
An Embedded Language for the
Definition and Refinement of

Synchronous Circuits

Christine Vella

A dissertation submitted in fulfilment
of the degree of Master of Science

Department of Computer Science and A.I.
Faculty of Science
University of Malta

2006



Supervisor: Dr. Gordon J. Pace

External Examiner: Dr. Koen Claessen

Other Examiners: Mr. Michael Rosner
Dr. Adrian Francalanza



In memory of my father George Vella



Abstract

SharpHDL is a language for designing, specifying and verifying hard-
ware. It is embedded in the object-oriented programming language C#
and therefore hardware definitions are treated as first-class objects in the
host language. Thus, in developing our hardware objects, we are able to
use object-oriented features like polymorphism and inheritance, as well
as the various tools developed for C#. Being a structural hardware de-
scription language, it provides means to describe circuits by specifying
the components and their interconnections. It also supports higher-order
circuits, which are referred to as Generic Circuits. These are circuit de-
scriptions which take other circuits as their input.

The language also allows definition of circuit specification by describing
observers expressing safety properties. Observers are circuits that take
the inputs and outputs of a circuit under observation and output a single
wire stating whether the combination of inputs and outputs satisfy the
given specifications. In addition, circuit descriptions can be translated
to verification tools, thus enabling a designer to verify circuit specifi-
cations. Presently, SharpHDL supports translation to SMV, which is a
standard model checker. The language can generate other types of de-
scription formats, including translations to other hardware description
languages.

Using these features, SharpHDL was used to design and verify the equiv-
alence of two circuit implementations of Fast Fourier Transform (FFT)
algorithms — the radix-2 FFT and the radix-22 FFT. FFTs are efficient
algorithms to compute the Discrete Fourier Transform which is widely
used in digital signal processing and other related fields.

We also discuss the embedding of a simple language over SharpHDL that
caters for modular verification and refinement. Modular verification al-
lows a verification problem to be decomposed into smaller manageable
sub-problems and each sub-problem is verified individually. Refinement
allows the verification of an implementation against an abstract specifi-
cation defining its legal behaviour. We analyze how the characteristics
of SharpHDL give more user-control over the verification process, thus
highlighting the various contributions given by the embedded approach.
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Chapter 1

Introduction

Hardware Description Languages (HDLs) are computer languages which cater
for defining operations and design of circuits, and are normally associated
with other tools like simulators. Undoubtedly, the most used HDLs are Ver-
ilog [47] and VHDL [5], both introduced in the early 1980s. Though having
different syntax and semantics, the languages provide similar tools and ap-
proaches for designing circuits.

Both languages allow structural and behavioural descriptions of circuits. A
structural description defines a circuit in terms of the components it uses
and the interconnections between them. On the other hand, a behavioural
description is given when a circuit’s functionality is algorithmically defined
using conventional programming language constructs.

Like most HDLs, the principle aims of Verilog and VHDL was originally to
provide simulation and it was only later that these language were extended
to allow hardware synthesis. Simulation allows a designer to analyze and
test a design without using the actual hardware, whilst hardware synthesis
allows the generation of hardware from a circuit specification.

Nevertheless, these languages suffer from a number of problems. One major
problem is that circuit definitions tend to be verbose and difficult to un-
derstand and maintain. Another problem is that circuits are not treated as
first-class objects. This forbids them to parameterize circuits by the used
components and thus they provide poor support for higher-order circuits,
i.e. circuits that use other circuits to build regular-patterned circuits. The
patterns that can be described are limited to linearly-shaped networks using
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specific components, whilst recursive patterns, like trees, are only described
for particular sizes. Moreover, the synthesis tools are very limited — they
can be only applied to a small subset of circuits. Having a complex seman-
tics also makes the languages unsuitable to use other tools, including formal
verification tools.

Formal verification techniques provide a way for specifying the correct be-
haviour of a system and provide an exhaustive method for determining that
the designed model obeys the set specifications for any combination of in-
puts. Such techniques are very useful in the testing of hardware — besides
reducing the cost factor of correcting errors in implemented hardware, they
improve the time and cost of the design-stage testing when compared to us-
ing simulation. Using simulation, one has to create a set of inputs that are
sufficient to test a system properly, and also determine the correct output
which is used to countercheck the simulation output [27].

Given these simulation drawbacks and the lack of expressiveness and proper
semantics exhibited by the standard HDLs, the need was felt to build simple
HDLs that, besides offering the usual tools, provide means for verification.
Such HDLs include µFP [79], Lava [9], Ruby [50], Lustre [38], Hawk [54]
and many others [11, 23, 77]. SharpHDL [84, 85] was our solution to this
problem.

1.1 Problem Definition and Primary Aims

SharpHDL provides means to structurally describe circuits using the object-
oriented paradigm. It is an embedded language and therefore circuits are
first-class objects in the host language. This permits circuit descriptions
to be passed around as parameters, thus supporting higher-order functions.
SharpHDL circuits can also be translated to descriptions for verification or
simulation.

Though a valid language in its own right, SharpHDL and OO do not seem to
provide any apparent advantage (or disadvantage) over the existing HDLs.
Nevertheless, we notice that we did not manage to sufficiently exploit the
imperative nature of the language. Therefore we turn to investigate how
this nature can be used in connection with verification and the refinement
process.
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Formal verification methods can be grouped into two general sets: automatic
verification techniques and theorem proving methods. Automatic verification
techniques are able to automatically verify a fairly broad class of properties.
However, being that such methods are based on the exhaustive search of a
model’s state space which may grow exponentially to the number of processes,
they suffer from the state explosion problem, making them unsuitable to verify
large systems.

One way to avoid this condition is to make the verification problem smaller
using modular verification. Modular verification allows a system to be broken
down into smaller parts and have each part verified separately, assuming
that the other parts behave correctly. Such a technique is also useful when
unimplemented sub-components with known specifications are used, such
that verification of such systems assumes that the unknown sub-components
conform to their specifications. These components can later be refined to an
implementation which is tested for correct behaviour.

Various HDLs and verification languages allow modular verification using
different approaches [1, 23, 39, 62]. Unfortunately, the existing languages
provide little or no user-control over the verification process. In this disser-
tation we attempt to analyze how the characteristics of SharpHDL can help
us provide more control and support in this area. Once again we use the
language-embedding approach to build a simple refinement language over
SharpHDL that will provide us with the necessary refinement tools.

1.2 Objectives of Dissertation

The work we present here experiments with the SharpHDL language to an-
alyze and highlight the contributions of an embedded object-oriented lan-
guage. The principal contributions are three-fold:

• SharpHDL 2 — We present an enhanced version of SharpHDL [84,
85]. SharpHDL is a hardware description language embedded in the
object-oriented language C#. Besides providing the necessary con-
structs to describe a circuit structurally, it also provides a set of higher-
order circuits and allows the generation of descriptions to external tools
like verification tools and other hardware description languages.
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While keeping the same functionalities, the new SharpHDL version —
SharpHDL 2 — exploits more the hierarchical and modularity charac-
teristics of the object-oriented paradigm such that a circuit object is
treated as an individual component made up of its direct sub-circuits.
The first SharpHDL, on the other hand, flattened the circuit descrip-
tions, such that circuit objects were manipulated and stored in terms
of the basic boolean gates they use, thus losing all the individual com-
ponent information. The drawback of this approach was largely felt
in the generated code for external tools. Such descriptions were not
modular and lacked reusability of component definitions, resulting in
long, unreadable code which, at times, was impossible to load in the
respective applications.

SharpHDL 2 solves this problem by keeping information about circuit
hierarchy, such that a circuit is considered to have a number of sub-
components and itself is a sub-component to a parent component. This
approach helps in producing modular and reusable descriptions for ex-
ternal tools. SharpHDL 2 also eliminates some verbosity exhibited in
the first version.

• Case Study: designing and verifying the equivalence of two
FFT circuits — FFTs (Fast Fourier Transform) are efficient algo-
rithms for computing particular Discrete Fourier Transforms (DFT) —
an algorithm frequently used in various applications like telecommuni-
cations, and signal and image processing. To study the effectiveness
of circuit description in SharpHDL1, we describe two circuits, each
defining a different FFT algorithm — the radix-2 FFT algorithm and
the radix-22 FFT algorithm. Their butterfly-like structure makes them
easy to implement using higher-order circuits. The equivalence of these
two algorithms is then verified by defining an observer circuit that com-
pares their output given the same input. The description of the whole
circuit is generated and given to a verification tool which verifies their
equivalence.

• Modular verification and refinement — We explore the use of
SharpHDL to enable modular verification and refinement. We present

1Unless otherwise specified, the term SharpHDL refers to the new version of the lan-
guage, i.e. SharpHDL 2
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a simple refinement language over SharpHDL which allow a verifica-
tion problem to be decomposed into smaller manageable sub-problems
which can be verified individually. Refinement allows the verification
of an implementation against an abstract specification defining its legal
behaviour. By building small examples, we analyze how the impera-
tive nature of the language provides us with a scripting language which
allows us to control and document the refinement process.

1.2.1 Document organization

This dissertation is divided into three main chapters, each discussing one of
the three aims outlined above.

Chapter 3 describes the new version of SharpHDL, its various tools and how
they can be used. A case study is given in chapter 4 where two circuits
describing different FFT algorithms are build and their equivalence veri-
fied. Chapter 5 describes the new refinement language we developed over
SharpHDL to provide for modular verification and refinement and outlines
the various advantages given by the embedded approach and the language’s
characteristics.

Finally, chapter 6 outlines some points we intend to develop in the coming
future. It also discusses the major contributions of the whole research. Before
we start with the main chapters, we present an overview of some background
notions in the next chapter.
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Chapter 2

Background Notions

The principle aim of this dissertation is to highlight the advantages an em-
bedded language gives when applied to the hardware description language
domain. It also concentrates on providing efficient verification tools based
on model checking. In this chapter, we shall briefly outline these two areas.

2.1 Embedded Languages

The traditional way of developing a new language is to define its syntax and
semantics and implement the appropriate programs that will process them,
including lexical parsers, compilers and many others. Alternatively, one may
embed the new language in an existing language. Embedded languages are
basically a set of libraries in an existing language, called the host language,
which allow us to define programs in our new language as objects in the host
language [17]. This makes the new language a domain-dependent one.

A library describing an embedded language typically includes an abstract
datatype, a number of primitive programs, more complex combinators and
functions that manipulate the embedded programs. To better explain this
we describe a simple language for specifying processor programs.

A processor takes a list of commands and processes them to give a result.
Therefore, a typical processor program is made up of basic expressions which
are manipulated by combinators. To process the program, the processor also
needs a run function. Therefore, the library defining the embedded language
includes the following:
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abstract datatype, which is the type all the embedded processor programs
are elements of.

primitive programs, which consist of the basic expressions used by the
processor. These consist of data values and variables, and simple math-
ematical operations like subtraction, addition and multiplication:

data Expression =

Val Data

| Var Variable

| Expression :-: Expression

| Expression :+: Expression

| Expression :*: Expression

combinators, which are elements of the abstract datatype. These use the
primitive programs to build more complex programs. They include
variable declaration, assignment, conditional statements and loops. The
datatype Program can thus be defined as follows:

data Program =

| Declare Variable

| Variable := Expression

| IfThenElse Expression (Program, Program)

| While Expression Program

run function, which is the function that evaluates a given Program and
outputs the result. We name this function simulate. This takes a
Store (basically, a lookup table relating variable names and values)
and a Program and outputs an updated Store:

simulate :: Store -> Program -> Store

The biggest advantage of embedding a language is reusability. An embedded
language reuses the host’s

• syntax and semantics;

• parsers, interpreters, compilers and other tools;

• and the users too. Since the language uses the same syntax, a user who
is familiar with the host language will not find it difficult to use the
embedded language.
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Another advantage is that programs are first class objects in the host lan-
guage. This allows generation, manipulation and analyzes of programs using
the same host language. Nevertheless, like anything else, this approach also
exhibits some disadvantages. One major disadvantage is the mismatch that
arises between the embedded and host languages since features or syntax of
the host language may not match the desired attributes of the embedded
language.

The embedded approach has frequently been used to develop domain-specific
languages1 (DSLs) — Elliot et al. [29] embedded Pan in Haskell to provide an
image-synthesis and manipulation language. Also, Elliot applied the embed-
ded approach to the multimedia animation domain and implemented Fran
[28] in Haskell. The latter functional language was also used as host language
to Haskore [44], a language that describes music notation. Another picture-
manipulation language is FPIC [51] which provides facilities for drawing sim-
ple two-dimensional pictures using types and functions defined in Standard
ML.

The embedded approach has been frequently used in the hardware-description
domain too. Some embedded languages include JHDL (embedded in Java)
[46], PamDC (embedded in C++) [12] and the many Haskell-embedded lan-
guages [9, 54, 70] amongst others.

In this domain, this approach was also used to combine two HDLs so as to
support both structural and behavioural descriptions of circuits. For exam-
ple, in [75], Sharp embeds Magma, a Lava-style structural language in the
functional programming language ML and then embeds it in the behavioural
HDL SAFL [76]. This enables him to use a functional language to specify
hardware across different levels of abstraction. Claessen and Pace [19] also
present a framework to merge structural and behavioural descriptions by em-
bedding behavioural languages in the structural HDL Lava. Using similar
examples, SharpHDL, also a HDL embedded in C#, was used as host lan-
guage to another language that provided behavioural descriptions of circuits
for regular languages [84].

1A domain-specific language is a programming language tailored for a particular
domain [43].
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2.2 Model Checking

Model checking is one of the most widely used verification techniques. It
accepts a system’s specification and its implementation model and, using
an efficient search procedure, checks that the implementation satisfies the
specification for any input. If this is not the case, the model checker generates
a counter-example which shows why and when the specification was not
obeyed (cf. Figure 2.1) [22, 32].

Figure 2.1: The framework of a model checking tool

An implementation model is usually expressed as a state-transition system
or Kripke structure.

Definition 2.2.1. A Kripke structure is defined as a 4-tuple
M = {S, I, R, L } where

• S is the set of states,

• I is the set of initial states, I ⊆ S,

• R is the transition relation, R ⊆ S × S, specifying the possible tran-
sitions from state to state,

• L is a function that labels states with the atomic propositions from a
given language.
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Specifications are often written as a temporal logic formula. Therefore, a
verification problem can be defined as follows:

Definition 2.2.2. Given a desired property expressed as a temporal logic
formula p, and a model M having initial state s, decide if M, s � p

Temporal logic allows reasoning about propositions in terms of time, such
that statements about the past, present and future can be expressed. Origi-
nally, this logic was developed by philosophers to investigate the use of time
in natural language arguments.

One useful temporal logic is the Computation Tree Logic (CTL). It is
a branching time temporal logic such that every instance has a unique past
but a non-deterministic future. Therefore, this logic is particularly suited
for defining the semantics of non-deterministic programs. Given a Kripke
structure K corresponding to the system model, a model checker examines
K to check if it satisfies the property, such that a property is true for K
if it is true at the initial states [65]. CTL formulas are made up of a state
operator followed immediately by a path operator :

State operators, which work on paths of a given state. Given p to be a
proposition, the state operators are defined as follows:

1. A, where Ap is true for all paths of the current states.

2. E, where Ep is true iff there exists at least one path starting from
a given state where p holds.

Path operators, which work on states of a given path:

1. F, where Fp is true in some state in the future, given p is true now.

2. G, where Gp is true in every moment in the future.

3. X, where Xp is true if p holds in the immediate successor of the
given state.

Besides model checking, various other verification methods exists including
theorem provers, term rewriting systems and proof checkers. However, these
techniques require human intervention and therefore makes them time con-
suming. On the other hand, model checking is completely automatic. One
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problem of this technique is the state explosion problem — the number of
states in a model can grow exponentially with the number of concurrent
components.

There have been various attempts to solve this problem. One idea is to
represent a state space symbolically instead of explicitly using binary decision
diagrams (BDDs) [16, 22, 65].

A BDD [4, 14] is a canonical tree which represents a function in if-then-
else normal form (INF). An INF is a boolean expression built entirely from
the if-then-else operator and the constants 0 and 1, such that all tests are
performed only on variables and not on states [4].

Definition 2.2.3. An if-then-else operator x → y0, y1 is defined as

( x ∧ y0 ) ∨ (¬x ∧ y1 ).

Using expressions in this form, a decision tree is built where each node has two
outgoing edges: one edge (represented by a dashed line) corresponds to the
cases where the variable evaluates to 0, whilst the other edge (represented by
a solid line) corresponds to when the variable is 1. So, for example, (x ⇔ y)
can be written as follows:

x → ( y → 1, 0 ), ( y → 0, 1 )

This is represented as the decision tree in figure 2.2.

A BDD is built when all equal sub-expressions are substituted by one ex-
pression. A BDD is an Ordered BDD (OBDD) if the variables obey a certain
order, i.e. every path from the root to a leaf encounters the variables in a
preset order.

A model checker based on OBDDs is McMillan’s Symbolic Model Verifier
(SMV) [64, 66, 67], which uses these graphs as the basis for a search algo-
rithm to determine whether a system defined in the language satisfies the
specifications.
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Figure 2.2: A decision tree for x ⇔ y
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Chapter 3

SharpHDL — A Hardware
Description Language
Embedded in C#

Embedded domain-specific languages have been shown to be useful
in various domains. One particular domain to which this approach
has been applied is hardware description languages. In this chapter
we present such a language embedded in C#, enabling us to de-
scribe structurally-large, regular circuits in an intuitive way. These
descriptions can then be automatically used in simulators and ver-
ification tools.
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3.1 Introduction

Hardware Description Languages (HDLs) are programming languages used
to describe a circuit structurally or behaviourally. Some languages, including
the standard HDLs Verilog and VHDL allow both forms of circuit descrip-
tions.

A structural HDL provides means for a designer to specify the components
and connections needed to build a circuit. On the other hand, a behavioural
HDL allows a higher-level description using conventional programming lan-
guage constructs like if-then-else statements and loops. The difference be-
tween these two descriptions can be illustrated using a multiplexer example.
A multiplexer (cf. Figure 3.1) is a digital circuit with multiple signal inputs,
one of which is selected and outputted depending on an input condition sig-
nal. Therefore, a 2-bit multiplexer accepts input signals input0 and input1
and outputs the value of one of them depending on the value of a third in-
put signal select — if select is true the circuit outputs the value of input1,
otherwise it outputs the value of input0.

Figure 3.1: A multiplexer circuit.

The circuit can be implemented by describing the internal sub-circuits needed
and their interconnections. This will require the initialization of modules or
functions that describe the individual sub-circuits using the wires with which
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they are connected. Therefore a structural definition of the 2-bit multiplexer
will have the following format:

notSelect = not(select)

x0 = and(input0, notSelect)

x1 = and(input1, select))

output = or(x0, x1)

Alternatively, the circuit can be described behaviourally using an if-then-else
statement, which definition will have the following format:

if (select == true)

then input1

else input0

SharpHDL [84, 85] is a structural HDL embedded in the object-oriented
(OO) language C#, such that circuits are expressed as objects having a set
of values and which perform a set of operations. Therefore, using SharpHDL,
we can describe the structure of a circuit using C# classes and objects.
Being an embedded language, it is a meta language which allows a hardware
designer to generate regular circuits. SharpHDL also allows generation of
circuit descriptions to other tools for verification, simulation and testing.

This chapter gives a brief introduction to SharpHDL and highlights its char-
acteristics and features.

3.2 Object-Oriented Programming and C#

C# is based on the object-oriented paradigm (OOP), which paradigm has a
number of characteristics. For a better understanding of SharpHDL, in this
section we will briefly describe such characteristics and give an overview of
the host language C#.

3.2.1 The object-oriented paradigm

OO languages [31, 42] started to emerge in the 1990s. Until that time, the
most popular programming languages were based on the procedural concept.
A procedure is a named block of code. In this style of programming, a
developer writes one or more procedures and works with a set of independent
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variables which can be manipulated by any piece of code. C and Pascal are
two programming languages that are based on this paradigm.

Smalltalk and Simula were amongst the first programming languages that
introduced the object-oriented paradigm. The inventors stated that humans
do not express ideas as procedures but, instead, they express them in terms of
objects. Objects are entities that have a set of states and a set of behaviours
based on a class. A class dictates the states and behaviours a set of objects
have. Therefore, a class can be considered as a template. On the other hand,
an object is a concrete instance of a class. For example, a Circuit class has
a string state representing name. One instance, or object, of Circuit has
the name state set to "or gate" whilst another one has the name state set to
"circuit2". A user works with objects that are based on classes which can
be user-defined.

Object-Oriented Programming Characteristic

OOP provides a number of important characteristics [31], most of which were
key elements for the successful and efficient upgrading and later extensions
of SharpHDL. These are listed and briefly explained here.

Composition states that a complex object is made up of several smaller
and simpler objects, thus employing the divide-and-conquer concept. It is
important to understand all the small objects and their relationship to one
another. This feature allows us to reuse existing objects to build different
objects. There are two forms of composition — Association and Aggrega-
tion. Association does not allow the internal objects to be externally visible;
Aggregation allows them to be visible and usable by other external objects.
These forms of composition are often used together.

Generalization allows us to identify common elements in objects, thus al-
lowing an entity to work as generally as possible. This makes it possible to
work with a different number of inputs or input of different kinds. General-
ization comes into two forms — Hierarchy and Polymorphism.

Hierarchy (or Inheritance) allows objects to be organized into tree struc-
tures, such that the root holds the attributes and behaviour common to all
descendants. In OO languages this entity is known as the base class. As the
tree is traversed top-down the descendants are more specialized. This fea-
ture allows Extensibility — new specializations can be added at any level
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and new attributes and behaviours can be easily added to the right subset
of specialization. This is done without having to rewrite a new class from
scratch.

Polymorphism enables a programmer to treat a collection of classes derived
from the same base class in the same way, i.e. the derived classes are treated
as the base class but the correct operation implemented by the derived class
is invoked. The operation in the derived class should be an implementation
of an operation recognized by the base class.

Abstract data types are another feature offered by OO languages. In
such languages, types are associated to objects and therefore they are also
with their attributes and behaviour. Hence, in defining a class, a user will
automatically be defining a new type.

Separation is a technique which allows us to separate what an object does
from how it is doing it. In more technical terms, OOP allows us to separate
the interface from the implementation. The interface is what the user sees
and has to understand to be able to use a particular object. On the other
hand, the implementation is the hidden part of the object which usually only
interests the implementor. An implementation satisfies an interface if the
behaviour specified by the interface is reflected in the implementation.

3.2.2 C# — the host language

C# [31], pronounced C Sharp, is an OO language designed by Microsoft. It
combines the power and control of C and C++, which are amongst the most
widely used languages for software development. It also has great similarities
to Java [42], not only in its syntax but also in its purpose for web-application
development and automatic memory management. It was designed to work
with Microsoft’s .NET platform, a solution which enables developers to build
various applications, using the same tools and skills.

C# is easy to learn and use. A comprehensive description of the language
and its syntax can be found in [31]. Further description of the language’s
syntax is out of the scope of this documentation.
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3.3 Introduction to SharpHDL

The SharpHDL language consists of a set of libraries in C# which provide the
necessary tools to describe and manipulate circuits. The main functionalities
are given by three libraries:

• A core library which controls the internal structure of a circuit;

• Another library consisting of a set of implementations of higher-order
circuits;

• A third library which provides ready-made circuits.

SharpHDL descriptions can be output to other external tools:

• verification tools, which allow us to test circuit specifications;

• other HDLs, which allows us to use the various tools based on them.

To date, two versions of SharpHDL have been developed. The first version
was built in 2004 and presented in [84, 85]. We shall now give an outline of
this version and highlight the various areas of improvement that were tackled
in the second implementation. The latter is the version used in the rest of
this dissertation.

3.3.1 The first version

[84, 85] introduce, discuss and test the first implemented version of Sharp-
HDL. The development was largely influenced by two embedded HDLs: Lava
[9, 20] and JHDL [45, 46].

Lava is embedded in the functional programming language Haskell. It pro-
vides possibilities of simulation and formal verification of circuits, and also in-
cludes a set of higher-order circuits referred to as connection patterns. Lava’s
most attractive features are possibly its simplicity and elegance, much aided
by its host language.

JHDL is embedded in the OO language Java. Therefore it treats circuit de-
scriptions as objects and classes. It provides simulation and analysis tools and
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also boasts of an attractive CAD suite. Unfortunately, it does not support
formal verification and also lacks efficient support for connection patterns.

It was therefore our primary objective to design an OO HDL that provides
means of designing circuits using short and sweet descriptions and which
also provides means for verifying circuits. C# was selected because it is
object-oriented, easy-to-use and documentations exist to help the user.

Using SharpHDL, we successfully embedded a behavioural HDL thus creating
a hierarchy of languages (cf. Figure 3.2). The new language, which we called
the Regular Expressions Language, provides constructs with which circuits
that describe regular expressions can be designed. Being embedded, circuit
descriptions in the new language can use all the tools provided by SharpHDL
and C# and therefore, they can also be analyzed and verified.

 

 

 

 

 

C# 

 

 

 

 

SharpHDL 

 

 

Regular 

Expressions 

Language 

Figure 3.2: A hierarchy of languages is created by embedding SharpHDL in
C# and the Regular Expressions language in SharpHDL.

However, as more complex examples were being implemented in SharpHDL,
some problems started to emerge. A major problem arose because SharpHDL
maintained flat descriptions of circuits — internally, a circuit was decomposed
and stored in terms of the most primitive gates or circuits (e.g. and, or, not
etc.). So, for example, if a user defined a half-adder circuit (cf. Figure 3.3(a))
as having an and-gate and a xor-gate and then defined a full-adder circuit (cf.
Figure 3.3(b)) in terms of two half-adder circuits and a xor-gate, SharpHDL
decomposed each half-adder into the and-gate and the xor-gate and stored
the full-adder definition as three xor-gates and two and-gates. This approach
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lost the compositional and reusability characteristics of SharpHDL, which
characteristics inherited from embedding the language in C#. This greatly
affected the descriptions generated for external tools since such descriptions
consisted of one flattened long piece of code that was difficult to understand
and at times impossible to load in the respective applications.

Figure 3.3: (a)Half-adder circuit (b)Full-adder circuit.

Another problem was the external-code-generation algorithm. For each prim-
itive circuit used in a description, the algorithm added the appropriate code
to the output being generated. However, the algorithm was written to pro-
cess only a defined set of primitive circuits such that it had to be manually
modified when a new primitive circuit was implemented. In other words, the
algorithm was not extendible to consider later defined primitive gates.

One other problem was the declaration of a circuit’s interface. The inter-
face, or the set of input and output ports that allows a circuit to commu-
nicate, was defined as a static array of CellInterface objects and therefore
several instances of the same circuit object shared the same interface ob-
jects. Since this approach created confusion in circuit-traversing algorithms,
declaring interfaces was avoided. This made redundant the concept of the
CellInterface. Besides, interface objects had to be assigned and referred to
by a unique name which was not always possible to know, especially when
the implementation was hidden.

There are also a number of other features that could have been implemented
in this primitive version of SharpHDL but which were not possible due to time
constraints. These include multiple-bit wires and their respective ports, and
implementation of other circuits. These weak points and other enhancements
were all taken into consideration during the design and implementation stages
of the new SharpHDL.
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3.3.2 The new SharpHDL

To preserve the compositional and reusable nature of the language, the in-
ternal structure of the second implementation of SharpHDL introduces the
idea of having a hierarchy of circuits such that a circuit is the child of a
parent if it is one of its direct sub-components. Referring to the full-adder
circuit described in the previous section, the full-adder is the parent of two
half-adder circuits and a xor-gate, where each half-adder circuit has an and-
gate and a xor-gate as its children. Therefore, the new SharpHDL does not
decompose the definitions to the primitive boolean circuits but instead keeps
the relationships between the circuits and treats each circuit as an individual
circuit in its own right.

This approach solves the problem of the big-file-generation output for exter-
nal tools. This is possible because, given that the individual information of
each circuit is not lost, the generated output can be divided into modules
such that a module is created for each used component type. Each module
defines a component’s structure in terms of its immediate descendants and it
can be invoked by other modules whenever needed. This made the generated
files modular and therefore more user-friendly and much shorter.

To allow greater extensibility, new abstract classes are introduced to the
general class structure to provide a wider and better spectrum of different
kinds of circuits, wires and ports. Such introductions include classes for
multiple-bit wires and their ports which allow the wires to be connected to the
circuits, and also new types of circuits. Other changes were made such that
the interface declaration is no longer static and instead an interface is created
for every circuit. This declaration is optional and when not defined the
ports are created automatically according to the type of wires connected to
the circuit. The CellInterface concept was completely eliminated from the
system. This approach gives greater abstraction power to circuits, especially
higher-order circuits since their interface type is created according to the
input circuit.

The next sections give an overview of the main SharpHDL libraries and how
they can be used.

21



3.4 SharpHDL Features

SharpHDL is an HDL embedded in C# and therefore one can describe a
circuit by writing a C# program. It consists of three main libraries (cf.
Figure 3.4)

1. SharpHDL, which is the core library. It manages the internal structure
of circuits and provides classes of primitive logic gates;

2. GenericCircuits, which contains a number of classes defining higher-
order circuit descriptions which, given another circuit, build a regular-
structured circuit;

3. LogicGates where classes of compound logic gates are implemented.

Figure 3.4: The relationships between the three main libraries of Sharp-
HDL.

This section gives an overview of these libraries and the various functionalities
they provide.

3.4.1 Managing SharpHDL circuits

The main function of the SharpHDL library is to provide and manage the
underlying structure of SharpHDL circuits.

A circuit can be defined as a structure having a set of input and output ports
to which wires are connected. For example, an and-gate has two input ports
and one output port (cf. Figure 3.5).
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Figure 3.5: An and-gate has two input ports and one output port.

Furthermore, a circuit’s operation can be defined by internal circuits inter-
connected with wires, as we have seen in the multiplexer and adder circuits
on pages 14 and 20 respectively. Therefore, a circuit is based upon three ele-
ments — ports (which allow a circuit to communicate with its environment),
wires (which connect a circuit to other circuits or the external environment)
and internal circuits (which define the circuit’s operation). Based on this
definition, SharpHDL objects inherit from either of the three main classes:

1. Wire is the class that represents a wire, or signal. It provides methods to
access information about the wire object and its connections but does
not provide for the connection itself. For every class that inherits Wire,
the type of port to which it can be connected to has to be specified.
SharpHDL provides three types of Wires:

(a) LogicWire, which represents a one-bit signal;

(b) BusWire, which represents a multiple-bit signal. Basically, it de-
fines a list of the same Wire type. An example of this is a wire
carrying an integer. In a digital system, numbers are stored as
lists of bits. In SharpHDL this is implemented as Integer, which
is a BusWire-inheriting class which accepts LogicWire objects as
its elements (cf. Figure 3.6).

Figure 3.6: An Integer is a list of LogicWire objects.

(c) CompoundWire, which represents a signal that is made up of differ-
ent types of wires. This can be illustrated using the implementa-
tion of a wire carrying a floating-point number. A floating-point
number (FP) is defined as follows:

23



FP = +/− Mantissa× 2Exponent

The sign +/− is represented by a one-bit signal, whilst the man-
tissa and exponent are integers signals (cf. Figure 3.7) [10, 71, 80].
SharpHDL implements this type of number using class Float,
which inherits from CompoundWire.

Figure 3.7: A Float is made up of three Wire components — an Integer man-
tissa, an Integer exponent and a LogicWire sign.

2. Port is the general representation of a port — the object which allows
the connection of a wire to a circuit. Ports can be of two types:

• Input ports allow wires carrying input to be connected to a circuit.

• Output ports allow wires carrying output to be connected to a
circuit.

Class Port provides the means to specify the type of the port. It also
provides methods that return information about the wire and circuit
connected to it. Classes that extend the Port class have to define the
type of Wire that can connect to them.

3. Circuit is the basic representation of a circuit. It provides methods
to add other Circuit objects that together form part of the internal
structure of the circuit being defined. It also provides the methods to
generate descriptions to external tools. One of the latest implemen-
tations to this class is the definition of the parent of the circuit, i.e.
the user is allowed to specify the circuit to which the circuit being de-
fined is a direct sub-circuit. Circuit inherits from class Cell which
provides methods to define the interface of the circuit and to manage
connections.
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All these classes inherit from the top-most class Nameable which gives a
unique name to every element created in the circuit definitions.

Another class worth mentioning is the BooleanLogic class. This class inherits
from the Circuit class and represents the primitive circuits. Therefore this
class is extended by:

• classes representing conventional logic gates (e.g. And, Or, Not, etc.),

• two delay gates which allow the definition of sequential circuits —
DelayTrue which initializes to 1 and DelayFalse which is initialized
to 0;

• the constant signals — ConstantTrue which produces a signal that has
a value of 1 throughout the circuit; and ConstantFalse which produces
a signal having value 0.

3.4.2 Generic circuits

Although two circuits may use different gates, their structure may be identi-
cal. Other circuits have a regular structure which can be easily extended to
larger circuits. In SharpHDL such circuits are captured in generic circuits .
Generic circuits are higher-order circuits, such that when given a circuit, they
build another circuit. These implementations, together with their respective
interfaces1, are stored in the GenericCircuits library. The interfaces define
the methods which should be implemented by circuits used as input to the
generic circuits.

All generic circuits inherit from class GenericCircuit. This class imposes
a validation method on the implementation of each generic circuit. This
method, VerifyCircuit(), checks the interface of the input component and
decides whether it can be used by the generic circuit. The GenericCircuit

class inherits from the abstract class Circuit.

SharpHDL provides various generic circuits some of which are discussed here.
Chapter 4 discusses others that were used for building FFT circuits.

1An interface is not a class but a set of requirements for classes that have to conform
to the interface. It is a way of describing what classes should do, without specifying how
they should do it [42].
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Map Generic Circuit

Consider the case where we want to apply a not operation to every signal
in a list (cf. Figure 3.8). We can do this by iterating through the list and
applying the operation to each element.

Figure 3.8: Applying a Not operation to every wire in an input list.

Alternatively, we can use the Map generic circuit. Given a list of wires, it
constructs a regular-structured circuit that applies an input component to
every wire in the list (cf. Figure 3.9).

Figure 3.9: Map applying logic component gate to every wire in a given input
list.

SharpHDL implements three variations of Map: MapOne accepts a one-input-
port circuit, MapTwo accepts a two-input-port circuit, and MapThree accepts
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a three-input-port circuit. Consequently, these variations accept one list of
wires, two lists of wires and three lists of wires respectively.

Sequence Generic Circuit

Consider the situation where we need to apply a not operation repeatedly
(cf. Figure 3.10). We can implement this using a loop that iterates for a
user-input n times, such that an iteration uses the output of the previous
iteration as input.

Figure 3.10: Applying a Not operation repeatedly for n times.

Otherwise, we can use a Sequence generic circuit. As its name suggests, a
Sequence applies a circuit operation sequentially over a set of input wires.
Therefore, for i = 1 . . . n, n instances of the input component C are created
and placed near each other, such that the output from the ith instance of C,
Ci, is fed to the neighboring instance Ci+1. C1 is fed with the list of wires
input to the Sequence circuit whilst Cn outputs its final result (cf. Figure
3.11).

Figure 3.11: Logic component gate repeated for n times using generic circuit
Sequence.

This generic circuit accepts a circuit having an equal number of input and
output ports, and also accepts the number of times the circuit has to be
applied.
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Row Generic Circuit

The Row generic circuit resembles a combination of the Map and Sequence

structures. Besides a component, it accepts a list of wires and a one-bit wire.
It creates instances of the input component for the number of wires in the
input list.

Row is built such that the nth instance of the input component takes the nth

wire from the list and the one-bit wire output from the (n− 1)th component.
Each component produces two wires: one is saved in the output list of wires
and the other is fed to the neighboring circuit. Thus, the final output of this
generic circuit is a one-bit wire and a list of wires having the same size of
the input list (cf. Figure 3.12).

Figure 3.12: A Row generic circuit using component gate.

An application of this type of generic circuit is an incrementor which in-
crements a number represented by a list of LogicWires. Using a half-adder
circuit as the input component to the generic circuit, it creates copies of the
component for each wire in the input list. The input one-bit signal is a con-
stant wire with value 1. The output list of the generic circuit is the sum of
the incrementor whilst the one-bit output is its carry-out (cf. Figure 3.13).

SharpHDL implements three variations of Row: RowOne accepts a two-input-
port circuit, RowTwo accepts a three-input-port circuit, and RowThree accepts
a four-input-port circuit. Consequently, they accept one list of wire, two lists
of wires and three lists of wires as input respectively, together with a one-bit
wire.
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Figure 3.13: An incrementor can be implemented using a Row generic circuit.

Tree Generic Circuit

There are circuits that can be built recursively. This means that to build
a given circuit, they call themselves one or more times to deal with closely
related sub-circuits. These circuits typically follow a divide and conquer
approach — they break the circuit into several sub-circuits that are similar
to the original circuit but smaller in size, build the sub-circuits recursively
and then combine these circuits to create the final circuit [26].

An example of such a circuit is the Tree generic circuit. The input component
should accept two inputs and produce one output. The generic circuit creates
multiple instances of the component and uses these as nodes of a binary tree.

Organizing a set of circuits of the same type in a tree structure reduces the
length of the circuit when compared to a linearly-formed circuit — applying
an operator on n wires using a Tree structure will have a path of approxi-
mately log2 n. On the other hand, if a circuit is generated linearly, the length
of the longest path is n− 1 (cf. Table 3.1).

3.4.3 Interpretations for verification

One of the important reasons for developing SharpHDL was to build a HDL
that catered for verification. Verification is advantageous because it can
save time from tedious debugging, as well as avoid expensive hardware being
implemented incorrectly.
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Table 3.1: Applying an And-gate to 8 wires — if applied linearly (left) the
longest path is 7 gates. If the circuit is built in a tree structure (right)
the longest path is 3 gates.

Safety Properties and Observers

SharpHDL circuits can be translated to other descriptions such that they can
be verified against specifications using formal verification tools. In Sharp-
HDL, specifications are defined as safety properties. Such properties state
that a condition is always true or never false. As an example consider a train
control system. A safety property we might want to verify on this system is
that a train always stops at a stop signal.

To prove that a circuit obeys a specified property we write an observer circuit
which takes as input the inputs and outputs of the circuit under test, and
outputs a signal ok stating whether it abides with the property or not. In
the train control system, the observer will take the inputs and outputs of the
control system and checks whether for a given input the train stops at the
stop signal.

More generally, consider circuit C, having input signals IC and output signals
OC such that S = IC ∪OC . An observer ΩP of safety property P on signals
S is a circuit which takes S of the circuit C and outputs an alarm signal α,
where α 6∈ S. (cf. Figure 3.14). On using this approach we say that the
safety property is changed into an invariant [34, 36, 39].

Given these circuits, we can use formal verification techniques to verify that,
for any given input, the circuit always abides with the property defined by
the observer circuit. In other words, we prove that the combination of the
circuit and the observer outputs a true signal on the alarm signal α for any
given input. We will further discuss this in section 5.2.
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Figure 3.14: Using an observer to verify a property over a given circuit.

Generating Descriptions for Verification

Given a list of wires in a circuit, a description can be generated that allows a
designer to test whether a design conforms to a set of specifications. The list
of wires is assumed to be the output wires of the observers of each specifi-
cation which a circuit-under-test is being verified against and thus assuming
that the whole circuit consists of the circuit-under-test and the observers
defining the properties. Therefore, given to the appropriate verification tool,
it verifies that the composition of the observer outputs is true for any input.

A SharpHDL method which provides such a functionality accepts a list of
wires and outputs the verification result2 and the generated code. The veri-
fication result is of type VerificationReport which is an enumerated type3.
It can have two values:

1. FALSE VERIFICATION when verification fails, and

2. COMPLETE VERIFICATION when the circuit verifies correctly.

SharpHDL also defines the interface IVerification, which specifies rules
which have to be implemented by classes implementing algorithms that gen-
erate output for specific verification tools. Such an interface makes Sharp-

2It should be pointed out that no direct connection exists between SharpHDL and any
verification tool as yet. The type representing the verification result was created as a
framework for when the connection method is actually implemented.

3An enumerated type defines a group of constants under a common name. Such
types are used when a variable should be combined to a specific set of values [31].

31



HDL extendible to generate output to different verification tools. These rules
are:

• Circuit.VerificationReport ProduceCode(LogicWire [] inputWires,

out string code)

— This method should implement the algorithm for producing the cir-
cuit description for the verification tool being represented by the class.
It accepts a set of wires, which are considered to be the signals to verify.
The method outputs the result of the verification tool. The description
is outputted via the string parameter code.

• Circuit CodedCircuit{get;}
— This is a property accessor which returns the circuit being repre-
sented by the code object.

SMV and the SMV Output Code Format

In this dissertation, we target the generation of SMV descriptions for verifi-
cation. SMV [65, 67] is a standard model checker based on OBDD symbolic
model checking. Choosing this particular tool was completely random and,
therefore, the decision was not based on any particular reason. This section
briefly explains the syntax and format of the generated SMV descriptions.

SMV supports modularity and therefore a generated description is divided
into modules. A module describes the circuit’s structure in terms of the
boolean expressions and other modules which it uses directly. It also defines a
set of formal parameters such that, when creating an instance of the module,
correct signals are fed in for each specified parameter. The module also
declares whether the parameters are input or output types by using the
keywords INPUT and OUTPUT respectively. Other used variables are declared
under the keyword VAR. Therefore, a module has the following format:

MODULE <module_name>(wire1, wire2, .... wireN)

{

INPUT <formal parameters which are input signals> : boolean;

OUTPUT <formal parameters which are output signals> : boolean;

VAR

<list of non-formal-parameter signals> : boolean

--Circuit Logic--

<invocations of expressions and module instances>

}
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The whole SMV circuit description is controlled by one main module, which
is the one evaluated by the SMV interpreter. Besides defining the structure
of the top-most circuit, this module also defines the properties which should
be verified by the model checker. These are defined using assertions. Asser-
tions, declared using the keyword assert, are written in temporal logic. Since
SharpHDL specifications are defined as safety properties, only the global tem-
poral operator G is used in the generated SMV description. Given a property
p, the formula Gp states that p is true in every moment in the future.

For example, given a circuit circ and specifications p1 and p2 described
using observers observer1 and observer2 respectively, verification consists
of checking that the composition of the outputs from the two observers, ok1
and ok2 respectively are true for all inputs. The following is the generated
SMV description:

33



MODULE main()

{

VAR

-- Signals in the circuit --

input1, input2, ..., output1, ..., outputN, alarm : boolean;

-- Circuit under test

circ : circuit(input1, input2, ..., output1, ..., outputN);

-- Observer 1 taking inputs and outputs of circ and outputs ok1

p1: observer1(input1, input2, ..., output1, ..., outputN, ok1);

-- Observer 2 taking inputs and outputs of circ and outputs ok2

p2: observer2(input1, input2, ..., output1, ..., outputN, ok2);

--PROPERTIES to prove--

assertMain := ok1 & ok2;

mainProperty : assert G (assertMain);

--Extra Variable--

assertMain: boolean;

}

MODULE circuit(wire1, wire2, ..., output1, ..., outputN)

{

-- ... module body ...

}

MODULE observer1(wire1, wire2, ..., output1, ..., outputN, ok)

{

INPUT wire1, wire2, ..., output1, ..., outputN : boolean;

OUTPUT ok : boolean;

-- ... module body ...

}

MODULE observer2(wire1, wire2, ..., output1, ..., outputN, ok)

{

INPUT wire1, wire2, ..., output1, ..., outputN : boolean;

OUTPUT ok : boolean;

-- ... module body ...

}

...

<Other modules needed>

Generating SMV Descriptions

SMV descriptions are generated using method ToSMV(). Every type of circuit
that is used in the SharpHDL definition is represented by an SMV module
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where the circuit calling the ToSMV() method is defined as the main module.

Internally, the ToSMV() method creates an SMV object of the circuit. SMV

is a class representing SMV code. SharpHDL circuits implement interface
ISMVSerializable so that they can be processed by the SMV object. The
interface defines the following methods:

• SMV.SMVComponent SMVType{get;set;}
— This defines how the circuit wants the SMV object to consider it. If
the circuit is a boolean gate or the user knows the SMV expression rep-
resenting the circuit, then the SMVType property should return BOOLEAN

otherwise it should return DEFAULT, both of which are members of the
enumerated type SMVComponent defined in the SMV class.

• bool DefineModule{get;set;}
— This property allows the user to specify whether he wants the par-
ticular circuit to be represented as a separate module or not. In the
case where he prefers not to have an individually defined module for
a circuit, the module representing the parent of the particular circuit
will define the structure of the circuit as if it was its own.

• string UserDefinedLogic{get;}
— This property returns a user-defined SMV expression representing
the circuit. It is invoked if the circuit returns BOOLEAN as its SMVType

property. The user must be careful to define correct SMV code.

• string SMVModuleDescription{get;}
— The string returned by this property is used as a comment placed
just before the start of the module representing the circuit.

3.4.4 More about interpretations

Descriptions of SharpHDL circuits can also be generated to other HDLs. We
target the standard HDL Verilog.

Method ToVerilog() generates the Verilog description of a circuit. One
should point out that, due to time constraints, the algorithm to produce
Verilog descriptions has not been updated to produce a modular format, as
done to the algorithm producing SMV. Nevertheless, the idea used in the
SMV-generation algorithm could be used to produce a neater and modular
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Verilog representation. Since the research concentrated mostly on verifica-
tion techniques, updating the Verilog-generation algorithm was deemed as
less important.

3.4.5 Other SharpHDL libraries

LogicGates is another important SharpHDL library. It uses the core library
to construct compound gates. Such gates are those which need to use a
number of primitive gates and other compound gates. Some circuits provided
include the nand, nor, xor, and equivalence gates amongst others. Other
circuits can easily be implemented in this library.

The SharpHDL language was further extended with more libraries which cap-
ture classes of circuits, wires and ports doing related jobs. Such libraries are
based on the three main SharpHDL libraries — SharpHDL, GenericCircuits
and LogicGates.

One extra library created is the Arithmetic library where the implementa-
tions of a group of circuits performing arithmetic operations are stored. Such
circuits include adders and multipliers which work on integers and floating-
point numbers. It also includes classes which inherit from class Wire, repre-
senting different types of numbers and Port classes which accept these wires.

3.5 Using SharpHDL

This section gives a brief overview about how to build circuit descriptions
using SharpHDL. It takes the form of a progressive tutorial from building
simple circuits to using advanced SharpHDL tools. It is assumed that the
reader has a basic knowledge about C# programming.

3.5.1 Defining a simple circuit

We shall introduce SharpHDL syntax by defining a half-adder circuit. A half-
adder adds two one-bit numbers and outputs their sum and carry. Therefore,
a half-adder circuit takes two input wires — InputA and InputB — and out-
puts two wires: Sum and Carry. The Sum result is produced by applying a Xor

operation over the two inputs; the Carry result is produced by applying an
And operation (cf. Figure 3.15).
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Figure 3.15: A half-adder circuit.

To be able to use the main C# functionalities a call to the System namespace
must be included. The System namespace contains classes that implement
basic programming constructs. The SharpHDL library is also invoked to be
able to make use of its tools:

using System;

using SharpHDL;

Since we are going to code a circuit, the HalfAdder class should inherit from
the class Logic, an abstract class representing the general logic circuit. This
will also enable us to have access to protected methods which will otherwise
be hidden to the circuit:

public class HalfAdder : Logic {...}

When a C# object is created it is initialized by calling the class constructor.
When initialized, a SharpHDL circuit must also specify its parent circuit.
The parent of a circuit is the circuit to which the new circuit is a direct
sub-circuit. The HalfAdder constructor is specified as follows:

public HalfAdder(Circuit parent):base(parent)

{

...

}

In the constructor we specify functions that an object has to carry out on
creation. Optionally, we can specify the set of input and output ports using
methods AddInputPort() and AddOutputPort() respectively, thus defining the
interface of the circuit (cf. Table 3.2 Figure (a)):
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//Input Ports

Port[] input = {new LogicPort(), new LogicPort()};

this.AddInputPort(input);

//Output Ports

Port[] output = {new LogicPort(), new LogicPort()};

this.AddOutputPort(output);

LogicPort is a class representing a port that connects a 1-bit wire to a circuit.

The structure of the circuit is defined in the method gate o()4. It accepts
four wires, two of which are the inputs and the other two are the outputs.
The keyword ref is used for the output parameters to indicate that they are
reference parameters . In other words, the values are supplied by reference
and can be read and modified.

public void gate_o(LogicWire InputA, LogicWire InputB,

ref LogicWire Sum, ref LogicWire Carry)

{

...

}

The first compulsory step in this method is to connect the wires to the ports
by using the method Connect() (cf. Table 3.2 Figure (b)). It is important to
supply the wires in the same order as the ports were declared; though in this
example this doesn’t make a difference since the wires are of the same type.
When the ports are not declared, they are created automatically according
to the type of wires passed as parameters to the Connect() method.

Wire[] input = {InputA, InputB};

Wire[] output = {Sum, Carry};

this.Connect(input, output);

As mentioned previously, the half-adder requires two circuits, an And-gate
and a Xor-gate. An instance of each is created by calling their respective
constructors and, using the keyword this, we specify that the HalfAdder is
their parent circuit. The gate o() method of each circuit is invoked, passing
it the appropriate parameters (cf. Table 3.2 Figure (c)).

4In SharpHDL, the name gate o() is a standard method name for the method that
specifies the structure and behaviour of the given circuit, given the necessary input and
output wires. Likewise is the method gate() which, although having the same function,
creates new output wires.
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new And(this).gate_o(InputA, InputB, ref Carry);

new Xor(this).gate_o(InputA, InputB, ref Sum);

The first line invokes the method gate o() of the And-gate object. It accepts
three wires: the first two being the input wires and the third being the output
wire. Therefore the two input wires to the half adder and the wire Carry are
passed to this method. The same is done for the Xor instance, but this time
the two input wires and the Sum wire are passed to its gate o() method.

(a) (b)

(c)

Table 3.2: Steps to create a SharpHDL circuit: (a) Define the interface
to the circuit (optional step); (b) Connect wires to the circuit; (c) Define
the internal structure of the circuit.

We also define a gate() method which calls the method gate o() such that
it carries out the same operations as the latter method. The difference lies
in that the new output wires are created in the method and not passed as
input by the user.
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public LogicWire gate(LogicWire InputA, LogicWire InputB,

out LogicWire Sum)

{

Sum = new LogicWire();

LogicWire Carry = new LogicWire();

gate_o(in0, in1, ref Sum, ref Carry);

return Carry;

}

The keyword out indicates that the value of the parameter Sum is set in the
method and returned to the calling method. Any value assigned to it before
the gate() method is called is lost. The Carry wire is created and returned
by the method. The complete code for the class representing a half-adder
circuit is the following:

using System;

using SharpHDL;

public class HalfAdder: Logic

{

public HalfAdder(Circuit parent):base(parent)

{

Port[] input = {new LogicPort(), new LogicPort()};

this.AddInputPort(input);

Port[] output = {new LogicPort(), new LogicPort()};

this.AddOutputPort(output);

}

public LogicWire gate(LogicWire InputA, LogicWire InputB,

out LogicWire Sum)

{

//Assign a new LogicWire to Sum

Sum = new LogicWire();

//Create a new Carry Wire

LogicWire Carry = new LogicWire();

//Call gate_o

gate_o(InputA, InputB, ref Sum, ref Carry);

return Carry;

}

public void gate_o(LogicWire InputA, LogicWire InputB,

ref LogicWire Sum, ref LogicWire Carry)

{

Wire[] input = {InputA, InputB};

Wire[] output = {Sum, Carry};

this.Connect(input, output);

//And gate

new And(this).gate_o(InputA, InputB, ref Carry);

//Xor gate

new Xor(this).gate_o(InputA, InputB, ref Sum);

}

}
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3.5.2 Using circuits to build other circuits

After defining a circuit we can use it either as a stand-alone circuit or as part
of a more complex circuit.

The half-adder circuit can be used to add two one-bit numbers. We create
an instance of the HalfAdder class by invoking its constructor. Then, taking
in0 and in1 to be the wires representing the input numbers, and sum1 and
carry1 to represent the sum and carry outputs respectively, we call method
gate() or gate o() to build the structure of the circuit. The names of the
variables are left to the user.

//Create an instance of HalfAdder

HalfAdder hA = new HalfAdder(this);

//Build HalfAdder circuit

hA.gate_o(in0, in1, ref sum1, ref carry1);

A full-adder circuit uses half-adder circuits to add two one-bit numbers, a

and b, and a carry-in bit, carryIn, and outputs a sum, sum, and carry-out
bit, carryOut (cf. Figure 3.16).

Figure 3.16: A full-adder circuit.

Using the diagram as a guide, we can see that the first half-adder takes wires
a and b and outputs the sum, sum1, and the carry, carry1:

//Create new LogicWires for sum1 and carry1

LogicWire sum1 = new LogicWire();

LogicWire carry1 = new LogicWire();

//Create and build a half-adder circuit

new HalfAdder(this).gate_o(a, b, ref sum1, ref carry1);
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The second half-adder takes wire sum1 and the carry-in wire, carryIn, and
outputs the full-adder circuit’s sum wire, sum, and a carry-out wire, carry2.

//Create new LogicWire for carry2

LogicWire carry2 = new LogicWire();

new HalfAdder(this).gate_o(sum1, carryIn, ref sum, ref carry2);

The final carry-out answer carryOut is determined by using a Xor-gate and
feeding it the two carry-outs produced by the half-adders carry1 and carry2.

new Xor(this).gate_o(carry1, carry2, ref carryOut);

Therefore, the gate o() method of a FullAdder class representing the full-
adder circuit is the following:

public void gate_o(LogicWire a, LogicWire b, LogicWire carryIn,

ref LogicWire sum, ref LogicWire carryOut)

{

//Connect wires to ports

Wire[] input = {in0, in1, carryIn};

Wire[] output = {carryOut, sum};

this.Connect(input, output);

//Create intermediate wires

LogicWire sum1 = new LogicWire();

LogicWire carry1 = new LogicWire();

LogicWire carry2 = new LogicWire();

//First half-adder instance

new HalfAdder(this).gate_o(in0, in1, ref sum1, ref carry1);

//Second half-adder instance

new HalfAdder(this).gate_o(sum1, carryIn, ref sum, ref carry2);

//Xor-gate

new Xor(this).gate_o(carry1, carry2, ref carryOut);

}

3.5.3 C# constructs for defining SharpHDL circuits

Being embedded in C#, SharpHDL circuits can be described using constructs
provided by the host language. These include iteration constructs like for-do

and while-do loops and the recursion mechanism. We will describe how more
complex circuits than the ones already described can be built using these
constructs.
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Defining a Ripple-Carry Adder by Iteration

A ripple-carry adder [40] performs addition on n number of wires. It uses
full-adder circuits, defined in section 3.5.2, and tiles them as illustrated in
figure 3.17. Therefore, it accepts two lists of wires and a one-bit carry-in
wire and outputs a list of sum wires and a single carry-out wire.

Figure 3.17: A ripple-carry adder circuit.

Using a for-do loop we can iterate through the two input lists of wires
simultaneously and apply to them a full-adder circuit using the resulting
carry from the previous application. Therefore for i = 0 . . . (n − 1) wires in
each list, we create a full-adder and feed it with the ith wire from the two
lists together with the carry-out of the (i − 1)th iteration. The final output
is a list of sums of length n and the carry-out from the (n− 1)th full-adder.
The RippleCarryAdder class, representing the ripple-carry adder is defined
as follows:

using SharpHDL; ...

public class RippleCarryAdder : Circuit

{

//Class constructor

public RippleCarryAdder(Circuit parent):base (parent){}

public void gate_o(BusWire in0, BusWire in1, LogicWire carryIn,

ref BusWire sumList, ref LogicWire carryOut)

{

//...Connect wires to ports

//ASSUMPTION: Equal length BusWires

int n = in0.Count - 1;
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//For-do loop from 0 till the wire-before-the-last

for(int i=0; i < (n); i++)

{

LogicWire sum;

LogicWire carryOut = new FullAdder(this).gate(in0[i], in1[i], carryIn,

out sum);

//The carryIn for the next iteration is

//the carryOut of this iteration

carryIn = carryOut;

//Add the sum to the sum list

sumList.Add(sum);

}

//Last iteration that will output the final carry-out

LogicWire sum;

new FullAdder(this).gate_o(in0[n],

in1[n], carryIn, out sum, ref carryOut);

sumList.Add(sum);

}

}

Defining a Carry-Select Adder by Recursion

Another technique supported by C# is recursion. We shall define a recur-
sively built n-bit adder circuit.

A carry-select adder [3] is a faster adder implementation than the ripple-
carry adder described in the previous section. An n-bit carry-select adder
(cf. Figure 3.18) accepts two lists of wires of length n and sub-divides them
in two such that the lower half has wires 0 to n

2
− 1 and the upper half has

wires n
2

to n − 1. The two subdivisions are added recursively using a n
2
-bit

carry-select adder until the length of the lists is 1. In this case it applies a
simple full-adder operation.

The addition of the two sub-divided lists are done in parallel, so the carry-in
of the upper half, carryin upper is unknown. Therefore the addition of the
upper subdivision is done twice: once using carryin upper = 0 and another
time taking carryin upper = 1. Once the carry-out of the lower half is known,
a multiplexer, defined in section 3.1 on page 14, is used to select the correct
sum of the upper sub-division. A SharpHDL implementation of the carry-
select adder algorithm is the following:
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Figure 3.18: A 4-bit carry-select adder circuit, using a 2-bit carry select
adder to perform additions on the two subdivided lists of wires.

private void gate_o(WireList in0, WireList in1, LogicWire carryIn,

ref WireList sum, ref LogicWire carryOut)

{

//Stopping Condition for Recursion

if (in0.Count==1)

{

LogicWire sumWire = new LogicWire();

new FullAdder(this).gate_o(in0[0], in1[0],carryIn,

ref sumWire, ref carryOut);

sum.Add(sumWire);

}

else

{

//Phase 1 : Dividing the lists of wires & other initializations

//Split the two inputs in two

int newSize = in0.Count/2;

WireList lowerList0 = new WireList();

WireList lowerList1 = new WireList();

WireList upperList0 = new WireList();

WireList upperList1 = new WireList();

//Split in0 into lowerList and upperList using newSize

in0.Split(newSize, ref lowerList0, ref upperList0);

//Split in1 into lowerList and upperList using newSize

in1.Split(newSize, ref lowerList1, ref upperList1);
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//Initialize the carryIns

//a) carry_in_upper=0

LogicWire cInUpper0 = new ConstantFalse(this).gate();

//b) carry_in_upper=1

LogicWire cInUpper1 = new ConstantTrue(this).gate();

//Initializing CarryOuts

LogicWire cOutUpper0 = new LogicWire();

LogicWire cOutUpper1 = new LogicWire();

LogicWire cOutLower = new LogicWire();

//Initializaing Sums

WireList sumUpper0 = new WireList();

WireList sumUpper1 = new WireList();

WireList sumLower = new WireList();

//Phase 2: Recursive calls

//Addition of upper part using carry_in_upper = 0

gate_o(upperList0, upperList1, cInUpper0, ref sumUpper0, ref cOutUpper0);

//Addition of upper part using carry_in_upper = 1

gate_o(upperList0, upperList1, cInUpper1, ref sumUpper1, ref cOutUpper1);

//Addition of lower part

gate_o(lowerList0, lowerList1, carryIn, ref sumLower, ref cOutLower);

//Phase 3: Use Multiplexer to choose the sum

WireList sumUpper = new WireList();

for (int i = 0; i < sumUpper0.Count; i++)

{

LogicWire sum_i = new Multiplexer(this).gate(sumUpper0[i],

sumUpper1[i], cOutLower);

sumUpper.Add(sum_i);

}

//Phase 4: Answer

//i. Sum - Concatenate sums of upper half with sums of lower half

sum.Concatenate(sumLower, sumUpper);

//ii. CarryOut

new Multiplexer(this).gate_o(cOutUpper0, cOutUpper1, cOutLower, ref carryOut);

}

}

3.5.4 Using generic circuits

One of the major benefit of generic circuits is that they reduce the number
of lines of code needed to construct a complex circuit, thus helping the user
to generate more elegant code. Looking at the ripple-carry adder defined in
section 3.5.3 on page 43 we realize that it has a regular structure which can
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be captured by a generic circuit. We therefore try to improve the definition
of this circuit by applying the full-adder circuit to a RowTwo structure.

To use a circuit as input to a generic circuit, some minor extensions have to be
implemented. The most important is the implementation of the appropriate
interface. Being that the RowTwo circuit will used, the full-adder class should
implement the IRowTwoStructurable interface. The interface dictates that
the FullAdder class should have two extra methods implemented:

• void gate o(Wire in0, Wire in1, LogicWire inputWire,

out Wire out0, ref LogicWire outputWire)

• LogicWire gate(Wire in0, Wire in1, LogicWire inputWire,

out Wire out0)

These are the names of the methods that describe the structure of a circuit.
Therefore, the new FullAdder will be the following:

using System;

public class FullAdder : Logic, IRowTwoStructurable

{

//Class constructor

public FullAdder(Circuit parent):base(parent)

{

...

}

//Returns the carryOut wire

public LogicWire gate(LogicWire in0, LogicWire in1, LogicWire carryIn,

out LogicWire sum)

{

//... Calls gate_o(...)

}

public void gate_o(LogicWire in0, LogicWire in1, LogicWire carryIn,

ref LogicWire sum, ref LogicWire carryOut)

{

//Connection of wires to ports

//Structure definition

}
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//New implementations ...

#region IRowTwoStructurable Members

LogicWire SharpHDL.GenericCircuits.IRowTwoStructurable.gate(Wire in0, Wire in1,

LogicWire inputWire, out Wire out0)

{

//Calls gate(..);

}

void SharpHDL.GenericCircuits.IRowTwoStructurable.gate_o(Wire in0, Wire in1,

LogicWire inputWire, out Wire out0, ref LogicWire outputWire)

{

//Calls gate_o(...)

}

#endregion

}

}

Using this new FullAdder class, the ripple-carry adder can be constructed
using the RowTwo generic circuit:

using System;

using SharpHDL.GenericCircuits;

public class NBitAdder : Logic

{

public NBitAdder(Circuit parent):base (parent){}

public void gate_o(WireList in0, WireList in1, LogicWire carryIn,

ref WireList sum, ref LogicWire carryOut)

{

//Connect wires to ports...

//Create RowTwo structure,

//passing a full-adder circuit to it

RowTwo row2 = new RowTwo(this, new FullAdder(null));

//Build circuit

row2.gate_o(in0, in1, carryIn, ref sum, ref carryOut);

}

}

This proves that, using generic circuits a designer can write elegant and
short descriptions even for complex circuits. Generic circuits also increase
code reusability since a pattern can be used for several components without
having to rewrite any code.
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3.5.5 Verifying implementations

One important use of verification is to check that a new implementation is
correct. This can be done by comparing it to a another implementation that
is guaranteed to work correctly and checking that, for any input, they give
out the same output.

As an example we will check the correctness of the carry-select adder defined
in section 3.5.3 on page 44 by verifying that, given the same input, both the
ripple-carry adder and the carry-select produce the same result. We assume
that the ripple-carry adder is correct. An observer is created that feeds the
same input into the two adders, compares their results and outputs whether
they are equivalent or not through a one-bit wire. Therefore equivalence is
satisfied if the sum and carry-out results are equal for any input list of wires
(cf. Figure 3.19):

sumn = (sumn

ripple-carry ⇔ sumn

carry-select )

Equivalentsums =
∧

(sum0, sum1, . . . , sumn)

n = 0, . . . , size of outputs

Equivalentcarrys = (carryOutripple-carry ⇔ carryOutcarry-select )

Equivalence = Equivalentsums
∧

Equivalentcarrys

The SharpHDL description of the observer is the following:
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Figure 3.19: The observer feeds the same input to the two adder circuits
and checks their equivalence by comparing their output sums and carrys.

//Call the two adders using lists input1 and input2

BusWire sum1, sum2;

LogicWire carryOut1 = new RippleCarryAdder(this).gate(input1, input2, carryIn,

out sum1);

LogicWire carryOut2 = new CarrySelectAdder(this).gate(input1, input2, carryIn,

out sum2);

//Use MapTwo to apply NXOR-gate to the sums

BusWire sumN = new MapTwo(this, new NXor(null)).gate(sum1, sum2);

//Use Tree to apply AND-gate to check that equalSums is all 1

LogicWire equivalentSums = (LogicWire)new Tree(this, new And(null)).gate(sumN);

//Compare carry-out

LogicWire equivalentCarrys = new NXor(this).gate(carryOut1, carryOut2);

//Equivalence = equivalentSums & equivalentCarrys

new And(this).gate_o(equivalentSums, equivalentCarrys, ref equivalence);
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We use wire equivalence as an input to the ToSMV() method so that the
SMV code produced will make the model checker verify that, for any input,
equivalence is always true.

LogicWire [] prove = {equivalence};

this.ToSMV(prove, "C:\\", "CompareAdders");

Chapter 4 will discuss a more complex case study using circuits describing
FFT algorithms.

3.6 Related Work

medskipIn this section some HDLs that are most related to the work de-
scribed here are highlighted.

3.6.1 Embedded object-oriented HDLs

The idea of object-oriented HDLs has already been thought of and experi-
mented with. Two such languages are JHDL [45, 46] and PamDC [12, 69].

JHDL is, one of the most renowned languages. This object-oriented hardware
description language is embedded in Java and given that it is based on the
same paradigm, JHDL considers every element of a circuit to be an object.
The two main JHDL classes are:

Logic, which is sub-classed by every circuit,

Wire, which offers a rich set of methods to enable the user to create and
manipulate wires.

One major difference is how objects representing logic gates are accessed. The
Logic class, which is one of the two main classes of JHDL, provides a quick-
hardware method library to build circuits efficiently. Therefore, boolean
gates are invoked by calling a method rather than by instantiating an object
by a constructor call.

One of the main problems of this approach is that user-created Logic classes
are treated differently from hard-coded ones. This may affect the reusability
and extensibility factors provided by the object-oriented paradigm. It also
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makes it difficult to use forms of generic circuits since methods cannot be
used as input as can be done with an object. In fact, JHDL provides little
or no support for such circuits.

An interesting feature in JHDL is the provision for relative placement in-
formation. Studies have shown that user-specified placement information
often improves the performance of FPGAs when compared to automatic
placement tools [81]. The language allows such specification through two
methods, map() and place(), which map gates to atomic FPGA cells and
set the relative placement of such cells respectively. Such a feature can be
considered as a future extension to SharpHDL.

JHDL provides a rich CAD suite, which includes a simulator, a waveform
viewer where a user can view the wave output by a signal, a Command Line
Interpreter (CLI) Console which holds a listing of all commands performed
by the user, a graphical circuit browser and a netlister amongst other tools.
Unfortunately the language does not provide explicit verification tools. De-
bugging and verifying a JHDL design is done through the design window
which was developed with the intention to provide a visualization aid for
debugging.

JHDL’s main concentration is to develop an efficient CAD suite for designing
and testing hardware. Being that the main intention of SharpHDL concen-
trates round verification, the difference in the approaches and tools offered
by the two languages is understandable.

Another OO HDL is PamDC which is embedded in C++. When run, a
PamDC program creates a Xilinx netlist file which can be passed to a place-
ment tool. The main targets of this language is to provide control over
placement to enhance circuit performance. In fact, it gives the designer full
control over the design. Nevertheless this requires relatively high efforts to
create structural designs on a very low level.

To simplify this process, in [69] Mencer et al. introduced levels of abstraction
over PamDC by implementing an object-oriented hierarchy. These consists
of two libraries: PamBlox which consists of a set of parameterizable simple
templates of objects, normally containing carry chains; and PaModules which
holds complex, fixed circuits built from PamBlox circuits. The whole set of
libraries is called PAM-Blox.

PamDC descriptions are quite different from JHDL or SharpHDL ones. All
data and methods are declared as public to allow maximal visibility during
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simulation. Unlike the other two languages, input and output wire param-
eters are not defined in the method describing the internal structure of the
circuit. Instead inputs are passed to the constructor of the class whilst the
outputs are passed to the out method. The latter is the method defining
the internal logic of the circuit. If any more parameters are required these
are passed by declaring the formal parameters to be type reference, while
optional parameters are passed as pointers.

Names are also important in PamDC — the language supports a hierarchical
naming scheme that creates a unique name for each wire in the design. The
names are stored in a format similar to file paths that describe all the ances-
tors of the wire, i.e. the circuit where it is being used and the circuits that
are parent to the circuit. One must note that, like JHDL and SharpHDL,
PamDC stores information about circuit hierarchy. Nevertheless, one must
point out that he naming mechanism is only applied to the wires.

3.6.2 Other embedded HDLs

There are various HDLs that are embedded in a functional language. The
most influential one to this work is Lava [9, 20]. Lava is a HDL embedded
in the functional programming language Haskell [83] and therefore circuits
are defined in terms of Haskell functions. Although, like SharpHDL, it is
not possible to describe circuits in such a depth as the standard HDLs, the
descriptions are short and sweet.

By using higher-order functions, it also offers the facilities of connection
patterns , which are basically the generic circuits found in SharpHDL. Such
circuits were used to design and analyze various complex circuits including
a sorter core [21], Fast Fourier Transforms [8, 9] and others.

One of Lava’s unbeatable features is its elegance. A half-adder circuit de-
scription in the language is the following:

import Lava

halfAdd(a, b) = (sum, carry)

where

sum = xor2(a, b)

carry = and2(a, b)

Notice the lack of verbosity in the description — a feature which SharpHDL is
not as good at as this Haskell-embedded language. Other Lava tools include
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the possibility of analyzing circuits by simulation, verification, and generation
of code for input to verification tools and other HDLs that are connected to
it. Lava uses the same approach for verification, such that the main kind of
properties of circuits Lava deals with are safety properties which are tested
using observer circuits, as described by Halbwachs using the synchronous
programming language Lustre [36, 39].

Also embedded in Haskell is the language developed by Launchbury et al,
Hawk [54, 58]. It is mainly used to design and verify modern microprocessors
and so offers the necessary mechanisms to specify their components. This
differs from SharpHDL since our intentions are to model circuits at bit-level.

It considers circuits and components to be functions from signals to signals.
As a library it is based on two main abstractions — the Signal abstract
data type, which holds the state of a wire for every clock cycle; and the
Transaction abstract data type, which is used to encapsulate the state of
an instruction as it is being processed. Verification in Hawk takes a more
algebraic form. They use the approach proposed by Burch and Dill [15]
which state that the states produced by running the specification should be
the same to those resulting after running the implementation, given the same
input.

O’Donnell has also developed Hydra [70] — a Haskell library for describing
hardware. The main purpose of this langauge is to serve as a teaching tool
for the design and testing of a microprocessor. It also uses higher-order
functions. The language is capable of describing circuits at different levels
levels of abstraction. It defines a Signal class which represents the value
carried by a wire such that a circuit is defined as a function from signal

to signal. However, Hydra does not allow users to define composite signal
types, such as signals of integers.

3.6.3 Other important HDLs

Two languages worth mentioning are µFP [79] and Ruby [50]. These lan-
guages are considered to be the stepping stones which led to the development
of the functional-based languages we have described in the section before.

µFP is a structural HDL based on Backus’ FP developed back in the begin-
ning of the 1980s. A program in FP is an expression representing a func-
tion that maps objects into objects. Such functions can be either primitive

54



functions like arithmetic functions, predicates and sequence manipulators, or
combining forms which map functions into functions.

Whilst functions in FP take a single input and produce a single output, µFP
programs take a sequence of inputs and produce a sequence of outputs. The
nth value of a sequence corresponds to the value of a signal at time t = n.
This made the representation of sequential circuits possible. This was done
by adding a new combining form over Backus’ FP which represents state.
This was called µ.

Using µFP one can describe not only a circuit’s behaviour but also its lay-
out by giving simple geometric interpretations for each of the combining
forms. Besides, the process of designing µFP programs can be considered as
a program transformation process from an initial abstract specification to an
efficient implementation which must obey a set of algebraic rules. Thus, the
first notions of circuit verification is suggested here.

Later Sheeran and Jones refined µFP into Ruby [50]. In this language, cir-
cuits are defined in terms of binary relations between input and output goals.
Placement is an important issue in this language and therefore it defines a set
of components which define both the structure of the circuit and its location
in relation to other circuits and other external signals.

3.7 Conclusions

In this chapter we have seen an overview of the new SharpHDL language
and the tools it provides. By embedding the language into C#, we provided
an OO HDL with which circuits can be described structurally. The OO
characteristics inherited from the host language allows us to define a set of
classes which abstract the general structure of a circuit. Such classes can
be extended to define concrete components which given their polymorphism
nature, can still be treated at their higher-level description. Also, using
modularity, a circuit can be manipulated as an individual component having
other circuits, and also itself making up part of a parent circuit. SharpHDL
does not flatten the descriptions in terms of the basic boolean gates.

The embedded approach also provides a meta-language which allows the
definition of higher-order circuit descriptions. We refer to such descriptions
as Generic Circuits and these describe circuits which use other circuits to
build another complex circuit having a regular structure.
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Using SharpHDL, a designer can define specifications of a circuit in terms
of safety properties by building an observer circuit that takes the input and
output of a circuit-under-test and decides whether it obeys the property.
Therefore we can express both circuits and their specifications using the
same language.

SharpHDL can generate other descriptions of the circuit which can be used
by verification tools and other HDLs. Until now, we target the SMV model
checker and the standard HDL Verilog. Using the SMV descriptions, a de-
signer can verify a circuit with its specifications; the Verilog descriptions
permits the use of the various tools that exist for this language including
simulators.

In the next chapter we see a complex case study using SharpHDL, whereby
we verify the equivalence of two FFT circuits. Further on we further analyze
the contributions of embedding a language when we use SharpHDL to build
a language for modular verification and refinement.
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Chapter 4

Describing and Verifying FFT
Circuits using SharpHDL

Fourier transforms are critical in a variety of fields but in the past,
they were rarely used in applications because of the big processing
power required. However, the Cooley’s and Tukey’s development
of the Fast Fourier Transform vastly simplified this. A large num-
ber of FFT algorithms have been developed, amongst which are the
radix-2 and the radix-22 FFT algorithms. These are the ones that
have been mostly used for practical applications due to their simple
structure with constant butterfly geometry. Most of the research to
date for the implementation and benchmarking of FFT algorithms
have been performed using general purpose processors, Digital Sig-
nal Processors and dedicated FFT processor ICs but as FPGAs have
developed they have become a viable solution for computing FFTs.
In this chapter, SharpHDL will be used to describe the circuits im-
plementing the above-mentioned FFT algorithms and verify their
equivalence.
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4.1 Introducing FFTs

A Fast Fourier Transform (FFT) is an efficient algorithm to compute the
Discrete Fourier Transform (DFT) and its inverse. A DFT, also referred to
as a Finite Fourier Transform, is a Fourier Transform widely used in Digital
Signal Processing (DSP) and related fields to analyze the frequencies of a
sampled signal, solve partial differential equations and for other operations
such as convolutions.

A DFT’s problem is defined over an integral domain. We shall discuss DFTs
defined over complex numbers. Given such a domain, the DFT’s arithmetic
consists of the computation of the sequence {X(k)} of N complex numbers
given a sequence of N {x(n)}, according to the formula:

X(k) =
N−1∑
n=0

x(n)W kn
N 0 ≤ k ≤ N − 1

where

W kn
N = e−j2Π/N = cos(

2Π

N
· nk)− j sin(

2Π

N
· nk)

The latter is the principal n-th root of unity, also known as the twiddle factor.

One can notice that for each input value of k, X(k) takes N complex mul-
tiplications and N − 1 complex additions. Therefore, to compute all the N
values of the DFT N2 complex multiplications and N2−N complex additions
are required. This makes a DFT a ©(n2) problem. If the symmetry and pe-
riodicity properties of the twiddle factor W k

N are taken into consideration, a
more efficient computation is carried out. The properties specify that

W
k+N

2
N = −W k

N (Symmetry property)

W k+N
N = W k

N (Periodicity property)

FFTs use these properties, amongst others, making them efficient algorithms
for computing DFTs, such that the problem is reduced to a ©(n log n) one
[25, 48].
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The general idea of FFTs was made popular by a publication of J. W. Cooley
and J. W. Tukey in 1965, who re-invented the algorithm of Carl Friedrich
Gauss and described how to perform it efficiently on a computer. Gauss
observed that a Fourier series of width N = N1N2 can be broken up into
a computation of the N2 sub-sampled DFTs of length N . He used it to
interpolate the trajectories of the asteroids Pallas and Juno in the year 1805
but this work was not recognized, though various limited forms were also
rediscovered several times throughout the 19th and 20th century [74].

4.1.1 Radix-2 decimation in time FFT algorithm

Various forms and variations of FFTs have been developed but the most
well-known textbook example is Cooley and Tukey’s radix-2 FFT. It works
on an input sequence having length to the power of two. It splits the input
into the odd-indexed numbers and the even-indexed numbers, hence making
it a decimation-in-time algorithm. Therefore,

f1(n) = x(2n)

f2(n) = x(2n + 1) n = 0, 1, . . . ,
N

2
− 1

It follows that

X(k) =
N−1∑
n=0

x(n)W kn
N

=
∑

n even

x(n)W kn
N +

∑
n odd

x(n)W kn
N

=

(N
2

)−1∑
m=0

x(2m)W 2mk
N +

(N
2

)−1∑
m=0

x(2m + 1)W
k(2m+1)
N

But W 2
N = WN

2

Therefore,
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X(k) =

(N
2

)−1∑
m=0

f1(m)W km
N
2

+ W k
N

(N
2

)−1∑
m=0

f2(m)W km
N
2

= F1(k) + W k
NF2(k) k = 0, 1, . . . N − 1

where F1(k) and F2(k) are the N
2
-point DFTs of the sequences f1(m) and

f2(m) respectively.

Using the symmetry property, we know that W
k+N

2
N = −W k

N . We also know
that F1(k) and F2(k) are periodic, having period N

2
. Therefore,

F1(k +
N

2
) = F1(k)

and

F2(k +
N

2
) = F2(k)

Hence,

X(k) = F1(k) + W k
nF2(k) k = 0, 1, . . . ,

N

2
− 1

X(k +
N

2
) = F1(k)−W k

nF2(k) k = 0, 1, . . . ,
N

2
− 1

This final derivation is also known as the radix-2 FFT Butterfly, better illus-
trated in figure 4.1.

The decimation of the data is repeated recursively until the resulting se-
quences are of length two. Thus, each N

2
-point DFT is computed by combin-

ing two N
4
-point DFTs, each of which is computed using two N

8
-point DFTs

and so on. The whole radix-2 FFT network is given in figure 4.2.

One should note that the indexes of the input sequence are re-ordered. The
technique used is called bit reversal . This basically consists of reversing of
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Figure 4.1: Radix-2 FFT butterfly — crossing lines symbolize addition and
the numbers on the wires are multiplication.

the bits representing the index of a number in the sequence such that the
Most Significant Bit (MSB) becomes the Least Significant Bit (LSB) and
vice-versa. Therefore, bit-reversed indexes are used to combine FFT stages
[25, 52].

4.1.2 Radix-22 decimation in frequency FFT algorithm

Decimation in frequency (DIF) is another FFT algorithm developed by Sande,
in the same time as Cooley and Tukey. This technique decomposes the input
sequence using a first-half/second-half approach.

One such algorithm is the radix-22 FFT algorithm [7], which is a less popular
algorithm than the radix-2 FFT algorithm described in the previous section.
It is used by an input sequence of length to the power of 4, so that the
N -point DFT formula can be broken down into four smaller DFTs.

Therefore, the DFT is calculated as follows:
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Figure 4.2: A radix-2, decimation in time FFT of size 8.

X(k) =
N−1∑
n=0

x(n)W kn
N

=

N
4
−1∑

n=0

x(n)W kn
N +

N
2
−1∑

n=N
4

x(n)W kn
N +

3N
4
−1∑

n=N
2

x(n)W kn
N +

N−1∑
n= 3N

4

x(n)W kn
N

=

N
4
−1∑

n=0

x(n)W kn
N + W

Nk
4

N

N
4
−1∑

n=0

x(n +
N

4
)W kn

N

+ W
Nk
2

N

N
4
−1∑

n=0

x(n +
N

2
)W kn

N + W
3Nk

4
N

N
4
−1∑

n=0

x(n +
3N

4
)W kn

N
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We know that

W
kN
4

N = (−j)k

W
kN
2

N = (−1)k

W
3kN

4
N = (j)k

Hence,

X(k) =

N
4
−1∑

n=0

[x(n) + (−j)kx(n +
N

4
) + (−1)kx(n +

N

2
) + (j)kx(n +

3N

4
)]W nk

N

To get the radix-22 DIF DFT, we subdivide the DFT sequence into four
N
4
-point sub-sequences:

X(4k) =

N
4
−1∑

n=0

[x(n) + x(n +
N

4
) + x(n +

N

2
) + x(n +

3N

4
)]W 0

NW kn
N
4

X(4k + 1) =

N
4
−1∑

n=0

[x(n)− jx(n +
N

4
)− x(n +

N

2
) + jx(n +

3N

4
)]W n

NW kn
N
4

X(4k + 2) =

N
4
−1∑

n=0

[x(n)− x(n +
N

4
) + x(n +

N

2
)− x(n +

3N

4
)]W 2n

N W kn
N
4

X(4k + 3) =

N
4
−1∑

n=0

[x(n) + jx(n +
N

4
)− x(n +

N

2
)− jx(n +

3N

4
)]W 3n

N W kn
N
4

Note that the property W 4kn
N = W kn

N
4

is used. A radix-22 FFT stage is

illustrated in figure 4.3. This procedure is repeated for log4 N times.

The corresponding network for this algorithm can be seen in figure 4.4. One
can note that the output needs to be re-ordered using a bit-reversal permu-
tation.
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Figure 4.3: A radix-22 FFT stage.

4.2 FFT Descriptions in SharpHDL

In this section we explain how circuits implementing the two FFT algorithms
described above were implemented in SharpHDL. Before this was possible,
we defined new circuits and other components.

4.2.1 New structures for FFT circuits

Given that the FFTs we consider are based on complex numbers, we define a
set of new classes that help us define circuits implementing complex number
operations. We also analyze the algorithm networks given in figures 4.2 and
4.4 to capture common patterns and components.

ComplexArithmetic — A Library for Complex Numbers

ComplexArithmetic is a new library in SharpHDL that holds the objects that
represent or manipulate complex numbers. It therefore holds a set of classes
that inherit from Wire, Port or Circuit, which are the three main SharpHDL
classes that represent a wire, a port and a circuit respectively:

• In general, a complex number is written in the form a+bi, where a and
b are real value numbers and a is the real part and b is the imaginary
part of the number. So, for example, given the complex number 2+3i, 2
is the value of the real part of the number whilst 3 is the imaginary-part
value [13].
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Figure 4.4: A radix-22, decimation in frequency FFT of size 16.
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Figure 4.5: ComplexNumber wire is made up of two Float wire objects repre-
senting the real and imaginary parts of a complex number.

ComplexNumber is the class that captures the signal that carries this type
of wire. It is made up of two Float objects, representing the real and
imaginary parts and thus inherits from CompoundWire. The latter class
type is the Wire-inherited class abstracting signals made up of different
types of signals. Float represents floating-point numbers which encode
real-valued numbers. It is made up of an Integer mantissa, an Integer

exponent and a LogicWire sign. Figure 4.5 illustrates the structure of
the ComplexNumber wire.

A list, or bus of ComplexNumber wires is captured by the ComplexList

class.

• ComplexPort and ComplexListPort are the Port-inheriting classes that
allow a ComplexNumber and ComplexList respectively to connect to a
circuit.

• The ComplexArithmetic library also has Circuit objects that define cir-
cuits that operate on complex numbers. These include circuits imple-
menting complex number addition (ComplexAdder) and complex num-
ber multiplication (ComplexMultiplier).

New Generic Circuits

Analyzing the networks illustrated earlier on, we notice that the algorithms
are built on regular patterns which can be defined as higher order circuits
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Figure 4.6: TwoN(gate, 2) — the generic circuit recursively divides the input
list in two for N = 2 times and applies component gate to each subdivision.

in the GenericCircuits library. Three generic circuits were defined for the
FFT implementations [9]:

• The generic circuit TwoN recursively divides a list of wires in two for N
times and applies the input circuit to each subdivision (cf. Figure 4.6).
The input component must have log2 N input ports of the same type.

• OneN is similar to TwoN but instead of applying the circuit to each re-
sulting subdivision, it applies it to the most bottom sub-division only
(cf. Figure 4.7).

• A Butterfly circuit is a circuit that can be built recursively. The valid
input circuit is a component having two inputs and two outputs. After
riffling the list, it uses the TwoN generic circuit to divide a given list of
wires for log2 N where N is the size of input list. It then applies the
input circuit to the resulting subsets of wires. At the end, the list is
unriffled. By riffling we mean perfectly shuffling two half-lists, while
unriffling is the reverse operation i.e. the list is shuffled such that the
resultant list’s first elements are the even-indexed elements of the input
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Figure 4.7: OneN(gate, 2) — the generic circuit recursively divides the in-
put list in two for N = 2 times and applies component gate to the bottom
subdivision.

list, followed by the odd-indexed elements [9, 49]. Figure 4.8 illustrates
this circuit.

Common Components

Although being two different approaches to solving FFTs, the algorithms
have some common operations:

• From the network designs one can notice the basic FFT operation. This
takes two inputs x1 and x2, and returns x1 +x2 and x1−x2 (cf. Figure
4.9). This is the main operator of the algorithms as it calculates the
2-point DFT.

• Both algorithms use the bit-reversal permutation, though at different
times. This is carried out by splitting an input list of wires in two
and recursively applying the bit-reversal operation to each sub-division
again. This is repeated until the sub-divisions hold only two wires,
where in such a case the wires are riffled and returned.
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Figure 4.8: A Butterfly circuit using logic component gate on a list of eight
wires.

Figure 4.9: The basic FFT operator circuit — given two numbers, it outputs
their addition and subtraction.
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4.2.2 SharpHDL descriptions

Using the described circuits and components the two FFT algorithms are
implemented in SharpHDL.

A radix-2 FFT algorithm first bit-reverses the input list of complex numbers
and then uses class Radix2Stage as an input to the TwoN generic circuit:

...

//Bit Reversal Permutation

ComplexList in0 = (ComplexList)new BitReversal(this).gate(in0);

int exponent = (int) Math.Log(in0.Count, 2);

for (int i = 0; i < exponent; i++)

{

int n = (exponent - 1) - i;

//Use TwoN to divide the list for n times and apply

//the Radix2FFTStage to each resultant set

ComplexList output0 = (ComplexList)new TwoN(this,

new Radix2FFTStage(null),n).gate(in0);

in0 = output0;

}

Class Radix2Stage defines the radix-2 stage, described in section 4.1.1. There-
fore, the SharpHDL description of the Radix2Stage is given as follows:

...

//Apply twiddle factor using OneN generic circuit

BusWire one = new OneN(this, new FFT2Twiddle(null), 1).gate(in0);

//Call Butterfly using the FFTComponent

new Butterfly(this, new FFTComponent(null)).gate_o(one, ref outBus);

One the other hand, the radix-22 FFT algorithm uses the TwoN generic circuit
to apply Radix4FFTStage for a number of times depending on the size of the
input list, and then bit-reverses the output. This is described as follows:
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...

int exponent = (int)Math.Log(in0.Count, 4);

int n;

for (int i = exponent; i > 0; i--)

{

n = (exponent - i)*2;

//Use TwoN to divide the list for n times and apply

//the Radix4FFTStage to each resultant set

ComplexList intermediate = (ComplexList)new TwoN(this,

new Radix4FFTStage(null), n).gate(in0);

in0 = intermediate;

}

//BitReversal

new BitReversal(this).gate_o(intermediate, ref output0);

Radix4FFTStage is the class that describes the circuit implementing a radix-22

stage, explained in section 4.1.2:

...

//Call Butterfly using the FFTComponent

BusWire bflys = new Butterfly(this, new FFTComponent(null)).gate(in0);

//Use OneN to multiply with -j

BusWire ones = new OneN(this, new MinusJ(null), 2).gate(bflys);

// Use TwoN to divide the list of wires and apply a Butterfly to it

// the Butterfly circuit uses the FFTComponent

ComplexList twoBflys = (ComplexList)new TwoN(this,

new Butterfly(null, new FFTComponent(null)), 1).gate(ones);

//Multiply with twiddle constant

new FFT4Twiddle(this).gate_o(twoBflys, ref out0);

4.3 Verifying the Equivalence of the FFT Cir-

cuits

Using SharpHDL circuits, descriptions can be generated so as to allow veri-
fication. We use this tool to verify the equivalence of the two implemented
FFT circuits. The two circuits are equal if their output is the same, given
the same input [65]:

Definition 4.3.1. Consider two circuits x and y. Given that γ(c, i) is the
function that determines an output from circuit c given input i then the equiv-
alence relation R is such that

∀i . ( γ(x, i) = γ(y, i) )
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This can be implemented by constructing an observer circuit which calls the
two FFT circuits using the same input, and compares their outputs. The
circuit outputs true if all the FFT outputs are equal [36]:

outputn = (outputn

radix-2 ⇔ outputn

radix-2 2)

Equivalence =
∧

(output0, output1, . . . , outputn)

n = 0, . . . , number of outputs

where outputradix−2 and outputradix−22 are the list of complex numbers output
from the radix-2 FFT circuit and the radix-22 FFT circuit respectively (cf.
Figure 4.10).

Following, is the SharpHDL description for the circuit:

//Radix 2 FFT

ComplexList outList2 = new ComplexList(); new

Radix2FFT(this).gate_o(inputlist, ref output_radix2);

//Radix 4 FFT

ComplexList outList4 = new ComplexList(); new

Radix4FFT(this).gate_o(inputlist, ref output_radix2_2);

//MAP NXOR to check that the nth output of each circuit are equal

WireList equalityList = new NXorMap(this).gate(output_radix2, output_radix2_2 );

//Use TREE to check that ALL NXOR outputs are true

new AndTree(this).gate_o(equalityList, ref equivalence);

Using the one-bit wire equivalence as input, we generate a description which,
given to a verification tool, verifies that it is true for any input, thus proving
equivalence. Successful testing was carried out on size 4 FFT circuits.

4.4 Related Work

Much work has been done on FFTs using different hardware description
languages and various approaches.

The approach described here can be easily related to the FFT implementa-
tions in Bjesse et al. using Lava in [9]. Here the verification of the equivalence
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Figure 4.10: The observer feeds the same input to the two FFT circuits
and checks their equivalence by comparing their outputs.
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of two algorithms is also used as a case study for the language. The algo-
rithms used are also the Radix-2 and the Radix-22.

The design approach taken in this work is similar to our work. Lava was
first extended with new definitions including the introduction of a complex
number datatype and the definition of the butterfly circuit (bflys). Other
defined components also include a circuit that multiplies a given input with
a twiddle factor (wMult) and another circuit that carries out the bit-reversal
permutation (bitRev).

The description of the Radix-2 FFT circuit in Lava is the following:

radix2 n =

bitRev n >-> compose [ stage i | i <- [1..n] ]

where

stage i = raised (n-i) two

$ twid i

>->bflys(i-1)

twid i = one (decmap (2^(i-1)) (wMult(2^i)))

raised is a function that, in this case will repeat the function two for n − i
times. Function two works in the same way as circuit TwoN described earlier
on in this chapter.

One can notice that the Lava and SharpHDL definitions are quite similar,
though different in style. However, one must point out that the Sharp-
HDL code displayed omits statements that are needed to define a regular
C#/SharpHDL class, like constructor definitions and method names.

The Lava approach differs in the verification system used — it targets the first
order theorem prover Otter [59]. Also, the logical descriptions of the circuits
of a fixed size are automatically generated and given to the theorem prover
together with proof options consisting of laws about the twiddle factors.
Therefore the twiddle factors are abstracted and the verification process uses
relationships and theories of such. In our case, the twiddle factor values
are generated whilst the SMV code is being produced, thus the values are
“hard-coded” in the generated code.

Based on this work, Bjesse also conducted work in proving the equivalence
between two combinational FFT circuits and a pipelined FFT circuit [8]
using an induction principle.

Gamboa defines an FFT circuit using powerlists in the theorem prover ACL2
and verifies its correctness [33]. Powerlists are lists constructed using parallel
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operators on other powerlists. The proof requires user interaction since the
level of abstraction is very high. The approach consists of proving mathe-
matical theorems about the algorithms rather than showing the equivalence
of two automatically generated logical descriptions of circuits.

4.5 Further Work and Conclusions

In this chapter we discussed the implementation and verification of two cir-
cuits describing different FFT algorithms using SharpHDL.

After a good analyzes of the derivations and networks of these algorithms,
we extended the language with a new library that captures complex numbers
and operations that work on them. We also defined new generic circuits and
other useful components. Having defined the circuits for the radix-2 and
radix-22 FFT algorithms, we built an observer circuit that compared their
outputs given the same inputs. Using the code-generation tool of SharpHDL,
we generated a description of the circuits and the observer. This description
allowed us to verify that, for any input, the two circuits give the same output,
thus confirming their equivalence.

The experiment was conducted using the SMV model checker and was suc-
cessful for size-4 FFT circuits. Model checking techniques suffer from the
state-explosion problem (i.e. the exponential growth in the state space that
needs to be searched) and this made it impossible for us to verify the equiv-
alence for larger circuits. We plan to consider methods that will allow us
to verify larger circuits. One such method is modular verification, which al-
lows a verification problem to be decomposed to smaller problems which can
be verified individually, thus reducing the states. We will discuss modular
verification and refinement in SharpHDL in the next chapter.
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Chapter 5

Modular Verification and
Refinement in SharpHDL

Modular verification and refinement methods are important tech-
niques to reduce the state-explosion problem of verifying large and
complex systems. They allow a verification problem to be decom-
posed into smaller manageable sub-problems and prove each sub-
problem against its predefined property, assuming that the rest of
the system is correct. We embed a simple refinement language over
SharpHDL which captures constructs that allow the definition of the
environment and specifications of circuits. It also includes a special
construct that allows a user to define a circuit in two ways: either
by defining the observer that defines its specification or by defining
its actual implementation. Using such a structure we can use the
specification to assume correct behaviour and then refine it to the
correct implementation. The object-oriented nature of the language
allows these extensions to be included with great ease. We also see
how the imperative nature of SharpHDL gives the user more control
over the verification process.
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5.1 Introduction

Verifying hardware before fabrication is an important step when develop-
ing hardware as this helps to reduce the high cost of finding faults during
or after the actual implementation. Most HDLs today provide for formal
verification where, in many cases, descriptions are converted and input to a
verification tool: the Haskell-embedded HDL Lava [9] interfaces with various
verification tools including the propositional tautology checker Prover, the
first order logic theorem provers Otter and Gandalf, and the model checker
SMV amongst others. Hawk [58], another Haskell-based HDL, enables verifi-
cation of the correctness of microprocessors through the mechanical theorem
prover Isabelle. Lustre [39], a synchronous data-flow language has the sym-
bolic, BDD-based model-checker Lesar associated with it.

It was our prime interest and objective to provide for circuit verification in
SharpHDL. The language is able to convert SharpHDL descriptions into a
description which can be fed to verification tools to verify that the circuit
conforms to a specification. In SharpHDL, specifications are described as a
safety property. Such a property states that a given situation should never
occur or a condition is always true.

In chapter 3 we discussed how a SharpHDL designer can verify a circuit
against a safety property by expressing it using an observer circuit; such a
circuit observes the inputs and outputs of the circuit under observation and
outputs a single wire stating whether they satisfy the property.

A step further than this introduces us to modular verification and refinement.
Modular verification allows the verification problem of a compound system
to be broken down into smaller parts and have each part verified separately.
Each part assumes that the other parts are implemented correctly when it
is being verified. This technique is a particulary useful technique, especially
in complex systems or when there are structurally-unknown components. In
the latter scenario, verification is carried out assuming that the unknown
components abide with their specifications. In other words, the verification
of the system sees the specification properties as environment assumptions.
Environment assumptions are a set of conditions under which a system or
circuit works correctly.

Furthermore, an unknown component may have its implementation updated,
or refined. The new updates have to obey to the set of specification rules
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defined for the specific component so that the verification of the system as a
whole is not affected. This process is called refinement.

Such verification techniques has been experimented with using different types
of languages [1, 23, 32, 36, 53, 62, 65] but these lack in providing the user
with control facilities over the verification process mainly due to the language
syntactic and semantic structure. In this chapter, we investigate whether an
OO approach will enable us to build a system whereby a designer is able
to specify and document the verification process by taking advantage of the
imperative style of the language. We do this by embedding a simple language
over SharpHDL, where one of its classes defines a construct that allows the
description of both the implementation and the specification observer of a
circuit. The circuit, therefore, can be handled in two ways during verification:
either using the observer as an assumption that the circuit behaves according
to the specification or using the implementation, which can also be refined
and verified against the observer.

This chapter will start by introducing some important definitions on which
the development is based. The mappings of these definitions into the new
language are described in section 5.3 whilst section 5.4 describes some exam-
ples of how this language can be used. In section 5.5, we show the advantages
of modular verification by experimenting with an integer squarer. A section
of related work and some conclusions on this work follows at the end.

5.2 Formal Definitions

In this section we will formally define the important terms that will be used
throughout this chapter1.

5.2.1 A circuit

Definition 5.2.1. A circuit C is defined as a 5-tuple ( QC , q0C , IC , OC , δC )
where

• QC is a set of states,

1Definitions are taken from [36] and [41]
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• q0C is the initial state, q0C ∈ QC,

• IC, OC are disjoint sets of input and output signals respectively,

• δC is the transition function, where δC ⊆ QC × EIC
× EOC

×QC. EX

is the set of events on signals X where EX = 2X . ( q, i, o, q′ ) ∈ δC

will be abbreviated to q →i
o q′ when there is no ambiguity.

Given a sequence ( i1, i2, . . . , in, . . . ) of input events, a circuit C returns the
sequence ( o1, o2, . . . , on, . . . ) of output events.

For a sequence ( q0, q1, . . . , qn, . . . ) of states, where q0 = q0C and n ≥ 1 ,
qn−1 →in

on
qn.

Definition 5.2.2. For a circuit C, the trace of C, written τ(C), is defined
as

((i1 ∪ o1), (i2 ∪ o2), . . . , (in ∪ on))

Therefore, for a sequence of states ( q0, q1, . . . , qn, . . . ) where q0 = q0C ,
the transition relation from q0C to qn, given a finite trace σ is noted as
q0C →σ qn. Finally, for q ∈ Q, traces(q) is the set of traces produced for
the transition from the initial state to q, defined as the set {σ | q0C →σ q }.

5.2.2 Safety properties and observers

Definition 5.2.3. A property on a set of signals S is a set of traces on S.

Definition 5.2.4. A circuit C satisfies a property P if and only if each trace
σ of C belongs to P , such that

∀σ · σ ∈ τ(C) ⇒ σ ∈ P

written
τ(C) ⇒ P

79



For a circuit C, let S be the disjoint set of input signals IC and output signals
OC , such that S = IC ∪OC . An observer ΩP of safety property P on signals
S is a circuit which takes S of the circuit C and outputs an alarm signal α,
α 6∈ S:

Definition 5.2.5 (Observer). Observer ΩP of property P on signals S is
a circuit defined as

ΩP = ( QΩP
, q0ΩP

, S, {α }, δΩP
)

where

• QΩP
is the set of states;

• q0ΩP
is the initial state, q0ΩP

∈ QΩP
;

• S is the disjoint set of the input signals IC and output signals OC of
the circuit under observation C;

• {α } is the set of output signals. The set is empty if S ∈ P ;

• δΩP
is the transition function.

Given a finite trace σ on signals S, S ∈ P , qσ is the state that ΩP reaches
after reading σ. Given a state q, input event e, e ∈ ES, and output o,

δO
ΩP

=

{
∅ if σ.e ∈ P
{α} otherwise

Satisfying a Safety Property

Verifying that a circuit C satisfies a safety property P consists in checking
that their parallel composition C ‖ΩP never outputs α. Parallel composition
combines two circuits into one circuit whose behaviour captures the inter-
secting behaviour of both circuits.
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Definition 5.2.6 (Synchronous Parallel Composition). For circuits X1

and X2, the parallel composition X1 ‖X2 is defined to be circuit C defined
as

C = ( QC , q0C , IC , OC , δC )

where:

• QC = QX1 × QX2, is the set of states of C, resulting from the product
of states of X1 and X2.

• q0C = ( q0X1 , q0X2 ), is the pair of initial states of each circuit.

• IC = (IX1 \OX2) ∪ (IX2 \OX1), is the set of input signals consisting of
the input signals of X1 that are not output signals of X2, and the input
signals of X2 that are not output signals of X1.

• OC = OX1∪OX2, is the disjoint set of output signals of the two circuits.

• δC is the transition function.

(( q1, q2 ), i, o, (q′1, q′2)) ∈ δC ⇔ ( q1, ( i ∪ o ) ∩ IX1 , o ∩OX1 , q′1 ) ∈ δX1

and

( q2, ( i ∪ o ) ∩ IX2 , o ∩OX2 , q′2 ) ∈ δX2

A transition of C therefore involves a transition from each circuit which
is triggered by the global input and the output signals from the other
circuit.

To verify a safety property P over circuit C consists in checking that C‖ΩP

never reaches an invalid state defined as QC × (QΩP
\ {qα} where ΩP is the

observer of P and qα is the state reached after outputting the error alarm
α. In other words, the safety property is translated into an invariant (cf.
Figure 5.1). This is done without modifying the circuit C [34, 36, 37].

5.2.3 Defining the environment

Like any reactive system, circuits interact with a specified environment which
must be taken into consideration during design and verification. Environ-
ment properties make restrictions on both the input and output of a circuit.
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Figure 5.1: Translating a safety property into an invariant.

Therefore, given these constraints, one concludes that not all traces of a cir-
cuit are real. Using safety properties to define environment constraints, we
can restrict the circuits to react only to real situations.

Given an environment assumption A, the restricted circuit C ′ has the same
behaviour as circuit C composed with A, i.e. the set of traces of C ′ is the
intersection of the set of traces of C with A.

Definition 5.2.7 (Restricted Circuit). Given that circuit ΩA is the ob-
server of safety property A on signals S = IC ∪ OC of circuit C, and C ′ =
C‖ΩA, the restricted circuit C/ΩA is the circuit ( QC′ , q0C′ , IC , OC , δ′ ) where
δ′ = { ( q, i, o, q′ ) ∈ δC′ | α 6∈ o }.

Given these definitions, it is possible to verify a safety property P on a
circuit C having environment assumptions A by proving that (C/ΩA) ‖ΩP

never emits an alarm αΩP
.

5.2.4 Modular verification and refinement

Modular verification allows decomposition of a verification problem such that
the verification of a component consists of individually verifying each sub-
component, considering the rest of the system as part of its environment.
This technique is referred to as the assume-guarantee reasoning [41, 62].

Definition 5.2.8 (Assume-Guarantee Proof). Let P be a safety property
defined on circuit C, where C is the composition of circuits C1 and C2 such
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that C = C1 ‖C2. If C2 holds property A and C1/ΩA satisfies P then C1 ‖C2

also satisfies P :

C1, ΩA � ΩP

C2 � ΩA

C1‖C2 � ΩP

To verify a subcomponent we can assume that the other subcomponents
abide with their specification properties. Then, to continue proving the rest
of the subcomponents, the subcomponent is assumed to behave according to
its specification. This is an extended idea of the assume-guarantee reasoning
called circular composition [62].

A property can be considered a higher-level description of a circuit. A circuit
can be refined to a lower-level version consisting of a deeper description of the
circuit with the same behaviour. If a circuit P is a higher-level description
of C, then C is a refinement of P , noted as C � P .

Definition 5.2.9. A circuit C is a refinement of property P if every trace
σC of C is a trace σP of P.

5.3 Embedding a Refinement Language

To allow modular verification and refinement in SharpHDL, we use once again
a language-embedding approach and build a new language that provides
the necessary functionalities. Therefore using this language, we can define
SharpHDL circuits which can further be manipulated to allow the mentioned
verification techniques. The refinement language contains a set of classes
defining the new circuits and structures needed:

• DualCircuit — allows a designer to define both the specification and
implementation of a circuit. It is made up of two objects (cf. Figure
5.2):

– Specification object, which defines the specification observer;
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Figure 5.2: The structure of a DualCircuit component.

– Circuit object, which defines the implementation.

The latter has to implement the IImplementation interface to allow
the circuit to be easily manipulated. IImplementation imposes the
definition of two methods:

– void gate o(Wire [] inputs, ref Wire [] outputs)

– Wire [] gate(Wire [] inputs)

These are the names of the methods that describe the structure of a
circuit. Circuits implementing DualCircuit can be treated in either of
two ways during verification: either using the implementation or using
the specification observer to assume correct behaviour. A designer can
toggle between these two options by alternating the value of this class
property AssumeProperty — when set to True, verification will use the
observer as an assumption; otherwise the implementation is used.

DualCircuit class also allows the refinement of a specification into an
implementation by means of the method Refine().

• Observer — represents the observer of a property. It outputs a LogicWire

signal representing an observer’s alarm signal which has to be verified
or assumed. This class is extended by two classes:
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– Specification — abstracts the observer of a specification prop-
erty. The class allows the user to choose whether to assume or
prove the specification during verification by setting the class’
property Type to one of the SpecType values ASSUME and PROVE

respectively.

– Environment — allows the description of observers defining envi-
ronment conditions under which conditions a circuit state is con-
sidered to be valid.

These classes inherit from class RefinementCircuit, which class inherits from
Circuit to provide extended options for generating verification descriptions
and other methods. It implements a flag Status which describes the status
of the circuit. This can have the following values:

REFINED, when a DualCircuit circuit has just had its implementation defined
through the Refine() method;

ASSUMED, when a DualCircuit circuit is using the specification observer as
an assumption of correct behaviour;

VERIFIED, when the circuit has been successfully verified;

FALSE VERIFICATION, when the circuit has not been unsuccessfully verified;

VERIFIED WITH ASSUMPTIONS, when the circuit has been successfully verified,
assuming some conditions.

5.3.1 Generating circuit descriptions for verification

The RefinementCircuit class extends the description-generator method of
class Circuit to provide an algorithm that allows efficient use of modular
verification. The aim is to exploit the imperative nature of SharpHDL to
provide a scripting language that allows user control and documentation
possibilities over the verification process.

Given a circuit, the algorithm first checks whether it has already been suc-
cessfully verified and whether the verification process considered behaviour
assumptions of some sub-components in the given circuit, i.e. it checks
whether in the previous verification there were any DualCircuit circuits that
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used the specification observer as an assumption of correct behaviour. This
check is done by accessing the Status flag of the input circuit which, in
the presence of assumptions in the last verification task, will have the value
VERIFIED WITH ASSUMPTIONS.

Given this situation, the algorithm checks for new refinements that have
taken place since then. In other words, it checks whether the DualCircuit

components that used their specification observer in the last verification task
has been refined to an implementation, thus having their Status value set
to REFINED. For each refined component found, the algorithm creates an in-
variant circuit that connects the refined implementation to the specification
observer and produces their description to verify if the implementation is
correct with respect to the specification. Thus, based on the modular veri-
fication concept, SharpHDL automatically produces descriptions that allow
the verification of the refined implementations and not re-verification of the
whole system. Following is the pseudo-code for this algorithm:

method generateCode()

{

if (circuit.status == VERIFIED_WITH_ASSUMPTIONS)

then

{

new_refinements = get list of newly refined circuits

if new_refinements is empty

then

{

circuit.status = DEFAULT

return code

}

else

{

foreach (refined_circuit rc in new_refinements){

invariant = build_Invariant(rc.implementation, rc.observer)

invariant.generateCode()

}

}

else

{

return code

}

}

To cater for the new extensions, a new value, VERIFICATION WITH ASSUMPTIONS

has been added to the enumerated type VerificationReport, defined in sec-
tion 3.4.3. This value is returned by the description-generating methods
when some sub-components of a circuit use correct-behaviour assumptions
instead of their implementation.
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5.3.2 A scripting language for refinement

We shall use a simple example to illustrate how the imperative nature of
SharpHDL provides us with a scripting language for the verification process.

Consider a circuit mainCircuit made up of several components, some of which
are implemented as DualCircuit classes. The latter components have both
the specification observer and implementation parts defined. We want to
verify a property over mainCircuit, defined using the observer mainObserver

which outputs alarm signal mainAlarm (cf. Figure 5.3(a))

We can verify mainCircuit assuming that the DualCircuit subcomponents
satisfy their specification, i.e. the verification process assumes that the spec-
ification observers defined over such subcomponents output true (cf. Figure
5.3(b)). If this satisfies mainObserver, we can be take one DualCircuit com-
ponent at a time and switch it to its implementation version to verify its
correctness assuming that the rest of the sub-circuits conform to their spec-
ifications (cf. Figure 5.3(c)).

Looking at the code, one can realize that the new refinement language, not
only allows modular verification, but, by exploiting the imperative style of
its host languages, the designer is presented with a scripting language that
allows control and provides documentation of the verification process.
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Figure 5.3: Case study for refinement.
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5.4 Using the New Language

Using two examples, this section gives a brief overview about how the new
refinement language is used. The first example verifies the correctness of a
floating-point (FP) multiplier with respect to two simple mathematical laws,
given that the FP inputs are of the correct format. The second example
illustrates how a DualCircuit component is used to verify a squarer.

Example 1: Verifying the Implementation of a FP Multiplier

Any multiplier abides with the following mathematical laws:

1. 1× n = n (Identity law)

2. 0× n = 0

We will verify whether the implementation of a FP multiplier is correct in
respect to these laws.

We will assume that the FP numbers given to the circuit are always well-
formed. A well-formed FP number is one that is neither denormalized nor
overflown. A denormalized number is one where the number is too small
to be represented by a normalized number and therefore the mantissa part
of the FP number does not have a 1 in its most significant bit (MSB). An
overflow occurs when all of the exponent bits are 1s [10, 71, 80].

Given that well-formed numbers are described by these two properties, we
will use them as constraints during the verification of the multiplier. There-
fore, we consider these as the environment specification of our example (cf.
Figure 5.4).

This environment constraint is implemented using a class extending the
Environment class. Its logical definition is defined in the class by overriding
the method PropertyDefinition(). This method is imposed by the Observer

class from which class Environment derives:
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Figure 5.4: The floating-point multiplier is correct if, given well-formed
numbers, it abides with the specified laws.

public class FloatFormat : Environment

{

public FloatFormat(Circuit parent): base (parent) {}

protected override void PropertyDefinition(Wire[] input, Wire[] output,

ref LogicWire alarm)

{

//...Logical definition of the environment...

}

}

The definitions of the two specifications against which the multiplier will be
verified are defined in a class extending Specification.

public class Zeros : Specification

{

public Zeros(Circuit parent):base(parent){}

protected override void PropertyDefinition(Wire[] input, Wire[] output,

ref LogicWire alarm)

{

//...Logical definition

}

}

public class Identity : Specification

{

public Identity(Circuit parent):base(parent){}

protected override void PropertyDefinition(Wire[] input, Wire[] output,

ref LogicWire alarm)

{

//...Logical definition

}

}

Having the specifications and environment constraints defined, we build a
circuit that extends class RefinementCircuit, having instances of the speci-
fication classes, the environment class and the multiplier itself:
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public class MultiplierVerification : RefinementCircuit {

public MultiplierVerification():base(null){}

public void gate()

{

Float float1 = new Float(4,4);

Float float2 = new Float(4,4);

//Create an instance of the multiplier and build it

FloatingPointMultiplier fmult1 = new FloatingPointMultiplier(this);

Float ans1 = fmult1.gate(float1, float2);

Wire [] inputs = {float1, float2};

Wire [] outputs = {ans1};

//Specifications

LogicWire zeroProperty = new Zeros(this).gate(inputs, outputs);

LogicWire identity = new Identity(this).gate(inputs, outputs);

LogicWire [] properties = {zeroProperty, identity};

//Environment Assumptions

new FloatFormat(this).gate(inputs, outputs);

}

}

Using list properties as input parameter to the method that generates circuit
descriptions for verification, we generate a description with which we can
verify that, given the inputs are well-formed, the two mathematical laws are
obeyed. In more technical terms, we verify that the conjunction of the output
alarms from the two specification observers is true for any input, given that
the output alarm of the environment specification observer is also true:

specification = alarmzero law ∩ alarmidentity
environment = alarmfloat format

specificationto prove = G ( environment ⇒ specification )

Example 2: Using DualCircuit for Verification

An integer squarer is a component that takes an integer as input and uses a
multiplier to multiply the input by itself [40, 56]. We want to verify that if
the input to the squarer is 1 then its output is also 1.

There are two ways a squarer can be verified — the most straightforward
way is to verify the specification over a squarer that uses a fully-implemented
multiplier. This produces a very complex circuit which may be difficult to
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verify especially when using automatic verification techniques. However, we
can use another approach. By assuming that the multiplier abides with the
identity law, we can simplify the circuit, thus making it possible to verify
successfully (cf. Figure 5.5). Later, the multiplier can be refined to a proper
implementation, which implementation can be verified to hold the identity
law.

Figure 5.5: An integer squarer can be verified to produce 1 given 1 as input,
assuming that the multiplier abides with the identity law.

Therefore we define a multiplier Multiplier using the DualCircuit class such
that both its identity-law specification observer and implementation can be
defined. The specification is defined by extending Specification class:
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//Multiplier specification: 1*n = n

public class MultiplierProperty : Specification

{

public MultiplierProperty()

{

this.Type = Specification.SpecType.ASSUME;

}

protected override void PropertyDefinition(Wire[] input, Wire[] output,

ref LogicWire alarm)

{

//...Property Logic

}

}

//Multiplier circuit, using MultiplierProperty as specification

public class Multiplier : DualCircuit

{

public Multiplier(Circuit parent):base(parent, new MultiplierProperty()){}

public Integer gate(Integer multiplicand, Integer multiplier)

{

//...calls gate_o()

}

public void gate_o(Integer multiplicand, Integer multiplier, ref Integer answer)

{

//..Undefined structure

}

}

The squarer, represented by the class Squarer, uses an instance of class
Multiplier to multiply the input by itself:

//Squarer circuit

public class Squarer : Circuit

{

public Squarer(Circuit parent):base(parent){}

public Integer gate(Integer in0)

{

Integer out0 = new Integer(in0.Size);

gate_o(in0, ref out0);

return out0;

}

93



public void gate_o(Integer in0, ref Integer out0)

{

Wire [] input = {in0};

Wire [] output = {out0};

Connect(input, output);

//Create a new integer which is equal to the input

Integer in1 = (Integer)new AssignmentMap(this).gate(in0);

//Create an instance of multiplier to multiply the input by itself

Multiplier mult = new Multiplier(this);

mult.gate_o(in0, in1, ref out0);

}

}

The specification observer of the squarer we want to prove is defined in the
class SquarerProperty which inherits from Specification:

//Squarer specification: (input==1) -> (output==1)

public class SquarerProperty : Specification

{

public SquarerProperty(Circuit parent):base(parent)

{

this.Type = Specification.SpecType.PROVE;

}

protected override void PropertyDefinition(Wire[] input, Wire[] output,

ref LogicWire alarm)

{

//...Property Logic

}

}

To carry out the verification process, we build a circuit which calls the
squarer and its specification. Targeting the SMV model checker, we gen-
erate a description for verification. The algorithm detects the multiplier’s
use of its specification and therefore generates a description that verifies that
the squarer obeys its specification assuming that the multiplier abides by the
identity law:
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//Input

Integer in0 = new Integer(4);

//Squarer

Squarer squarer = new Squarer(this);

Integer out0 = squarer.gate(in0);

//Specification

Wire [] input = {in0};

Wire [] output = {out0};

SquarerProperty specification = new SquarerProperty(this);

LogicWire mainAlarm = specification.gate(input, output);

LogicWire [] prove = {mainAlarm};

//Verify that squarer is correct assuming multiplier law

VerificationReport report = this.ToSMV(prove, "C:\\", "Squarer");

We then define a proper implementation for the multiplier. Using method
UnresolvedAssumptionsList(), we get the list of assumptions used in the
last verification process to access the multiplier object. We call the mul-
tiplier’s method Refine(), to refine it to the implementation defined in
class MultiplierImplementation: besides defining the multiplier’s circuit,
this class also implements the IImplementation interface that allows it to be
used as the Implementation component of a DualCircuit:

public class MultiplierImplementation : IImplementation

{

public MultiplierImplementation(Circuit parent):base(parent){}

public Wire[] gate(Wire[] inputs)

{

//...Implementation definition

}

public void gate_o(Wire[] inputs, ref Wire[] outputs)

{

//...Implementation definition

}

}

On regenerating the whole circuit’s description, SharpHDL detects the new
refinement and, therefore, the description produced is such that allows veri-
fication of the multiplier implementation against its specification and not of
the whole squarer circuit:
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Size Model Checking Timings
User Time System Time BDD nodes allocated

1 0.0701 0.03 6
2 0.0801 0.04 15
4 0.1902 0.06 105
8 0.66095 0.08 2555
16 20.199 0.21 38567

Table 5.1: Timing results for verifying an integer squarer using a full
multiplier implementation.

//Get the Multiplier whose property was assumed

ArrayList assumptions = this.UnresolvedAssumptionsList();

DualCircuit unknown = (DualCircuit)assumptions[0];

//Refine it to a proper multiplier implementation

MultiplierImplementation mult = new MultiplierImplementation(null);

unknown.Refine(mult);

VerificationReport report = this.ToSMV(prove, "C:\\", "Squarer");

5.5 The Advantages of Modular Verification

Whilst being able to automatically verify a large range of properties, auto-
matic verification techniques are very inefficient when verifying complex cir-
cuits [41, 63, 68], often due to the large state space that needs to be traversed.
The number of states for multipliers, for example, can grow exponentially in
the number of variables [14]. Various attempts were made to tackle this state
explosion problem. These attempts range from improving algorithms and de-
veloping heuristics [15, 16, 57] to applying modular verification techniques
to decompose a verification problem to smaller tasks [2, 23, 32, 41, 62, 63].

We have seen how modular verification enables the decomposition of a sys-
tem. Using the squarer defined in section 5.4, we conducted an experiment
whereby we could compare times for building and verifying a squarer using
a full multiplier implementation with the times of building and verifying a
squarer assuming the identity law over the multiplier.

Table 5.1 gives the timing measures for verifying the squarer with a multiplier
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Size Model Checking Timings
User Time System Time BDD nodes allocated

1 0.06 0.02 13
2 0.06 0.02 32
4 0.06 0.03 76
8 0.09 0.03 148
16 0.1 0.06 314
32 0.23 0.04 664
64 0.51 0.04 1398
128 1.1416 0.11 10192
256 3.44 0.09 12730
512 12.67 0.35 25626
1024 50.69 0.69 51898

Table 5.2: Timing results for verifying an integer squarer assuming that
the multiplier obeys the identity law.

completely defined. It is important to point out that a 32, 64 and 128-bit
squarer circuits were also generated but the verification process was still
running after one hour when it was stopped. On the other hand, verifying
all the eleven circuits using the multiplier assumption was much more efficient
as shown in Table 5.2.

Therefore, modular verification techniques make it possible to verify circuits
having components that are difficult to verify because of the exponential
growth of their state graph representation. Nevertheless, one should point
out that for successful and correct verification the specifications of the com-
plex circuits should be carefully chosen as not all properties are relevant to
verification being carried out. In our squarer case, for example, using the
commutative law (i.e. a � b = b � a) is irrelevant to the property we are
trying to prove on the squarer and verification will give a negative result.
Also, the specifications should not produce bigger state graphs than the im-
plementation itself.

5.6 Related Work

In this section we will discuss how other HDLs and formal verification tools
provide modular verification and refinement.
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A major influential work to our research was that conducted by Halbwachs
et al. based on designing and verifying reactive systems using the syn-
chronous dataflow language Lustre [35, 37, 38]. Using this language, the
state-explosion problem is tackled by considering only states concerning only
the properties to be proven together with a set of assertions during verifica-
tion. Assertions are a means to describe environment constraints in Lustre.

CSML is one language that explicitly extended SML to provide modular-
ity and reusability features for modular verification. SML was developed
to specify complicated finite state machines such that SML programs rep-
resented complete synchronous circuits. CSML (Compositional SML) [23]
provides two basic extensions to allow modularity and reusability: process
and processtype. These constructs both describe a construct which represents
a Moore machine. The difference between them is that the latter is a process
which can be reused. The abstraction of a process is done by manually ap-
plying the interface rule to one of the processes, which abstraction the user
thinks will reduce the state space most. The interface rule is a theorem which
reduces the state of the model such that the model checking program verifies
the CTL formula with respect to a reduced model. Therefore, a user has to
choose which process to abstract after compilation and cannot define an ab-
stract representation of a class of modules at the design level. This is largely
due to the fact that, unlike SharpHDL circuits, the proposed constructs do
not allow non-determinism.

Alur’s and Henzinger’s notion of reactive module [2] are a formal model of
concurrent systems. They allow modular description of a system having both
synchronous and asynchronous models and also supports non-determinism
and temporal abstractions which allow the description of high-level or in-
complete designs. They attempt to make use of both assume-guarantee con-
cepts and refinement to verify large problems [41]. The refinement checking
problem is approached by introducing the concept of abstraction and witness
modules. Basically, these are reactive modules that observe the external
and interface variables of other modules. Abstraction modules are used to
describe environment constraints on aspects of a subcomponent that are rel-
evant to the rest of the system. Therefore they act as an intermediate layer
between the implementation and the specification. Witness modules are used
when not all variables of a specification are present in an implementation, i.e.
they make explicit how the private state of the specification depends on the
state of the implementation. Though similar to the SharpHDL framework,
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reactive modules do not provide the user with any direct control of the re-
finement process. Nevertheless, the implementation of this framework in the
toolkit Mocha [1] produced an efficient, user-friendly tool which supports a
range of compositional and hierarchical verification methodologies.

An efficient construct for compositional verification is presented by McMillan
in [62]. He presents a system based on a generalized compositional rule which
allows independent and efficient verification of refinements in an abstract
environment. This system supports downward refinement maps and non-
hierarchical abstraction. The latter allows an abstract specification to have
a different structure from the implementation. He introduces layers where
each layer represents an incremental change from a specification to the design.
Therefore a user can verify each implementation update individually against
the abstract representation. Incremental changes cannot be explicitly done
in SharpHDL. The layer structure provides a way for managing refinement
maps such that various implementations can be verified against an abstract
interface. This layer structure was implemented over the symbolic model
checker SMV [65].

5.7 Further Work and Conclusions

In this chapter we have discussed the approach we used to provide for modu-
lar verification and refinement. We have presented a new refinement language
which provides various construct definitions which allow this functionality.
By embedding the language into SharpHDL, we provided a meta-language
with which a designer can have access to both the circuit definitions and the
refinement process.

The major construct definition is one which allows a circuit to be defined
and used in either of two ways: either through its implementation or through
its specification, defined by an observer. The user can toggle between the
two choices as needed. The implementation can be left unspecified and then
refined later during the verification process. This is possible since SharpHDL
accepts non-deterministic circuit, i.e. circuits whose structure is not known.
Using this approach we are preparing to build a complex case study where
we can verify the equivalence of larger FFT circuits. The large state space
generated by the model checker made it impossible for us to verify FFT
circuits of size larger than 4. We intend to apply modular verification to
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sub-divide this complex problem and thus being able to verify larger FFT
circuits.

However, our approach does not stop here. The embedding approach allows
us to exploit the imperative nature of the host language C#. This provides
us with a Turing-powerful scripting language that gives a designer full control
and allows step-by-step documentation of the verification process. Though
based on sound and efficient solutions to the discussed verification techniques,
the existing languages only provide adhoc means to document the history of
the verification process.
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Chapter 6

Discussion, Further Work and
Conclusions

In this chapter we first discuss how HDLs can benefit from the object-oriented
paradigm. We then outline our future plans based on the research conducted
and presented in this dissertation. In the end we highlight the overall con-
clusions of this work.

6.1 Discussion — OO Features in Hardware

Description Languages

We have defined, implemented and worked with a HDL embedded in an
object-oriented language. As pointed out earlier on in this document, the
object-oriented paradigm offers a number of characteristics and benefits which
are very popular in today’s programming environments. Frequently in this
dissertation, we have pointed out the benefits of some of these features when
applied to SharpHDL. In this section, we shall highlight again these main OO
features and discuss whether such a paradigm is suitable to the hardware-
description area.

The basic idea of the OO ideaology is to think of a situation in terms of
objects which are made up (or composed) of other simpler objects. In tech-
nical terms, this concept is called Composition. We have treated circuits
as complex objects made up of several smaller and simpler circuits and other
components. In doing so, information about each circuit could be kept and
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manipulated. By information we specifically mean the list of different com-
ponents making up the circuit. The advantage of this characteristic can be
seen if the two SharpHDL versions are compared. Using the first version,
the designer could define an object for each circuit and reuse the definitions
as much as needed. However, the underlying structure stored information
in one common repository rather than having each circuit hold its own in-
formation. This made it impossible to manipulate individual circuits during
run-time. This was amended in SharpHDL2, which gave the composition
characteristic more importance. It is now possible for a designer to refer to
a needed circuit and have access to its structure which can be manipulated
without effecting the structure of other circuits.

OOP allows the organization of objects into tree structures, such that the
root holds the attributes and behaviours common to all descendants. In other
words, it provides Inheritance. The internal class structure of SharpHDL is
based on a tree structure where the top-most class Nameable assigns a unique
name to all the different components making up a circuit, i.e. ports, wires
and circuits. Figure 6.1 displays how the main classes of SharpHDL inherit
from each other. For example class And inherits the properties and operations
of class Nameable which provides a naming mechanism, Cell which defines
the interface of a circuit block, Circuit which holds the repository of sub-
circuits making up the circuit, Logic which abstracts the general definition
of a circuit and BooleanLogic which abstracts primitive gates.

Applying inheritance correctly provides the possibility to extend the language
with new types of circuits, wires or ports without the need to define them
from scratch. We have seen how libraries of classes were easily added to
the set of SharpHDL libraries by inheriting from classes defined in the main
library and other libraries.

Another important OOP concept is Polymorphism which enables a pro-
grammer to treat a collection of classes derived from the same root class
in the same way. This concept was used in the implementation of generic
circuits. Generic circuits accept a circuit with which they build a regular-
structured circuit. The input circuit should inherit from class Circuit and
optionally implement operations declared in the latter class. The generic
circuits treat the input circuit as a Circuit object although the operations
invoked are those implemented by the circuit class itself.

OOP also provides the designer the possibility to separate the interface from
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Figure 6.1: Class diagram of the main SharpHDL library. This diagram
shows how the different classes relate to one other.

an object from its actual implementation. This Separation idea was greatly
applied in the development of the DualCirucit structure. The latter pro-
vides the means to define a specification, or interface, and later refine it to
the actual internal implementation. Besides OOP languages also provide an
Interface mechanism where a set of functionalities that should be imple-
mented by classes are defined. This mechanism was used to cater for future
extensions, including possibilities of creating external output to other verifi-
cation tools. Classes which provide processing of this kind have to implement
the set of functions defined by the interface IVerificationTool. Interfaces

were also used to define the functions for circuits which could be used as
input to specific generic circuits.

Having defined a set of classes we also defined a set of hardware abstract
data types and therefore a designer can conveniently work with packages
of hardware components operations and attributes to hold and manipulate
their state.

Having pointed out the various benefits gained from OOP we can say that ap-
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plying this paradigm to hardware description languages makes perfect sense.

6.2 Further Enhancements

New ideas and areas of improvement are always coming up. Following are
the main points which we plan to pursue.

6.2.1 Case study: verifying large FFT circuits

One of the case studies developed using SharpHDL and discussed in this
dissertation is the definition of two circuits describing FFT algorithms. The
equivalence of these descriptions was then verified using the model checker
SMV. This tool is based upon building and traversing binary decision dia-
grams (BDDs) which represent the possible states and outcome of a circuit.
Though very efficient, BDDs get very complex on encountering multipliers.
Possibly due to this reason, we did not succeed to verify circuits that take
more than four complex numbers as inputs.

Later on we also discussed how SharpHDL was extended to provide modular
verification. Modular verification techniques allow a verification problem to
be decomposed to smaller problems which can be verified individually. We
plan to use this technique to verify larger FFT circuits. We intend to abstract
the multipliers to a higher-level by using behavioural specifications instead
of their actual implementation. We have already used this approach to verify
a squarer circuit (refer to section 5.4).

One difficulty we might encounter is to find the right set of specifications that
are relevant to the FFT circuits and which will enable us to reduce the state
space of the circuits. In [8], Bjesse verifies the equivalence of FFT circuits
implemented at arithmetic level, using some simple algebraic laws and axioms
as input to the first-order logic theorem prover. These laws include:

• distributivity of multiplication over addition —

a × ( b + c ) = a × b + a × c

• identity law —
1 × n = n × 1 = n
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We consider the use of these mathematical laws as behavioural specifications
of the multipliers used in our FFTs.

6.2.2 Placement extensions and description of other
non-functional circuit properties

One disadvantage of FPGAs is the limited space available on a single chip and
therefore placement consideration is very important. How resources are used
in a circuit has an effect on all the circuits that make use of it. Placement
control is also important for reconfigurable circuits1 since correct placing can
minimize reconfiguration time [60].

Although automatic placing tools exist, user-specified placement information
sometimes produces more efficient placing. This is especially evident when
circuits use regular structures since conventional algorithms do not exploit
this characteristic to achieve a better implementation [81]. Nevertheless, pro-
viding explicit coordinate information for every component can be very te-
dious, cumbersome and error-prone. Defining relative-placement information
which is then translated to explicit coordinates provides a higher-level means
to specify placement, thus simplifying code and giving greater support to the
development of run-time reconfiguration. This technique is implemented in
various HDLs, all defining a different solution of how a user can do this.

JHDL, a Java-embedded HDL, implements two placement methods:

• map() which maps gates to atomic FPGA cells and

• place() through which relative placement of atomic cells is set.

The underlying interpretation is done by a special class called Techmapper,
which checks the validity of the network, resolves all placement directives
and reports any conflicts. This is done depending on the target platform
[45].

Lava, a Haskell-embedded HDL, uses a set of combinators to define both the
behaviour and the layout of circuits. Such include the serial composition infix
combinator >-> which, besides connecting the output of the circuit on its left

1Reconfigurable systems are systems having programmable logic that allows changes
of the hardware circuits [30].
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to the input of the circuit on its right, it also specifies that the circuits are
to be laid out horizontally, from left to right. Other similar combinators are
the right-to-left serial composition <-<, the top-to-bottom serial composition
\/ and the bottom-to-top serial composition /\ operators [21]. Connection
patterns are also used as a means to get layout information [9]. For example,
the row pattern does not only create a number of the same connected circuits,
but it also lays them out horizontally from left to right.

The same approach is adopted in Ruby [50, 82], a HDL based on defining
relations. It allows the definition of both the behaviour and the topology of
circuits. A Ruby component is considered to be a tile which can have ports on
all four edges. The language provides various combinators to specify where
the circuits are located in relation to other circuits and to external signals
(c.f. table 6.1):

• <-> is the beside combinator, such that A<->B means that B is horizon-
tally beside A.

• b is the below combinator, such that A b B means that A is vertically
below B

a) b)

Table 6.1: Ruby placement combinators: a)A<->B b) A b B

Like Lava, it also uses generic descriptions to define placement. Examples
include row — which replicates a cell horizontally; col — which replicates a
cell vertically and other descriptions.

106



Yet another language that provides for both explicit and implicit placement
definitions is Pebble [55]. The two main descriptions are BESIDE, which places
two or more blocks beside each other, and BELOW which places blocks verti-
cally.

To map the descriptions defined using these languages into hardware, VHDL
or EDIF descriptions with explicit coordinates are generated. One difference
between the Pebble and the rest of the discussed languages is that the former
produces parametric VHDL descriptions. The others produce a flattened
description [60, 61].

Given the importance of providing placement information and examined
how various languages provide it, we consider the implementation of relative
placement specifications in SharpHDL. Since our language already has a num-
ber of generic circuits and is able to translate descriptions to external tools
we can adopt the approaches discussed in [9, 55, 82]. The code-producing
algorithms can be extended to recognize generic circuits and generate code
with explicit coordinates depending on the generic circuit used. Besides,
one should point out that SharpHDL already produces parametric transla-
tions and therefore it can easily be extended to produce them with symbolic
placement as proposed in [60].

Another extension worth considering is the provision of calculating other
non-functional properties of a circuit like area, timing and power. Most of
these properties are controlled by information found in wires. In [6], Axelsson
et al. describe the Wired language which allows low-level control of wires.
Again, the importance of combinators and generic circuits is highlighted since
such have both functional and geometric interpretations. Wires are treated
as circuits with explicit size and a distinction is made between circuits with
or without geometry. Ports are also given their due importance. Given more
thought, we think that extending the three basic classes — Wire, Port and
Circuit — with properties that define non-functional features together with
the generic circuits, the Wired approach is implementable in SharpHDL.

6.2.3 Using polymorphism to enhance generic circuit
implementations

One of SharpHDL’s features is its support for higher-order circuits. A set
of such circuits are implemented in the GenericCircuits library. Two ex-
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amples we have frequently used are the Map and the Row generic circuits —
Map applies a given component to each element of an input list of wires (cf.
Figure 6.2); Row uses two sources of input to a given component: the ith wire
from an input list and the output from the (i− 1)th component-application.
Therefore, each component-application produces two outputs: one is saved
in an output list of wires whilst the other is passed on as input to the (i+1)th

wire of the input list (cf. Figure 6.3).

Figure 6.2: Map gate.

Figure 6.3: Row gate.

Presently there are three implemented variations for each of these generic
circuits. For the Map generic circuit there are:
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1. MapOne accepts one input list of wires;

2. MapTwo accepts two input lists of wires gate, and

3. MapThree accepts three input lists of wires.

Consequently, they accept a one-input component, a two-input component
and a three-input component respectively.

The same approach is taken for the Row generic circuit:

1. RowOne accepts one input list of wires;

2. RowTwo accepts two input lists of wires gate, and

3. RowThree accepts three input lists of wires.

Consequently, they accept a two-input component, a three-input component
and a four-input component respectively.

One enhancement to this approach is to use the polymorphism concept and
implement only one type of circuit for each generic circuit. We know that
SharpHDL defines class BusWire which represents a wire made up of a list
of wires of the same type. Therefore, the generic circuit will accept an array
of BusWires as input and, given n BusWires in the list, accepts a component
that takes n inputs.

To enable this, an interface should be specified for the components that can
be used by the generic circuits. The interface should specify that the methods
that define the component’s structure should accept all the inputs in an array
of Wires. The array will accept any type which extends the abstract class
Wire. So, for example, the interface that allows a circuit to be used by Map

will look as follows:

public interface IMapStructurable

{

Wire gate(BusWire [] inputs);

void gate_o(BusWire [] inputs, Wire output);

}

On the other hand, a Row-implementable circuit will implement the following
interface:
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public interface IRowStructurable

{

void gate_o(BusWire [] inputs, LogicWire inputWire,

out Wire out0, ref LogicWire outputWire);

LogicWire gate(BusWire [] inputs, LogicWire inputWire, out Wire out0);

}

Using interfaces and polymorphism will therefore allow us to provide better
Map and Row implementations that are more generic.

6.2.4 External tools facilities

SharpHDL allows the generation of circuit descriptions for verification and
analyzes. However, the language does not provide a direct connection to the
respective tools. This requires the user to manually open the generated de-
scriptions in the correct application. It is ideal that SharpHDL automatically
connects to the tool, feeds the generated descriptions and returns the result
to the user. This way, the user sees only one language rather than having to
manually control several of them.

SharpHDL allows generation of descriptions to other HDLs. The older ver-
sion of SharpHDL generated descriptions that were not modular, thus creat-
ing very large files for complex circuits that at times were impossible to load.
The intention was to implement an algorithm that produced modular defini-
tions but due to the extra emphasize on verification and the time constraints
this was not possible. We intend to do this in the coming future.

6.3 Conclusions

Throughout this dissertation we have used the HDL SharpHDL to investigate
the contributions offered by the characteristics it is based upon.

In the beginning we have discussed the implementation of a new SharpHDL
version. Though a sound language in its own right, the first version failed
to fully exploit its modularity, inheritance and polymorphism features. Such
features come free of charge from embedding the language in the object-
oriented host language C#. Using the modularity feature, the new Sharp-
HDL does not flatten the descriptions but instead keeps a hierarchical defi-
nition of them, where a circuit object is made up of a number of sub-circuit
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and itself is a sub-circuit to a parent circuit. Modularity also enables the
generation of modular descriptions for verification or other HDLs, such that
descriptions are shorter and easier to understand. The language-embedding
approach also provides a meta-language which allows the definition of higher-
order circuits, which we called generic circuits.

Using the language, we can verify circuit properties. We do this by defining
an observer circuit that takes the inputs and outputs of a circuit-under-
observation and checks whether, for a given input, the latter abides by a
given property. By generating a description of the circuit connected to the
property observer we can verify that the circuit abides by the property for
any input. Using this tool we are able to define and verify the equivalence of
two circuits describing different FFT algorithms - the radix-2 FFT algorithm
and the radix-22 FFT algorithm. However, though successful for size 4 FFTs,
verification was not possible for more complex circuits.

We once again turn to the language-embedding approach and build a simple
refinement language over SharpHDL. This language allows us to use mod-
ular verification and refinement techniques which permit the decomposition
of a complex verification problem to smaller problems which can be verified
individually. So using this language, we can verify circuits by abstracting
complex sub-components to simpler versions defined by behavioural specifi-
cations and use them as assumptions in the verification of other parts of the
system. Therefore, by embedding the refinement language in SharpHDL, we
provide a means to define and verify large circuits using the same language.
Moreover, by exploiting the imperative nature of SharpHDL we provided the
designer means to specify and document the refinement process. To date,
this was not possible in existing HDLs.

Using these tools, future intentions include the verification of equivalence of
large FFT circuits which could be carried out if the large number of mul-
tipliers used in the circuits are simplified using behavioural specifications
describing simple arithmetic laws.
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