating ∨ receiver upee

7.4 Creating the validation engine

The validation engine is described by rewriting the properties and constraints in determin-
istic QDDC using XML syntax. Appendix B lists the properties as supplied to the #D3CA.
The XML file is passed through the AST generator module of the validation engine that
creates the respective AST representations inside a C# class.

We need to trap errors as soon they occur. Since each call to the step() method associated
with the step buttons determine a clock tick, the synchronise method is attached to end
of the step() method call. The answering machine code and the generated C# class are
compiled and linked together to generate the simulation system, Figure 7.5 (Page 78).

75

7.5 Simple Test Scenarios

The properties that check the transitions can easily be violated, especially those containing
the “holds before” operator. For example, the property

ringing ∧ η = 9 <̃ playing

is violated when a step is performed with the “playing” option ticked and the current
system is “idle” or “recording”. The error report generated for this scenario is shown in
Figure 7.6. The error states that the answering machine has entered the “playing” state
when the telephone was not ringing or before the “ringing” interval has elapsed.

The scenario illustrated by the sequence diagram, Figure 7.4, show the answering machine
operation.

The answering machine is “idle”, that is, it is waiting for an incoming call. After a while a
new call arrives, thus the phone starts ringing. On the first ring the synchronise method
is called. The properties are evaluated and system state is updated to “ringing”. Eight
other synchronise methods are called and the system has not changed from “ringing”,
therefore the deterministic QDDC property

age(ringing) < 10

related to the QDDC property
ddringingee ⇒ η = 9

is still valid. On the next ring the answering machine starts operating and its state changes
to “playing”. A synchronise call is called and this time the state has changed to the “play-
ing” so the properties are still valid. At the end of playing the message a new synchronise

is signalled to the validation engine, which checks that the answering machine started to
record the caller message. A number of synchronise method calls are performed as seconds
elapse. When the line drops or the 30 seconds of recording elapse the system state returns
to “idle”.

This time the answering machine owner decides to perform a call and pulls up the receiver.
The event of lifting the receiver invokes the validation engine to check that the system is
“idle” and the receiver is not in place. When the owner hangs up the validation engine
is invoked to verify that the answering machine has remained “idle” and that the line has
been dropped.

76

Figure 7.4: A Simple Answering Machine – Sequence Diagram

77

Figure 7.5: Answering Machine Simulation

Figure 7.6: Answering Machine Simulation – Error Reporting

78

7.6 Conclusion

The case studies show that deterministic QDDC is powerful enough to capture a large
number of real-life properties. The studies are based on real applications, however, due to
time limitation a simulation had to be created.

The test scenario in the case study provides a small overview of how and when the valida-
tion engine determines that a property is violated. The case studies shows that properties
described in QDDC can be translated in their respective deterministic formulae. The vali-
dation engine is enough powerful to trap behavioural errors according to the specifications.

79

Part III

Validation and Aspect-Oriented

Programming

80

Chapter 8

Interval Temporal Logic Validation

as an Aspect

Aspect-Oriented Programming (AOP) originated in 1997 at Xerox PARC as a solution for
handling design concerns that cannot be clearly encapsulated using programming languages,
both procedural and object-oriented [KLM+97]. These types of concerns are referred to
as aspects. Aspects are different from normal procedures because they have crosscutting
semantics. In simpler words, their execution depends on different parts of the software
architecture.

The concept behind the AOP framework can be summarised as “In program P, whenever
condition C is encountered, perform action A” [FF05]. The “condition C” refers to anno-
tation marks, also known as point-cuts in AspectJ [Asp], while “action A” is the execution
of aspect A. The application of the concept is performed using five components [KLM+97]:
(i) a component language (procedural or object-oriented programming language), (ii) an
aspect language, (iii) an aspect weaver, (iv) a component program (the system source code
without any aspects – traditional way of programming), and (v) one or more aspect pro-
grams (code for aspects). The aspect weaver is a pre-compiler which given an annotated
component program and a collection of aspect programs, replaces the annotated condi-
tions with calls to the respective aspect program. The AOP framework flow is depicted in
Figure 8.1.

The definition of an aspect as given in the original paper [KLM+97] is vast and ambigu-
ous, which can lead normal software composition to be defined as aspects. Filman and
Friedman [FF05] extend the definition of an aspect with two properties:

1. obliviousness; and

2. it must not be applicable to a single place.

81

Figure 8.1: Aspect-Oriented Programming Architecture Overview.

The obliviousness property states that an aspect must not affect the system composition.
For example, a program is extended with a log file. The logging of method calls or of events
can be performed using the same logging code. Logging crosscuts the system so it is an
aspect. The logger is oblivious because the logging insertion has no effect on the system
code.

A number of AOP implementations for different programming languages have been devel-
oped. Some of the frameworks are: Aspect .NET [SSW02], AspectJ [Asp], Hyper/J [IBM],
and AspectC++ [SLU05]. Given that validation is an aspect then one can introduce formal
checking within any programming language using AOP tools.

8.1 Validation as an Aspect

The definition of an aspect is vague. Therefore we restrict the definition of an aspect as
a task whose execution semantics crosscut the program’s decomposition and
are oblivious to the developer. In other words, an aspect is any task whose execution
depends on different components and does not localise to any part of the system.

Interval temporal logics (ITL) require a time metric. This chapter uses the synchronise

call to the validation engine as the basic clock. The synchronise call provides a global
mechanism to enforce the properties to be checked over the new state of the system.

82

Figure 8.2: Synchronise communication diagram

The fundamental property for aspects is their crosscutting behaviour. The crosscutting
behaviour of ITL properties arises from their requirement to capture information from
different parts of the system.

The insertion of the synchronise call throughout the system code and the distributivity
of ITL properties satisfy the crosscutting requirement of aspects. Figure 8.3 illustrates the
crosscutting property over the execution states.

Figure 8.3: States representing an execution path.

Consider the property,

begin(TaskA) then (ddTaskAe ∧ ΣTaskB 6 5) then end(¬TaskA)

The property states that from the start of TaskA, TaskB cannot be executed more than five
times both directly and indirectly until TaskA finishes executing. A direct call to TaskB
occurs when TaskA requires the service of TaskB whereas an indirect call happens when
TaskB is called from any other task and not TaskA.

The last requirement for validation to be an aspect is the obliviousness property. Oblivi-
ousness is achieved by abstracting as much as possible the dependencies between the code
and the formal specifications. In D3CA described earlier obliviousness is achieved by using

83

annotations to control the weaving of ITL properties with the system code.

8.2 Defining D3CA weaver in AOP terms

The D3CA weaver module consists in transforming annotated control instructions to the
actual validation code. The annotated control instructions can be of five types:

1. {validation engine: bind variable name variable value}

2. {validation engine: unbind variable name}

3. {validation engine: start assertion name}

4. {validation engine: stop assertion name}

5. {validation engine: synchronise B}

In validation the state variables are mapped to the system variables. In software, variables
are typically placed in their local scope and are inaccessible from the outside code. This
gives rise to a problem with Interval Temporal Logic assertions since they have crosscutting
semantics. This problem is surmounted by providing two variable annotations - bind and
unbind. A variable can either be bound to a system variable while the variable is in scope
or else bound to a numeric value. When the variable is bound to a numeric value it is
treated as a constant variable.

The unbind annotation is used when a system variable scope is about to be lost. The unbind
annotation instructs the weaver that the value of the variable must be kept constant.

An important characteristic of the D3CA is the use of intervals. An interval have to be
defined for every assertion. This is done by inserting one of the two interval assertions –
start and stop. The start annotation takes an assertion name as a parameter. When
the weaver encounters the notation it sets the assertion interval to zero and starts the
observation interval.

Assertions might not require to be checked for the entire program execution. The stop

annotation is used to indicate the end of an assertion’s interval. As with the start anno-
tation, the stop annotation requires an assertion name to be passed as a parameter. When
the stop annotation is encountered, the weaver instructs the assertion that its interval has
elapsed. An important feature of the stop annotation is that it calls the validation engine
to check the system state. When the stopped assertion is checked, its return value is ex-
pected to be true. Therefore, if the return value is indeterminate, the validation engine
treats it as false because it has not been completely satisfied during the interval.

84

The last and most important annotation is synchronise. This annotation instructs the
weaver that the properties have to be checked for consistency. Before performing the
runtime checking the variables are updated. The update also includes the reassignment
of constant variables to reflect their values according to the current state, as shown in
Figure 8.4.

Figure 8.4: Lustre constant to system state relation

The synchronise annotation takes a Boolean value. This value indicates whether pn the
trapping an error the synchronisation method should abandon execution or not. However,
the runtime checker still reports the errors that have been encountered, regardless of the
value passed.

From the description of the D3CA weaver, one can notice that it is only a small instantiation
of the AOP concept.

8.3 Conclusion

The Aspect-Oriented Programming (AOP) technique has emerged as a suitable program-
ming style for separating different concerns – aspects. AOP defines an aspect as any task
whose execution semantics depends on data not local to a single task. Using the work in
the previous chapters, this chapter argues that validation is an aspect. Therefore, AOP
tools can be used to cleanly weave validation into the system code.

85

Chapter 9

Conclusions

“One way that you can fortify your software’s
exception–handling ability is to harness for-
mal specification statements. Intended for
run-time verification of an application’s de-
sign, formal specifications can be translated
by code generator into C, C++, or Java state-
ments to be deployed for catching exceptions
in the final product”

Doron Drusinsky [Dru01]

Formal verification has always been an important tool for guaranteeing correctness of soft-
ware. The problem with the method of formal verification is that it requires the monitoring
system to construct an automaton to model all possible execution paths in the software. In
large and/or complex systems the number of system states grows exponential. This may
lead the system to become unresponsive due to resource exhaustion by test runs.

Throughout the years, validation has been proposed as a mechanism to surmount the state
explosion problem. Validation proposes a monitoring solution for performing formal verifi-
cation during a program execution. This problem is overcome by performing validation on
a single execution path. One must note that the state explosion problem is still present in
validation; however, it is reduced because states along paths never visited don’t need to be
created.

Projects in validation have concentrated on the use of different logic notation, mainly
propositional point logic and temporal logic. Nevertheless, some reactive and real-time
properties might be best captured or less messy if represented in an interval temporal logic.

86

9.1 Research Overview

Part I provides the necessary background to the dissertation and a review of related projects.
The main research carried out throughout the dissertation is put together in Part II.

Section 4.1 identifies a suitable subset of Duration Calculus for performing runtime moni-
toring. The subset consists of operators that are lifted to discrete time and whose semantics
produce deterministic automata. The operators are restricted to discrete time because the
operators in the original Duration Calculus, presented by Chaochen [CHR91], work on real-
time intervals, which makes it impossible to measure during execution time. The Duration
Calculus operators are all based on the Reimann Integral, which can easily be calculated
using frequent sampling points.

Some of the Duration Calculus operators, such as the chop operator, have a non-deterministic
behaviour. Checking the validity of a state during execution can only be performed on the
current and previous states. Thus non-deterministic behaviour rising from left-branching
has to be avoided. Following the work of Gonnord et. al. [GHR04] the subset obtained by
the discretisation of the operators is further restricted to operators that produce a deter-
ministic automaton.

After having identified the set of operators that are useful for monitoring systems, the
operators execution semantics in terms of the synchronous data-flow programming language
Lustre [HCRP91] have been obtained. The programming language Lustre is used as it allows
the computation of a new state to be performed in no time, under the synchrony hypothesis.
Lustre has also been adopted as it allows memory and the time requirements for computing
the validity of a state to be predetermined.

9.1.1 Monitoring System

One of the objectives of thus dissertation is to provide a generic implementable framework
to monitor properties using the identified subset of Duration Calculus. The framework
proposed consists of three modules:

1. The Duration Calculus mathematical notation with its semantics in Lustre;

2. A weaver for integrating the mathematical notation inside the system code; and

3. The host language in which the system code is written.

The monitoring engine is executed over a simulated Lustre environment provided as a library
to the host language, which is linked statically during compilation. The library consists of
three datatypes representing the Lustre basic datatypes: integer, real and Boolean. During

87

the evaluation of the logic the ambiguous meaning of the Boolean value false leads to
complex implementation, so the Lustre Boolean operator is replaced with the 3-valued
logic operator.

A key feature of the framework provides the monitoring system with a weaver. The weaver
allows annotations to be used inside the system code to control and communicate with the
validation engine. The end result of weaving the annotations is a duplicate of the original
code with the annotations converted into the respective tangled code.

Executing the mathematical semantics over Lustre allows the framework to be implementation-
independent. This endows the system with the ability to be enhanced without the need
to modify the validation engine. The use of annotations together with the automated pro-
cess of converting properties to a monitoring library results in a flexible and easy to use
environment.

9.2 Possible future enhancements

The solution provided in this dissertation is far from optimal and lacks in providing useful
features. This section succinctly highlights some of the possible enhancements or modifica-
tions that can be undertaken.

9.2.1 Multiple Validation Interfaces

The solution implemented allows the scope for using more than one validation engine. This
is achieved by having the validation engine provide its own symbol table for storing variables
and a list to hold the assertions.

The system lacks a global clock over the validation instances since each engine keeps its
own clock. Another drawback of the current approach is that it becomes unmanageable
when the number of engines increases.

In graphical user interfaces a similar problem exists when the number of open windows
related to the same application is large, therefore making it impossible for the user to keep
track of his work. A solution that is adopted in the field of computer-human interface is
the Multiple Document Interface (MDI), whereby multiple windows appear as part of the
main parent window. Following the concepts of MDI and plug-ins, this section describes a
solution for having one single validation engine but multiple instances of validation classes.

As shown in Figure 9.1, the validation has to be defined using two separate modules. The
first module provides the validation engine, a list of validation instances and the global

88

Figure 9.1: Multiple Validation Interfaces Architecture.

clock. The engine extends the annotations set with two new tuples to add and remove
validation instances.

The validation instance provides the necessary information to the engine, such as the as-
sertions to be checked and the variables values related to the assertions. The validation
instance can also be extended with a clock which allows it to run asynchronously from
other validation instances. The use of different validation instances makes it easier to han-
dle multithreaded systems as each class can be instructed to add its own validation to the
engine, without leading to ambiguity when using similar names for variables.

The validation engine implements the synchronise mechanism as described in previous
chapters, with a difference in how assertions and variables are accessed. However the
synchronise mechanism can be extended to allow validations to run asynchronously to
each other, similar to a locally asynchronous global synchronous (LAGS) concept, which
allows validation instances to be checked without checking other instances.

9.2.2 Logic Domains

Duration Calculus is one of the logics currently being used. Different logics provide notation
for different properties in systems [BMN00]. By defining the logic semantics in the Lustre
environment and extending the annotation tuples with an identifier for the logic, as done
in Eagle, the same mechanism for monitoring the systems can be used.

89

9.3 Summary

This dissertation proposes a solution that allows formal specifications using deterministic
and discrete Duration Calculus to be integrated in a system. The D3CA described is generic
to any logic notation as long as the notation can be translated into Lustre programs.

The case studies presented are real-life scenarios and, with minimal changes for hardware
adaptation, can be installed on the real equipment. The case studies showed that the D3CA
is capable of detecting most of the errors instantaneously.

As an addition to the research, we have showed that Interval Temporal Logic validation
is an aspect in Aspect-Oriented Programming (AOP). Thus the tools already available for
AOP can be used to integrate the core part of the D3CA in any programming language.

90

Appendix A

“leads to” operator in terms of

age()

The “leads to” operator cannot be directly described in terms of the deterministic QDDC
notation as it is non-deterministic. However, analytically the operator can be represented
using deterministic QDDC notation. It is important to note that the reducibility of the
QDDC operator to the deterministic QDDC expression is not proved anywhere in this
report as it was not formally proven.

Relation. The “leads to” (δ→) can be expressed as an expression in terms of age(P) and
“then” operators.1

P
δ→ Q . age(P) < δ then P ∧Q

Analytical Proof. The “leads to” part states that if the state variable P has been true for
δ clock cycles and is still true then while P is still true, Q must also be true.

The second part of the relation states that the interval is divided in two subintervals. The
first subinterval ends when the state variable, P , has been true for δ clock cycles. Then
from the δ clock cycle onward, the state variable, Q, must be true , when P is true. The
result of the age()..then expression is similar to that of the “leads to” expression without
the “always” (2) operator.

1The symbol . means that the RHS expression is reducible to the LHS expression.

91

Appendix B

Case Studies Properties in XML

format

B.1 Mine Pump

<?xml version="1.0" encoding="UTF-8" ?>

<qddc>

Pump Properties

<variable name="HH2O" type="bool" inputVar="true" />

<variable name="HCH4" type="bool" inputVar="true" />

<variable name="Delta" type="int" inputVar="true" />

<variable name="PumpOn" type="bool" inputVar="false" />

<variable name="SafePump" type="bool" inputVar="false" />

<variable name="NotSafePump" type="bool" inputVar="false" />

<variable name="SafePumpAge" type="bool" inputVar="false" />

<variable name="NotSafePumpAge" type="bool" inputVar="false" />

<property name="SafePump">

<expression> SafePump = HH2O & !HCH4 </expression>

</property>

<property name="NotSafePump">

<expression> NotSafePump = !SafePump </expression>

</property>

92

<property name="SafePumpAge">

<expression> SafePumpAge = age(SafePump) == Delta </expression>

</property>

<property name="NotSafePumpAge">

<expression> NotSafePumpAge = age(!SafePump) == Delta </expression>

</property>

<property name="PumpOn">

<expression>

PumpOn = two_state(false, SafePumpAge, NotSafePumpAge)

</expression>

</property>

Alarm Properties

<variable name="Alarm" type="bool" inputVar="false" />

<variable name="DH2O" type="bool" inputVar="true" />

<variable name="ah2o" type="bool" inputVar="false" />

<variable name="ach4" type="bool" inputVar="false" />

<variable name="na" type="bool" inputVar="false" />

<variable name="na_int" type="bool" inputVar="false" />

<variable name="alarm_int" type="bool" inputVar="false" />

<property name="AH20">

<expression> ah2o = age(DH2O) == Delta </expression>

</property>

<property name="ACH4">

<expression> ach4 = age(HCH4) == Delta </expression>

</property>

<property name="Not_DH20_and_Not_HCH4">

<expression> na_int = !DH2O & !HCH4</expression>

</property>

<property name="NA">

<expression> na = age(na_int) == Delta</expression>

</property>

93

<property name="H2O_or_HC4">

<expression> alarm_int = ah2o | ach4</expression>

</property>

<property name="Alarm">

<expression> Alarm = two_state(false, alarm_int, na) </expression>

</property>

Assertion Properties

<variable name="Assertion" type="bool" inputVar="false" />

<variable name="w" type="int" inputVar="true" />

<variable name="eps" type="int" inputVar="true" />

<variable name="zeta" type="int" inputVar="true" />

<variable name="kappa" type="int" inputVar="true" />

<variable name="ws1" type="bool" inputVar="false" />

<variable name="ws2_int" type="bool" inputVar="false" />

<variable name="ws" type="bool" inputVar="false" />

<variable name="pc" type="bool" inputVar="false" />

<variable name="LCH4" type="bool" inputVar="false" />

<variable name="mr1_int" type="bool" inputVar="false" />

<variable name="mr1" type="bool" inputVar="false" />

<variable name="mr2" type="bool" inputVar="false" />

<property name="Water_Seepage_1">

<expression> ws1 = DH2O => HH2O </expression>

</property>

<property name="Water_Seepage_2_int">

<expression> ws2_int = age(HH2O) < w </expression>

</property>

<property name="Water_Seepage_2">

<expression> ws2 = edge(DH2O) => !ws2_int</expression>

</property>

<property name="Pump_Capacity">

<expression> pc = HH2O => age(PumpOn) <= eps </expression>

</property>

94

<property name="Low_Methane">

<expression> LCH4 = !HCH4 </expression>

</property>

<property name="Methane_Release_1_int">

<expression> mr1_int = age(LCH4) < zeta </expression>

</property>

<property name="Methane_Release_1">

<expression> mr1 = [[HCH4]] then [[HCH4]] => !mr1_int </expression>

</property>

<property name="Methane_Release_2">

<expression> mr2 = age(HCH4) < kappa </expression>

</property>

<property name="Assertion">

<expression>

Assertion = ws1 & ws2 & pc & mr1 & mr2

</expression>

</property>

Validation Property

<property name="Valid">

<expression> end(Assertion) | !end(DH2O) </expression>

</property>

</qddc>

B.2 Answering Machine

<?xml version="1.0" encoding="UTF-8" ?>

<qddc>

<variable name="Idle" type="bool" inputVar="false" />

<variable name="Ringing" type="bool" inputVar="true" />

<variable name="Playing" type="bool" inputVar="true" />

<variable name="Recording" type="bool" inputVar="true" />

<variable name="ReceiverUp" type="bool" inputVar="true" />

95

<variable name="Operating" type="bool" inputVar="false" />

<variable name="Max_Age_Ringing" type="bool" inputVar="false" />

<property name="Idle">

<expression>

Idle = !Ringing & !Playing & !Recording

</expression>

<error>

It is not possible to have the system idle while it is

busy doing something.

</error>

<comment>Attempting to set the system idleness.</comment>

</property>

<property name="Max_Age_Ringing">

<expression>Max_Age_Ringing = age(Ringing) == 9 </expression>

</property>

<property name="Assumption_1">

<expression>Idle <~ Ringing</expression>

<error>The system is ringing when it was already busy.</error>

<comment>

The system can only receive calls when it is idle.

</comment>

</property>

<property name="Assumption_2">

<expression>Max_Age_Ringing <~ Playing</expression>

<error>

The system is playing the recorded message when no one

called.

</error>

<comment>

The system message can only play if the callee has not

answered.

</comment>

</property>

<property name="Assumption_3">

<expression>Playing <~ Recording</expression>

<error>Ooops the system is wasting space on tape.</error>

<comment>The caller doesn’t know that the system is recording

96

his message.

</comment>

</property>

<property name="Assumption_4">

<expression>end(ReceiverUp) => end(Idle)</expression>

<error>

The answering machine and the owner are using the phone

line simultaneously.

</error>

<comment>

If the caller is talking on the phone the answering machine

must be switched off.

</comment>

</property>

<property name="Operating">

<expression>

Operating = ([[Idle]] then age(Ringing) < 10 then [[Playing]]

then age(Recording) < 30)+

</expression>

<error>The answering machine is not acting as expected.</error>

<comment>

Stop playing around with the answering machine settings.

</comment>

</property>

<property name="Valid">

<expression>end(Operating) | end(ReceiverUp)</expression>

</property>

</qddc>

97

Bibliography

[ABG+04] C. Artho, H. Barringer, A. Goldberg, K. Havelund, S. Khurshid, M. Lowry,
C. Pasareanu, G. Roşu, K. Sen, W. Visser, and R. Washington. Combining
Test Case Generation with Run-time Verification. ASM issue of Theoretical
Computer Science, 2004. To appear.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[Ale03] Andrei Alexandrescu. Generic<programming>: Assertions. C/C++ Users
Journal (Advanced Solutions for Professional Developers), April 2003.

[Alu99] Rajeev Alur. Timed automata. In Computer Aided Verification, pages 8–22,
1999.

[AS01] Karine Arnout and Raphal Simon. The .net contract wizard: Adding design by
contract to languages other than eiffel. In Proceedings of the 39th International
Conference and Exhibition on Technology of Object-Oriented Languages and
Systems (TOOLS39), page 14. IEEE Computer Society, 2001.

[Asp] AspectJ. http://www.eclipse.org/aspectj/.

[ASU85] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison–Wesley, Reading, MA, USA, January 1985.

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicholas Halbwachs,
Paul Le Guernic, and Robert De Simone. The synchronous languages 12 years
later. In Proceedings of the IEEE, volume 91, pages 64–83, January 2003.

[BFMW01] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass - java with as-
sertions. In Workshop on Runtime Verification, 2001 in conjunction with the
13th Conference on Computer Aided Verification, CAV’01, 2001.

[BG92] Gerard Berry and Georges Gonthier. The esterel synchronous programming
language: Design, semantics, implementation. Science of Computer Program-
ming, 19(2):87–152, 1992.

98

[BGHS03] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Eagle monitors by
collecting facts and generating obligations. Technical Report Pre-Print CSPP-
26, University of Manchester, Department of Computer Science, University of
Manchester, October 2003.

[BGHS04a] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime
verification, 2004.

[BGHS04b] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Pro-
gram monitoring with LTL in Eagle. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS’04) - Workshop 16,
April 2004.

[BJHL96] M. Brockmeyer, F. Jahanian, C. Heitmeyer, and B. Labaw. An approach to
monitoring and assertionchecking distributed real-time systems, 1996.

[BM02] Mark Brörkens and Michael Möller. jassda Trace Assertions, runtime checking
the dynamic of java programs. In Trends in Testing Communicating Systems,
International Conference on Testing of Communicating Systems, pages 39–48,
Berlin, March 2002.

[BMN00] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system
specification. ACM Comput. Surv., 32(1):12–42, 2000.

[BRLS04] Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# pro-
gramming system: An Overview. In Gilles Barthe, Lilian Burdy, Marieke
Huisman, Jean-Louis Lanet, and Traian Muntean, editors, Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices: International Work-
shop, CASSIS 2004, volume 3362, pages 49–69, Marseille, France, March 2004.
Springer-Verlag GmbH.

[CCO02] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. FLAVERS: A finite state
verification technique for software systems. IBM Systems Journal, 41(1):140–
165, 2002.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Co-
rina S. Păsăreanu, Robby, and Hongjun Zheng. Bandera: extracting finite-
state models from java source code. In International Conference on Software
Engineering, pages 439–448, 2000.

[CE04] T. Cottenier and T. Elrad. Validation of context-dependent aspect-oriented
adaptations to components. In Ninth International Workshop on Component-
Oriented Programming (ECOOP 2004), WS18 at ECOOP 2004, Oslo, Norway,
June 2004.

99

[CES97] W. Canfield, E. Emerson, and A. Saha. Checking formal specifications under
simulation. In Proceedings of the 1997 International Conference on Computer
Design (ICCD ’97), page 455. IEEE Computer Society, 1997.

[CGN99] Z. Chaochen, D. Guelev, and Z. Naijun. A higher-order duration calculus,
1999.

[CGP02] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 4th edition, 2002.

[CHR91] Z. Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269–276, December 1991.

[CHX95] Zhou Chaochen, Dang Van Hung, and Li Xiaoshan. A duration calculus with
infinite intervals. In Fundamentals of Computation Theory, pages 16–41, 1995.

[CP02] Gaurav Chakravorty and Paritosh K. Pandya. Digitizing interval duration
calculus. Technical report, Tata Institute of Fundamental Research, 2002.

[CR03] F. Chen and G. Roşu. Towards Monitoring–Oriented Programming: A
paradigm combined specification and implementation. In Proceedings of RV’03:
the Third International Workshop on Runtime Verification., volume 89, Boul-
der, Colorado, USA., 2003. Electronic Notes in Theoretical Computer Science,
Elsevier Science.

[D’E06] Karlston D’Emanuele. Runtime monitoring of duration calculus assertions for
real-time applications. Master’s thesis, Computer Science and A.I. Department,
University of Malta, 2006. To be submitted.

[DF04] Doron Drusinsky and J.L. Fobes. Executable specifications: Language and ap-
plications. CrossTalk - The Journal of Defense Software Engineering, 17(9):15–
18, September 2004.

[DH03] Doron Drusinsky and Klaus Havelund. Execution-based model checking of
interrupt-based systems. In Workshop on Model Checking for Dependable
Software-Intensive Systems. Affiliated with DSN’03, The International Con-
ference on Dependable Systems and Networks, pages 22–25, 2003.

[Dru00] Doron Drusinsky. The temporal rover and the ATG rover. In SPIN, pages
323–330, 2000.

[Dru01] Doron Drusinsky. Formal specs can handle exceptions. Embedded Developers
Journal, pages 10–15, November 2001.

[DT02] Deepak D’Souza and P. S. Thiagarajan. Product interval automata, 2002.

[Eme90] E. A. Emerson. The role of büchi’s automata in computing science. In
S. MacLane and D. Siefkes, editors, The Collected Works of J. R. Büchi.
Springer, Berlin, 1990.

100

[FF05] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Robert E. Filman, Tzilla Elrad, Siobhán
Clarke, and Mehmet Akşit, editors, Aspect-Oriented Software Development,
pages 21–35. Addison-Wesley, Boston, 2005.

[Gei01] M. Geilen. On the construction of monitors for temporal logic properties.
In Klaus Havelund and Grigore Roşu, editors, RV’01 - First Workshop on
Runtime Verification, volume 55 of Electronic Notes in Theoretical Computer
Science, pages 78–96, Information and Communication Systems Group, Faculty
of Electric Enginnering, Eindhoven University of Technology, P.O.Box 513,
5600 MB Eindhoven, The Netherlands, July 2001. Elsevier Science Publishers.

[GH01] D. Giannakopoulou and K. Havelund. Automata-based verification of temporal
properties on running programs. Technical Report 01.21, Research Institute
for Advanced Computer Science, August 2001. Presented at the 16th IEEE In-
ternational Conference on Automated Software Engineering, San Diego, 2001.

[GHM05] Allen Goldberg, Klaus Havelund, and Conor McGann. Runtime verification
for autonomous spacecraft software. In IEEE Aerospace Conference, 2005.

[GHR04] L. Gonnord, N. Halbwachs, and P. Raymond. From discrete duration calculus
to symbolic automata. In 3rd International Workshop on Synchronous Lan-
guages, Applications, and Programs, SLAP’04, Barcelona, Spain, March 2004.

[GM03] Tanton H. Gibbs and Brian A. Malloy. Weaving aspects into c++ applications
for validation of temporal invariants. In CSMR ’03: Proceedings of the Seventh
European Conference on Software Maintenance and Reengineering, page 249,
Washington, DC, USA, 2003. IEEE Computer Society.

[GME04] Philip J. Guo, Stephen McCamant, and Michael D. Ernst. Safe runtime exam-
ination of data structures in C programs, September 2004.

[Gue00] Pedro Guerreiro. Another mediocre assertion mechanism for c++. In Proceed-
ings of the Technology of Object-Oriented Languages and Systems (TOOLS
33), page 226. IEEE Computer Society, 2000.

[Gui01] Kristian Guillaumier. CSM201 Compiling Techniques – Course notes, January
2001.

[Hal98] Nicolas Halbwachs. Synchronous programming of reactive systems. In Com-
puter Aided Verification, pages 1–16, 1998.

[Han03] Michael R. Hansen. Duration calculus (extended abstract). In 15th European
Summer School in Logic Language and Information, pages 66–84. Kurt Gödel
Society, Norbert Preining, August 2003.

101

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–
1320, September 1991.

[HG96] D. V. Hung and P. H. Giang. Sampling semantics of duration calculus. Lecture
Notes in Computer Science, 1135:188–??, 1996.

[HG99] Dang Van Hung and Dimitar P. Guelev. Completeness and decidability of
a fragment of duration calculus with iteration. In Asian Computing Science
Conference, pages 139–150, 1999.

[HHR94] C. A. R. Hoare, He Jifeng, and A. P. Ravn. Specification and implementation
of a flashlight. ProCoS II document [OU CARH 2/2], Oxford University, UK,
June 1994.

[Hil00] M. Hiller. Executable assertions for detecting data errors in embedded control
systems, 2000.

[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the
verification of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo,
editors, Third Int. Conf. on Algebraic Methodology and Software Technology,
AMAST’93, Twente, June 1993. Workshops in Computing, Springer Verlag.

[Hoa01] Tony Hoare. Assertions: a personal perspective.
http://research.microsoft.com, June 2001. Draft.

[Hou02] Bernard Houssais. The synchronous programming lan-
guage SIGNAL: A tutorial. SIGNAL online documentation–
http://www.irisa.fr/espresso/Polychrony/, April 2002.

[HR04] Klaus Havelund and Grigore Roşu. An overview of the runtime verification tool
java pathexplorer. Formal Methods in System Design, 24(2):189–215, 2004.

[HRR91] N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code from data-
flow programs. In Third International Symposium on Programming Language
Implementation and Logic Programming, Passau (Germany), August 1991.

[HS99] Klaus Havelund and Jens U. Skakkebæk. Applying model checking in java
verification. In Proceedings of the 5th and 6th International SPIN Workshops
on Theoretical and Practical Aspects of SPIN Model Checking, pages 216–231.
Springer-Verlag, 1999.

[IBM] IBM. Hyper/J TM: Multi-dimensional separation of concerns for Java TM.
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm.

[Jos01] Mathai Joseph, editor. Real-time systems specification, verification and analy-
sis. Tata Research Development and Design Centre, Jume 2001.

102

[Kel95] Den Kelley. Automata and Formal Languages. Prentice Hall, 1995.

[KKL+01] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC:
a run-time assurance tool for Java prgrams. In 1st Workshop on Runtime
Verification (RV’01), volume 55 of ENTCS, 2001.

[KKLS02] József Kovács, Gábor Kusper, Róbert Lovas, and Wolgang Schreiner. Inte-
grating temporal assertions into a parallel debugger. In Proceedings of the 8th
International Euro-Par Conference, pages 113–120, 2002.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Confer-
ence on Object-Oriented Programming, volume 1241, pages 220–242. Springer-
Verlag, Berlin, Heidelberg, and New York, 1997.

[Kra98] R. Kramer. iContract - the Java(tm) design by contract(tm) tool. In TOOLS
’98: Proceedings of the Technology of Object-Oriented Languages and Systems,
page 295, Washington, DC, USA, 1998. IEEE Computer Society.

[KSL02] Gábor Kusper, Wolgang Schreiner, and Róbert Lovas. Integrating temporal
assertions into parallel debugging tools. Project report, RISC-Linz, March
2002.

[KV01] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[LA03] Ramnivas Laddad and Roger T. Alexander. Aspect-oriented programming
will improve quality / aspect-oriented programming: the real costs? IEEE
Software, 20(6):90–93, 2003.

[LG91] P. Le Guernic and T. Gautier. Data-flow to von neumann: the signal approach.
In J.L. Gaudiot and L. Bic, editors, Advanced Topics in Data-Flow Computing,
pages 413–438. 1991.

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice-Hall Re-
sources Series. Prentice-Hall, 2nd edition, Febrauary 1997.

[Mid98] C. A. Middelburg. Truth of duration calculus formulae in timed frames. In
1517, page 22. Centrum voor Wiskunde en Informatica (CWI), ISSN 1386-
369X, 31 1998.

[Mos84] Ben Moszkowski. Executing temporal logic programs. Technical Report
UCAM-CL-TR-55, University of Cambridge, Computer Laboratory, 15 JJ
Thomson Avenue, Cambridge CB3 0FD, United Kingdom, August 1984.

[MV04] Brian A. Malloy and Jeffrey M. Voas. Programming with assertions: A prospec-
tus. IT Professional, 6(5):53–59, 2004.

103

[P+05] Terence J. Parr et al. ANTLR reference manual. http://www.antlr.org,
January 2005. ANTLR Version 2.7.5.

[Pac94] Gordon J. Pace. Duration calculus: From parallel specifications to clocked
circuits. M.Sc. Dissertation, Computing Laboratory, University of Oxford,
1994.

[Pac98] Gordon J. Pace. Hardware Design Based on Verilog HDL. PhD thesis, Com-
puting Laboratory, University of Oxford, 1998. Chapter 3 §3.2, Pages 21–27.

[Pan] Paritosh Pandya. Model checking CTL[DC] properties of SMV, verilog and
esterel designs.

[Pan00] P. Pandya. Specifying and deciding quantified discrete-time duration calculus
formulae using DCVALID. Technical Report TCS00-PKP-1, Tata Institute of
Fundamental Research, 2000.

[Pan01] Paritosh K. Pandya. Model checking ctl*[dc]. In Proceedings of the 7th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 559–573. Springer-Verlag, 2001.

[Pan02a] P. Pandya. The saga of synchronous bus arbiter: On model checking quan-
titative timing properties of synchronous programs. In Florence Maraninchi,
Alain Girault, and ric Rutten, editors, Electronic Notes in Theoretical Com-
puter Science, volume 65. Elsevier, 2002.

[Pan02b] Parithosh Pandya. Interval duration logic: Expressiveness and Decidability.
In Proc. workshop on Theory and Practice of Timed Systems (TPTS’2002),
Grenoble, France, April 2002. Electronic Notes in Theoretical Computer Sci-
ence, Elsevier Science B.V., ENTCS 65.6.

[Pen99] Roger Penrose. The Emperor’s New Mind, pages 86–92. Oxford University
Press, March 1999.

[Pet99] Paul Pettersson. Modelling and Verification of Real-Time Systems Using Timed
Automata: Theory and Practice. PhD thesis, Department of Computer Sys-
tems, Uppsala University, February 1999. Chapter 1 §1.3, Pages 8–10.

[PH98] Paritosh K. Pandya and Dang Van Hung. Duration calculus of weakly mono-
tonic time. Lecture Notes in Computer Science, 1486:55–??, 1998.

[PP99] Reinhold Plösch and Josef Pichler. Contracts: From analysis to C++ imple-
mentation. In TOOLS ’99: Proceedings of the Technology of Object-Oriented
Languages and Systems, page 248, Washington, DC, USA, 1999. IEEE Com-
puter Society.

104

[Rav94] Anders P. Ravn. Design of embedded real-time computing systems. PhD thesis,
Department of Computer Science, Technical University of Denmark, September
1994.

[Ray96] P. Raymond. Recognizing regular expressions by means of dataflows networks.
In 23rd International Colloquium on Automata, Languages, and Programming,
(ICALP’96), Paderborn, Germany, July 1996. LNCS 1099, Springer Verlag.

[Ros95] David S. Rosenblum. A practical approach to programming with assertions.
IEEE Trans. Softw. Eng., 21(1):19–31, 1995.

[RS] Rafael Ramirez and Andrew E. Santosa. An aspect-oriented framework for
concurrent applications.

[SH04] Volker Stolz and Frank Huch. Runtime verification of concurrent haskell pro-
grams. Electr. Notes Theor. Comput. Sci., 113:201–216, 2004.

[Sim99] Charles Simonyi. Hungarian notation. http://msdn.microsoft.com, Novem-
ber 1999.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, 1997.

[SLS05] Usa Sammapun, Insup Lee, and Oleg Sokolsky. RT-MaC: Runtime monitoring
and checking of quantitative and probabilistic properties. In Proceedings of the
11th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, RTCSA’05, Hong Kong, August 2005.

[SLU05] Olaf Spinczyk, Daniel Lohmann, and Matthias Urban. AspectC++: an AOP
extension for C++, May 2005.

[SS94] Jens Ulrik Skakkebæk and Natarajan Shankar. Towards a duration calculus
proof assistant in PVS. In H. Langmaack, W.-P. de Roever, and J. Vytopil,
editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
863 of Lecture Notes in Computer Science, pages 660–679, Lübeck, Germany,
sep 1994. Springer-Verlag.

[SSW02] Mario Schüpany, Christa Schwanninger, and Egon Wuchner. Aspect-oriented
programming for .NET. In First AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software (AOSD-2002), March 2002.

[Str00] Bjarne Stroustrup. The C++ programming language. Addison-Wesley, Special
edition, 2000.

[Tau03] Heikki Tauriainen. On translating linear temporal logic into alternating and
nondeterministic automata. Research Report A83, Helsinki University of Tech-
nology, Laboratory for Theoretical Computer Science, Espoo, Finland, Decem-
ber 2003.

105

[Tha05] Sahil Thaker. Runtime monitoring temporal property specification through
code assertions. Department of Computer Science, University of Texas at
Austin, 2005.

[Tho97] Wolfgang Thomas. Languages, automata, and logic. pages 389–455, 1997.

[TR04] P. Thati and G. Roşu. Monitoring algorithms for metric temporal logic speci-
fications. In Proceeding of the 4th International Workshop on Runtime Verifi-
cation (RV 2004), 2004.

[Var97] Moshe Y. Vardi. Alternating automata: Unifying truth and validity checking
for temporal logics. In William McCune, editor, Proceedings of the 14th In-
ternational Conference on Automated deduction, volume 1249, pages 191–206,
Berlin, 13–17 1997. Springer.

[Voa97] Jeffrey Voas. How assertions can increase test effectiveness. IEEE Software,
14(2):118–119,122, 1997.

[WD96] Jim Woodcock and Jim Davis. Using Z: specification, refinement, and proof.
Prentice-Hall, Inc., 1996.

[Wei05] Eric W. Weisstein. “Zeno’s Paradoxes.”. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/ZenosParadoxes.html, 2005.

[Wol02] Pierre Wolper. Constructing automata from temporal logic formulas: a tuto-
rial. pages 261–277, 2002.

[Ziv03] Avi Ziv. Cross-product functional coverage measurement with temporal
properties-based assertions. In Proceedings of the Design Automation and Test
in Europe, pages 834–839. IEEE Computer Society Press, 2003.

106

