
Department of Computer Science

University of Malta

Combining Runtime Verification and
Testing Techniques

Kevin Falzon

July 2011

Supervisor: Prof. Gordon Pace

Submitted in partial fulfilment of the requirements
for the degree of Master of Science

The research work disclosed in this publication is partially funded by the Strategic

Educational Pathways Scholarship (Malta). The scholarship is part-financed by the

European Union – European Social Fund.

Faculty of ICT

Declaration

Plagiarism is defined as “the unacknowledged use, as one’s own
work, of work of another person, whether or not such work has
been published” (Regulations Governing Conduct at Examinations,
1997, Regulations 1 (viii), University of Malta).

I, the undersigned, declare that the dissertation entitled

Combining Runtime Verification and Testing Techniques

is my work, except where acknowledged and referenced.

Kevin Falzon
July 2011

Abstract

As the complexity of modern systems increases, so too does their disposition towards
containing faults. Highly interconnected components can fail by interacting in unantici-
pated ways, and large or intricate systems are inherently error-prone. Many systems are
being deployed in critical scenarios where even the slightest and subtlest of errors would
potentially prove catastrophic.

Testing alone as a means of verifying a system is seldom comprehensive enough, and
cannot guarantee correctness. Runtime verification complements testing through the use
of runtime monitors, which observe a system as it executes and verify that its live be-
haviour is valid. Runtime monitors cannot always be made use of, as they may introduce
unacceptable system overheads and only detect bad states once they are reached. Deploy-
ing both techniques on a single system would increase its reliability, as runtime verification
could be used to guard against faults which escape detection during testing. Nevertheless,
employing both techniques simultaneously is usually not a viable option, as test suites
and properties require significant amounts of time and expertise to create. In addition,
applying each technique separately may result in inconsistent verification.

Runtime verification operates through the use of monitors derived from properties,
while testing typically relies on the execution of test cases. As creating and checking
individual test cases takes time, model-based testing can be adopted to create models of
a system from which input stimuli can be automatically derived. The system’s behaviour
under these generated inputs can then be compared with a property. Model-based test-
ing and runtime verification are thus very similar, differing essentially in how program
behaviours are produced.

This project aims towards uniting both verification techniques by investigating the
translation of testing models described as QuickCheck Finite State Automata (QCFSAs)
into Dynamic Automata with Timers and Events (DATEs), from which runtime monitors
are then derived. Each logic is defined formally, and a translation procedure is presented.
Using a simplified formal model of QCFSAs as the starting logic, the process is proven
to preserve the original property’s test purpose under translation. More specifically, it is
shown that both properties will have identical negative trace sets, and will identify the
same set of behaviours as being invalid. The formal translation is then implemented as a
program which produces a DATE from a given QCFSA. Using the DATE, the program
then instruments the system under test to emit events at the relevant program points.
An Erlang module implementing the DATE as a monitor listening on the events is then
generated, completing the runtime monitoring framework.

The implementation is evaluated by translating four QCFSA properties designed to
verify Riak, an open-source distributed key-store for Erlang. The operation and behaviour
of each monitor is analysed, and the results are compiled into a set of observations,
providing guidelines on creating properties. Part of the evaluation is devoted to the
investigation of context and property scope, and the task of relating multiple interleaved
event streams to their respective monitors when simultaneously verifying more than one
property of the same type at runtime.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aim and Approach . 5
1.3 Document Structure . 6

2 Testing and QuickCheck 8
2.1 Introduction . 8
2.2 Testing . 9

2.2.1 Types of Testing . 10
2.2.2 Component-Based Development . 11

2.3 Automating Test Case and Property Synthesis 13
2.3.1 Overview . 14
2.3.2 Acquiring Traces . 15
2.3.3 Generating a Model . 16
2.3.4 Deriving Test Cases . 17
2.3.5 Deriving Properties . 23
2.3.6 Combining Analysis Techniques . 27
2.3.7 Conclusion . 30

2.4 Testable and Negative Traces . 31
2.5 Verifying Properties and Test Cases using Erlang 32

2.5.1 EUnit . 33
2.5.2 Erlang Common Test . 35
2.5.3 QuickCheck . 36
2.5.4 QuickCheck Finite State Automata 40

2.6 Applications . 47
2.7 Conclusion . 47

3 Runtime Verification 49
3.1 Introduction . 49

3.1.1 Offline vs Online Verification . 50
3.1.2 Monitors . 50

3.2 Defining Properties . 52
3.2.1 Dynamic Automata With Timers and Events 53

3.3 Comparison With Other Verification Techniques 56
3.3.1 Runtime Verification and Model Checking 56
3.3.2 Runtime Verification and Testing 57

i

3.4 Issues With Runtime Verification . 57
3.5 Conclusion . 58

4 From QCFSAs to DATEs 60
4.1 Introduction . 60
4.2 Formalising QCFSAs . 61

4.2.1 The QCFSA Model . 61
4.2.2 Modelling Determinism . 63
4.2.3 Configurations . 63
4.2.4 Describing Traces . 65

4.3 Formalising DATEs for Erlang . 65
4.4 The Principles of Translation . 66

4.4.1 Primary Differences Between QCFSAs and DATEs 66
4.4.2 A Simplified Translation . 68

4.5 A Formal Translation of QCFSAs into DATEs 78
4.5.1 Totality of QCFSA . 78
4.5.2 A Complete Translation . 81

4.6 Writing Properties . 83
4.6.1 Partitions . 83
4.6.2 Bridging Generation and Monitoring 85

4.7 Conclusion . 86

5 Runtime Monitoring in Erlang 88
5.1 Introduction . 88
5.2 Overview . 89
5.3 Translating Scripts . 89

5.3.1 Variations Between LARVA and E-LARVA DATEs 90
5.3.2 DATE Script Structure . 91
5.3.3 The Implemented Translation . 94

5.4 Runtime Monitoring DATEs in Erlang . 96
5.4.1 Instrumentation . 97
5.4.2 The DATE Monitor . 99
5.4.3 Object Binding . 101

5.5 Conclusion . 103

6 Case Study 104
6.1 Introduction . 104
6.2 Riak . 104

6.2.1 Core Functionality . 105
6.2.2 Topology . 105
6.2.3 Replication . 106

6.3 Translated Properties . 107
6.4 Case 1: Coarse-grained Operations . 108

6.4.1 Property Description . 108
6.4.2 Operation and Results . 111

6.5 Case 2: Vector Clocks . 115
6.5.1 Property Description . 115

ii

6.5.2 Operation and Results . 117
6.6 Case 3: Fine-Grained Insertion . 127

6.6.1 Property Description . 127
6.6.2 Operation and Results . 130

6.7 Case 4: Translation of Arbitrary Properties 135
6.7.1 Property Description . 135
6.7.2 Operation and Results . 136

6.8 Conclusion . 139

7 Evaluation and Comparison with Related Work 140
7.1 Introduction . 140
7.2 Evaluation of Approach . 140

7.2.1 Instrumentation . 140
7.2.2 Issues Affecting Translation . 142

7.3 Results . 145
7.4 Related Work . 147

7.4.1 Translating and Enriching Models into Properties 147
7.4.2 From Models to Runtime Monitors 148
7.4.3 Combining Runtime Verification and Testing Automata 148
7.4.4 Alternative Model-Based Test Case Generation Logics 150
7.4.5 Automatic Property Generation and Testing in Erlang 151

7.5 Conclusion . 151

8 Conclusion 152
8.1 Summary . 152
8.2 Future Work . 153

8.2.1 Event Logging and Statistics . 153
8.2.2 From Runtime Verification to Testing Automata 153
8.2.3 Channel Communication Analysis 154
8.2.4 Temporal Properties . 154

8.3 Concluding Note . 154

A Erlang 155
A.1 Introduction . 155
A.2 Overview . 155
A.3 Basic Concepts . 156

A.3.1 Variables and Atoms . 156
A.3.2 Tuples, Lists and List Comprehensions 156
A.3.3 Preprocessor . 158
A.3.4 Program Structure and Control Flow 158

A.4 Concurrency . 161
A.4.1 Threads . 161
A.4.2 Distributed Systems . 163
A.4.3 Generic Servers . 163
A.4.4 Generic Finite State Machines . 164

A.5 Conclusion . 165

iii

Chapter 1

Introduction

1.1 Background

Ensuring that a system functions correctly, especially if the system being considered fulfils
a critical role, is of the utmost importance. The repercussions of a system’s failure can be
dramatic, expensive, and even fatal. An oft-cited example of the consequences of software
errors is the failure of the Ariane V rocket in 1996 [AO08, JM97], which exploded due
to an uncaught exception thrown while downcasting a 64-bit integer to a 16-bit signed
integer. The cost of this incident was estimated to have been around $500 million. Another
prominent failure was the Pentium FDIV bug [AO08], which caused division operations
on certain Pentium processors to occasionally produce invalid results.

When verifying systems, one often resorts to testing. In its most basic form, testing is
performed by executing one or more test cases, these being pairs which relate a system’s
expected behaviour to a sequence of input stimuli. If the system’s observed behaviour
within the designed environment deviates from that specified by the test case, then the
test has failed. A collection of test cases is called a test suite. The size of a test suite
depends on the difficulty in creating tests for the target system and the resources allocated
to the testing effort. For example, test suites created manually are limited by the amount
of available manpower, while automatically-generated test suites depend on the amount
of computational power available for their generation and verification. Consequently, the
test suite’s size tends to be very small when compared to the size of the set of possible
system behaviours. The lack of exhaustive testing can be mitigated to a varying extent by
identifying partitions within the system’s set of behaviours. As several errors tend to stem
from a single cause, one may often group such behaviours into homogeneous collections
and only test single instances of that failure type, reducing the number of tests that need
to be verified.

As testing is rarely exhaustive, it is generally employed so as to catch the most blatant
or frequent errors as well as to increase confidence in the system. However, even the most
subtle of errors could lead to a system failing catastrophically. In addition, testing can be
an expensive undertaking, with [CR99, AO08, Ber07] stating that it typically consumes
over 50% of the total development budget.

1

Chapter 1. Introduction 2

Test Case

SUT Code

f()
g()
...

Inputs

Result1
Result2
...

Expected
Results

f()

g()

Stimuli

Results

Figure 1.1: Verification using a test case

Testing is but one approach to improving a system’s reliability. Another option is
to use runtime verification. Runtime verification addresses testing’s coverage issues by
postponing verification until deployment. Given a formal description of a program’s
correct behaviour (a property), a runtime monitor inspects a system as it executes on
live inputs and ensures that its behaviour conforms with the specification provided. This
effectively bypasses the issue of coverage by only verifying relevant code paths, namely
those which the system takes. By using runtime verification, one also avoids having to
devise artificial input values to drive testing.

One drawback of runtime verification is that it cannot anticipate failures, and a moni-
tor only recognises a bad state when the fault occurs. While in some cases one can design
a property to recognise impending bad states, certain failures cannot be guarded against
beforehand. In some instances, one can define compensatory corrective actions which can
be made to execute on entering a bad state so as to revert to a valid system state, yet not
all failures can be undone. This lack of anticipation makes certain temporal properties
based on future events unmonitorable, as will be discussed later.

Testing can be performed on an offline system without impacting a deployed system’s
performance. On the other hand, runtime verification must be performed in parallel with
the deployed system as it executes, potentially leeching its resources. Offline verification
on recorded executions is possible, yet its use comes at a price, namely the fact that actions
for mitigating failures can no longer be performed at runtime. Online verification has the
advantage that a program’s dynamic state can be analysed accurately, as the program’s
variables will be populated with real and concrete values. To offset the overheads incurred
through monitoring, one could either increase the target system’s computational capacity
or make monitoring more efficient. By analysing a system’s state and its evolution over

Chapter 1. Introduction 3

SUT Code

Monitor

Valid Invalid

f()

g()

Events

Figure 1.2: Verification using monitors observing events generated by
instrumented functions

traces, the runtime verification engine can potentially adjust itself and change the degree
of monitoring, and certain program behaviours which are known to be valid may be
considered safe to operate unattended.

Testing and runtime verification share the same common goal, namely that of recog-
nising incorrect system behaviours. The difference lies in that the former must also create
stimuli to drive a system’s execution and observe it, whereas the latter observes a live
system directly as it executes. In an attempt to make the best use of both techniques it
is thought worthwhile to experiment on their integrated deployment rather than their use
in isolation. One approach to testing which shares significant common ground with run-
time verification is model-based testing, which makes use of models of the system, often
designed to generate test cases. These models typically contain information specifying
the system’s intended or implemented behaviour, or both.

In view of the effort required to create properties for runtime monitoring or models
for testing, it is unlikely that both techniques will be employed to the same extent for
the same project. Ideally, one would develop a single property logic which could then be
transformed into an input for either technique. Removing the need to re-implement the
same property twice would not only streamline the approach, but would also help ensure
that the same property is being tested consistently in each mode, as errors could otherwise
be introduced into the property itself during a rewrite. Changes in requirements would
also be easier to perform, as alterations to the property would be immediately propagated
to both techniques.

The choice of base logic dictates what can be verified. For runtime verification, a
property must carry enough information to be translatable into a useful monitor. Simi-
larly, a property used for test case generation may require additional information which
a simple classifying property would not contain. For example, a runtime monitor which
observes calls to a function might not require fully-specified function signatures within
its property, whereas a test case generator may need additional information regarding
each of the arguments’ data type to direct the generation of input values. Yet a prop-
erty logic which requires too much information may result unusable. For some instances,
techniques have been developed to automatically derive certain properties or test cases

Chapter 1. Introduction 4

from a system, yet these mostly serve as aids for specifying properties and still contain
a manual component. It is also essential that testing and runtime verification properties
derived from the same root property will classify all system behaviours in an identical
manner, producing equal verdicts. Any discrepancies between verdicts would imply that
the properties being verified are not identical, leading to false positives or negatives being
reported.

Testable Traces

Negative Traces

Figure 1.3: Classification of system behaviours into testable and nega-
tive trace sets

The preservation of verdicts can be demonstrated through the notions of a property’s
testable and negative trace sets. A property is designed to produce a verdict on a subset
of a system’s behaviours. The program paths which it can reason upon thus form part
of the property’s set of testable traces, these being the traces which it can test. Traces
which the property classifies as leading to failure are partitioned into its negative trace
set. As will be seen, QuickCheck automata incorporate both a model of the system and
a property that classifies traces. The former serves to characterise the testable trace
set, and determines which traces will be verified using the property, whereas the latter
defines the negative trace set. Although a property may be able to produce a verdict on
a trace which is not described by the model, such a verdict is unreliable, as the traces are
not covered by the automaton’s test purpose. When translating automata of this type,
one must ensure that the result operates within the original automaton’s parameters and
produces consistent verdicts. Specifically, it must produce a negative verdict for all the
traces within the intersection of the automaton’s negative and testable trace sets. The
theory behind negative and testable trace sets will be expounded upon further throughout
this project, and its concepts are used extensively when analysing the transformation of
models and properties into different structures.

Chapter 1. Introduction 5

1.2 Aim and Approach

This project investigates the integration of testing and runtime verification techniques
for program correctness. As each technique requires an explicit notion of what consti-
tutes a system’s correct behaviour, the project focuses on devising a method for reusing
specifications written for one technique as an input to the other. This would benefit the
verification effort by removing the need to manually re-implement the same specification
for each technique, saving time. An automatic translation also ensures that verification
is being performed consistently, and that the same property is being verified when using
testing and runtime verification. One can then opt to invest the time which would other-
wise be spent re-targeting properties into developing more complete and useful properties,
leading to better verification.

QuickCheck

QCFSA DATE
DATE

Monitor

SUT SUT′

f() g() f() g()
Instrument

Translate Generate

Call f/
Reply

Call g/
Reply

→
f

←
f

→
g

←
g

Figure 1.4: From QuickCheck automata to runtime verification

The investigation is carried out by examining the translation of testing automata into
runtime monitors within the context of Erlang [Eri10c]. Erlang is a well-supported pro-
gramming language used within industry. It focuses on reliability, fault tolerance and
concurrency at a low computational cost, the latter making it an ideal medium for run-
time monitoring. There also exists a significant body of work regarding the testing of
programs written in this language. QuickCheck [Quv10] is a random test case genera-
tion tool developed for several languages, including Erlang, which supports the use of
QuickCheck Finite State Automata (QCFSA). These automata incorporate constructs for
the generation and classification of traces. After defining QCFSAs formally, a method for
transforming them into Dynamic Automata with Timers and Events (DATEs) [Col08] is
presented. The suitability of DATE as a good candidate for a target runtime verification
logic is demonstrated, and QCFSA elements can be seen to be cleanly mappable onto
its event and transition model. In addition, DATEs support the verification of temporal
properties, leaving room for future inclusion.

Once the translation process has been defined formally for the QCFSA and DATE
models, the project describes and analyses its implementation within Erlang. The trans-

Chapter 1. Introduction 6

lation is implemented as a tool which automatically converts QCFSAs into DATEs based
on the formal constructions presented. A runtime monitoring framework for verifying
DATEs within Erlang has been developed for this project. An additional tool has been
developed to automatically translate DATEs into an Erlang runtime monitor designed
to operate within the runtime verification framework. This also instruments the system
under test, wrapping monitored functions with routines to generate and forward events.
The tools are designed for interoperability, and can be chained as shown in Figure 1.4.

To evaluate the process, the project analyses the translation of four QCFSA properties
written for Riak [Bas11], an open-source distributed key store written in Erlang. Riak
incorporates many different testing scenarios on which properties can be verified. Prop-
erties are designed to examine various aspects of the translation, such as its generality
and its performance when transforming input properties testing the program at different
granularities. The results produced during the evaluation stage serve as a basis on which
the translation’s applicability is determined. The primary result is that while the trans-
lation works for single event streams, care must be exercised when deploying multiple
concurrent monitors. Complications that arise owing to QCFSAs’ lack of explicit context
make it difficult for the monitoring engine to extract the separate event streams from
their interleaving. The translation may also be compromised should the QCFSA make
use of its private state data when the locally stored values do not reflect the system’s true
state. The evaluation elaborates on these issues, and proposes a series of recommenda-
tions which should be followed when writing the initial QCFSA so as to ensure that the
translation will preserve the original property’s test purpose.

1.3 Document Structure

The document is structured as follows:

Chapter 2 concerns testing, describing its various forms and applications as well as its
inherent pitfalls, notably its coverage issues and the difficulty in creating comprehen-
sive test suites. Several approaches at automating the different parts of the testing
process are covered. The concept of a property’s set of testable and negative traces
with respect to a program’s possible set of behaviours is introduced. The chap-
ter concludes with an overview of three Erlang testing frameworks, namely EUnit,
Erlang Common Test and QuickCheck, with particular emphasis on the latter.

Chapter 3 provides an overview of runtime verification, defining its aims and modes of
operation and issues, concluding with a description of DATEs.

Chapter 4 presents a formal model of QuickCheck automata and their translation into
DATEs. As DATEs were originally conceived for use within Java, any discrepancies
between their reference implementation and their Erlang counterparts are listed. A
simplified translation is presented through an example, and its shortcomings are
identified. A more complex and comprehensive translation is then described and
applied to the example. The chapter concludes with recommendations on prop-
erty writing by characterising the effects of preconditions on a property’s testable

Chapter 1. Introduction 7

trace set, as well as the limitations imposed by QuickCheck’s use of the state data
construct.

Chapter 5 reviews the implementation of the property translation and runtime monitor-
ing framework. Part of the discussion is devoted to describing several mechanisms
for adding context to properties so as to allow concurrent event streams to be mon-
itored.

Chapter 6 introduces Riak, the application on which the case study is conducted. Four
properties are translated using the tools and concepts introduced in the preceding
chapter, and the behaviours of the resulting monitors are examined. The properties
attempt to quantify the translation’s applicability when testing data structures and
a program’s control flow at different granularities. One of the properties formed
part of the Riak package, and its translation was used to evaluate the procedure’s
performance when applied to third-party properties.

Chapter 7 draws results from the evaluation and attempts to determine the parameters
within which the translation can be applied. This is followed by a review of other
existing studies that are similar or related to this project.

Chapter 8 concludes the document, listing the project’s core contributions and possible
directions for future research.

Appendix A provides an overview of the pertinent Erlang constructs and concepts used
within this document.

Chapter 2

Testing and QuickCheck

2.1 Introduction

Testing a system thoroughly can be arduous, yet in the absence of formal verification, it
is often an inescapable requisite. Traditionally, testing has been and indeed often still is
largely a manual procedure, requiring varying degrees of human insight and intervention.
When testing, one must first decide what should be tested, and how the testing is to be
performed. The former involves a full understanding of a system’s required behaviour,
while the latter concerns mechanisms for ensuring that the implemented system behaves as
required. A program’s expected behaviour can be characterised using a property written
in a structured notation. Alternatively, one can employ test cases, which define the
expected behaviour of individual executions. Each technique has its own implications
on coverage, generality and ease of verification, and must be deployed using different
verification mechanisms.

Testing can be performed at varying levels of abstraction and at different stages of
the development process. The relationship between these two modalities is traditionally
represented through the V-model hierarchy, which will be introduced later on in this
chapter. Augmented versions of this model exist, including an alternative hierarchy which
takes components as the fundamental functional units of a system. Components are often
used in conjunction with contracts, which specify a component’s behaviour under different
scenarios.

As the process of manually crafting properties and test cases is involved and error-
prone, there is much to be gained from automation. Certain aspects of testing, such as
instrumentation and result monitoring, have been shown to be very amenable to automa-
tion, and are widely deployed. Several techniques for automatically inferring properties
from a system or model have also been employed with varying degrees of success, as will
be seen in subsequent chapters.

Simply creating a test suite or property is not sufficient, as the system must then be
checked to ensure that it behaves as required. Consequently, several automated techniques
were developed to check for compliance between a property or test case and the system

8

Chapter 2. Testing and QuickCheck 9

being implemented. This chapter describes three industry-level testing tools for Erlang1,
namely the EUnit and Erlang Common Test frameworks, and QuickCheck. While the
former two are mostly aimed at automating the repetitive housekeeping tasks associated
with the execution of test suites, the latter tool attempts to augment the testing process
by randomly generating test cases from a description of the requirements. This facilitates
the creation of arbitrarily large test suites, potentially leading to a greater degree of
coverage.

2.2 Testing

Testing refers to a broad set of techniques which focus on comparing a system’s observed
behaviour with that which is expected, identifying malfunctions in the process. It is
widely used in industry for quality assurance, and serves to provide a degree of confidence
in the system being tested.

Figure 2.1: The V-Model, reproduced from [AO08, pg. 6]. Each devel-
opment activity (left) has a corresponding test type (right).

Testing always involves the observation and classification of a sample of executions
[Ber07]. A sample will define the limits of the test, and must be representative of the
system’s behaviour. While a larger test sample will encompass more of a system’s be-
haviours, one cannot always test using very large samples due to the computational cost
incurred from their execution. Thus, it is important that a judicious method of test se-
lection is adopted, choosing samples that are comprehensive enough whilst remaining of
manageable size. The degree to which a given sample encompasses a system’s relevant
behaviour is often quantified in terms of several different coverage metrics, as will be
described in Section 2.3.4. Other factors influencing a sample’s characteristics include the
abstraction level at which the system is being observed, the system’s testing environment
and the point within the development process at which testing is being performed.

1Appendix A provides an overview of Erlang’s primary language constructs.

Chapter 2. Testing and QuickCheck 10

It should be noted that there is a fundamental distinction between validation and
verification. Validation is defined as the process of ensuring that a system fulfils its
intended purpose, whereas during verification, one checks that the system’s elements
conform to their specification [AO08].

2.2.1 Types of Testing

Different phases of the development process have their own associated testing strategies. A
popular model for relating development activities to their corresponding testing techniques
is the V-model [AO08], illustrated in Figure 2.1. Activities generate information that
drives the testing that is carried out at that level. Identifying a fault early on saves
money, as it stops faults from propagating into subsequent levels.

Every level’s testing strategy is designed to inspect different aspects of the system.
Lower levels of the model test an implementation directly at a fine granularity. As one
moves towards the upper layers of the model, testing becomes increasingly abstract, ver-
ifying a system in terms of larger, interacting components. Finally, the top levels check
that the overall system fulfils its required function, and correctness is gauged in terms of
utility and sustainability.

Table 2.1 lists the levels of the V-model and the objective of the verification methods
used at each level, as described in [AO08]. Levels are presented in increasing order of
abstraction.

Type Checks Purpose
Unit Implementation Test units2 built during the implementation

phase
Module Detailed design Checks the behaviour of individual modules3

in isolation
Integration Subsystem design Assumes that modules are correct and verifies

inter-module communication
System Architectural design Assumes that the individual system compo-

nents work correctly and checks that the as-
sembled system complies with its specification

Acceptance Requirements Checks that the completed software satisfies
the customer’s needs

One form of testing which can be applied at all levels is regression testing, which is
performed after changes are made to a system so as to ensure that its previous functionality
has not been invalidated.

2A unit is a single unit of work, such as a method or function [MH03]. What constitutes a unit of
work is somewhat subjective, and varies between contexts.

3A module is defined as a set of related units [AO08].

Chapter 2. Testing and QuickCheck 11

2.2.2 Component-Based Development

Other variations on the V-model hierarchy levels have been proposed. For example,
[JuRJBP07] describes a similar classification of the testing processes, replacing the unit
with a component as the smallest testable system element. This is based on the principle
of Component-Based (CB) software, which is built using prefabricated pieces of software
(components). CB systems differ from Object-Oriented (OO) designs primarily in that
OO focuses on implementation, whereas CB development is more concerned with the
composition of conceptual entities. With reference to the V-Model, Component-Based
Development replaces the unit and integration test levels with the component and de-
ployment test levels. Component tests involve the analysis of the individual components’
correctness, while deployment tests attempt to evaluate component interactions following
their composition. Component tests can be carried out using traditional black or white
box testing approaches. Regression tests can be performed whenever components are
added. Part of the difficulty in testing CB systems lies in the degree of the components’
compositional predictability, as the order and modes of interaction between integrated
components cannot always be predetermined.

[JuRJBP07] lists five metrics which can be employed to determine how well a compo-
nent can be tested, namely component

• observability, where a component consistently generates the same output when given
the same input

• controllability, which refers to the difficulty of influencing the output through the
interface

• understandability, or how well a component’s behaviour can be understood given its
interface description and possibly some additional metadata

• traceability, or the capability of monitoring component executions

• test support capability, which specifies how well components can be tested using
automated testing tools

Contracts and Services

Component-based systems lend themselves to the design by contract paradigm, where each
component specifies its interface and its explicit context dependencies using metadata
in the form of a contract [JuRJBP07]. In built-in testing, test cases are built using
contracts and verified with the aid of instrumentation, and are then packaged within
components. This approach is convenient in that it is easy to maintain, yet it may
leave unnecessary code in the final build. Other approaches include the use of testable
architectures, where tests are provided as additional specifications. Built-in testing suffers
from a lack of accountability, and the guarantees stated by the contracts must be certified
by a trustworthy entity, possibly through an external audit.

Chapter 2. Testing and QuickCheck 12

Contracts can be defined at various levels of abstraction, with [BJPW99] identifying
four, namely the syntactic, behavioural, synchronisation and Quality Of Service levels.
Contracts at each level are worded using different constructs and techniques. Contract
languages vary in expressivity and complexity, the most expressive being natural language
contracts, which in turn affect the difficulty in contract enforcement as well as determin-
ing what can be monitored. Different aspects of a contract may also be expressed using
different languages. For example, [LQS08] defines a service’s properties using atomic
propositions over system states, whereas the composition and coordination of the individ-
ual services is defined through XML. Contract languages may also be used to define how
agents should interact with the service, specifying what data should be exchanged and
which operations should be executed. They may also allow one to define compensatory
actions for handling business exceptions or faults. Other languages may allow contracts to
bind parties using criteria that can span across different platforms, executions or service
lifetimes [LQS08].

The original notion of contracts set by [Mey92] may also be augmented to provide
guarantees on security rather than robustness [HSRT08]. A security policy is a description
of the set of allowable system executions [AN08]. A system adheres to a policy if the set
of possible program executions is a subset or equal to the security policy. In order to
create security contracts, one must first identify potential security violations, possibly
through the use of UML misuse cases derived from the system’s security requirements.
These are then used to generate attack trees from which individual vulnerabilities are
identified. Vulnerabilities are guarded against using assertions that are checked during
execution. These assertions are inserted at breakpoints within the code, such as function
entry points. Assertions consist of zero or more rules, representing safety or liveness
properties of the program state which must remain true. These rules are checked using
a corresponding monitor. Contract security modelling allows security properties to be
added to a service without modifying its implementation. It also allows the detection of
logic error exploits as well as the validation of parameters through pre- and postconditions,
as with normal contracts.

Contract-based components that are accessed by clients can be seen as services having
a contract, a grounding and an implementation [BBCF08]. A contract defines what a
service does (service signature), its behaviour, and possibly details related to Quality
of Service (QoS), such as time limits on service operations. The service signature, or
contract definition [BJPW99], is a full description of the service being provided that
avoids revealing its implementation. For each available service operation, it specifies its
name and provides a description of its input and output parameters, stating their types
and listing any possible exceptions that can be raised. The service behaviour can be
described using a modelling language, and serves to define how the service will operate.
A service grounding provides a link between the semantic and syntactic levels, describing
how the service should be accessed. This may include what protocols should be used
and how messages should be structured. A service may also provide a set of additional
properties which describe the service in some way, acting as metadata.

Service types can be classified into a taxonomy [BBCF08], as shown in Figure 2.2.
State-less services do not keep track of client interactions and thus can be invoked mul-
tiple times and in any order. Conversely, state-full services are sensitive to the order in

Chapter 2. Testing and QuickCheck 13

services

state-less state-full

session-less session-full

Figure 2.2: A taxonomy of service types

which interactions take place. State-full services are further classified into session-less
and session-full services. Session-less services share a single virtual communication chan-
nel amongst all of the service’s clients, whereas session-full services dedicate a separate
channel to each client. A service’s type affects its verification, as tests would have to
take the service’s state transitions into consideration. This is particularly relevant when
monitoring contract violations. For example, while invocations of state-less services can
be verified in isolation, state-full services would require that a history of the service’s
transactions be recorded.

It should be emphasised that contracts only describe obligations, and do not, by
themselves, ensure a component’s correctness. Similarly, [HSRT08] states that contacts
guarding against security breaches may be subverted through side-channels. For example,
while a contract may guarantee that all communication over a channel will be encrypted,
it cannot protect against the theft of an endpoint’s private key.

2.3 Automating Test Case and Property Synthesis

When testing, one typically resorts to the use of test cases or properties. A test case is a
sequence of input values or calls that induces a particular behaviour from the system. The
validity of this behaviour is determined through a test oracle, which compares the observed
behaviour with that which was expected. Individual test cases are often grouped into a
test suite. Test cases attempt to characterise a program’s behaviour through enumeration,
where every separate manifestation of an interesting system behaviour is verified through
a test case. Testing a system sufficiently does not necessarily require that it be subjected
to every possible test case which can be run on it. Instead, one can often identify parti-
tions within the set of test cases whose members all produce the same form of observed
behaviour, in which case one would only have to test one case from each partition. This
is discussed in greater detail in Section 4.6.1.

Partitions aside, test cases tend to concern the verification of a single, specific sys-
tem behaviour. For example, a test case for a simple square root function sqrt(N) that
verifies the function’s result with N = 1 will make no assurances of correctness for other
values of N. Instead of enumerating N and running tests for every value, one could in-
stead characterise the function’s general expected behaviour and describe it as a property.
Properties describe the behaviour of an aspect of the system, typically using some logic
notation, as will be seen in Section 3.2. Using the previous example, one could define

Chapter 2. Testing and QuickCheck 14

a property which states that ∀n : N · sqrt(n)2 = n. Given that a property has been
identified, the verification problem is thus reduced to checking that a system’s expected
behaviour conforms to that property.

Verification is a two-stage process. One must first establish what should be verified
and then carry out verification, with the former stage often dictating how the latter should
be performed, as will be described in Section 2.5. The following concerns the creation
stage, and considers possible avenues in automation.

2.3.1 Overview

Devising properties or comprehensive test suites for a non-trivial system can be a complex
endeavour. The difficulty depends on several factors, including the amount and type of
information at the tester’s disposal (such as the availability of the system’s source code)
and the number and complexity of system behaviours that must be tested.

System Under Test

Traces Model

Test Cases Property

instrumentation abstraction

static
analysis

dynamic analysis

static analysis

generation

grammatical inference

add oracle

Figure 2.3: Common transformation and derivation techniques which
lead to test cases and properties

Several attempts at automating the various steps of creating testing artefacts have
been devised. Broadly, the approaches tend to focus on automatically inferring patterns
and abstracting from the concrete implementation to more conceptual descriptions of the
system. Figure 2.3 shows some of the possible transformations that can lead from an
implemented system to abstract properties and test cases4 by building on an intermediate

4In test-driven development, one would typically start from test cases or properties and move down-
wards towards a concrete implementation. In this case, automation could include the generation of
abstract models describing the target system or even code stubs.

Chapter 2. Testing and QuickCheck 15

analysis stage. Given a live system and its source code, one can generate:

• traces of past system executions through instrumentation

• a model describing the system at a higher level of abstraction

• test cases which relate one or more system executions to their expected behaviour

• properties that model the correct behaviour of some aspect of the system

Traces and models are the products of analysis, and describe how the implemented
system under test behaves. Conversely, properties and test cases attempt to describe
how the system should behave. What constitutes correct behaviour depends entirely on
what is required from the system. Thus, in the absence of a corresponding specification,
heuristics are employed when inferring oracles directly from the system’s behaviour. This
leverages the fact that several common programming errors share similar patterns, and
can produce a basis on which more elaborate testing artefacts can be built.

It should be emphasised that every transformation utilises its own techniques, and may
require additional input information specific to that approach. These restrictions could
impede the direct application of consecutive transformations. For example, inferring a
property from a set of traces might require that a particular form of instrumentation
be used when recording executions. Thus, paths through the hierarchy must often be
performed using a single, integrated approach.

The following is an overview of some of the common techniques employed in moving
from one testing artefact to another. In some of the cases considered, the creation of an
artefact requires that a combination of transformations be applied. For example, certain
property-generating techniques incorporate both static and dynamic analysis. In other
instances, the transformation may streamline the analysis and synthesis processes into
a single procedure, making use of internal intermediate representations and blurring the
boundaries between artefact types.

2.3.2 Acquiring Traces

A run or trace is defined by [LS09] as a potentially infinite sequence of states or events,
such as function calls. An execution is subsequently defined as a finite prefix of a trace.
The process of recording executions from a live system depends on the environment within
which it is executing, and can often be automated through instrumentation.

When recording traces, one must first identify which events are of interest and what
information should be logged when they occur. Certain programming languages use
virtual machines for executing programs, which can simplify the instrumentation process.
For example, Erlang has in-built tracing mechanisms that can store executions which
follow a set of specified patterns and rules without having to modify the system being
analysed [Eri10c]. Similarly, Java allows the use of reflection, which can be used to
insert logging code at the relevant points of interest directly into the program binaries at

Chapter 2. Testing and QuickCheck 16

runtime [Col08]. This also allows arbitrary actions to be triggered as soon as an event
takes place. In lieu of system-supported instrumentation, one could opt to automatically
inline instrumentation code into the system’s source code prior to compilation, although
this is subject to the source code’s availability.

When instrumenting code, one introduces overheads that did not exist within the
original system. These overheads may lead to the failure of certain time-critical appli-
cations by causing them to miss deadlines. In such cases, one must either compensate
by increasing the system’s computational capacity or by devising a non-intrusive probing
mechanism. Similarly, the system must be able to accommodate any additional mem-
ory requirements imposed by the instrumentation code, and unless the traces are being
consumed in an online fashion (Chapter 3), one must also dedicate memory for storing
executions. In general, the performance impact imposed by instrumentation should be
kept to a minimum. [CM05]

2.3.3 Generating a Model

When writing properties, it is often simpler to reason about a system in terms of its
high-level functionality rather than the low-level operations involved. Models of a system
provide more abstract descriptions of the system under test, allowing its behaviour to be
understood more easily by a tester. In addition, [CDH+00] states that many verification
tools and techniques operate on restricted models and languages such as finite-state ma-
chines, rather than directly analysing programs written in more general languages such as
Java. For example, model checking (Section 2.3.6) demands that a model describing the
aspect of the system that is to be investigated must be derived prior to verification, un-
less the model checker is designed to accept programs written in the language with which
the system under test has been implemented. The latter approach limits the generality
of the techniques employed as they become too language dependant, limiting the model
checker’s interoperability with other verification tools. The difference in abstraction levels
offered by modelling and implementation languages is referred to as the semantic gap, and
grows wider as the models become more restricted in relation to the language in which the
system under test has been implemented. As will be seen in Section 2.5.4, models are also
of great utility when coupled with a formal specification of the system’s requirements, as
they can lead to automated verification.

The process of creating system models manually is both time consuming and error-
prone, as the system’s implemented behaviour might not always be mirrored correctly by
the model. Automation could simplify the process whilst ensuring a greater degree of
consistency. A model serves to abstract away details which are irrelevant for the analysis
being conducted. Thus, a model which describes a system at the same abstraction level
at which it has been implemented is of little utility. To construct a useful model, one
must first decide which aspects of the system are of interest. For example, the Bandera
testing tool set [CDH+00] constructs a model of a Java program given a description of
what is to be analysed. It employs slicing, omitting control points and data structures
which are unrelated to the property being tested, leading to a reduced model which is
more amenable to verification. Bandera’s approach to slicing is affected by the structure

Chapter 2. Testing and QuickCheck 17

of the program, with a high degree of cohesion resulting in the removal of fewer slices.
The model returned after slicing is reported to maintain the program’s soundness and
completeness with respect to the property being checked. Bandera also performs data
abstraction to reduce a model’s state space, provided that the property for which the
model is being built does not depend on concrete program values but rather on the data’s
high-level properties. The abstraction is performed by replacing variables with symbolic
representations of that data type, and operations on those values are replaced by their
symbolic counterparts. As the loss of information on concrete values can cause certain
tests to fail, the model also introduces a special unresolved symbol >, which is modelled
as a non-deterministic choice and delays the computation of a verdict. [CDH+00] states
that due to the state explosion problem, there are greater performance gains to be had
through minimising model sizes rather than by implementing complex model traversal
algorithms.

Unlike the approach taken by Bandera, which requires prior knowledge of what is
to be tested, [EFD05] builds models directly from Erlang programs by converting their
source code into an equivalent representation expressed in a variant of µ-calculus. By de-
veloping a program using defined design patterns, the method can automatically convert
the relevant module into its algebraic representation. For example, the Erlang generic
client-server behaviour (Appendix A) behaviour can be automatically translated into a
µ-calculus process, with call and cast operations converted into synchronous and asyn-
chronous communication operations, respectively. Similarly, functions without side-effects
are directly translated into stateless processes through rewriting, while functions with
side-effects are integrated using process operators. Once an algebraic representation is
obtained, one may either verify the model directly, or else derive a Labelled Transition
System from it.

2.3.4 Deriving Test Cases

Test cases must fulfil a test requirement [AO08], that is, they must investigate some aspect
of the system under consideration. A coverage criterion is subsequently defined as one
or more test requirements that a set of tests must satisfy. Multiple tests in a suite can
check the same property. A coverage criterion is said to subsume another if every test set
that satisfies the former also satisfies the latter. Thus, for example, a branch coverage
criterion can informally be seen as subsuming a statement coverage criterion, since if a
test set traverses all of a program’s branches, then it will have also covered all of its
statements.

The number of combinations of input values (and consequently, states) that a program
may accept is often enormous. This renders testing through full enumeration intractable.
Thus, coverage criteria must be employed to choose which test inputs should be investi-
gated. The coverage level of a set of test requirements with respect to a coverage criterion
is the degree by which the test requirements satisfy the criterion. Choosing the right level
of coverage is essential, as meeting a coverage criterion can be computationally expensive,
and in some cases, undecidable.

Coverage criteria are chiefly employed in two scenarios [AO08], namely as:

Chapter 2. Testing and QuickCheck 18

• generators, where a test set is automatically derived from a coverage criterion

• recognisers, where a test set is created using some external method (such as manual
test case creation) and is then checked for compliance with the coverage criterion

Coverage criteria tend to be used as recognisers, as the degree of automation required
for generators is not always attainable. Recognisers suffer from the fact that one cannot
accurately gauge whether the coverage level provided by the test set being investigated
will suffice. There is no single method of evaluating the quality of a coverage criterion,
and the choice of criterion depends primarily on the difficulty of generating tests and
computing test requirements, as well as the efficacy of the tests in revealing faults.

In essence, a test case is a pair that relates a particular system behaviour to a verdict,
or in general terms, an execution to a test oracle. In the absence of a complete pair,
automation may be employed so as to infer or generate a matching component. For
example, given just a set of executions, one may attempt to infer a test oracle that can
classify them as failing or valid. Similarly, if a property has been identified, then it can be
used as a test oracle, with the task then being to generate appropriate runs of the system
on which the property should be verified. The following is a description of techniques
used to infer complete test cases from traces and properties.

Test Cases from Traces

To convert a set of executions into test cases, one would have to relate testing oracles to
them. In the absence of a formal specification of the program’s intended behaviour, one
would have to devise oracles manually. Alternatively, one may attempt to infer oracles
directly from the set of observed behaviours. This approach is adopted by the Eclat
[PE05] Java verification tool, which derives a set of JUnit5 test cases from the system
under test and a set of example program executions.

As the verifier lacks a test oracle description, Eclat uses Daikon (Section 2.3.5) to infer
an operational model of the system under test. The system classifies the given executions
into one of three groups based on their non-compliance with the inferred model. As the
model is incomplete, a violation does not necessarily correspond to a fault. Executions
are thus marked as probably being illegal, normal or fault-revealing, where:

• illegal traces are the result of presenting the system with inputs that it was not
designed to handle

• normal traces constitute normal system behaviour, even though the derived model
has been violated

• fault-revealing traces are those that are likely to indicate actual failures

Eclat attempts to identify partitions within the set of fault-revealing candidates, with
traces following similar violation patterns being placed within the same partition. The

5Erlang implements a similar EUnit testing framework, covered in Section 2.5.1.

Chapter 2. Testing and QuickCheck 19

system attempts to reduce multiple reports stemming from the same error by only emitting
a single test case per partition. This approach is limited by the inferred operational model,
and does not cater for the verification of all aspects of the system. In the case of Eclat,
[PE05] states that even if no faults are identified, the reduction phase will output a small
set of inputs and thus the process would not hinder testing significantly.

Test Cases from a Property

If a property that must hold over some part of the system’s execution has been identified,
then one can create a set of test cases by generating input stimuli and relating them to
an oracle implementing the property6. In this case, the task would be to generate a test
set which operates at the correct coverage level, identifying executions which can lead to
the property being violated. Automation helps to ensure that the generation process re-
mains consistent across tests and can increase the chances that a test set comprehensively
describes the property of interest.

[Ber07] describes three general approaches to test set generation, namely:

Model-based test generation, which involves the creation of a formal model that mir-
rors the behaviour of the system being examined. Once the system is formalised, a
generator can examine the model’s states and actions and derive test cases.

Random test generation, where inputs or stimuli are generated at random and fed
into the system. A purely random search cannot ensure coverage, and random test
generators are often directed or make use of a feedback mechanism.

Search-Based test generation treats the set of required test cases as elements of a
more general search space. These approaches try to direct the search to relevant
areas of the search space by employing metaheuristics.

Model-based test generation is centred primarily on model analysis and traversal,
which are subject to the model’s type and the information that it contains. An example
of a model-based test generation approach is illustrated by [CR99] as follows. Initially, a
model is converted into a high-level language. The test case generator then produces a
scenario tree, with vertices representing system states and transitions consisting of tuples
of the form

〈applied stimulus (input), generated responses (output), requirements〉

Test cases are then extracted from the scenario tree using a modified Breadth-First
Search traversal. Generating an entire scenario tree is inefficient due to its size. Thus,
two heuristics are used to prune the generated tree, namely a greedy searching algorithm
followed by a distance-measure based search for degenerate cases. Ideally, the generator
would produce a minimal test set that maintains coverage with the smallest possible

6A property can also be seen as a model of the system’s correct behaviour. In this context, the terms
are used interchangeably.

Chapter 2. Testing and QuickCheck 20

number of test cases, yet producing such a set can be shown to be NP-complete through
a reduction to the set covering problem.

Another approach taken by [BJ03] uses Extended Finite State Machines (EFSM) as
models from which test cases are derived for conformance testing. The specification
language used for writing EFSM is similar to Erlang. An EFSM consists of a set of
states, a set of guarded transitions, state variables, constants and parametrised events.
Invocations of system functions serve as incoming events, and application interactions
are represented by outgoing events. EFSM automata maintain state across transitions
through the use of a state data record structure which contains state variables, similar to
Erlang generic finite state machines (gen-fsm, explained in greater detail in Appendix
A.4.4). Unlike gen-fsm behaviours, EFSMs do not support concurrency and do not follow
the single-assignment variable constraints imposed by Erlang, although this behaviour
can be replicated through property rewriting. Transitions are guarded, and given that a
condition on an event’s parameter values is met, the automaton moves to the next state,
performing a variable assignment operation and emitting an event. EFSM automata must
be deterministic, that is, they cannot have overlapping guard conditions for the same event
on transitions leaving a state.

Test cases are derived by traversing an EFSM from an initial node to a final state, and
are assumed to be finite in length. As an automaton must be deterministic, a test case can
be described by the automaton’s starting configuration and the value parameters received.
Thus, a symbolic test case consists of the control path from the initial EFSM configuration
to a final state, an output function which determines the next output variable assignment
given the earlier values, and a guard, resulting in a tree of possible configurations from
which a system can evolve. Testing is driven by a client application that feeds in the
initial user inputs and collects the output results.

Another example of model-based test case generation is presented in [HW05], using
Communicating Timed Automata (CTA) to model real-time systems and their environ-
ment in order to generate test cases. CTAs are allowed a finite set of real-valued clocks
and synchronisation channels. Transitions have triggering conditions and may specify a
set of clocks to be reset on traversal. Symbolic executions of a CTA are mapped onto test
cases, which consist of sequences of input events and expected outputs. The automaton
traversal strategy can be changed by the tester. For example, one can opt to use breadth-
first or depth-first traversals to generate traces, the latter leading to longer and possibly
more effective test cases. The technique adopted also supports the estimation of various
coverage metrics, such as

• arc coverage, which counts the number of transitions taken

• region coverage, which measures the number of reachable automaton states using
region equivalence7

• triggering condition coverage, which uses a mixture of arc and region coverage

7Region equivalence is used since the state space is uncountably infinite, due to the use of real-valued
clocks.

Chapter 2. Testing and QuickCheck 21

One issue endemic to model-based test case generation is that it can fall prey to the
state-space explosion, leading to a lack of coverage. In the scenario described by [BJ03],
the input variable domains were known to be small, typically restricted to two values,
and traces were known to be short (2–4 steps), thus restricting the traversal’s depth.
Otherwise, the user would have to place constraints on the input domain with the help of
a specially-developed tool. In [BHJP05], EFSMs are extended by allowing one to specify
additional coverage criteria through the use of observers, which check that a generated
test suite covers one or more given states or edges.

To combat the potential blow-up in the size of a generated test suite, [HBAA10]
evaluates techniques for finding an interesting subset of a test suite with the greatest
ability to detect faults. The reduction of a test suite is also NP-hard, and an attempt is
made to produce an approximate result through heuristics. The heuristics investigated
are the use of:

1. random or semi-random test case selection.

2. coverage-based selection, which attempts to maximise an identified subset’s coverage
following the assumption that coverage is correlated to error detection. For example,
requiring that every transition be visited at least once during generation will result
in a smaller, yet potentially less effective, test suite.

3. similarity-based selection, based on the assumption that a test suite with dissimilar
test cases exposes more types of system behaviours.

The work presented in [HBAA10] focuses primarily on the evaluation of similarity-
based approaches. Part of the difficulty lies in devising an adequate measure of similarity
between traces. One approach is to use the Identical Transitions similarity measure, which
counts the number of identical transitions between a given pair of traces and divides this
value by their average length. Given the existence of a similarity measure, the selection
algorithm must then identify a subset of test cases with the minimum total pairwise
similarity measure. This task is a search problem, and several techniques such as clustering
or greedy algorithms may be used. The exposition compares the use of genetic algorithms
with greedy and random searches. The latter is performed primarily as a benchmark, as
an effective search algorithm must be able to demonstrate a consistent improvement over
a random search. In the investigated case study, the test suite derived through a genetic
algorithm-based search is reported to have performed better than random and cover-based
search techniques for equivalent sample sizes. One issue is that the search required the
fine tuning of several input parameters specific to the problem being investigated. Other
options, such as adaptive random searches and the use of different similarity measures
such as edit distance, are also marked for future investigation.

The TEst Sequence generaTOR (TeStor) algorithm [PMBF05] is a component in-
tegration testing tool that attempts to address state space explosion issues by testing
system components separately, rather than as a collection of components executing in
parallel. Each system component’s behavioural model is described as a UML state chart,
which is then used for verification, allowing the testing of incomplete implementations.
Additionally, a sequence diagram is used to specify which component interactions should

Chapter 2. Testing and QuickCheck 22

be tested. State machines are linearised, producing traces that are loop free and creating
separate traces for each branching condition point. Traces that do not conform with the
input specification’s message ordering restrictions are rejected. While linearisation will
reduce the search space through determinisation, it will lead to many valid system be-
haviours being left untested, although TeStor guarantees that every message of interest
will be covered by at least one scenario.

The key benefit of TeStor is that it operates on artefacts that are used in indus-
trial scenarios, namely UML charts, making itself amenable to widespread deployment.
Similarly, the approach adopted by [HJK+11] uses UML automata for describing test
requirements. One drawback of such notations is that the properties defined may be
too abstract, limiting their capacity for deriving concrete test cases. FShell Query Lan-
guage (FQL) is used to generate traces from the model whilst treating a UML model
as a Control-Flow Automaton (CFA). Certain UML elements, such as states and edges,
can be translated directly into their CFA counterparts, yet the test concretisation process
requires the definition of relations between the edge values and their implementation. For
example, edges may correspond to locations within the code or function names. Through
FQL, the resultant automaton can be analysed, and paths can be generated based on the
required coverage type (such as state or transition coverage) or their correspondence to
specified regular expression patterns.

While tools such as QuickCheck (Section 2.5.3) require the use of constructs specific
to test case generation, they avoid certain problems that arise during test concretisation
by enforcing a more rigid operational model. As QuickCheck is designed for deployment
within industrial settings, it aims towards being robust and general whilst maintaining
simplicity, as will be seen shortly.

Test Cases from the SUT

Rather than using a model or analysing execution traces, one can generate test cases di-
rectly from the system under test through static analysis. One way of testing the system
is to simply feed it randomly-generated inputs and check that a given property, such as
termination within bounded time, will hold. While a purely random testing approach
is simple to implement, it will fail to provide a sufficiently high level of coverage when
the input space is large. Thus, random generators should also incorporate some form of
feedback mechanism that directs the search. One such approach is taken by the Directed
Automated Random Testing (DART) [GKS05] automated unit testing application. DART
forsakes the use of model-based testing in favour of directed random test case generation
combined with automated code inspection techniques. These include parsing the source
code statically to extract interfaces, automatically generating a test driver which will
utilise the aforementioned interfaces and dynamically analysing the program as it is sub-
jected to random testing in order to direct future test inputs to execute alternate paths.
DART begins by using a random input vector as an initial test case. A new input vector
is subsequently derived by analysing the path taken on executing the previous vector and
choosing input values which will cause the branches’ logical conditions (path constraints)
to evaluate differently. This is achieved by calculating a solution to the path constraint

Chapter 2. Testing and QuickCheck 23

with the last predicate negated. DART assumes that all program traces are finite and
that functions do not have side-effects.

An advantage of random test generation is that it can test the artefact directly. This
eliminates the need to derive a model, which, apart from requiring some effort to produce,
has to represent the program’s behaviour accurately. One issue with static analysis is that
it can generate false negatives. A balance must be struck between only reporting high-
confidence warnings, possibly missing other faults, and reporting all suspect faults.

[PPW+05] attempts to evaluate the performance of test suites generated using different
techniques, namely:

• fully manual generation through interactive simulation

• semi-random (directed) test case generation using a model

• undirected random generation

• manual generation assisted by a model of the original system requirements

The main criteria on which a test suite is evaluated is its ability to detect errors and its
degree of coverage. The tests produced aim towards uncovering errors in the model, badly
formulated requirements and programming errors. Test suites generated through model-
based techniques were found to be practically equivalent to manually-written tests in
catching programming errors, yet the former were superior in finding requirement errors,
as models provided a better understanding of the program’s required behaviour. The
evaluation reports that there was no correlation between the techniques employed and
the gravity of the errors uncovered, and that no single technique managed to detect all of
the errors within the system under test.

The model of coverage used was condition/decision coverage, which counts the number
of different evaluations for each atomic action in a condition. Model-based techniques were
found to produce suites with a higher coverage level for an equivalent number of random
traces, yet [PPW+05] concedes that the models were designed by the same developer
who built the system under test, which led to a biased test suite due to the tester’s
detailed knowledge of the implementation’s behaviour. The evaluation also hints towards
a correlation between coverage and error detection, yet this could not be generalised to
all forms of test case generation.

2.3.5 Deriving Properties

Properties are essentially models which are taken to describe a system’s correct behaviour.
The primary mechanisms for deriving properties are static and dynamic analysis (or a
combination of both), with the former operating directly on the system under test and the
latter on executions. When employing these techniques, soundness and completeness are
often an issue. In this regard, soundness refers to the ability of a property to classify valid
executions correctly, whereas completeness is its ability to classify all valid executions.

Chapter 2. Testing and QuickCheck 24

Generalising executions derived from dynamic analysis may lead to unsound results, as
individual runs will not necessarily encompass the behaviour of future executions [NE02].

[SC07] identifies two levels of soundness, namely language-level and user-level sound-
ness. Language-level soundness is quoted in terms of the program’s execution semantics.
A property which is sound at the language level will only describe valid program traver-
sals, whereas an unsound property will embody executions that in reality can never be
performed. Static analysis techniques that fail to take context into consideration often
fall prey to language-level unsoundness and generate false positives. User-level soundness
is built over language-level soundness and refers to the correctness of the property with
respect to the program’s semantically-correct behaviour. User-level soundness cannot nor-
mally be inferred automatically from the program, as semantics tend to be represented
informally. Alternatively, [SC07] states that soundness can be redefined in terms of incor-
rectness, arguing that an analysis is sound in terms of program correctness if it is complete
in identifying incorrectness.

Properties from a Model

Throughout the discussion, a model is considered as a representation of the implemented
system, whereas a property describes a desired behaviour with which the system should
conform. From the perspective of automatic property generation, there is no true distinc-
tion between the methods used in inferring either description from the system under test,
as both are ultimately characterising the concrete system. Consequently, when deriving
properties automatically, models are used primarily as:

• intermediate artefacts that are inferred from the system under test and refined into
a property

• user-supplied abstractions describing the system under test

In the first case, a model is built from the system through an appropriate abstraction,
as described in Section 2.3.3. For a reduction to be effective, it requires a bias, such as
a user-supplied property. In the second case, the user would typically provide a model
of the expected behaviour rather than that which was implemented, implying that the
model is a desired property. If the model provided is that of the concrete system, then one
could infer a property from it rather than directly from the system under test, simplifying
the analysis.

Properties from the SUT

The Extended Static Checker (ESC) is a compile-time static analysis tool that attempts
to identify errors which are normally only caught at runtime, including null dereferences,
invalid class casts and attempts to address elements beyond an array’s bounds. ESC
analyses source code directly, rather than a model of the system. ESC requires annotations
similar to assertions within a program in order to guide verification. Internally, ESC uses a

Chapter 2. Testing and QuickCheck 25

model checker, and can check a program either as one whole or by analysing its constituent
modules. [NE02]

ESC/Java8 is an implementation of ESC that analyses Java programs. Java source
code is compiled into a set of predicate logic formulae, expressing a method’s character-
istics. Methods are then checked in isolation, ensuring that their pre- and postconditions
have not been violated [SC07]. ESC/Java is language-level unsound, as it allows users to
define unverified and potentially false assumptions. It also disallows the use of arithmetic
operations within annotations, and only analyses loops through at most one iteration.
Failure to provide adequate annotations will also cause ESC/Java to be unsound, as the
analyser will not factor in context. ESC/Java is criticised by [SC07] as not being cost
effective due to the burden associated with annotation. Another drawback is that its
unsoundness can lead to an excess of false positives being reported.

Properties from Traces

Daikon9 is an invariant detector that tries to automatically deduce invariance properties
through dynamic analysis. It can analyse programs written in several languages, includ-
ing C and Java. It operates by instrumenting the system under test and analysing the
apparent relationships that exist between local variables during the execution of a test
suite. Variables begin with a set of associated candidate invariance properties, which are
then excluded as testing progresses. Invariance is checked over a code block’s entry and
exit points. Daikon can identify several forms of invariance, including linear relationships
and orderings between variables as well as a variable’s likely domain. For example, Daikon
can detect that a variable is never set to zero or that a list remains sorted throughout all
of the examined executions. [NE02]

Since the number of executions in the test suite is typically much smaller than the
number of possible paths through the system, Daikon may identify invariants which in
reality do not hold but have not yet been refuted by a counterexample. Thus, Daikon ranks
invariants using probabilities, with the likelihood of an invariant being correct increasing
as the number of analysed test cases grows, giving a more accurate list of invariants.

Daikon uses offline verification (Section 3.1.1), meaning that traces must be recorded
in order to facilitate analysis [NE02]. If the set of traces is too small, Daikon will be
unable to infer meaningful invariance relationships as the probabilities will fail to indicate
any clear candidates. On the other hand, having too many traces will cause the analysis
to take longer and may require too much memory. Inheritance (in the case of Object-
Oriented Programming languages) can also mislead local reasoning, as Daikon does not
fully unravel object references. These issues would largely be resolved were verification to
take place in an online manner. Another issue is that Daikon’s rankings may be skewed
based on what is being tested. While system tests are good candidates for invariant
generation, unit tests tend to invoke methods in an unpredictable manner, misleading
Daikon’s statistical engine.

8Project website: http://kind.ucd.ie/products/opensource/ESCJava2/ (last accessed July 2011)
9Project website: http://groups.csail.mit.edu/pag/daikon/ (last accessed July 2011)

Chapter 2. Testing and QuickCheck 26

Similarly, QuickSpec [CSH10] is a tool that automatically produces a list of algebraic
equations which appear to hold over a given set of functions written in Erlang or Haskell.
These equations can serve as a basis for testing, and the tool’s failure to discover laws
which are known to hold may indicate that the implementation is faulty. Discovered
equations are potentially unsound, as they are built through partial testing. Nevertheless,
they are complete in that all syntactically valid equations which the system may satisfy
can be derived from the discovered set. QuickSpec takes the compiled program under
test, a list of function headers (complete with argument data types) and a set of test
data generators which create instances of the data types used as inputs. A finite set of
terms is generated and partitioned into equivalence classes, separating inputs which lead
to varying behaviours into different partitions and relating the terms through equations.

As with Daikon, one drawback of QuickSpec is that it can produce far too much output
to be useful. QuickSpec attempts to remove equations that can be derived from others
within the set in order to minimise the result, and ranks equations using a simplicity
measure which assumes that more complex equations are built from simpler elements.
Derivability is, in general, undecidable, and one cannot produce a unique minimal set.
As with Daikon, QuickSpec uses counterexamples to derive its results, yet unlike Daikon,
it discovers relationships between arbitrary function input values rather than specified
variables within a program.

Properties from Test Cases

Test cases are used to verify individual traces, each having an associated verdict. To
convert this knowledge into a property would require that a single, overarching notion of
correctness be inferred from the test suite.

Unlike the approach adopted by Daikon, where a property is derived from live exe-
cutions, [AT10] uses grammatical inference to infer a finite state machine from an EUnit
test suite (Section 2.5.1), which can then be used to generate more test cases or to serve
as an oracle. Assuming that it has been constructed correctly, a test suite will always
meet the test criteria for which it was designed. Tests in a test suite will consist of a series
of assertions that compare the results of functions to their expected values. The system
automatically replaces each assertion by a function (event), with traces consisting of se-
quences of such events. Traces are sorted into positive and negative examples based on
the type of assertions employed, with exception-catching assertions symbolising negative
traces. From the test suite, the system builds a minimal accepting finite state automaton
describing a regular grammar that combines the individual tests into a property. [AT10]
states that positive traces alone might not be sufficient for inferring a correct grammar.
It is assumed that traces are closed on previous statements, that is, if a trace consisting
of any N events is positive, then a prefix of N-1 events will also be positive.

Once a finite state automaton has been derived, the system described by [AT10] aug-
ments the model by adding data type information to every event’s arguments, which are
derived from annotated function headers in the system under test. The updated model
is converted into a QuickCheck Finite State Automaton (Section 2.5.4), with assertions
translated into postconditions. The data type information is used to generate input values

Chapter 2. Testing and QuickCheck 27

when using the QCFSA as a test case generator. The stated advantage of the transfor-
mation into a QuickCheck property is that it allows a larger volume of test cases to be
verified whilst remaining relatively compact. The approach is not entirely automatic. Any
non-determinism introduced by the event abstraction process has to be resolved manually,
as would the introduction of state preservation across multiple transitions of the resultant
QuickCheck automaton.

2.3.6 Combining Analysis Techniques

To this point, static and dynamic analysis techniques have been analysed mostly in iso-
lation. Intuitively, static and dynamic analysis differ in that the former is performed
directly on a concrete or abstract representation of the system under test, whereas the
latter operates on executions of the system. This distinction is not perfect, as static
analysis may involve some amount of simulation of partial program traversals10. [SC07]
suggests a different distinction, categorising techniques as belonging to static or dynamic
analysis based on their concerns. A dynamic analysis technique is thus defined as one
which is aimed towards observing control flow, whereas a static analysis technique is used
to produce inferences on data flow.

Static and dynamic analysis have opposing characteristics. Static analysis can assure
a greater degree of coverage when compared to dynamic analysis, which can only reason
about individual executions. Static analysis is often impractical for very complex systems
due to state space explosions. Dynamic analysis provides detailed information on local
program states [CM08], as the evolution of snapshots of concrete variable and register
values can be analysed over a trace. Conversely, static analysis often lacks context data
[AB05], requiring analysers to either generate suitable values and approximate the set
of possible program states or to simply avoid analysing unknown factors. The following
section describes some of the numerous efforts at combining static and dynamic analysis
for automating processes such as property generation and system verification.

Applying Analysis Techniques as Separate Phases

Several approaches apply different analysis techniques sequentially, using the output gen-
erated in one phase as an input to the next. The sequence and number of phases is
dictated by the techniques in use.

Check ’n’ Crash [SC07] is an example of a static-dynamic tool, which augments the
output of ESC/Java through the application of a dynamic analysis phase. Using a con-
straint solver, it deduces variable assignments that should cause the program to crash
based on ESC/Java’s analysis. The assignments are then compiled into test cases, which
are then executed using JUnit (Section 2.5.1). Static analysis is thus used to identify
potential errors, while dynamic analysis attempts to confirm or disprove the errors’ true
existence.

10Observing a static system’s behaviour under a set of defined inputs is still classified as static analysis,
even though the program is, in a sense, being executed.

Chapter 2. Testing and QuickCheck 28

A tool related to Check ’n’ Crash is the Dynamic-Static-Dynamic (DSD) Crasher
[SC07]. DSD-Crasher performs an additional dynamic analysis step prior to invoking
Check ’n’ Crash. This attempts to address ESC/Java’s user-level unsoundness through
the use of heuristics by trying to characterise the program’s intentions. It also employs
Daikon in an attempt to infer invariants.

JNuke [AB05] performs generic analysis, using a context data structure to describe a
program’s states at different program locations. Static and dynamic analysis techniques
are used in order to populate the context structures. Analysis is then performed on the
intermediate abstract representation built using information harvested from the program.
This allows analysis to be performed using the technique most suited for that partic-
ular task. For example, [AB05] states that thread-local properties should be analysed
statically, as runtime verification would require too much memory.

Static and dynamic analysis can also be used to assist in the creation of an existing
program’s specification. The approach taken by [NE02] is similar to those mentioned
previously. The method attempts to annotate a program using information gleaned from
dynamic analysis. This is done using Daikon, inserting likely invariants as annotations
which are then used to refine static analysis. The invariants are chosen based on the
specification’s purpose. This provides a static verifier with more context data, improv-
ing soundness. On the other hand, test suites generated through this method may vary
significantly in size and quality, although even small suits may serve to uncover parts of
the program’s semantics. Additionally, it may be the case that while the correct specifi-
cation has been inferred from a generalised behaviour, the program itself still violates the
specification due to latent errors which escape the initial analysis phase.

Analysing Concurrent Programs

The behaviour of concurrently-executing elements can be very hard to analyse due to the
many ways in which they can interact with each other. When verifying such systems, static
and dynamic analysis can be used to different extents. For example, static analysis may
be used to identify concurrent accesses to variables, notwithstanding problems brought
about by aliasing11 [CM08]. Aliases cannot always be identified statically if their reference
is resolved at runtime, causing the verifier to miss detecting shared memory accesses,
whereas a dynamic analyser can check the ultimate reference address prior to accessing
the location.

Static analysis can be used to identify potential points of contention amongst processes,
and dynamic analysis may be used in order to simulate different process interleavings. The
tool presented by [CM08] consists of a set of static and dynamic analysis modules. The
static module Soot generates call graphs and identifies relationships between program
instructions, also detecting potential parallel interactions. The Value Schedule Generator
(VSG) then observes the execution of random threads as they evolve through the system.
Value schedules consist of pairs of conflicting variable accesses to shared variables and the

11Aliasing is a phenomenon whereby a shared variable is accessed through multiple handles, as when
two pointers refer to the same memory location. The guises under which aliasing can manifest depend
on the constructs supported by the programming language being used.

Chapter 2. Testing and QuickCheck 29

partial orderings between accesses. The VSG avoids exploring more than one interleav-
ing for each generated partial ordering. Dynamic analysis is conducted using the Java
PathFinder 12 (JPF) model checker, which determines whether the interleavings generated
by the static checkers are feasible.

Employing Model Checking

Model checking can provide a more thorough verification of a program than unassisted
dynamic analysis, as it examines the program’s entire state space. Model-driven verifi-
cation uses dynamic analysis in order to guide searches within the state space based on
the behaviour reported by the program’s instrumentation. Model checking can be used
to make up for dynamic analysis’ unsoundness when an exhaustive search is feasible, as
when analysing certain localised execution paths.

The approach taken by [GJ08] uses a model of the system for verification. Apart
from verifying properties, the proposed system attempts to check modifies clauses, which
limit how a function may alter values. Modifies clauses are good candidates for dynamic
evaluation, as sometimes the addresses of locations and variable values can only be evalu-
ated at runtime. Dynamic analysis also facilitates the examination of programs at a fine
granularity, as well as the evaluation of coverage metrics. Using dynamic analysis, the
system tracks mutable system objects, such as variables, as they evolve over an execution.
Traversals through the program are tracked by storing a trace’s progress through defined
program checkpoints. These are then used to create state abstractions and minimise the
number of states that the checker must verify, whilst also allowing the model checker to
recognise states that it has already visited.

The framework’s instrumentation phase is carried out independently of the verifier,
meaning that other techniques such as random test case execution can also be employed
whilst maintaining the same data collection framework. This also allows analysis to be
performed both during and after program deployment. Additionally, [GJ08] states that
the system can be modified to infer properties.

Analysing Programs as Partitions

As mentioned earlier, different parts of a program may be easier to analyse using one tech-
nique rather than the other. This concept underpins the approach adopted by [JVSJ06],
which attempts to partition a program into blocks which can then be analysed separately.

A program P is partitioned into two or more parts, with each part thus being a
subset of the original program. Partitioning must preserve any errors that existed in P .
A program or partition can be described using a Control Flow Graph (CFG), which is
a static representation of the program that describes all of the program’s control flow.
Nodes in a CFG correspond to instructions, with the start and end node representing a
block’s entry and exit points, respectively.

12Project website: http://javapathfinder.sourceforge.net/ (last accessed July 2011)

Chapter 2. Testing and QuickCheck 30

Let G the CFG of program P . Partition P1 with CFG G1 is said to be a proper
partition of P if

• G1 is a sub-graph of G

• G1 contains the entry and exit nodes of G

• every node in G1 lies on at least one possible path in G that goes from the entry to
the exit node

Subsequently, if P is partitioned into parts P1 and P2 with CFGs G1 and G2, respec-
tively, the partitioning is said to be proper if

• P1 and P2 are proper partitions

• G = G1 ∪G2

• the paths of G1 and G2 are disjoint

If a partition is proper, then it must be a valid program with behaviours that are a
subset of the parent program. If a program is properly partitioned, then the partitions
will cover all the code in the original program. Once partitions are determined, statically
analysing individual partitions may become feasible, as their state space will be smaller
than that of the original program. The difficulty lies in determining how a program
should be partitioned. For a two-way partitioning, it is sufficient to determine only one
partition, as the other can be derived as a complement by creating the smallest CFG that
contains all the remaining nodes. Choosing the initial partition entirely at random may
lead to false positives being reported, as impossible traversals may be generated. [JVSJ06]
uses dynamic analysis to determine the initial partition. Usage statistics are collected at
runtime, and executed traces are added to the initial partition. Once the size of the
partition reaches a set threshold, the complementary partition containing transitions that
have not yet been analysed will be derived. The initial partition should ideally be large, as
otherwise the complementary partition’s state space might not have shrunk to the point
where static analysis becomes feasible.

2.3.7 Conclusion

While the methods illustrated can facilitate verification, fully automated verification of
arbitrary programs is still unattainable, and for unrestricted languages, impossible. Au-
tomation serves as an aid, and inferred properties can be used as a basis on which subse-
quent tests are built.

When combining multiple verification techniques, one may find that there are mis-
matches between the information which is available and that which is required. This is
often the result of techniques taking inputs of differing forms, with translations between
inputs resulting in the loss of information. For example, ESC/Java annotations cannot
express all of the invariant types derived using Daikon, limiting their interoperability.
Thus, choosing the right representation and tool set is essential.

Chapter 2. Testing and QuickCheck 31

2.4 Testable and Negative Traces

The notion of test case coverage presented earlier can be extended to properties. In this
case, coverage is related to the number of observable system traces that a property can
correctly identify as failing, and is defined as follows.

All Traces

Positive Traces

Negative Traces

System Behaviours

Model Property

Figure 2.4: Partitioning of the set of all possible traces

Given that Σ is the set of system events with which a property to be verified is
concerned, Γ

def
= 2Σ∗ is the set of all possible event interleavings. An implemented

program P would typically only emit a subset of Γ, as its internal structure would restrict
certain event sequences from being generated. Nevertheless, programs such as stateless
server processes could indeed allow any arbitrary interleavings of Σ, in which case the
set of legal system behaviours PT would be equal to Γ. If the system is imperfect, then
some of its behaviours will be invalid. Consequently, PT could be partitioned into the set
of allowable (positive) traces and the set of bad (negative) traces. A non-empty negative
trace set would imply that the system contains faults.

The task of a property, and verification in general, is to identify a program’s set of
negative traces. A property is used to produce a verdict on some set of system behaviours,
the size of which depends on the nature of the property and its quantification. For
example, a property ϕ1 stating that every valid trace must consist of at least 2 events
is quantified over Γ, and can thus produce a verdict for all of PT . Conversely, certain
properties may only be applicable to a subset of the system’s behaviours. For example,

Chapter 2. Testing and QuickCheck 32

given that e and f are two events in Σ, a property ϕ2 might require that every event e
is followed by event f . Such a property would not be able to produce a negative verdict
for traces that do not contain e events, excluding such traces from verification. Thus, the
set of traces with which a property is concerned, or the behaviours which it can test, is
defined as the set of testable traces. When presented with a trace outside of its testable
set, a property must either implicitly assume that non-members are valid, or return an
indeterminate verdict. A property’s testable trace set may contain traces not in PT , in
which case the property could produce a verdict on traces which never actually occur.

Models can be used to investigate specific interesting program behaviours. A model
M can thus be seen as characterising a subset MT of the traces in PT . If MT 6⊆ PT ,
then the model is inaccurate and does not match the program’s implementation, as it
encompasses behaviours which the program never exhibits. A model can be used to
direct the verification process. Instead of verifying a property over the entire set of PT ,
one may design a model which characterises the program’s negative trace set and verify
the property on this set, foregoing the checking of traces which are known to be valid.
Ideally, only error-inducing traces are modelled, and often it is enough to model a few
bad system behaviours rather than the entire negative set trace, as many bad traces may
be the result of a single fault and fall within partitions (Section 4.6.1).

As will be seen in Chapter 4, QuickCheck automata use models to characterise the set
of interesting traces and restrict the size of their testable trace set. These are then used
in conjunction with properties that classify the individual traces as being valid or invalid.
Thus, when verifying ϕ2, a model would restrict the search to traces containing e and f
events, which would then be checked against ϕ2. The property’s set of negative traces,
that is, the traces which it would consider as failing, would all contain one or more e · f
sequences. If the model generates and verifies traces which never occur, then the system
may produce false negatives.

2.5 Verifying Properties and Test Cases using Erlang

Once a property or test suite has been devised, the system under test must be checked
for compliance. Minimally, a property must define which behaviours are to be considered
as being valid or invalid. Properties can be expressed using multiple notations, and not
all notations are created equal. Some formalisations are concerned with analysing specific
system aspects that dictate which verification method is to be used. For example, while
runtime monitoring might be adequate for verifying certain safety properties, it may
fail when checking particular temporal properties that concern future events, as will be
discussed in Chapter 3.

As established earlier, testing is generally an expensive endeavour. Consequently,
while unit testing can help in identifying errors which would be much harder to detect
at the system level, it is often neglected due to its associated cost [Ber07]. Part of the
expense stems from the difficulty of simulating the unit’s execution environment and the
time spent implementing mechanisms to check the unit’s input and output values.

Chapter 2. Testing and QuickCheck 33

The following section describes three mainstream verification tools available to Erlang
that aid in automating the verification of a system, namely the EUnit and Erlang Common
Test frameworks and the QuickCheck random test case generation and testing tool. The
former two serve to orchestrate the execution of a test suite, and handle several boilerplate
operations such as the initialisation and resetting of the testing environment. They also
facilitate testing by adding specific testing functionality such as assertion checking and
error reporting. QuickCheck differs from the former tools in that it allows properties to be
defined over quantified input variables, which are then tested using randomly-generated
input values of the correct type. QuickCheck can also be used to generate and execute
call chains and verify their behaviour with respect to a property.

2.5.1 EUnit

EUnit [CR09] is an open-source testing framework designed for the creation and execution
of unit tests in Erlang, based on the JUnit13 framework. Several other programming
languages have an equivalent implementation of the underlying xUnit framework. While
a unit can be of any arbitrary size, the term generally refers to either a function or a
module. For JUnit, [MH03] defines units as tasks whose completion does not depend
directly on that of other tasks.

Unit tests are often used to verify that an implemented module conforms to its interface
contract. EUnit allows unit tests to run independently of each other, with error reports
being generated on a test-by-test basis. It also simplifies the act of choosing which tests to
execute, allowing a tester to enable or disable tests within a suite at will. Tests are written
by creating a series of functions within an EUnit module which correspond to units in the
actual program implementation. Alternatively, one can define functions which generate
test functions.

EUnit provides tools such as assertions which can be used to check whether a specific
condition holds at a given point, and can be used both within a test case as well as in the
system under test. For example, a tester may define an assertion that checks whether a
specified method returns true. When using EUnit, one must keep in mind that it only
serves as a framework for the creation and execution of tests. EUnit on its own will not
ensure coverage, as it is still the tester’s responsibility to design unit tests.

An Example

Unit tests can range from the trivial to the exceedingly complex. The following section
considers the testing of a very simple function and serves to highlight the basic constructs
used when implementing EUnit tests. Consider the function defined in Listing 2.1, which
implements the Babylonian method for approximating square roots [Car10]. The sqrt

function takes two parameters, In and Epsilon, and returns an approximation to the
square root of In which deviates from the true square root value by at most Epsilon.
The algorithm is recursive, with the depth of recursion increasing as Epsilon approaches

13Project website: http://www.junit.org/ (last accessed July 2011)

Chapter 2. Testing and QuickCheck 34

zero. Since Epsilon is a measure of magnitude, the algorithm only makes use of its
absolute value and discards its sign.

Listing 2.1: The Babylonian method for approximating square roots� �
1 −module(sut) . % System under t e s t
2 −export ([s q r t /2]) . % Only one f u n c t i o n expor ted
3
4 sq r t2 (In , Root , Eps i lon) −>
5 i f
6 abs (In − (Root∗Root)) > Eps i lon −>
7 sq r t2 (In , (Root + (In /Root))/2 , Eps i lon) ;
8 true −>
9 Root % Within error bound

10 end .
11
12 % Main funct ion , t a k e s Number and Error v a l u e
13 s q r t (0 ,) −>
14 0 ;
15 s q r t (N,) when N < 0 −>
16 bad arg ;
17 s q r t (N, Eps i lon) −>
18 sq r t2 (N, N, abs (Eps i lon)) .� �

The simplest test would be a direct invocation of the function, as in Listing 2.2. The
unit test calls the square root function and will only fail if the function crashes and throws
an exception.

Listing 2.2: A simple EUnit test� �
1 s i m p l e t e s t () −>
2 sut : s q r t (2 5 , 0 . 0 1) . % Returns 5.000023178253949� �

A more useful test would verify that one or more assertions hold. Listing 2.3 demon-
strates the use of assertions within the range test function, which ensure that the square
root value returned lies within the specified error bound. Other assertions exist, includ-
ing assertions that check for equality, raised exceptions or bounded-time execution. The
EUnit framework also provides a series of debugging macros that can be used during
development for displaying error and diagnostic information.

Listing 2.3: EUnit test with assertions� �
1 r a n g e t e s t () −>
2 Value = 25 ,
3 Error = 0 .25 ,
4 Root = sut : s q r t (Value , 0 . 2 5) ,
5 ? a s s e r t (abs (Value − (Root∗Root)) =< Error) .� �

Chapter 2. Testing and QuickCheck 35

EUnit provides a tester with very fine grained control over how the unit tests will be
performed. Notably, it allows one to specify which tests should execute as well as their
execution order, even allowing tests to be executed in parallel. It also provides mechanisms
for binding setup and clean-up code, known as fixtures, to individual or groups of tests.
These are used to configure the environment in anticipation of the tests, replicating any
relevant test conditions.

2.5.2 Erlang Common Test

As with the EUnit framework described in Section 2.5.1, the Erlang Common Test (CT)
framework aids in the creation and automated execution of test cases. It allows one to
create a set of functions which serve as unit tests, each of which can test one or more
aspects of the system. [Eri10b]

The creation of test cases is facilitated by the existence of several supporting func-
tions. Apart from the basic libraries provided by Erlang, unit tests can also make use
of CT-specific functionality as well as libraries provided by the user. CT libraries pro-
vide standard functions for logging test results, reading configuration data and aborting
tests. They also provide facilities for communicating over several protocols, including
Telnet and Remote Procedure Calls, aiding error reporting. CT also supports large-scale
automated testing, whereby a single dedicated Erlang node can distribute tests onto any
number of CT test nodes. Test specifications (Section 2.5.2) determine which tests will
be executed where. The master node logs all test results, collecting statistics generated
by each independent CT server [Eri10b]. The existence of supporting libraries make CT
suitable for white-box testing, as unit tests can invoke functions directly, as well as black
box testing through several supported interfaces.

Test Cases and Suites

A CT test case is the smallest testing primitive for CT. As with EUnit, test cases can
be of arbitrary length and can test more than a single property, as they can connect to
multiple interfaces. [Eri10b] states that making unit tests too small may result in a high
degree of code duplication, whereas large tests can obfuscate what is being tested. There
are no mechanical or set rules for determining an adequate degree of test complexity.

Unit tests can be executed individually or as part of a test suite, which is implemented
as an Erlang module. [Eri10b] states that test cases execute as separate processes. A test
case is classified as failing if it crashes. Whenever a test case returns a value, it implies
that the test has succeeded. A test may also return values with a specific interpretation,
namely:

Returned Value Interpretation
{skip, Reason} The test has been skipped and is logged as such
{comment, Comment} Test succeeded, Comment placed in log

Each test case has access to a list of tuples containing several test environment pa-

Chapter 2. Testing and QuickCheck 36

rameters such as the current working directory. Additionally, every test case can have
an identically-named companion function which takes no parameters and specifies test
constraints, including the test’s maximum execution time (the default being 30 minutes),
a test’s data dependency as well as any arbitrary user data.

Apart from test cases, one can define configuration functions which prepare the envi-
ronment for testing on a per-test or per-suite basis. For example, a configuration function
could initialise data structures and connections which are subsequently used by the test
cases. Other configuration functions can be set to execute once a test or a test suite
terminates, and are often used to free up any initialised resources. A test suite can also
have an associated test specification, which defines the tests’ execution order and can be
used to set working and logging directories as well as path aliases. [Eri10b]

Test Strategies

Tests in a test suite can be partitioned into a series of groups. Groups can contain other
groups, allowing test sub-grouping. Groups are assigned a test strategy, which contains
a list of properties that specify how testing should be carried out for that group. For
example, one can specify an execution order for test cases within a group [Eri10b] by
setting the relevant property to one of the following values, namely

Value Reason
parallel All tests are executed in parallel
sequence All tests executed in the order in which they are defined
shuffle Test cases are executed in random order

When specifying shuffle, one can also set a fixed seed value for the randomiser, making
the test’s conditions reproducible. Also, one can set the repeat property, which causes
the test group to be tested repeatedly for a set number of times or until any or all test
cases fail or succeed.

Logging

The CT framework includes a comprehensive logging mechanism. Test results generated
by a test suite are placed within the major log file, which contains a detailed report of a
test’s execution, including test statistics, summaries and failure reasons. The major log
file is also generated in HTML format and allows test case results to be viewed separately.
Results for each test case are placed within the minor log file, with a separate file for each
result. This allows results to be compared between test runs. [Eri10b]

2.5.3 QuickCheck

The ease with which properties and models can be constructed and the generality of
the problem domain to which a testing tool can be consistently applied is essential to

Chapter 2. Testing and QuickCheck 37

its success, and are part of the reason why the QuickCheck testing tool was developed.
QuickCheck is an automated testing tool which was originally designed for the Haskell14

functional language. The Erlang implementation provides several extensions over the
Haskell version, including counterexample reduction [AHJW06], which will be described
shortly. QuickCheck can be used both for positive testing, checking that a system behaves
as expected when given valid inputs, and negative testing, verifying that invalid inputs
are handled correctly.

Instead of specifying individual test cases, QuickCheck can automatically generate
random values as stimuli for the system. The values are entered, and the observed be-
haviour is verified against a specified property. This allows the property to be tested under
a multitude of conditions, extending the test’s capabilities without additional manual in-
tervention. Apart from values, QuickCheck can also be used to generate call sequences
from a defined model of the system.

When a test case fails, QuickCheck reduces the counterexample into a minimal fail-
ing case [PA09]. [ZH02] describes a test case as being minimal when none of its subsets
cause the test to fail. While there may exist some globally minimal test case, finding
it can be very computationally expensive. Thus, rather than finding a global minimum,
QuickCheck starts with a counterexample and minimises it to the point where each el-
ement is considered significant and contributing to the test’s failure. Counterexamples
in QuickCheck are minimised by simplifying the input values used and removing calls to
functions which do not contribute to the property’s failure. This facilitates fault finding
by abstracting the error and emphasising the underlying cause. For example, simplifying
an integer input may indicate that an observed error is triggered by the value’s sign rather
than its absolute value. Minimisation is also useful when performing fuzz testing [ZH02],
where large random strings are used as inputs to a system, by eliminating noise from the
test data and exposing the characteristic that led to failure.

The following is a description of three primary components of QuickCheck, namely
properties, generators and finite state machines.

Properties

Properties are QuickCheck’s fundamental verification constructs, and test aspects of a
system. As described by [Quv10], a property has the following structure:

?PROP TYPE(X, Generator, Property)

• Generator is a set of values combined with a probability distribution.

• X is a value bound from Generator. Values are chosen with a frequency specified
by the generator.

• Property is a fragment of code which tests the aspect of the system being investi-
gated, returning true if the test succeeds.

14Project website: http://www.haskell.org/ (last accessed July 2011)

Chapter 2. Testing and QuickCheck 38

Listing 2.4: A failing QuickCheck property for testing square root� �
1 −module(main) .
2 − i n c l u d e l i b (“eqc / inc lude / eqc . h r l ”) .
3 −export ([main/0]) .
4 −d e f i n e (R ERROR, 1 .0 e−4).
5
6 % Test t h a t s q r t works by check ing t h a t
7 % ∀X : int ·X −

√
X2 ∈ [-R ERROR, R ERROR]

8 prop sq r t () −>
9 ?FORALL(X,

10 i n t () , % F a i l s : genera tor produces −ves
11 begin
12 Eps = X − math : pow(math : s q r t (X) , 2) ,
13 (Eps =< ?R ERROR) and (Eps >= −?R ERROR)
14 end) .
15
16 main () −>
17 eqc : s t a r t () , % S t a r t the s e r v e r and t e s t
18 eqc : quickcheck (p rop sq r t ()) ,
19 eqc : stop () . % Stop s e r v e r� �

Listing 2.4 shows the implementation of a property prop sqrt(), which tests the
square root function by checking whether squaring the root will result in the original
value being returned. The square root function should fail when given negative values.
The following observations can be made regarding the property described, namely:

• The property uses the universal quantifier FORALL and checks that the property
holds for all the values produced by the generator.

• So as to compensate for rounding errors introduced by floating-point operations
[ACH08], the product of the roots is not compared directly to the original value.
Instead, the property allows for deviations within a tolerance threshold set by
R ERROR.

• The QuickCheck module must be launched before testing, and should be terminated
once testing is complete.

• In its current form, the test will fail. This is because the int() generator may bind
a negative value to X. One can restrict the generated values to the natural numbers
by replacing the generator with nat().

[PA09] states that properties are simpler to comprehend than test cases, both because
the latter may be overly complex as well as the fact that several test cases may have
to be implemented in order to describe a single equivalent property. As a general rule,
properties should not re-implement the functions which are being tested, as faults within
the implementation would be carried over into the property, defeating its purpose. Several
property and quantifier types exist, with [Quv10] describing the following:

Chapter 2. Testing and QuickCheck 39

Property Description
FORALL(X,Gen,Prop) Checks that Prop holds for all values of X in Gen.
IMPLIES(Pre,Prop) Checks that Prop is true whenever Pre is true. The

precondition should be satisfied often, as tests must be
generated before they are checked.

WHENFAIL(Action,Prop) Invokes Action whenever Prop is false.
TRAPEXIT(Prop) Tests Prop within a separate process. If the process ter-

minates due to a linked process exiting (Section A.4.1),
then the test is considered to have failed.

TIMEOUT(Limit,Prop) Tests Prop, reporting failure if a result is not returned
within Limit milliseconds.

ALWAYS(N,Prop) Tests Prop for N times, stopping if Prop fails at least
once.

SOMETIMES(N,Prop) Tests Prop for N times, failing only if all tests fail, that
is, if Prop is never true.

Generators

Generators are used to generate random data which will drive the system being tested.
Generators must specify a set of generated values, a probability distribution over the set
and a process for shrinking generated values used during counterexample minimisation
[Quv10]. Generators are written as functions using a combination of supplied generators
and macros. Generating functions can also be placed in structures such as tuples, records
and lists in order to construct more complex data structures.

The following is an overview of the primary macros that are used when writing gen-
erators.

Generator Description
LET(Pat,G1,G2) Maps generated values from G1 onto Pat, which can then

be used as values in generator G2.
SUCHTHAT(X,G,P) Maps values of G onto X whenever P is true.
SUCHTHATMAYBE(X,G,P) Same as SUCHTHAT, except that the result is returned as

a {value,X} pair, or false if a suitable X was not found
in a “reasonable” amount of time.

SHRINK(G,Gs) Allows one to define shrinking rules. If a test case fails,
values generated by G are translated into values generated
by the alternative shrinking generators defined in the list
Gs.

LETSHRINK(Pat,G1,G2) SHRINK is often embedded within a LET command, with
shrinking rules being applied to values mapped from a
generator specified by the LET command. LETSHRINK com-
bines LET and SHRINK into a single command. Values from
G1 are mapped onto Pat, which are then used within G2.
In case of failure, Pat is used as a shrinking alternative.

Chapter 2. Testing and QuickCheck 40

SIZED(Size,G) Maps the current generated test case size to Size, which
can then be used by generator G. Generators can then
create test values which grow in proportion to the number
of executed test cases.

LAZY(G) Returns generator G, but evaluates its body lazily.

Lazy evaluation can avoid infinite recursion or unnecessary computation. For exam-
ple, in Listing 2.5, gen infinite() would always attempt to evaluate both items in the
parameter list of oneof (a function that randomly chooses an element from the given
list), causing the generator to recur indefinitely. Using ?LAZY, gen lazy breaks the cycle
by only performing a recursive call whenever the second branch is taken.

Listing 2.5: Eager vs lazy evaluation� �
1 g e n i n f i n i t e () −> % Eager
2 oneof ([true , g e n i n f i n i t e ()]) .
3
4 gen lazy () −> % Lazy
5 ?LAZY(oneof ([true , g en lazy ()])) .� �

Listing 2.5 also demonstrates the creation of a recursively-defined generator. Recursive
generators tend to require the creation of custom shrinking rules [ACH08]. They can also
make use of the SIZED macro in order to relate the depth of recursion to the test instance
size.

2.5.4 QuickCheck Finite State Automata

To this point, generators were taken to produce single or composite values which would
then be used within a property. Yet QuickCheck also allows the generation and verification
of call sequences using QuickCheck Finite State Automata, as will be described in the
following section.

Overview

QuickCheck Finite State Automata (QCFSA) [PA09] incorporate two aspects of model-
based testing, namely the generation of valid system traces and their verification with
respect to a property, into a single construction. Thus, a QCFSA is simultaneously a
model and a property. QCFSAs allow one to define transitions between conceptual system
states in terms of implemented system functions. As an example, a QCFSA describing
a light switch may represent the ‘on’ position as a simple abstract on state, without
specifying the actual system variables that would lead to the light being on, as shown
in Figure 2.5. The number of system states represented by a QCFSA’s abstract states
is directly influenced by the program’s implementation, and will affect the granularity of
the generated test cases. This will be discussed in greater detail in Section 6.4.

Chapter 2. Testing and QuickCheck 41

onstart off

turn off

turn on

turn on

turn off

Figure 2.5: A simple two-state light switch model with toggle functions.
Nodes represent abstract system states, and transitions correspond to
implemented system functions.

The purpose of a QCFSA is to describe (possibly infinite) sequences of function calls
and properties that should hold over each function’s execution. For example, the model
described in Figure 2.5 recognises an infinite sequence of turn on and turn off calls, that
is, (turn on | turn off)∗. QuickCheck uses automata as generators of program traces over
which properties can be checked. Generation is performed by traversing the automaton
over a finite number of arcs, choosing each next state randomly. One can stop certain
traces from being generated by associating preconditions with arcs, which must hold for
that transition to be taken. A generated trace may then be executed within a QuickCheck
property.

QCFSAs can be used solely as generators, yet this approach may be rather limited in
scope. Instead, QCFSAs allow one to specify properties using postconditions, which are
functions that must hold when executing functions within a generated sequence. This
increases the utility of QCFSA by allowing verification to be performed on intermediate
value changes and conditions. For example, in the aforementioned light switch model,
one could check that every toggle operation does indeed change the light switch status.

Structure of a QCFSA

A QCFSA contains constructs which can broadly be classified as concerning either trace
generation or verification, and is implemented as an Erlang module that adheres to a
defined interface which, as described in [PA09] and [Quv10], must specify:

• An initial state with name S and starting data D

– S is specified as an atom returned from initial state()

– D is specified as a data structure returned from initial state data()

QCFSAs can make use of a private data store, or state data, which persists over
transitions. This allows an automaton to preserve state. The data can be of any
arbitrary type, but is typically a record structure so as to allow multiple values to
be stored. The state data can be accessed during a transition, and can only be
modified once a transition is taken, as will be explained shortly.

States can have an associated state attribute, changing the state name to a tuple of
the form {name, attribute}. States with different attribute values are treated as
separate states. Transitions can contain conditions on attribute values.

Chapter 2. Testing and QuickCheck 42

• A list of transitions. Each transition is described by implementing two callback
functions, which describe

– The transition from state S with state data D to S′ while executing function
Mod:Fun with parameters Args, given as

S(D)→
[{S′, {call, Mod, Fun, Args}}].

S can have several outgoing transitions, which are defined by adding tuples for
each transition in the list returned by the function, as above. State data D
can be referenced within Args. Transition restrictions on state data cannot
be imposed within this construct, and the choice of next state may only be
influenced through the precondition construct.

– The transformation which data undergoes when moving from state S with data
D to S′. The rules are defined using the function

next state data(S,S′,D, Result, Call)

where Result is the value returned by the implemented function associated
with the transition and Call is the symbolic representation of the function’s
invocation.

• A list of preconditions defined as functions. The precondition on a transition from
S to S′ is defined as

precondition(S,S′,D, Call)

If the precondition evaluates to false, then the trace will not be generated for testing.

• A list of postconditions defined as functions. The postcondition on a transition from
S to S′ is checked once the transition is performed and its associated function is
executed, and is defined as

postcondition(S, S′, D, Call, Result)

If the postcondition evaluates to false, then the trace is considered to have failed
and the relevant report will be generated.

Trace Generation and Execution

Before a trace is executed, it must first be generated. Generation and execution require
two separate passes through the automaton.

Given a moduleM containing an implemented QCFSA, one may generate traces using
the commands(M) generator. A trace ϕ produced by this generator may be executed with
live values using run commands(M, ϕ), which returns the trace leading to the final state,
the last successfully-executed transition and the reason for termination (ok on success).
Listing 2.6 shows a simple test harness that generates and verifies traces using a given
QCFSA.

Chapter 2. Testing and QuickCheck 43

Listing 2.6: A simple QCFSA generation and execution harness. ?FSM

is the name of the module containing the automaton.� �
1 prop fsm () →
2 ?FORALL(Cmds , commands (?FSM) ,
3 begin
4 { History , State , Reason} = run commands (?FSM, Cmds) ,
5 case Reason of
6 ok → true ;
7 → fa l se
8 end
9 end) .

10
11 main () →
12 eqc : s t a r t () ,
13 eqc : quickcheck (prop fsm ()) ,
14 eqc : stop () .� �

The process of trace generation is carried out as follows. Starting from an initial state,
QuickCheck identifies the set of eligible next states and chooses a transition that leads
to one of these states. By default, the engine attempts to choose outgoing transitions
with approximately equal probability. Alternatively, one can associate probabilities with
transitions manually using the weight() function [Quv10].

If the precondition function associated with a transition returns false, then the transi-
tion is excluded from the trace and another transition is taken. In this way, preconditions
serve to limit the set of traces which will be tested, typically so as to direct searches
towards domains with an increased likelihood of failure (the consequences of restricting
the set of traces that can be generated will be discussed in greater detail in Section
4.6.1). Additionally, a transition will not be chosen if its generation will lead to an excep-
tion and alternative paths exist [Quv10]. Once a valid transition is identified, the state
data is updated by computing the given transition’s associated next state data function,
and the system moves to the next state. One should note that during generation, the
postcondition function is never invoked. Traces are finite, and their length increases
with the number of generated traces.

During the generation phase, QuickCheck uses symbolic variables instead of concrete
variable values [Quv10]. Symbolic variables are placeholders for variables whose values
will be determined during the execution phase, and are of the form {var, N}, where N is
an integer that identifies that placeholder uniquely. Within a generated trace, the result
of the execution of a transition’s associated function will be represented by a symbolic
variable. Consequently, the next state data function will only have access to a place-
holder for the result, rather than a concrete result. For example, if a function’s execution
returns a record, then one cannot access the individual record’s members from within the
next state data function. This can limit the degree with which trace generation can
be fine tuned in reaction to the system’s behaviour, as one would not be able to alter a
precondition’s verdict based on the result of previously-executed functions.

Chapter 2. Testing and QuickCheck 44

init state data

Trace
complete?

Next
arc with

function f

pre-

condition

Execute f

post-

condition

next

state

data

Stop

Bad
Property

Property
violated

no
yes

true

false

true

false

Figure 2.6: Flowchart showing the execution of a single, generated trace

Executing a trace is simply a matter of replacing the symbolic variables with the
computed (live) values, and reporting an error on encountering a failed postcondition.
During execution, a precondition must not fail, as this would imply that the automaton is
being traversed inconsistently during generation and execution. Thus, pattern matching
on symbolic variables should not be performed if it will result in different verdicts being
reached during the separate passes.

Adding Conditions to the Light Switch Controller

Using the aforementioned light-switch model (Figure 2.5) and the definition of a QCFSA’s
structure, one can augment the automaton to also act as a classifier. Given that the
property checks that the returned new state of the light’s status with each operation
must match the expected value, the QCFSA may be written as in Listing 2.7.

Listing 2.7: A two-state QCFSA that generates and tests light switch
controller traces� �

1 i n i t i a l s t a t e () −> on .
2 i n i t i a l s t a t e d a t a () −> none .
3
4 on (D) −>
5 [{on , { c a l l , l i g h t , turn on , []}} ,
6 {o f f , { c a l l , l i g h t , t u r n o f f , []}}] .

Chapter 2. Testing and QuickCheck 45

7 o f f (D) −>
8 [{on , { c a l l , l i g h t , turn on , []}} ,
9 {o f f , { c a l l , l i g h t , t u r n o f f , []}}] .

10
11 pre cond i t i on (S , S2 , D , C a l l) −>
12 true .
13
14 po s t cond i t i on (, o f f , , , R) −>
15 R == o f f ;
16 po s t cond i t i on (, on , , , R) −>
17 R == on .
18
19 n e x t s t a t e d a t a (, , , ,) −>
20 none .� �

Since the automaton admits all the possible interleavings of turn on and turn off, the
automaton’s states can be merged, with the light’s current status being stored within the
automaton’s state data structure. Listing 2.8 defines such an automaton. As the QCFSA’s
states no longer encode the light’s target status, one cannot verify the postcondition
solely through the analysis of the next state. Instead, the postcondition inspects the call
parameter directly and bases its verdict on the function being called.

Listing 2.8: An equivalent single-state QCFSA� �
1 i n i t i a l s t a t e () −> s .
2 i n i t i a l s t a t e d a t a () −> { l i g h t , on} .
3
4 s (D) −>
5 [{s , { c a l l , l i g h t , turn on , []}} ,
6 {s , { c a l l , l i g h t , t u r n o f f , []}}] .
7
8 p r e cond i t i on (S , S2 , { l i g h t , Status} , C a l l) −>
9 true .

10
11 po s t cond i t i on (, s , , { c a l l , l i g h t , Op, } , R) −>
12 case Op of
13 turn on −> R == on ;
14 t u r n o f f −> R == o f f
15 end .
16
17 n e x t s t a t e d a t a (, , , R,) −>
18 { l i g h t , R} .� �

Maintaining the light’s state within the automaton’s state data structure allows one to
place restrictions on the automaton’s behaviour. For example, one may desire to restrict
verification to traces which do not call the same operation consecutively, that is, calls to
the light switch controller that do not change the light’s state should be ignored. Fulfilling

Chapter 2. Testing and QuickCheck 46

this requirement using the two-state automaton is a simple matter of removing transitions
that loop back onto the same state. In the case of the single-state automaton, one would
have to modify the precondition to filter out identical and consecutive traces. This is
done by only accepting transitions that will toggle the currently-stored light state value.

Listing 2.9: Modified single-state QCFSA functions� �
1 pre cond i t i on (S , S2 , { l i g h t , Status} , { c a l l , l i g h t , Op, }) −>
2 ((Op == turn on) and (Status == o f f)) or
3 ((Op == t u r n o f f) and (Status == on)) .
4
5 n e x t s t a t e d a t a (, s , , , { c a l l , l i g h t , Op, }) −>
6 case Op of
7 turn on −> { l i g h t , on} ;
8 t u r n o f f −> { l i g h t , o f f }
9 end .� �

Listing 2.9 details the modifications which have to be made to the single-state QCFSA
so as to only generate and verify traces containing alternating sequences of operations.
The next state data function has to be reimplemented so as to avoid using the function
call’s return value. This is because, as discussed earlier, a function call’s result is replaced
by a symbolic variable during the generation phase, thus disallowing a precondition’s
verdict from depending on its concrete value.

A Note on Determinism

s

s2

s1 s3

fn(1)

fn(2)

fn(3)ret(1)

ret(2)

ret(3)

Figure 2.7: A valid, deterministic QCFSA. Every transition’s precondi-
tion returns true. The functions fn: : N → true and ret: : N → true
are simple functions.

QuickCheck automata must be deterministic, that is, a state can only have multiple
outgoing arcs for the same function if at most one arc’s precondition evaluates to true dur-
ing traversal [Quv10]. Functions invoked with different arguments are regarded as separate
transitions, and their preconditions can intersect. This is illustrated by the automaton in
Figure 2.7, which, in spite of having multiple outgoing arcs for fn, is deterministic.

Chapter 2. Testing and QuickCheck 47

2.6 Applications

Historically, testing has been used as an evaluation technique. Testing can be used to
demonstrate a system’s non-compliance with the requirements as well as conformance to
a specification. It can also be used to determine a system’s capacity to withstand stressful
loads, as well as to measure other system attributes such as performance.

An alternate use for testing is as an implementation aid, as is done in test-driven devel-
opment, which streamlines the testing process with that of development. This approach is
exemplified by the Mock Objects approach [MFC01] to unit testing, which centres on the
use of dummy implementations for modelling domain code. Mock Object-based testing
is described by [FMPW04] as a technique for identifying system types based on the roles
that the objects play. Before writing the actual system implementation, programmers
first create programmer tests for a unit. This is primarily a design activity that causes
the programmer to build functionality based on its use rather than its implementation.
Objects are treated as services characterised by their outgoing interfaces, which describe
what the service consumes and provides. [FMPW04] reports that this encourages local-
ity between objects and message passing, which in turn facilitates scalability and aids
in assessing test coverage. Another effect of basing implementations on object interfaces
is that it encourages need-driven development, where only functionality related to the
object’s role is implemented.

2.7 Conclusion

Testing can be performed on a system at different levels of abstraction, yet fundamentally,
testing always involves the checking of a system against some criteria, or property. While
the act of checking a property can be automated to a very large degree, the process of
creating properties often requires manual intervention, despite the existence of several
automatic inference techniques. The issue stems from the fact that the notion of cor-
rectness is often based on the semantic behaviour of a program and is subject to what
is required from it, whereas automated property generation techniques rely on resident
predetermined assumptions on what constitutes correct behaviour. For example, a tool
which automatically performs fuzz testing (passing large random values as inputs to a sys-
tem in an attempt to induce failure) may assume that a crash corresponds to a program
malfunction, yet it cannot differentiate between valid and invalid behaviours which do not
precipitate such a failure. Consequently, inferred properties may be unsound or incom-
plete. Simply inferring a specification or property does not in itself testify to a system’s
correctness or otherwise, as errors in the program would be included in the properties.
Thus, the automated property and test suite generators serve primarily as aids in the
verification process and must be used in conjunction with other techniques.

The true merit of automation lies in its consistency and the ease with which it can
be adapted to accommodate larger volumes of tests, thereby increasing the probability
of errors being caught. Also, while properties cannot always be generated automatically,
other parts of the testing process, such as instrumentation and the logging of results, can

Chapter 2. Testing and QuickCheck 48

often be fully automated. Three frameworks for test automation in Erlang were examined,
with particular emphasis on QuickCheck. QuickCheck differentiates itself from the other
frameworks in that it focuses on the automatic generation of test cases, allowing arbitrarily
large suites to be produced and tested.

Processing large test suites comes at the cost of performance. Furthermore, while the
odds of finding an existing error should increase as the number of verified tests grows, a
program’s state space may be enormous, requiring far too many tests to be executed and
limiting a suite’s effectiveness. The next chapter introduces runtime verification, which
attempts to address these issues by delaying verification until execution and only checking
the correctness of the active system trace.

Chapter 3

Runtime Verification

3.1 Introduction

Testing is rarely comprehensive, and full program coverage is seldom achieved. Certain
program behaviours may thus remain untested, allowing faults to propagate into the
deployed system. Rather than considering every possible program execution path, runtime
verification restricts itself to the analysis of the active thread of execution, that is, it only
considers program traversals that are pursued at runtime. Runtime verification thus
checks that the behaviour exhibited by a deployed system complies with a property,
detecting deviations from its specification [CM05]. Complete specifications of programs
are not always available, and properties are typically restricted to describing a subset of
the system requirements that is considered critical.

Runtime verification can be used to react to system failures as soon as they occur.
It can also be used to monitor contract enforcement, ensuring that all parties within a
negotiation fulfil their contractual obligations and that penalties are paid on contract
violation [LS09]. Runtime monitoring simplifies the verification of complex interaction
and communication scenarios, as they would not have to be recreated within a test bed.
This can also help in making verification more robust by anticipating and catering for
failures that have not been observed at the testing state.

Properties can be expressed in some form of temporal logic such as LTL [LS09] or using
automata such as DATEs [Col08]. The representation’s expressivity will affect what can
be monitored, with complex properties requiring more computational resources to verify.

The following chapter discusses the theoretical underpinnings of runtime verification,
describing the differences between online and offline verification and the use of monitors.
This is followed by an introduction to the DATE property constructs, which are elaborated
upon further in subsequent chapters. The chapter closes with a comparison of runtime
verification with other techniques, as well as its pitfalls and possible ways to mitigate
their effects.

49

Chapter 3. Runtime Verification 50

3.1.1 Offline vs Online Verification

Runtime verification can be performed either on a trace as it is being built (online ver-
ification), or once execution has terminated and the trace has been recorded (offline
verification) [Col08]. Online verification involves running the verification engine in par-
allel with the target program, with the monitor receiving events as they occur. This
allows the system to correct itself at runtime whenever it detects that it has entered a
bad state. One drawback of online verification is that the monitor only has access to a
partial execution, rather than the full run. This may hinder the verification of certain
liveness properties, with some properties becoming unmonitorable, for reasons described
in Section 3.2. Another problem brought about by online verification is that the monitor
consumes the system’s resources, limiting the complexity of the properties that can be
checked. This makes runtime verification intrusive, and the presence of a verifier could
alter the program’s temporal characteristics and itself induce violations which would oth-
erwise not occur. The impact of online verification can be reduced either by adding special
hardware [LS09], or by decreasing the resource demands of the verifier, as described in
Section 3.4.

Offline verification is performed on recorded runs of previous program executions. It
can help in finding errors during testing, and minimizes the verification overheads to
those introduced by the instrumentation code that records the executions. Since the
trace is known in its entirety, future temporal properties can be verified, provided that
the instrumentation code records all of the relevant data describing the event (such as
a timestamp or the trace’s event ordering). The drawback of offline verification is that
it does not allow compensatory actions to be performed dynamically during execution,
limiting its application to live systems [LS09].

3.1.2 Monitors

Property violations are detected using a monitor, which analyses traces and reports any
mismatches between the observed and expected system behaviour. Traces are obtained
though instrumentation, operating either at the code or the binary level. Instrumentation
should be performed automatically so as to maintain consistency and reduce errors. If
a program cannot be instrumented directly, then one may have to modify its execution
environment to output the necessary event information. Instrumenting at the system
level may also widen the extent of what can be verified by offering a global view of the
system, allowing a single monitor access to events emanating from all of the executing
subsystems. [CM05]

If JϕK is the set of negative traces covered by the property ϕ, then the problem ad-
dressed by runtime verification can be seen as determining whether a given execution w is
an element of JϕK. Thus, a monitor Mϕ derived from ϕ takes a finite trace as input and
returns a verdict based on the observed trace’s membership in JϕK, where a verdict is a
value in some truth domain [LS09]. For example, with a two-valued truth domain, a moni-
tor could return a verdict v ∈ {true, false}. In online monitoring, executions are examined
incrementally, and a monitor updates its verdict with every new event. Monitors should

Chapter 3. Runtime Verification 51

avoid having to access an execution’s history, as this would slow down verification, with
delays becoming progressively larger as the length of the execution grows. [LS09] states
that in order to guarantee that a monitor does not evaluate a verdict either prematurely
or too far along an execution, it must fulfil the principles of:

1. impartiality, where a verdict is not set to a final value as long as there still exists a
path that can be taken which will cause the monitor to reach a different conclusion.
This requires at least three verdict values, one of which would signify an inconclusive
verdict.

2. anticipation, where all paths from the point under consideration onwards will
result in the same verdict being evaluated. This implies that a verdict must be
produced as soon as it is possible to do so.

In theory, runtime verification is only concerned with the detection of property vio-
lations [CM05]. Notwithstanding this, runtime verifiers can also incorporate mechanisms
for taking actions on certain event triggers, such as on detecting a bad state. Monitors
which incorporate these abilities can be structured into different layers or components,
based on their concerns. For example, one component could harvest events as they occur
within the system and use them to construct a finite trace, which would then be passed
to a verifier that checks that it adheres to the given specification. Finally, defined ac-
tions can be triggered when specified conditions are met, and reparatory routines could
be invoked on detecting entry into a bad state [Col08].

[LS09] describes three approaches to reacting to system conditions, as follows:

• Fault Detection, Identification and Recovery (FDIR) regards system failures
as manifestations of faults. On detecting a fault, the system must be able to identify
the point at which the system failed and reconfigure the system accordingly.

• Runtime Reflection (RR) utilises a four-tiered architecture, defined as the logging,
monitoring, diagnosis and mitigation layers. The logging layer harvests system
events and passes them on to one or more monitors, which inspect the event stream
as it is being built and search for failures. The diagnosis layer waits for failures to
be reported by the monitoring layer, identifying their point of origin and reporting
them to the mitigation layer, which reconfigures the system so as to correct itself.
If a failure cannot be mitigated, then an error report is generated, which can serve
to direct manual intervention.

• Monitor-Oriented Programming (MOP) is a methodology that allows a pro-
grammer to specify properties from which monitors are automatically generated
and integrated into the system. One must also specify what actions must be taken
when a property is violated. MOP allows the development of introspective systems
which can alter their own behaviour. MOP differs from RR in that the former is
a programming methodology which is tightly coupled to a programming language,
whereas the latter is an architectural pattern that defines a system structure. An-
other difference is that RR classifies failure types using a diagnosis layer built over
the monitoring layer.

Chapter 3. Runtime Verification 52

3.2 Defining Properties

Properties serve as the basis for determining whether a system is in a compliant or non-
compliant state by specifying its required behaviour. As described in [CPS08], runtime
monitors are often derived directly from properties. Properties may also be used to
guide the automatic instrumentation of programs. Certain properties can be inferred
automatically by observing and synthesising certain aspects of a program’s behaviour
(learned properties) [CM05], and can facilitate regression testing by identifying unantici-
pated changes in functionality. Other properties can be derived algorithmically through
the use of invariant detection or error pattern analysis, identifying standard failure se-
quences such as deadlocks and data races, as described in Section 2.3. Often, properties
are simply written manually.

When defining properties, it is sometimes easier to characterise a program’s correct
behaviour by defining its invalid behaviour, that is, one can specify a system’s bad states
and assume that the property holds as long as the system is not in one of those states.
Properties can be written in several ways and notations, each having different degrees
of expressivity, with some allowing automatic translations from one to the other. For
the purpose of runtime verification, property logics should typically be able to express
temporal and contextual constraints on traces, and may also have the ability to handle
exceptions [CPS08]. Temporal constraints refer specifically to the ability to express event
consequentiality, giving events an ordering, and the ability to specify real-time constraints
such as upperbounds on execution time. A property’s contextual aspects refer to its ability
to set the scope within which the property will be monitored, such as global invariance
or conditions on a function’s return value.

Properties can be broadly categorised as being either liveness or safety properties.
[AS85] defines safety properties informally as properties which ascertain that bad things
will not happen. Specifically, ϕ is a safety property if it guards against a discrete violation
which can occur at an identifiable point within an execution. Liveness properties are
consequently defined as those which ensure that a good thing will happen in time during
an execution. An execution is live if there exists a continuation of the trace such that the
property will be satisfied. Thus, a liveness property is one for which every execution is
live.

Several temporal property logics exist. For example, Linear Temporal Logic (LTL)
[Pnu77] allows the creation of properties relating events and their ordering. LTL can
be used to reason about infinite traces, and supports the definition of unmonitorable
properties which rely on knowledge of future events and their occurrence. Alternatives
designed to address monitorability issues exist, with extensions such as LTL3 [BLS07]
making use of three-valued logic and introducing the notion of inconclusive traces, and
other logics opting to restrict verification to past events. An alternative to temporal logics
is to define properties using automata, which [Col08] reports as being simpler and more
intuitive to use. Security properties tend to be easier to express using automata rather
than logic-based formalisms [AN08]. In addition, certain temporal logics can be translated
into automata, allowing them to be used with tools accepting automata as inputs. The
following section describes Dynamic Automata with Timers and Events, an automaton-

Chapter 3. Runtime Verification 53

based logic designed for runtime verification within the LARVA [Col08] framework.

3.2.1 Dynamic Automata With Timers and Events

Dynamic Automata With Timers and Events (DATEs) are automata used for describing
temporal properties for runtime verification, as detailed in [CPS08]. They serve as the in-
put property language from which monitors used within the Java-based LARVA1 runtime
verification tool are derived. DATEs facilitate event-based runtime monitoring, where an
event can be a visible system action such as the invocation of a method or exception han-
dler. Other events, such as timer and channel synchronisation events, are also supported,
as well as a combination of the aforementioned through the use of composite events, as
will be seen shortly.

The following section formally defines the DATE logic model based on the description
provided in [Col08]. This exposition is built upon by subsequent chapters, which describe
the automaton’s behaviour and operation in greater detail.

Events

Given a set of events systemevent generated by the system, a set of timer variables
timer and a set of channels channel, a basic event is defined as

event ::= systemevent
| channel? (channel synchronisation)
| timer @ δ (timeout after δ)

Basic events can be combined into more complex event expressions known as composite
events, which define the choice and complement operators on basic events. A basic event
x firing a composite event expression e is denoted as x |= e, and is defined as follows:

x |= e if
x = e
∨ e = e1 + e2 ∧ ((x |= e1 ∧ x 6|= e2) ∨ (x 6|= e1 ∧ x |= e2))
∨ x ∈ systemevent ∧ e = e1 ∧ x 6|= e1

The firing of events can be lifted for sets of basic events X as X |= e, where an element
of X fires the event e.

DATE timers are described through their configuration. A timer configuration CT is
a function which takes a timer and returns its value and state, that is,

CT : : Timer → V alue× State
1LARVA, and an equivalent Erlang-based runtime monitoring framework, are described in further

detail in Chapter 5.

Chapter 3. Runtime Verification 54

where
Value ∈ R+

0

State ∈ { running, paused }

Timer operations that reset, pause and resume timers are defined as functions which
take a configuration and return an updated version, modifying either the state or value.
Reset sets the timer value to zero, while pause and resume toggle the timer state. A
timer action T A is subsequently defined as the functional composition of a finite number
of timer operations.

Symbolic Timed Automata

A symbolic timed automaton M over a system with states of type Θ is described by a
tuple 〈Q, q0,→, B〉, where

Q is a set of system states

q0 ∈ Q is the initial state

→ is the set of transitions

B is the set of bad states

The automaton moves from state to state, choosing the highest-priority transition
whose guard condition is satisfied. Transitions can in turn fire other transitions as they
are traversed. The transition relation between a current automaton state to the next state
is defined as:

Q× event︸ ︷︷ ︸
Triggering expression

×
Condition on timers & state︷ ︸︸ ︷

(Θ× CT → Bool)× T A︸︷︷︸
Perform timer action

×

Signal event over channels︷ ︸︸ ︷
2channel × (Θ→ Θ)︸ ︷︷ ︸

State changing code

×Q

Moving from one configuration of a symbolic automatonM to another configuration,
where X is a set of system scheduled events and θ ∈ Θ, whilst performing timer update
t′ with timer configuration T, is denoted as

(X, θ, q)⇒T
t′ (X, θ′, q′)

Such a step can be performed provided that q is not a bad state and that a transition
to q′ with a satisfied guard condition exists. Otherwise, the event is consumed without
altering the timer configurations or moving to a different state. Transitions between
configurations can be extended for vectors of communicating automata with shared timers,
provided that each automaton can move.

Chapter 3. Runtime Verification 55

Defining DATEs

DATEs are based on the use of symbolic timed automata, and allow new automata to be
spawned during traversal. Formally, a DATE M is a pair

〈
M0, v

〉
, where

M0 is the initial set of automata

v is a set of automaton constructors

An automaton constructor has the form

Trigger︷ ︸︸ ︷
event ×

Timer Condition︷ ︸︸ ︷
(Θ× CT → Bool) ×

Automata Creation Function︷ ︸︸ ︷
(Θ× CT → Automaton)

For each (e, c, a) ∈ v where e has been detected, an automaton is created using function
a provided that the state and timer conditions satisfy c. Thus, the set of triggered au-
tomata with timer configuration T , events X and system state θ is denoted by tr(T,X, θ)
and is defined as

tr(T,X, θ)
def
= {a(θ, T) | (e, c, a) ∈ v,X |= e, c(θ, T)}

A DATE’s configuration is given through its timer and system state as well as the
state of all executing automata. A full step from configuration (T, θ, q) to (T ′, θ′, q′) upon
receiving a set of system actions X is given as

(T, θ, q) 7→X (T, θ′, q′) if ∃n such that
(X0, θ0, q0) 7→T

t1
(X1, θ1, q1) 7→T

t2
. . . (Xn, θn, qn) 7→T

tn+1
(∅, θn+1, qn+1)

where
q = q0, θ = θ0, θ′ = θn+1

T ′ = (tn+1 ◦ tn ◦ . . . t1)(T) (accumulated timer actions)
q′ is updated accordingly with each triggered action

A transition is an accepting full-step if the system does not go through any intermediate
bad states. To ensure the absence of livelock, the system uses loop-free automata, which
avoid mutual dependencies by not allowing channels to loop onto themselves.

Generating Monitors

Once written, DATEs can be implemented directly and automatically into LARVA as
runtime monitors. As described in [Col08], Aspect-Oriented Programming techniques are
used in order to interleave verification code into the target system’s bytecode. This allows
instrumentation and flow control code to be inserted, updating the DATE’s state and
supplying it with event information. It also allows the triggering of actions on receiving
an event, which can be used to react to a system behaviour by executing additional or
compensatory procedures.

Chapter 3. Runtime Verification 56

As will be seen in subsequent chapters, each element of the DATE model has an
implemented counterpart [CPS08]. System events correspond to method calls, exception
handlers and object initialisation routines within the system under test. Actions are
implemented as blocks of code that are invoked when their corresponding transition is
taken. Within the implementation, actions can directly alter the state of the system under
test.

Java DATE properties may also be bound to specific contexts, whereby a property
is bound to a single instance or an entire class of objects, with separate monitors being
spawned for each context. This allows properties to be quantified over sets of objects.
For example, one can bind a property to a class implementing a buffer. The monitoring
framework would then spawn a new monitor for every created instance of that class,
keeping track of the objects as they evolve within the system. Context levels can also
be nested, and monitors can be tied to program elements through pattern matching with
the program’s source code. DATEs can also be used to verify invariance by placing a
condition on every event’s transition. Clocks and real-time constraints are implemented
using Java’s wait() operation on threads. [Col08]

3.3 Comparison With Other Verification Techniques

3.3.1 Runtime Verification and Model Checking

Model checking is typically performed by deriving a model of the system being verified
and analysing it. Model checking analyses a system statically, meaning that verification
will not interfere with a system’s execution, which in turn allows complex properties to
be checked. Properties can also be checked for all paths, rather than single executions, as
is the case with runtime verification. Given modelM and correctness property ϕ, [LS09]
defines model checking as the act of finding whether all computations of M satisfy ϕ. One
can also approach the problem by constructing an automaton M¬ϕ that accepts all runs
violating ϕ and comparing it with M to see whether it contains any bad executions.

Model checking requires the availability of or the ability to create an accurate model
of the system, which may not always be possible. If such a model exists, and its state
space is bounded, then one can apply bounded model checking techniques. For example,
one can analyse paths starting from an end node and work backwards, which cannot be
done using runtime verification due to the absence of a complete execution. It also allows
the analysis of infinite traces, which are known to contain loops if the number of states is
finite. When verifying an infinite trace, showing that a property holds up to state N + 1
automatically proves that it holds up to state N. This cannot be done using runtime
verification, as the observed events do not fully describe the system’s state, making it
impossible to infer loops from repeated states. [LS09]

Model checking has several potential drawbacks, foremost of which is the fact that
it does not always scale well with a system’s complexity. Programs may contain many
states as a result of a combinatorial explosion, rendering the checking of an entire model
intractable. Additionally, when performing model checking, one must assume that the

Chapter 3. Runtime Verification 57

model mirrors the target system properly, and that no errors were introduced during
synthesis. Similarly, a model may fail to adequately capture the effects of the environment
within which the system will execute, in contrast to runtime verification. [CM05]

3.3.2 Runtime Verification and Testing

Neither runtime verification nor testing provide full coverage. When testing, a test suite
consisting of a finite set of input and output sequences is fed into the system, ensuring that
the emitted results comply with those defined within the test suite. In oracle-based testing
[LS09], a test suite only consists of input sequences. An oracle is implemented and included
with the system under test, checking generated outputs and categorising test results. This
is similar to runtime verification using monitors, except that in runtime verification, one
does not typically define a monitor directly, rather it is derived automatically from a
high-level specification. In addition, runtime verification does not require that a set of
test inputs be provided. Unlike testing via test cases, runtime verification can be carried
out indefinitely on a live system after it is deployed.

Runtime verification tends to be favoured when environmental effects must be factored
in. It can also complement the checking of safety properties throughout system deploy-
ment, especially when the system under test is critical and must not fail. Testing tends to
be used when performance is an issue and the overheads incurred by runtime verification
cannot be afforded. [CM05] states that testing can be composed of a combination of
runtime verification and testing through test cases.

3.4 Issues With Runtime Verification

While the benefits of extending verification throughout a system’s lifetime are consider-
able, runtime verification is not free from drawbacks. Runtime monitors typically identify
a bad state once it has been reached, without anticipating failures. While this may be
acceptable in a test setting, it may be insufficient in a live scenario, as not all errors are
reversible. Apart from the possible difficulty in creating a set of comprehensive properties,
as well as the fact that certain temporal properties cannot be monitored, there is the more
pragmatic problem of performance. Runtime verification incurs overheads which are not
always acceptable on live systems, and can itself cause temporal properties to fail, even
though they would hold in the absence of verification. On the other hand, excluding run-
time verification from the target system would remove the benefits of checking properties
at runtime as well as decrease the amount of debugging information available should a
failure occour.

Several approaches to minimising the effects of verification can be taken. [BHL+07]
states that partitioning the overheads in space, time, or both, will reduce the overall im-
pact of verification. Verification nodes are tasked with monitoring a subset of the system’s
events through partial instrumentation routines known as probes. Spatial partitioning in-
volves spreading probes onto several nodes, with each node performing a reduced amount

Chapter 3. Runtime Verification 58

of work and reporting results to a centralised server. This is an imperfect solution, as
certain nodes may be bound to verification hot spots, such as when monitoring statements
within tight loops, leading to an imbalanced load distribution.

Temporal partitioning performs time slicing on the execution of probes, turning in-
strumentation on and off periodically. This could result in important events being missed,
yet [BHL+07] argues that a missed violation will still be caught given sufficient executions,
and that it is only truly crucial that the system never reports false positives. The system
proposed uses tracematches, which are traces of events and associated triggered actions
that must be verified and performed on detection. Progress within a tracematch is tracked
using finite state machines, with property constraints (shadows) expressed in Disjunctive
Normal Form and checked on each state. Code to instrument and update shadows is
interleaved into the system. The system must then identify the skip-shadows which must
remain enabled in order to avoid false positives, discarding skip-shadows which originate
from states with empty constraints.

Other techniques for reducing the computational costs of runtime verification in-
clude cooperative bug isolation, residual test coverage monitoring and shadow processing
[BHL+07]. Cooperative bug isolation uses random sampling of a large number of program
executions in order to gather information regarding its behaviour. Residual test cover-
age monitoring instruments the entire program, adding probes in locations which are
not covered by the testing criteria. Locations that are very active are checked with de-
creasing frequency as they are invoked, reducing the amount of computational resources
consumed. Shadow processing is a technique whereby runtime verification is offloaded
onto idle coprocessors in a multi-processor system.

3.5 Conclusion

This chapter has detailed the core concepts of runtime verification, beginning with a
definition of the relevant terminology and describing its characteristics, as well as defining
the DATE automaton logic. Runtime verification aims to address the shortcomings of
testing, effectively bypassing concerns related to coverage by ensuring that paths taken
during a program’s execution are verified. It also verifies the system within its true
executing environment, automatically factoring in the effects of external interactions and
changing system topologies, which could otherwise be hard to model.

Runtime monitoring simplifies the checking of contract compliance, as the task of
verifying whether a contract complies with a user policy through equality is undecidable if
both are characterised using a context-free grammar [LQS08]. The alternative would be to
limit the expressive power of the contract languages. Hence, contracts are often translated
into automata that represent whether the system is in a compliant or a contractually-
incorrect state, which are then verified as properties. Merely detecting a failure is not
enough, and one must specify what course of action should be taken when a property
is violated. For example, a roll-back strategy could be specified using a rescue clause
[Mey92] which defines a service’s alternate behaviour should a failure arise.

Chapter 3. Runtime Verification 59

Although runtime verification can be deployed successfully in several scenarios, there
are some caveats. In the case of online verification, the computational effort of verifi-
cation is shifted from the testing phase to the deployment phase, consuming resources
during the system’s execution. Runtime verification can impose unacceptable overheads,
and steps to mitigate its impact on performance may have to be taken. These measures
generally focus either on improving monitoring efficiency or offloading computations onto
other processors. Verifying services at runtime may not always scale well, as the amount
of context that must be saved for each service will increase as the number of communi-
cating agents and dependencies grows. [LPSS09] addresses this issue by compressing the
description of all contractually correct behaviours into symbolic representations such as
timed automata, which are continuously verified and updated from the system’s event
input stream. Another issue inherent to online verification is that it examines partial exe-
cutions, which may not be sufficient for verifying a given property. Consequently, without
some mechanism for anticipating future events, runtime verification will only identify a
property violation once it occurs. While in some cases one can perform compensatory
actions to exit a bad state, not all failures are reversible.

In summary, testing is useful in that it can catch errors in vitro, while runtime ver-
ification extends the process to deployment. To verify a system with respect to a given
property using both methods, one may have to express the same property (or an ap-
proximation of it) using two different notations and perform each verification process
independently based on the techniques used. The next chapter attempts to unify both
approaches by describing an automated method of transforming testing properties into
runtime verification properties. This would grant the analyser the choice of employing
either approach without necessitating a rewrite of the property of interest.

Chapter 4

From QCFSAs to DATEs

4.1 Introduction

Testing and runtime verification often use different types of properties as inputs, with
constructs tailored for the technique being employed. Given the significant investment
required in writing properties, there is much to gain from being able to automatically
retarget properties written for one technique to another.

The following chapter investigates the automatic translation of QuickCheck Finite
State Automata (QCFSA) into Dynamic Automata with Timers and Events (DATEs),
which are then used to create runtime verification monitors. A QCFSA embodies a
property described in terms of valid and invalid function call sequences and behaviours,
and intertwines the system’s model with a verification oracle. It is thus conceivable that
a QCFSA’s concerns could be separated into those of a generator and a classifier. To
extend QCFSAs to runtime verification, one would forego the generation of traces and
directly classify traces captured from the instrumented system under test. The primary
difficulty lies in separating the aspects of the QCFSA correctly and in preserving the
property’s original semantics within the synthesised monitor, ensuring that the translated
property remains sound, and that only verdicts over traces which could be generated will
be produced.

The chapter begins by presenting a formal model of QCFSAs and DATEs as used in
Erlang. The notion of negative and testable traces for QCFSAs is introduced, the former
being system traces which should be categorised as being invalid, whereas the latter
are traces on which a property can produce a verdict. A construction for transforming
QCFSAs into DATEs is then presented, along with a series of proofs that assert that a
generated runtime monitor’s set of negative traces is equal to that of the original property.

60

Chapter 4. From QCFSAs to DATEs 61

4.2 Formalising QCFSAs

In Section 2.5.4, QuickCheck Finite State Automata were presented in practical terms
through a discussion based primarily on their implementation. The following section
presents a formal description of a simplified model of QCFSAs. The model is simplified
in that it abstracts certain implementation details, as follows:

• Pre- and postconditions are modelled as sets of valid system states. Compliance
with a condition is transformed into a membership problem, that is, the system will
satisfy a condition if its current state is in the condition’s valid state set.

When writing QCFSAs, one would normally characterise the conditions using to-
tal functions (precondition and postcondition) rather than through the explicit
enumeration of valid system states. It is assumed that the act of checking for mem-
bership, and consequently the execution of the condition’s associated function, is
an operation which is free from side-effects. While not a direct requirement of the
model itself, the translations detailed in Section 4.5 assume that a condition can be
checked repeatedly without changing the system’s state. This restriction could in
theory be lifted, provided that the implemented monitor were to cache results so as
to only check a transition’s conditions once per transition.

The use of system states serves to abstract away the application of pre- and
postcondition functions without compromising the expressivity of automata. For
example, given an implementation of a QCFSA, one could define the set of valid
precondition states for a transition e going from state S to S ′ as {Q | Q ∈ 2Θ ∧D ∈
Q ∧ precondition(S, S ′, e,D)}, where Θ is the set of system states.

• Arguments within a transition’s function call are omitted. Instead, a global system
state containing the entire application and monitor’s state is used, with operations
and transitions accessing and performing transformations on it.

• The existence of a run() function which returns the new global system state pro-
duced on executing a function is assumed. This is necessary as a postcondition will
depend on the updated state. The value of run() is computed by the QuickCheck
engine as an internal step during a QCFSA transition, and thus can be seen as a
tap into the intermediate computation.

• Certain auxiliary functions, namely the ability to weight transitions, will not be
included in this exposition.

In the context of QCFSAs, the term event refers to a symbolic call corresponding to
an implemented function in the system under test. The automata being transformed are
assumed to be deterministic, as described in Section 2.5.4.

4.2.1 The QCFSA Model

A QCFSA Q is described by a tuple 〈Q, q0,Σ, θ0, run,→〉, where

Chapter 4. From QCFSAs to DATEs 62

Q is a set of states

q0 ∈ Q is the initial state

Σ is an alphabet of events representing functions in the system under test

θ0 is the initial global system state containing all of the program’s state variables,
including Q’s local state data

run ∈ Σ→ Θ→ Θ is a function which returns the updated system state on exe-
cuting a given event’s associated function with the specified system state data

→⊆ Q× (2Θ ×Σ× 2Θ ×Θ→ Θ)×Q is a transition relation

Θ represents a system state. The transition relation → serves to relate the precon-
ditions, postconditions and state-changing actions to be performed on calling an event.
Pre- and postconditions are characterised by sets of valid system states. Thus, a precon-
dition is satisfied if the current system state is a member of the defined set. Similarly, a
postcondition is satisfied if the system state entered after executing an event’s associated
function is a member of the set of valid postcondition states. A transition may specify a
state-changing action, which is primarily used for updating the automaton’s private state
data. This action is performed whenever the state following the event is an element of
the postcondition set.

Using this definition of a QCFSA’s structure, the two-state light switch model de-
scribed in Section 2.5.4 can be formalised as 〈Q, on, E, {none}, run,Γ〉, where

Q = {off, on}
E = {eon, eoff},
run = λe, t·

| (e = eon)→ {on}
| (e = eoff)→ {off}

Γ = {(S, (pre, e, post, λt · t), S ′) |

pre ∈ 2Θ, θ ∈ 2Θ, S ∈ Q,S ′ ∈ Q, e ∈ E,
post = run(e, θ) ∧ {S ′} = post}

Definition 4.2.1.1. Moving from state q to q′ on event a with system state sets pre and
post and executing state-changing action α is denoted by

q
{pre} a {post}−−−−−−−−→

α
q′

def
= (q, (pre, a, post, α), q′)

which is simply a more elegant way of representing a transition.

Chapter 4. From QCFSAs to DATEs 63

on

off

pre\eoff\{off}\id

pre\eon\{on}\id

pre\eon\{on}\id

pre\eoff\{off}\id

Figure 4.1: Formalised QCFSA for the two-state light switch model,
where pre = 2Q and id = λx · x. Transitions are labelled as
〈preconditions\event\postconditions\action〉 tuples.

4.2.2 Modelling Determinism

For the model to conform with the definition of determinism stated in Section 2.5.4, the
following condition must hold; given any pair of transitions emanating from a state, either

• the transitions share the same state changing action, pre- and postconditions and
lead to the same state, implying that the transitions are identical, or

• the transitions have non-intersecting preconditions, meaning that for each event,
only at most one transition can be pursued

Formally,

∀a, q′, q1,q2, pre1, pre2, post1, post2, α1, α2·
((q′, pre1, a, post1, α1, q1) ∈ →∧ (q′, pre2, a, post2, α2, q2) ∈ →)⇒
((pre1 = pre2 ∧ post1 = post2 ∧ α1 = α2 ∧ q1 = q2) ∨ (pre1 ∩ pre2 = ∅))

While the current version of QCFSA must, by definition, be deterministic, the model
could potentially be modified to support non-deterministic QuickCheck Finite State Au-
tomata. Translating such an automaton into a runtime monitor would require that the
latter be determinised in some manner, or the verification engine would have to be mod-
ified to cater for non-determinism.

4.2.3 Configurations

The configuration of a QCFSA consists of a pair (q, θ), where q is the current state and
θ is the global system state at that point in the execution.

Chapter 4. From QCFSAs to DATEs 64

Single Events

Definition 4.2.3.1. Performing a step from a configuration (q, θ) to a valid configuration
(q′, θ′) on executing an event a is denoted by (q, θ)

a⇒ (q′, θ′), and is possible if

∃pre, post, α, θm· q
{pre} a {post}−−−−−−−−→

α
q′ ∧ θ ∈ pre ∧

θm = run(a, θ) ∧ θm ∈ post ∧ θ′ = α(θm)

A transition leads to a bad configuration if its postcondition is violated once an event’s
associated function has executed. As described earlier, a postcondition is violated if the
new state is not part of the valid system state set.

Definition 4.2.3.2. Moving to a bad configuration under event a is defined as

(q, θ)
aZ⇒ ⊗ def

= ∃pre, post, α, q′ · q {pre} a {post}−−−−−−−−→
α

q′ ∧ θ ∈ pre ∧ run(α, θ) /∈ post

Event Sequences

Trivially, a configuration does not change if no events are received. Thus, if ε is the null
event,

(q, θ)
ε⇒ (q′, θ′)

def
= q = q′ ∧ θ = θ′

A system cannot move to a bad configuration on an empty event, that is, (q, θ)
ε

6Z⇒ ⊗.

Definition 4.2.3.3. Given a sequence of events a:s, where s can itself be another se-
quence, moving from one configuration to another valid configuration whilst executing the
sequence can be defined recursively as

(q, θ)
a:s⇒ (q′, θ′)

def
= ∃q′′, θ′′ · (q, θ) a⇒ (q′′, θ′′) ∧ (q′′, θ′′)

s⇒ (q′, θ′)

This result assumes that any two consecutive steps can be combined into a single
step over a sequence. Conversely, a sequence can be decomposed at any point into two
sub-sequences. Formally,

a1⇒;
a2⇒=

a1a2⇒ .

Definition 4.2.3.4. Moving to a bad configuration given a sequence of events is defined
as

(q, θ)
s++〈a〉
Z=⇒ ⊗ def

= ∃q′, θ′ · (q, θ) s⇒ (q′, θ′)
aZ⇒ ⊗

with the last step leading to a bad configuration.

Chapter 4. From QCFSAs to DATEs 65

4.2.4 Describing Traces

Using the aforementioned definitions, one may characterise two important sets related to
the traversal of an automaton Q, these being the set of negative traces N(Q) and the set
of testable traces T (Q).

Definition 4.2.4.1. The set of negative traces N(Q) is the set of traces which, starting
from the automaton’s initial configuration, lead to a bad configuration. Thus,

N(Q)
def
= {w : Σ∗ | (q0, θ0)

wZ⇒ ⊗}

Definition 4.2.4.2. The set of testable traces T (Q) refers to the set of traces with which
the automaton is concerned, that is, the traces which it tests. Thus,

T (Q)
def
= {w : Σ∗ | ∃q, θ · (q0, θ0)

w⇒ (q, θ)} ∪ N(Q)

The task of checking whether or not a trace w is valid with respect to a property
described by an automaton Q can thus be reformulated into a membership problem.
Trace w would be valid as long as w /∈ N(Q). Similarly, a program is correct with respect
to Q if it can never produce a trace in N(Q) when starting with the initial conditions set
by Q. The size of the testable trace set is limited by the automaton’s structure and its
preconditions. As implied, a QCFSA’s negative trace set is always a subset of its testable
trace set, even though the automaton’s classification logic could theoretically be applied
to a larger set of valid system traces. Thus, very selective preconditions may limit the
testable trace set, and subsequently, its negative trace set. Section 4.6.1 expounds upon
the impact of preconditions on a generated runtime monitor’s classification capabilities.

4.3 Formalising DATEs for Erlang

The DATEs produced by the translation do not make use of the automata’s channel
communication and timer constructs. So as to maintain a clear and simple representation,
Erlang DATEs defined throughout the remainder of this text omit the timer and channel
constructs, and are described by a tuple 〈Q, q0,→, B,A〉, where:

Q is a set of states

q0 ∈ Q is the initial state

→ ⊆ Q× event× (Θ→ B)× (Θ→ Θ)×Q is the transition relation

B is the set of bad states

A is the set of accepting states

By adding an empty set of channels and null timer actions, one can rewrite the tran-
sition relation described above into its equivalent full DATE notation as

→ ⊆ Q× event× ((Θ× ε)→ Θ→ B)× ε× ∅ × (Θ→ Θ)×Q

Chapter 4. From QCFSAs to DATEs 66

Accepting states exist to signify that a monitor has terminated, and are used primarily
for implementation purposes to notify the runtime verification framework that it may
dispose of a monitor.

4.4 The Principles of Translation

When comparing the QCFSA (Figure 4.1) and DATE (Figure 5.2) properties defined
for the light switch controller example, it is apparent that whilst DATE monitors serve
solely as classifiers, QCFSAs must contain instructions to both generate and classify
traces. At an abstract level, translating a QCFSA into an DATE involves the extraction
of the classification components from the QCFSA and their reformulation into a DATE
structure. It is imperative that the semantics of the original QuickCheck automaton’s
verification logic are preserved through the translation, that is, the derived automaton
must perform identically to the original automaton with regards to its capabilities as a
classifier.

The following discussion concerns the translation of the theoretical QCFSA models into
equivalent DATE structures, making links to the implementation of the procedures used
where necessary. Subsequent chapters build on this analysis, providing a more complete
treatment of the implementation and application of the described techniques.

4.4.1 Primary Differences Between QCFSAs and DATEs

The aim of the translation is to find suitable analogues to the QCFSA constructs within
DATEs. While certain notions within QCFSAs, such as state-changing actions, can be
readily translated into DATE counterparts, other elements require some degree of rein-
terpretation. The following is an overview of two fundamental differences between the
notations, namely how they represent error states and how they handle the basic units of
monitorable computation, that is, events.

Explicit Bad and Idle States

DATEs and QCFSAs differ in that the former make use of explicit bad and accepting
states. In a QCFSA, each state is, by definition, accepting, as traces of any length may
be generated, with the generation engine being able to stop at any state. Whether or
not a system is in a valid state is determined based on the evaluation of each transition’s
postcondition. In contrast, violations within DATEs are only detected once a bad state
is reached.

When converting QCFSAs into DATEs, a bad state is added as a catch-all end state
for transitions that lead to failure. Additionally, an accepting idle state is added, for
reasons which will be elucidated shortly.

Chapter 4. From QCFSAs to DATEs 67

QCFSA and DATE events

A transition in a QCFSA is taken based on its precondition, and is classified as correct or
failing by checking its postcondition after a function has returned. The valuation of these
conditions will vary based on the system state at the point of inspection. Although the
generation and execution phases of a QuickCheck automaton are performed separately,
taking a transition in a QCFSA can be seen as a single action which internalises several
steps. In a single step, the QuickCheck engine:

1. Chooses the next eligible function based on its precondition’s valuation

2. Executes the function and stores its return value

3. Classifies success or failure based on the postcondition’s valuation, given the modi-
fied state and return value

• If the transition is valid, it executes an associated state-changing action.

In this respect, QuickCheck transitions must be treated as single, atomic actions,
which either succeed and progress to a next state or fail. Thus, a QuickCheck event
represents an entire interval that combines the function’s entry and exit processes into
a single event, and the internal steps cannot be accessed separately. One cannot, for
example, classify an event immediately on entering a function.

Unlike QuickCheck, where traces are created and interpreted by its engine, runtime
verification deals with the classification of externally-generated event sequences. In this
scenario, events can be any trigger points within a program, such as state-changing ac-
tions. For example, DATEs allow events to be triggered on entering or leaving a function.
Given a QuickCheck event, one can inspect a system state prior to or immediately follow-
ing the execution of its associated function. Most events will modify the system state in
some manner. For instance, a function call may increment some global counter1 or return
a result. As a function’s return value is taken to be part of the new global system state,
it is rarely the case that a function will not modify the system state, as such a function
would be of very limited utility. In general, given event ef associated with function f(),
one can inspect the system state:

• before executing f(), or

• immediately after f() has returned. The new state will include the function’s return
value.

The point at which an event is monitored is based on the property being checked. For
example, to check that a function is never invoked with a specific argument value, one
would monitor the system prior to the function’s execution, or at event entry. Conversely,
checking that a function’s execution does not violate a system invariant would be done
once it terminates, before an event exits.

1In the case of Erlang, a global counter would have to be managed by and accessed through a server
process. In a system with multiple processes, this would still have the effect of introducing side-effects,
with such a server behaving similarly to a shared variable.

Chapter 4. From QCFSAs to DATEs 68

g()

main()

g()

main()

eg eg

→
eg

←
eg

→
eg

←
eg

t

t

DATE

QCFSA

Figure 4.2: Timeline of events triggered when invoking a function g()

twice in succession. QCFSA event eg can be seen to embody
→
eg·
←
eg, with

some caveats.

Unlike QCFSAs, DATEs are concerned with events happening at points (edge trigger-
ing). Functions are no longer treated as single, monolithic events, rather they consist of
a function entry event followed by zero or more internally-generated events, after which a
function exit event is generated, provided that the function terminates. When translating
QCFSAs into DATEs, it is thus imperative that the system be instrumented effectively,
and that interval events are correctly translated in terms of point-events without intro-
ducing unintended behaviours into the system.

4.4.2 A Simplified Translation

The following section describes a first approximation to a complete description of a trans-
lation procedure which converts a QCFSA into a DATE, illustrated through an example.

The comprehension of any approach to the translation relies on the understanding
of the purpose of pre- and postconditions. Preconditions serve to limit the generation
of certain traces. They do not, by themselves, classify traces, rather they restrict the
monitoring process to some identified interesting subset of possible traversals. Making
preconditions more restrictive will decrease the size of the set of testable traces, which
often helps during the trace generation phase by preventing uninteresting or previously-
tested traces from being tested again. Nevertheless, very selective preconditions may
lessen the efficaciousness of the generated runtime monitor, as will be discussed in Section
4.6.1.

A failing precondition does not imply that a violation has been detected. Instead, it
simply states that further verification on that trace should be suspended, as the prop-
erty no longer concerns that particular sequence of events. Within QuickCheck, a failing
precondition would lead to different traces being generated and tested, yet in the case
of runtime monitoring, one would have to cease monitoring that particular instance of a
program. The precise mechanics that dictate how this is done will be covered in Section
4.4.2. Postconditions serve as classifiers, and are checked once a precondition has suc-

Chapter 4. From QCFSAs to DATEs 69

ceeded and the related function has executed. Thus, a trace can only be invalid if one of
its transitions has a valid precondition and an invalid postcondition.

s1 s2

preg\eg\postg\αg

pref\ef\postf\αf

Figure 4.3: A simple QCFSA concerned with two events, eg and ef ,
which represent functions g() and f(), respectively. Precondition and
postcondition sets, as well as the state changing actions αg and αf , are
defined using abstract values.

Figure 4.3 is an example of a simple, deterministic QuickCheck automaton. While
the pre and post variables represent sets, one must remember that they are ultimately
characterised using the total precondition and postcondition functions defined for the
automaton. Given that events eg and ef are triggered on taking transitions involving
functions g and f, respectively, the automaton is generating and subsequently testing
traces which contain zero or more invocations to function g, followed by a single invocation
of f. Thus, the automaton is concerned with traces of the form eg

∗ef .

S bad state

idle
state

S′

g\ precondition(s, s, stateData(), {call, Mod, g, []}) &&
postcondition(s, s, stateData(), {call, Mod, g, []}, null)
\ stateData(next state data(s, s, stateData(), Result, {call, Mod, g, []}))

f\ precondition(s, s′, stateData(), {call, Mod, f, []}) &&
postcondition(s, s′, stateData(), {call, Mod, f, []}, null)
\ stateData(next state data(s, s′, stateData(), Result, {call, Mod, f, []}))

f\ !precondition(s, s′, stateData(), {call, Mod, f, []})\ g\ !precondition(s, s′, stateData(), {call, Mod, g, []})\

f\ precondition(s, s′, stateData(), {call, Mod, f, []}) &&
!postcondition(s, s′, stateData(), {call, Mod, f, []}, null)\

g\ precondition(s, s, stateData(), {call, Mod, g, []}) &&
!postcondition(s, s, stateData(), {call, Mod, g, []}, null)\

Figure 4.4: The QCFSA translated into an implemented DATE. For
Result to be defined, the events must be triggered on event exit.

For now, it is assumed that neither event will trigger subsequent events during the
execution of their corresponding function. The central idea in translating from a QCFSA
Q to a DATE E is that each function on a transition in Q is mirrored by a corresponding
event in E . This offloads the act of generating a sequence of events to the system under
test. As Erlang does not allow the use of global variables, the automaton’s state data is
stored within a server process. The function stateData() is thus defined to serve as a

Chapter 4. From QCFSAs to DATEs 70

data store. When passed a parameter, stateData updates the stored version of the data
with the new value specified. When invoked without arguments, it returns the current
state data. In addition, as described in Section 4.4.1, explicit bad and idle states are
added to the translated automaton so as to replicate the QCFSA’s behaviour within a
DATE.

For each event e in the original automaton, transitions are added so that:

I) If e occurs and its precondition and postcondition succeed, then the system moves
to the original target state whilst updating the automaton’s state.

II) If e occurs and its postcondition fails after its precondition succeeds, then the system
moves into a bad state.

III) If e occurs and its precondition fails, then the automaton moves to an idle state.

Type I transitions represent a successful transition, where both pre- and postconditions
return true. Type II transitions cater for those cases were the precondition was met
(signifying that monitoring should be applied) yet the postcondition failed, implying that
the property has been violated. Type III transitions regard instances whereby the system
has generated a series of events which the original property was not designed to classify,
in which case monitoring should cease.

Figure 4.4 illustrates a DATE derived from the QCFSA in Figure 4.3. Mod refers
to the module within which the functions being tested reside, while Args is a reserved
keyword managed by the runtime monitoring engine, which replaces the variable with the
argument list with which the associated function has been invoked, as will be described
in Section 5.3.2.

Conditions
Next State

precondition postcondition
T T Valid next state
T F Bad state
F - Idle state

Table 4.1: The types of transitions generated on translation, their con-
ditions (simplified) and end states.

Although it is free from non-determinism, the translation depicted suffers from two
major shortcomings. The first is related to the fact that events are triggered either on
function entry or exit, at which point the conditions must be checked. If an event is
triggered on entry, then the conditional guards will not have access to the function’s
result. On the other hand, triggering on the exit event will cause the precondition to
be evaluated after the function has executed. This may result in the precondition being
evaluated incorrectly, as the condition may no longer hold. In general, one cannot assume
that a function will not modify the system state, thus disallowing both conditions from
being checked simultaneously and requiring the system to respect the original precedence
of calls.

Chapter 4. From QCFSAs to DATEs 71

The second issue is that events will be generated whenever a monitored (and hence
instrumented) function will be entered or exited. If one were to remove the assumption
that the functions being monitored do not themselves invoke other instrumented functions,
it could be the case that traces which were not originally meant for verification will be
monitored. These issues will be addressed within the following sections, so as to provide
a more complete translation.

Totality

When translating into a DATE, it is imperative that the original QCFSA’s semantics
are preserved. Thus, the DATE should make no attempt to classify traces which the
original QCFSA was not designed to test. Instead, it should be constructed so that if
it is presented with a trace which does not form part of a set of testable traces (Section
4.2), then monitoring should halt, and no violation should be reported. For example, by
examining the automaton defined in Figure 4.3, it is evident that the execution f() · g()
is not part of the set of testable traces. This sequence should cause the automaton to
cease operation without returning a verdict.

As the monitor may be presented with any arbitrary trace, the set of testable traces
must be expanded to accept all combinations of interesting events, without changing
the size of the set of negative traces. Thus, the QCFSA is rendered total, with any new
transitions leading to an idle state without reporting failure. This will allow the automaton
to accept traces which were previously rejected either due to strict preconditions or non-
existent arcs, without altering the negative verdict. Any added arcs will not contribute
to the automaton’s capacity to identify bad traces, that is, although the testable trace
set has grown, its negative trace set remains unaltered.

For an automaton to be total, there must be an outgoing transition for every interesting
event at every state such that at least one transition is always eligible for traversal. In
addition, as the automaton is also deterministic, there cannot be more than one eligible
outgoing transition.

Example 4.4.2.1. The set of interesting events Σ for the QCFSA described in Figure
4.3 is {ef , eg}. To make the automaton total, an idle state is added, and each state in
the automaton is examined separately.

• S contains outgoing transitions for all the events in Σ, yet transitions catering for
the complement of the preconditions must be added, as follows

(S1, (preg, eg, 2Θ, λ s · s), idle state)
(S1, (pref , ef , 2Θ, λ s · s), idle state)

• S ′ has no outgoing transitions. Thus, transitions must be added for every event in
Σ, namely

(S2, (2Θ, eg, 2Θ, λ s · s), idle state)
(S2, (2Θ, ef , 2Θ, λ s · s), idle state)

Chapter 4. From QCFSAs to DATEs 72

Receiving either event at S ′ would thus lead to the idle state.

• The idle state itself must consume all subsequent events. Thus,

(idle state, (2Θ, eg, 2Θ, λ s · s), idle state)
(idle state, (2Θ, ef , 2Θ, λ s · s), idle state)

In theory, the idle state need not be rendered total, as it is a final state and can be
used to immediately halt monitoring. Totality ensures that the automaton will behave
correctly as a classifier, irrespective of the underlying monitor’s implementation.

s1

idle
state

s2

preg\eg\postg\αg

pref\ef\postf\αf

preg\eg\2Θ\λs · s

pref\ef\2Θ\λs · s 2Θ\eg\2Θ\λs · s

2Θ\ef\2Θ\λs · s

2Θ\eg\2Θ\λs · s

2Θ\ef\2Θ\λs · s

Figure 4.5: The QCFSA in Figure 4.3 rendered total

Splitting Events

As currently formulated, the pre- and postcondition checks are being performed simultane-
ously at the given point of instrumentation. More specifically, if the event is instrumented
at its entry point, then the monitor may only access the state data prior to the body’s
execution. Similarly, instrumenting at the function’s exit point will provide access to the
computation’s result along with the final system state. So as to replicate the ordering
exercised by QuickCheck, preconditions should be checked on function entry, whilst post-
conditions should be checked at the exit point. This allows assertions to be performed
both prior and following an execution, and also enables the verification of a function’s
result.

To enable the checking of both types of conditions, a function should be instrumented
on entry and on exit. Thus, each QCFSA event can be considered as a two-part event,

Chapter 4. From QCFSAs to DATEs 73

consisting of a DATE entry and uponReturning event. If f() is a function being monitored
by a DATE,

→
ef is an event fired as soon as f() is entered, while

←
ef is fired once f() has

completed its execution and is about to return control to its parent function.

As an example, one may consider the branch concerning the function f() in the
automaton illustrated in Figure 4.3. If the function is instrumented at its entry and exit
points, calling f() will generate the event sequence

→
ef ·

←
ef , assuming that the function

body of f() will not, through the invocation of other monitored functions, cause more
events to be triggered.

s bad state

s on f

idle
state

s′

→
f \precondition(s, s′, stateData(), {call, Mod, f, [Args]})\

→
f \precondition(s, s′, stateData(), {call, Mod, f, [Args]})\

←
f \postcondition(s, s′, stateData(), {call, Mod, f, [Args]}, Result)
\ stateData(next state data(s, s′, stateData(), Result, {call, Mod, f, [Args]}))

←
f \!postcondition(s, s′, stateData(), {call, Mod, f, [Args]},

Result)\

Figure 4.6: Monitoring function f() using entry and exit events

Figure 4.6 describes the DATE which monitors the function using split events. On
receiving

→
ef , the precondition is checked. On success, the automaton enters an intermedi-

ate state, which can be seen as representing the function’s computation. Once the system
receives the function exit event, the postcondition is evaluated. If it is invalid, then the
system enters a bad state, otherwise it moves on to the valid target state.

In general, one cannot assume that a monitored function will never invoke another
monitored function as an internal action. To illustrate, one may consider the original
QCFSA described in Figure 4.3. It is conceivable that f() invokes g() within its body.
Such an action would be of no consequence for a QCFSA, as it does not monitor the
function’s intermediate events individually, rather it only checks the function’s initial
conditions and final result. Yet this is not the case for DATEs. As the functions being
tested have been instrumented to fire an event on each call and return, invoking any
monitored function will generate an entry and exit event pair.

The issue becomes readily apparent when analysing the monitoring of recursive func-
tions, such as the dec(N) function described in Listing 4.1, which recursively decrements
a given value whilst incrementing the running result, returning the original value once the
argument’s value has reached zero. Each recursive call returns the value of the counter at

Chapter 4. From QCFSAs to DATEs 74

that point in the call stack.

Listing 4.1: Recursive decrement function� �
1 dec (0) −>
2 0 ;
3 dec (N) when N > 0 −>
4 dec (N − 1) + 1 .� �

Listing 4.2 is a high-level implementation of an instrumented version of dec(). The
original function is renamed to e dec(), whilst dec() is replaced by a function containing
the event generation code at the entry and exit points. A call to e dec() is performed
between the entry and exit points, saving the returned value in a temporary Result
variable. One should note that the recursive calls within the original dec() function (now
e dec()) are not renamed, and refer to the instrumented version of dec().

Listing 4.2: Instrumented dec() function� �
1 e dec (0) −>
2 0 ;
3 e dec (N) when N > 0 −>
4 dec (N − 1) + 1 .
5
6 dec (N) −>
7 generate →

edec ,
8 Result = e dec (N) ,
9 generate ←

edec (Result) ,
10 Result .� �

The simplest test would be to check whether, given a positive integer as an input, the
result returned would be equal to the input argument. For a QCFSA invoking dec(N)

over a transition from S to S ′, this can be readily expressed using pre- and postconditions
as shown below.� �

1 pre cond i t i on (s , s2 , , { c a l l , sut , dec , N}) −>
2 N >= 0 .
3
4 pos t cond i t i on (s , s2 , , { c a l l , sut , dec , N} , Result) −>
5 Result == N.� �

Translating the QCFSA into a DATE produces an automaton similar to that defined
for the generic function f() in Figure 4.6, replacing f() with dec(). The problem that
arises with internally generated events is that the original QCFSA property does not

consider their correct behaviour, as it only places conditions on the parent event. If
→
edec

N

represents an entry event with N passed as an argument to dec(N), and
←
edec

=R
stands for

an exit event which returns value R, calling dec(3) would generate the event sequence

Chapter 4. From QCFSAs to DATEs 75

→
edec

3 →
edec

2 →
edec

1 →
edec

0 ←
edec

=0 ←
edec

=1 ←
edec

=2 ←
edec

=3

On receiving
→
edec

3
, the monitor will check the precondition’s result. As 3 is greater

or equal to zero, the condition will be satisfied and the automaton will step into the
intermediate state, signalling to the system under test that execution may proceed.

If one cannot identify individual events of the same type, then the intermediate events
will mislead the verifier, as:

Discarding all unexpected entry events, or rejecting all entry events of the same
type until an exit event is received, will leave the automaton in the same state, yet
the precondition will be paired with the wrong postcondition, as the wrong exit
event will be considered. More specifically, consuming all events of the same type
as the most recent event would give the event chain

→
edec

3 ←
edec

=0

As 3 6= 0, the property will fail.

Updating the current event with the most recent event of the same type would
change the property’s semantics. In this case, the property would initially succeed,

as the event sequence would be
→
edec

0 ←
edec

=0 ←
edec

=1 ←
edec

=2 ←
edec

=3
, with the innermost pair

being matched. The problem is that the property is being checked on the wrong
event pair, which will cause verdicts to become unpredictable for the general case.
In addition, the monitor will have several lingering and superfluous events residing
on its event queue.

The simplest and most effective way of handling intermediate events would be to
prevent these events from being generated in the first place. One way of achieving this
relies on the ability to label events with unique identifiers. That way, the system would be
able to discard any unexpected intermediate events, halting progress within the automaton
until the corresponding exit event is received. For instance, a unique integer could be
assigned by the instrumentation code to every event prior to its forwarding to the runtime
monitoring engine.

The next id() function could access a counter stored within a server process which
grows in increments of two. Using a counter is helpful in that the identifier of each entry
event’s matching exit event can be easily inferred from the former’s identifier, simply by
adding one to this value. Thus, when the monitoring engine receives an entry event, it
can suspend progress within the automaton until an event whose identifier is one more
than the original entry event’s ID is received2. Such a scheme avoids having to modify
the generated DATEs to cater for intermediate events, rendering the translation cleaner
and more intuitive.

Thus, using incrementing event counters, calling dec(3) would produce the event
trace:

2Incrementing by 2 avoids calling the function twice, facilitating concurrent accesses to the counter.

Chapter 4. From QCFSAs to DATEs 76

Events
→
edec

3 →
edec

2 →
edec

1 →
edec

0 ←
edec

=0 ←
edec

=1 ←
edec

=2 ←
edec

=3

ID 0 2 4 6 7 5 3 1

Discarding all intermediate events whose ID is not equal to 1 will contract the trace
to

→
edec

3 ←
edec

=3

which is the top level event entry and exit pair with which the property is concerned.
Once a matching event has been found, the system will step through the automaton and
the next entry event to be received will be latched on to by the automaton, restarting the
event capture process.

For the event consolidation scheme to work, events must be received in the same
order in which they were generated, which can be safely assumed when monitoring events
originating from a single processes [Eri10a]. Also, recursive functions must terminate at
some point, otherwise a corresponding exit event will never be received by the monitoring
engine. The latter requirement, while not necessary for runtime monitoring, is always
assumed when writing QCFSA properties, as otherwise postconditions would never be
checked, rendering verification impossible. Thus, caution must be exercised when verifying
server processes.

Figure 4.7 illustrates the automaton produced on applying the complete transforma-
tion to the light-switch QCFSA described earlier, first rendering it total and then splitting
each transition. This automaton is not total due to the introduction of the intermediate
and bad states. If a bad state is entered, the system would stop receiving events, making
further transitions unnecessary. In the case of intermediate states, the automaton should
not progress unless the appropriate exit event is received. Given an entry event, an exit
event of the matching type will always be generated due to the nature of the instrumenta-
tion code, unless the function fails to terminate or crashes. In addition, non-intermediate
states do not have to cater for outgoing exit events, as these cannot be generated prior
to an entry event.

Listing 4.3: Instrumented dec() function with unique event IDs� �
1 dec (N) −>
2 →

ID = next id () ,
3 ←

ID = →
ID + 1 ,

4
5 generate 〈 →ID, →edec 〉 ,
6 Result = e dec (N) ,
7 generate 〈 ←ID, ←edec(Result) 〉 ,
8 Result .� �

Chapter 4. From QCFSAs to DATEs 77

s1

bad

state

idle
state

sf
1 s2

sf
1 id

sg
1 id

sg
1 s1

s2

sf
2 id

sg
2 id

idf id idg id

→
f \pre(s1, s2, f, [])\

←
f \!post(s1, s2, f, [], Result)\

←
f \ post(s1, s2, f, [], Result)\
sD(nsd(s1, s2, Result, f, []))

→
g \
pre(s1, s1, g, [])\

←
g \!post(s1, s1, g, [], Result)\

←
g \ post(s1, s1, g, [], Result)\
sD(nsd(s1, s1, Result, g, []))

→
f \!pre(s1, s2, f, [])\

←
f \true\

→
g \!pre(s1, s1, g, [])\ ←

g \true\

→
f \true\

←
f \true\

→
g \true\←

g \true\

→
f \true\

←
f \true\

→
g \true\

←
g \true\

Figure 4.7: The QCFSA in Figure 4.3 transformed into a DATE. The
original QCFSA is first rendered total, after which each event is split into
entry and exit events using an intermediate state. As internal (silent)
actions are handled by the monitoring engine, they do not appear within
the given automaton. Functions over transitions are redefined as follows:
sD(S)

def
= stateData(S),

pre(s1, s2, f, A)
def
= precondition(s1, s2, stateData(), {call, Mod, f, A}),

post(s1, s2, f, A, R)
def
= postcondition(s1, s2, stateData(), {call, Mod, f, A}, R),

nsd(s1, s2, R, f, A)
def
= next state data(s1, s2, stateData(), R, {call, Mod, f, A})

Chapter 4. From QCFSAs to DATEs 78

4.5 A Formal Translation of QCFSAs into DATEs

In the previous section, a translation from a DATE to a QCFSA was presented using an
example. The following section will describe a formal procedure for translating QCFSAs
into DATEs that will recognise and classify precisely the same set of negative traces as
the former.

The translation consists of two phases. First, an automaton must be rendered total,
so that it may be able to produce a verdict for traces which the original automaton was
not designed to accept. Naturally, verdicts for these newly-introduced transitions will be
inconclusive, that is, while the event sequences will be accepted by the automaton, it will
never classify them as negative traces. The second phase changes the total automaton
from one that recognises QCFSA events to one that consumes entry and exit events
generated at runtime.

The translation process assumes that the original QCFSA contains no states named
idle state or bad state, which would otherwise have to be renamed prior to executing
the translation. In addition, the translation process does not cater for the use of state
attribute values. As QuickCheck enumerates all reachable states, such values would have
to be finite [Quv10], and could be enumerated prior to performing the transition, resulting
in no loss of expressivity.

4.5.1 Totality of QCFSA

The following is a description of the process of converting an automaton Q to its total
equivalent QT . A total QCFSA will have one or more outgoing transitions for each
interesting event at every state, such that there will always be a transition defined for any
given precondition and function pair. This is achieved through the addition of an idle
state, to which the system will progress whenever it is faced with a function-condition
pair which was not catered for within the original automaton.

As a generator, the total version of a QCFSA is of limited utility as it will increase
the number of traces which must be tested without a corresponding improvement in its
coverage, since the new transitions will not recognise invalid behaviour. The transformed
QCFSA is still deterministic, as the preconditions for outgoing arcs of the same event
type do not overlap.

Before providing a construction detailing the conversion to a total automaton, it is
useful to define the concept of precondition coverage. Given an automaton Q, a set of
preconditions is said to cover an event e at state q if there exists a transition within Q
which is defined for those conditions. The set of uncovered preconditions is thus defined
as the set of preconditions for which no outgoing transition from the given state exists,
and is defined as follows.

Definition 4.5.1.1 (Uncovered preconditions of a QCFSA state). Given a QCFSA
Q, the uncovered preconditions for an event e at state q can be computed as

Chapter 4. From QCFSAs to DATEs 79

uncoveredPreQ(q, e)
def
= 2Θ −

⋃
(q,(pre,e,post,α),q′)∈→ {pre}

Given a QCFSA Q = 〈Q, q0,Σ,Θ0, run,→〉, one may construct an equivalent total
QCFSA QT = 〈QT , qT0 ,Σ

T ,ΘT
0 , run

T ,→T 〉 using the aforementioned notion of precondi-
tion coverage, resulting in the following construction:

QT def
= Q ∪ {idle}

qT
0

def
= q0

ΣT def
= Σ

ΘT
0

def
= Θ0

runT def
= run

→T def
= {(q, (uncoveredPreQ(q, e), e, 2Θ, id), idle) | e ∈ Σ, q ∈ Q}
∪ {(idle, (2Θ, e, 2Θ), idle) | e ∈ Σ}
∪ →

As the idle state does not form part of the original automaton, transitions onto itself
have to be added explicitly.

Proofs

Unless the original automaton Q is in itself total, the process of rendering QT will intro-
duce new transitions, as dictated by the construction presented (minimally, transitions for
the idle state will be added). As a consequence of these new transitions, the testing set of
the automaton QT will be larger or at least as large as that of Q, that is, T (Q) ⊆ T (QT).
This is because, in addition to the original traces, the automaton will be able to generate
new function call sequences.

For the purpose of runtime monitoring, deriving a runtime monitor from automata
with differing testable trace sets would be of no consequence to its ability to detect bad
traces, provided that the set of negative traces is the same for both automata. To para-
phrase, the identification of bad states depends solely on the automaton’s characterisation
of negative traces, and is unaffected by its embodiment of the positive traces. It is thus
imperative that the translation leaves the set of negative traces intact, neither introducing
nor removing any traces from the original automaton’s set.

Lemma 4.5.1.1 (No lost negative traces). N(Q) ⊆ N(QT)

Proof. The first lemma is derived trivially from the construction. When building QT ,
the transitions of Q are preserved, and any added transitions do not interfere with those
defined within the original automaton. Thus, though the set of testable traces of QT
may have grown under the translation, the traces in N(Q) still exist within the total
automaton, which implies that the lemma must hold.

Lemma 4.5.1.2 (Idle leads to idle). For automaton QT , all configurations that can be
reached from the idle state are in the idle state, that is, if idle

w⇒ q then q = idle

Chapter 4. From QCFSAs to DATEs 80

Proof.
Base Case: w = ε

(idle, θ)
ε⇒QT (q, θ′)

=⇒ Definition of
ε⇒ leaves configuration unchanged

(idle, θ) = (q, θ)
=⇒ Matching names

q = idle

Inductive Hypothesis: Assume lemma holds for w = s

(idle, θ)
s⇒QT (idle, θ′)

Prove: Lemma holds for w = s++ 〈a〉
(idle, θ)

s++〈a〉⇒ QT (q, θ′)
=⇒ Sequence of events (Definition 4.2.3.3)

(idle, θ)
s⇒QT (q′′, θ′′)

a⇒QT (q, θ′)
=⇒ Inductive Hypothesis, q′′ = idle

(idle, θ′′)
a⇒QT (q, θ′)

=⇒ All single transitions leaving from idle lead to idle (by construction of QT)
q = idle

Lemma 4.5.1.3 (No idle intermediate state if end is not idle). If a sequence of
transitions in QT does not end with an idle state, then none of the intermediate config-
urations pass through the idle state. This can be expressed as (q, θ)

a⇒QT (q′′, θ′′)
s⇒QT

(q′, θ′) ∧ q′ 6= idle =⇒ q′′ 6= idle

Proof.
Assume that q′′ = idle

(q, θ)
a⇒QT (idle, θ′′)

s⇒QT (q′, θ′) ∧ q′ 6= idle
=⇒ From idle, one can only reach idle (Lemma 4.5.1.2)

q′ = idle
=⇒ Antecedent → q′ 6= idle

q′ = idle ∧ q′ 6= idle
=⇒ Contradiction;

q′′ 6= idle

Lemma 4.5.1.4 (Non-idle transitions in QT are in Q). If a transition in QT does
not lead to an idle state, then that transition exists within the automaton prior to it being
made total. Thus, (q, θ)

w⇒QT (q′, θ′) ∧ q′ 6= idle =⇒ (q, θ)
w⇒Q (q′, θ′)

Proof. The end state q′ is, by definition, not idle. Using Lemma 4.5.1.3, this also implies
that none of the intermediate configurations from q to q′ pass through the idle state. Thus,
the trace w never causes the automaton to enter an idle configuration. By examining the
construction, one finds that all the transitions in QT are either transitions in Q or newly-
added transitions that lead to an idle state. As the trace w never traverses the latter
transitions (as there are no idle configurations), it follows that the transitions form part
of the original set of transitions defined in Q.

Chapter 4. From QCFSAs to DATEs 81

Lemma 4.5.1.5 (No added negative traces). N(QT) ⊆ N(Q)

Proof.
w ∈ N(QT)

=⇒ Definition of a negative trace (Definition 4.2.4.1)

(q0, θ0)
wZ⇒QT ⊗

=⇒ w = s++ 〈a〉, sequence to a bad configuration (Definition 4.2.3.4)

(q0, θ0)
s⇒QT (q′, θ′)

aZ⇒QT ⊗
=⇒ q′ cannot be idle (Lemma 4.5.1.2)

(q0, θ0)
s⇒QT (q′, θ′)

aZ⇒QT ⊗ [q′ 6= idle]
=⇒ If q′ is not idle, then the path exists in Q (Lemma 4.5.1.4 and construction)

(q0, θ0)
s⇒Q (q′, θ′)

aZ⇒Q ⊗
=⇒ Definition of a negative trace & catenation of trace (Definition 4.2.4.1)

w ∈ N(Q)

Theorem 4.5.1.1 (Equality of the set of negative traces). As N(Q) ⊆ N(QT)
(Lemma 4.5.1.1) and N(QT) ⊆ N(Q) (Lemma 4.5.1.5), it follows that N(Q) = N(QT).

4.5.2 A Complete Translation

Based on the example translated earlier, as well as the analysis conducted when consid-
ering the splitting of events into pre- and postcondition arcs with intermediate states, a
complete translation process will be described herewith.

Given a QCFSA Q and the total automaton QT = 〈Q, q0,Σ, θ0, run,→〉 resulting
from the application of the aforementioned construction, one can produce the DATE
D = 〈QD, qD0 ,→D, BD, AD〉, where

QD def
= Q ∪ {badstate} ∪ {int(t)|t ∈→}

qD
0

def
= q0

B
def
= {badstate}

A
def
= {idle}

→D def
= {(q,→e , λs · (s ∈ pre), id, q′′),

(q′′,
←
e , λs · (run(e, s) ∈ post), α, q′),

(q′′,
←
e , λs · (run(e, s) /∈ post), id, badstate) |

t ∈→ ∧ t = (q, (pre, e, post, α), q′) ∧ q′′ = int(t)}

The function id
def
= λs · s is the identity function, while run: : Σ → Θ → Θ returns

the new system state when executing an event’s corresponding function under a given
system state, as described in Section 4.2.1. The function int: : T → Q returns a unique
intermediate state name such that ∀t ∈ → · int(t) /∈ Q and ∀t1, t2 ∈ T · t1 6= t2 ⇒
int(t1) 6= int(t2).

Chapter 4. From QCFSAs to DATEs 82

Proofs

The translation from a QCFSA Q to a DATE D is a two-step process. First, the au-
tomaton is made total, after which the event-splitting translation is applied. Translating
a QCFSA Q to its total equivalent QT was proven to leave the set of negative traces
unaltered, that is, N(QT) = N(Q).

Given that Π: : QCFSA→ DATE is the function that converts a total QCFSA into
a DATE, the next step would be to show that both QT and Π(QT) will detect the same
set of program failures. This can be done by showing that splitting QCFSA events into
DATE entry and exit events will result in sequences that will be recognised by the latter
whilst returning the same verdict as the former.

To facilitate this, the explode operator ↑ is defined. Let ΣQT be the set of events with
which QT is concerned. During execution, every separate invocation of a function related
to the events in ΣQT can be assigned a unique index, as demonstrated in Section 4.4.2.

Thus, let ΓQT
def
= {ei | e ∈ ΣQT ∧ i ∈ N} be the set of uniquely identifiable events emitted

during an execution. Given a run w ∈ ΓQT , ↑ w will return the set of exploded traces,
whose elements have been converted into entry and exit events. This is defined recursively
as

↑ ε def
= {ε}

↑ aiw
def
=
→
ai .(

←
ai)
∗
.
←
ai . ↑ w

where
→
ai and

←
ai are the entry and exit events related to a QCFSA event ai, as described

earlier. As the index is unique to every separate invocation of a monitored function, the
split events are guaranteed to also be unique. Thus, it is certain that any entry event
→
aj preceding or succeeding an event

→
ai in ↑ w will have an index such that i 6= j, as

will any pair of exit events
←
ai and

←
aj chosen from ↑ w. This allows one to discriminate

unambiguously between pointwise events of the same type, even if they are generated
through a recursive call. The function ⇑ returns ↑ applied to each trace within a given
set.

Conjecture 4.5.2.1 (Preservation of negative trace set under translation). Given
any total QuickCheck automaton QT , ⇑ N(QT) = N(Π(QT)).

Functions associated with a QCFSA transition are always instrumented at their entry
and exit points. Any system events received prior to the matching exit event are consumed.
Exploding all the negative traces in QT will result in the equivalent set of negative traces
of QT under transformation.

Chapter 4. From QCFSAs to DATEs 83

4.6 Writing Properties

4.6.1 Partitions

It is conceivable, and indeed, often the case that failures uncovered by multiple test cases
stem from a single fault. More formally, when looking at the system’s input space, there
may exist a whole set of inputs, rather than a single instance, which triggers one specific
type of failure. These sets of inputs are partitions of the input space, with each partition
corresponding to a single concrete fault in the system.

Consider an arbitrary function f : : N → N, which fails when given an input greater
than 7. If all inputs above 7 fail for the same reason, then they form part of the same
partition.

Valid Inputs Error-Inducing Inputs

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.8: Number line depicting input partitions for function f

If the partitions have been identified with certainty, it would suffice to test just one
element within that partition, as its result would be representative of the entire partition.
Referring to function f , both 8 and 12 manage to characterise the partition equally, in
that they both fulfill the condition of being larger than 7.

When testing, one could hasten the process whilst increasing test coverage by identi-
fying such partitions of the input space, as the number of tests to be executed would be
lowered. In an ideal setting, all partitions of the negative input space are identified, with
the test set containing one candidate from each negative partition.

It is reasonable to assume that testers would like to be able to employ such partitioning
techniques on QuickCheck automata in order to optimise the testing process, yet this may
render the translation to runtime verification monitors ineffective unless it is implemented
with certain considerations. When using QuickCheck automata, one may restrict the set
of testable traces either by:

• weakening the preconditions in order to admit fewer traces

• restricting the generator so as to only produce and verify subsets of each parti-
tion

When weakening preconditions, one is losing information. For example, consider an
arc within a QCFSA corresponding to function f . One could opt to set the precondition
to only allow traces that call f with an input of 8, a representative value of the invalid
partition, without losing coverage3. Yet the property would no longer be defined over the

3When testing, the odds of choosing a candidate from the partition under consideration would actually
decrease unless the test set shrinks proportionally.

Chapter 4. From QCFSAs to DATEs 84

Input Space

Test Set

PN
1

PN
2

PN
3

PN
4

PN
1

PN
2

PN
3

Figure 4.9: Example showing four partitions of the input space, and
the test set. As each test case in a given partition is an equally valid
candidate for uncovering that partition’s associated bug, one can opt to
only test a subset of each partition’s intersection with the test set.

remainder of the partition, that is, it will not be able to classify the other elements of
the partition as error-inducing inputs. While this would not normally affect testing, it
would limit the detection capabilities of a derived runtime monitor. Using the previous
example, a runtime monitor which only checks traces containing f(8) would be far less
capable than one which can produce a correct verdict for all f(N) with N > 7.

Pruning the search space at the generation stage whilst leaving the preconditions
strong would result in automata that are far more comprehensive in their fault detection,
as their testable trace set will not be compromised. It also keeps the automaton’s concerns
separate, allowing the generators to be as specific as necessary in order to restrict the test
set whilst allowing the property to remain defined in general terms. Finally, restricting
traces at the generation phase will improve performance by only generating traces which
will be checked. In the previous example, setting a precondition to only allow calls with
f(8) would result in a slew of traces being generated and discarded until an appropriate
trace is encountered. On the other hand, modifying the generator to immediately produce
interesting traces would speed up testing, as they would instantly be of the correct form.

Generators in QuickCheck automata are typically used to seed the automaton’s initial
state. Finer-grained pruning of traces would thus require restrictions over the individual
preconditions, yet this would limit the automaton’s applicability to the runtime monitor
translation due to the reasons described. Alternatively, one may opt to embed properties
within an ?IMPLIES construct (Section 2.5.3) so as to only consider traces which satisfy
some global property, yet this would result in a loss of performance.

Chapter 4. From QCFSAs to DATEs 85

4.6.2 Bridging Generation and Monitoring

QCFSA properties should be written in such a way as to function within QuickCheck
whilst also serving as a description from which an equivalent runtime monitor can be
derived. The translation should not require that the QCFSA be modified or rendered
inoperable in order to accommodate the transformation, as this would limit the appli-
cability of the method. Ideally, the translation can accept any arbitrary QCFSA as an
input and produce a consistent runtime monitor (the case study presented in Section 6.7
investigates the transformation of an arbitrary property defined by a third party).

When defining a QCFSA, one must specify a series of state transitions as functions,
as described in Section 2.5.4. Every transition corresponds to a function call within the
system under test. These functions can be passed values that are stored in the state data
structure as arguments, and these values can be updated by executing the associated
next state data function following a successful transition.

Listing 4.4: Transitions for a single state QCFSA� �
1 −r ecord (s ta te , {a : : term () , b : : term ()}) .
2
3 s(# s t a t e{a=A, b=B}) −>
4 [{s , { c a l l , ?MODULE, f , [A]}} ,
5 {s , { c a l l , ?MODULE, g , [B]}}] .� �

Listing 4.4 specifies the transitions for a simple automaton that invokes two arbitrary
functions f and g, both of which accept a single argument. In the example, each call
is passed a value stored within the #state record. The actual values passed to the
functions are determined based on the initial values of the state data and the definition
of the next state data function. Using these two constructs, one may specify how and
which values will be used within the generated traces.

In contrast, runtime monitors operate on live variable values that are resolved dynam-
ically at runtime. With reference to the previous example, the values of the arguments of
f and g are set by the process invoking them, irrespective of the automaton’s state data.
Thus, the translator ignores the bindings between the state data and arguments, and
only uses the QCFSA transition structure to derive the relationship between states. This
allows one to “hide” mechanisms that guide generation in the next state data function,
with the generated values passed as arguments. As the state data values cannot be mod-
ified directly from within the tuple defining the transition, omitting the arguments will
not lead to state-altering operations being left out4.

For example, consider the case where one would like to test f using only odd natural
numbers. One way of doing so would be to create a precondition which disallows calls
to f with even numbers, yet this is inefficient and detrimental to the effectiveness of the
runtime monitor.

4An exception to this would be if a transition is defined with one of the arguments consisting of a
call to a function which alters the state of some server process, in which case the operation would not be
performed at runtime. In general, code that has side-effects should not be embedded within an argument.

Chapter 4. From QCFSAs to DATEs 86

Listing 4.5: Testing f with odd-valued parameters� �
1 i n i t i a l s t a t e d a t a () −>
2 #s t a t e{a=1,b=0} .
3
4 n e x t s t a t e d a t a (s , s ,D= #s t a t e{a=A} , ,{ c a l l , ?MODULE,Op, }) −>
5 case Op of
6 f −> D#{a=(A+2)} ;
7 −> D
8 end .� �

Alternatively, one would opt to only generate odd-valued parameters. Listing 4.5 de-
fines the initial values and the next state data function, which increments the a counter
by 2 following every invocation of f. In this case, f is being tested with regularly-
incremented values, yet this method allows full control over the form of the data that will
be passed to the functions.

When translating to a runtime monitor, the resultant automaton always executes
the next state data function as a state changing action once the associated transition
completes successfully. In the example presented, the state data is being used exclusively
for determining the argument values during the QCFSA’s traversal in QuickCheck, and
in theory need not be updated during runtime, as its values will not be used. Yet as the
translation process must consider the general case, the function will still be invoked, so
as to ensure that the automaton’s intended behaviour is preserved.

4.7 Conclusion

The fundamental result of this chapter is the reconceptualisation of QCFSA functions
as system events and the illustration of a method for transforming arbitrary QCFSAs
into DATEs. The translation contains several inherent assumptions. The key assumption
made is that all generated monitors are implicitly global, and by default consider that
any relevant events generated by a system under test will be forwarded to that monitor.
This assumption will not necessarily hold in the case of multiple concurrent monitors
listening on a shared event stream if the original property does not itself cater for any
event interleavings which can arise. Another assumption is that a QCFSA property is
self-contained, that is it does not depend on the execution of any particular setup or
initialisation functions prior to verification. External initialisation functions should be
incorporated into the property, either within the initial state data function or by
adding an explicit initialisation transition within the automaton.

While still sound, runtime monitors generated from properties with markedly restric-
tive preconditions may not be very effective. For runtime verification, preconditions should
be as broad as possible, only discounting traces which are known to be unproblematic.
QCFSAs should only attempt to direct searches by restricting the generation logic of the
automaton, leaving the set of testable traces large enough to encompass any interesting

Chapter 4. From QCFSAs to DATEs 87

event sequences which a system may emit.

This chapter focused primarily on the translation’s underlying theory, whereas the
next chapter describes the implementation of the translation and monitoring framework.
The analysis will also endeavour to address the issue of concurrent monitors through the
use of several monitoring policies that attempt to introduce context.

Chapter 5

Runtime Monitoring in Erlang

5.1 Introduction

The rationale behind this project is the automated integration of testing and runtime
verification. It is thus essential to demonstrate that the theoretical concepts presented
earlier for transforming QCFSAs into DATEs are not confined to models, and can be used
on the implemented property artefacts. In addition, translating QCFSAs into DATEs is
of little use if the resultant automata cannot be verified. Thus, a runtime monitoring
framework must also be developed to monitor DATEs in Erlang.

The following chapter details the implementation of a tool for automatically translat-
ing QCFSAs defined as Erlang modules into DATE scripts. The DATE script structure is
then elucidated, and variations between the DATE notations used within this project and
that of [Col08] are also identified. This is then followed by a description of the E-LARVA
runtime monitoring framework developed for monitoring DATEs in Erlang. When pre-
sented with a DATE script and the source code of the system under test, E-LARVA
interleaves the instrumentation code and generates all the necessary Erlang modules re-
quired for runtime monitoring, including one which implements the DATE monitor as a
server process. The runtime monitoring framework’s topology and use of arbiter processes
are explained, along with a definition of the object binding (or context) problem and the
mechanisms implemented to overcome it.

88

Chapter 5. Runtime Monitoring in Erlang 89

5.2 Overview

The translation of QCFSA properties into runtime monitors is carried out in two distinct
and consecutive phases, namely the

1. translation phase, where an Erlang module defining a QCFSA is converted into a
DATE script, and the

2. generation phase, where the modules implementing the runtime verification system
are generated from a DATE script and the source code of the system under test.

DATE
→
RV

Instrumented
SUT

Arbiter

Monitor FSA

DATE
QCFSA
→

DATE

QCFSA
Property

SUT
Source

Figure 5.1: The translation process

Both phases are carried out using a tool developed in Java for this project. The trans-
lation phase implements the constructions defined in Chapter 4 for translating QCFSA
models into DATEs. The generation phase serves a similar purpose as the LARVA [Col08]
runtime verification tool, instrumenting the system under test and generating executable
monitors from DATE properties. Thus, the generation tool will henceforth be referred to
as E-LARVA whenever a distinction between the two phases has to be made.

Although this discussion focuses on monitoring properties which are initially expressed
as QCFSAs, it should be emphasised that both phases can be performed independently
of each other. The translation tool can be applied to a QCFSA to generate an equivalent
E-LARVA DATE script, which could then be used as an input to other tools. Similarly,
E-LARVA is designed to accept any valid E-LARVA DATE script, and does not limit
itself to monitoring DATEs produced by the translation tool.

5.3 Translating Scripts

The following section describes the pertinent implementation details of a tool for convert-
ing Erlang modules defining QCFSAs into DATE scripts targeted for monitoring within
E-LARVA. It also gives an overview of the blocks that constitute a DATE script, and
highlights any differences between LARVA and E-LARVA script notations. Apart from a

Chapter 5. Runtime Monitoring in Erlang 90

textual description, the translator can also be configured to output a visualisation of the
DATE automaton using GraphViz 1.

5.3.1 Variations Between LARVA and E-LARVA DATEs

The reference implementation of the LARVA runtime monitoring framework for DATEs
described in [Col08] was designed for verification within a Java execution environment.
Consequently, certain language-specific design choices had to be modified in order to
facilitate monitoring within Erlang, as follows:

• Aside from the GLOBAL block, object-level contexts are not supported by Erlang
DATEs. In testing, and especially runtime verification, it is often desirable to en-
force properties for all instances of a given system entity or component [Col08]. For
example, one would often want to verify statements such as “the memory footprint
of an array’s elements must not exceed its allocation” over all data structures of the
type concerned, in this case, arrays. Through encapsulation, determining which en-
tities are affected by a system event in an object-oriented environment is simplified.
In contrast, keeping track of the system entities’ progress within an environment
lacking object-orientation, as in the case of Erlang, necessitates the use of additional
monitoring information.

Although the binding of monitors to individual system entities is not supported
directly by the Erlang DATEs notation, Section 6.5 describes mechanisms imple-
mented into E-LARVA for adding object tracking through enhanced instrumentation
and logging, with Section 6.5 detailing several experiments gauging their efficacy.

• Since Erlang variables are single-assignment, global variables are not allowed. The
omission of variables partially stems from the fact that Erlang lacks the notion of
globally-scoped variables. Nevertheless, support for module-level constants could
easily be added to an automaton. A straightforward way of doing this would be to
bind each constant to the return value of a function. Accesses to the constants from
within the code would then be replaced by calls to their respective function.

• Erlang DATEs do not support timer events, as the translation never produces them.
Initial iterations of QuickCheck did not support the checking of temporal properties
(other than event ordering, as dictated by the property’s transitions), although
recent versions2 include a temporal module which allows the placement of time
constraints on generated traces. Nevertheless, these properties exist outside the
QCFSA structure and operate on a complete trace, making them less conducive to
synthesis into runtime monitors.

1Project website: http://www.graphviz.org/ (last accessed July 2011)
2Version 1.22

Chapter 5. Runtime Monitoring in Erlang 91

5.3.2 DATE Script Structure

The following is a description of the blocks making up DATE scripts, highlighting any
differences between LARVA and E-LARVA script notations. Listing 5.1 is a complete
example of an E-LARVA DATE script that defines the automaton illustrated in Figure
5.2. The example is derived from the light-switch controller QCFSA analysed in Section
2.5.4, and contains all of the essential DATE script blocks.

on

off outon out

off

bad state

turn on\\

turn off\\

turn off\\

turn off out

\Result == off\

turn on\\

turn on out

\Result == on\

turn off out

\Result == on
\warning()

turn on out

\Result == off
\warning()

Figure 5.2: LARVA DATE automaton for the script defined in Listing
5.1. Arcs consist of event\condition\action triples.

The light switch is implemented by a module light, which exposes the turn on() and
turn off() functions. Each of these functions returns the light’s state after execution,
this being represented by the atoms on and off. The DATE property ensures that calling
either function will set the light to its correct state of illumination. So as to make the
automaton clearer, transitions that loop onto the same state are not being verified, the
precondition function’s implementation has been moved directly into the arc’s condition
clause, and the idle state has been removed since the initial QCFSA was total. More

Chapter 5. Runtime Monitoring in Erlang 92

complex DATEs translated from QCFSAs can be seen in the case studies presented in
Chapter 6.

IMPORTS

The IMPORTS block may contain one or more include directives. These directives will be
inserted within the imports list of the system under test.

EVENTS

The events block maps functions implemented in the system under test to a local event
name. Events may either be trigged on function entry or exit, the latter being triggered
just after a function generates a result but before control is returned to the calling process.

Event definitions are of the form

event name() = {MODULE : func(arg1, arg2, . . .)}

where func is the name of the implemented function being monitored in MODULE. A func-
tion may take one or more arguments, the value of which will be determined at runtime.
The function’s arguments can be accessed from within a transition’s condition and action
fields using the reserved word Args, which is a variable to which the argument list is
assigned. The use of the Args variable will be elaborated on further in the forthcoming
exposition of the TRANSITIONS block.

To trigger an event on a function’s exit, the uponReturning(Result) construct is
used. Thus, an exit event would be of the form

event name(Result) = {MODULE : func(arg1, arg2, . . .)uponReturning(Result)}

The function’s result will be bound to the Result variable by the runtime verification
engine, where Result is a reserved word used expressly for this purpose. For an exit event,
the Result variable’s value will be known and can be accessed from within a triggered
transition’s condition and action fields.

PROPERTY

A property is a block that defines an automaton which detects and classifies system states.
It is formulated using two components, namely states and transitions. An automaton’s
states can be accepting, bad, normal or starting. A state’s type is set by defining that
state’s name within the relevant type’s block. Every state may also be assigned a state
action, which is executed as soon as the automaton enters that state. For example, on
entering the starting state defined on Line 27 of Listing 5.1, the system calls the turn on()

function to ensure a consistent starting state. State names must be unique throughout
the state block, and cannot be of more than one type.

Chapter 5. Runtime Monitoring in Erlang 93

Listing 5.1: DATE script for verifying the light-switch controller� �
1 IMPORTS {
2 − i n c l u d e l i b (“eqc / inc lude / eqc fsm . h r l ”) .
3 }
4
5 GLOBAL {
6 EVENTS {
7 turn on () = { l i g h t : turn on ()}
8 turn on out (Result) = { l i g h t : turn on () uponReturning (Result)}
9 t u r n o f f () = { l i g h t : t u r n o f f ()}

10 t u r n o f f o u t (Result) = { l i g h t : t u r n o f f () uponReturning (Result)}
11 }
12
13 PROPERTY l i g h t {
14 STATES {
15 ACCEPTING {
16 }
17 BAD {
18 bad s ta t e {}
19 }
20 NORMAL {
21 on out {}
22 o f f o u t {}
23 o f f {}
24 }
25 STARTING {
26 on { l i g h t : turn on () }
27 }
28 }
29
30 TRANSITIONS {
31 on −> on [turn on \ \]
32 on −> o f f o u t [t u r n o f f \ \]
33 o f f o u t −> o f f [t u r n o f f o u t \ Result == o f f \]
34 o f f o u t −> bad s ta t e [t u r n o f f o u t \ Result == on \ warning ()]
35 o f f −> o f f [t u r n o f f \ \]
36 o f f −> on out [turn on \ \]
37 on out −> on [turn on out \ Result == on \]
38 on out −> bad s ta t e [turn on out \ Result == o f f \ warning ()]
39 }
40 }
41
42 METHODS {
43 warning () −> i o : format (“Light mal funct ion !”) .
44 }
45 }� �

Chapter 5. Runtime Monitoring in Erlang 94

An automaton must define a single starting state. The other valid state types and
their purpose are enlisted below:

Type Purpose
Normal Signifies a normal system state. No additional action is taken.

Accepting Automaton is in a valid end state and can be terminated. This
state type serves primarily as a hint for the underlying runtime
verification system, and otherwise behaves identically to a nor-
mal state.

Bad The automaton’s property has been violated, and execution
stops. Any associated state actions are called prior to the
automaton’s termination.

Transitions are defined within the TRANSITIONS block. The general form of a transition
is given as

S→ S′ [event\condition\action]

which means that if the runtime monitor receives event when in state S, then the automa-
ton will execute action and move to the next state S′, provided that condition returns
true. The condition field can be left out, in which case the default value of true is
assumed. Similarly, omitting the action field will result in no additional state-changing
operations being carried out prior to performing the transition. The event field must
specify the event name, and takes no arguments.

The condition and action fields have access to the arguments with which the related
event’s function was invoked. Arguments are stored within a list Args, whose scope
is local to that transition. In addition, events that are triggered on a function’s exit
(specified using the uponReturning() construct) will have the function’s return value
bound to the Result variable, which may also be accessed from within the condition and
action blocks.

METHODS

The methods3 block allows one to implement any necessary ancillary functions, which can
then be invoked from within the automaton.

5.3.3 The Implemented Translation

Many elements within QCFSAs correspond directly to DATE script elements. Given that
the data store and retrieve function stateData() operates as defined in Section 4.4.2,
DATE script elements are built as follows:

3Erlang uses functions, not methods. The latter name was chosen so as to directly mirror its counter-
part in Java DATE scripts.

Chapter 5. Runtime Monitoring in Erlang 95

� �
IMPORTS {
−compi le (e x p o r t a l l) .

}

GLOBAL {
EVENTS {

f () = {Mod: f (Args)}
f o u t (Result) = {Mod: f (Args) uponReturning (Result)}

}

PROPERTY qc prop {
STATES {

ACCEPTING { i d l e s t a t e {} }
BAD { bad s ta t e {} }

NORMAL {
s ON f {}
s ’ {}

}
STARTING {

s {
stateData (StateServ , Dinit)

}
}

}

TRANSITIONS {
}

}

METHODS {

}
}� �

� �
−module(qc prop) .
−compi le (e x p o r t a l l) .� �

� �
i n i t i a l s t a t e () −> s .� �

� �
i n i t i a l s t a t e d a t a () −> Dinit .� �

� �
s (D) −> [{s ’ , { c a l l , Mod, f , [Args]}}] .� �

� �
precond i t i on (S , S ’ ,D, Ca l l) −> · · ·
pos t cond i t i on (S , S ’ ,D, Cal l , Result) −> · · ·
n e x t s t a t e d a t a (S , S ’ ,D, Result , Ca l l) −> · · ·� �

Figure 5.3: Mapping QCFSA script elements to their equivalents in
DATEs (transition block is omitted)

• The property name is taken from the name of the module within which the QCFSA
is defined.

• The include and compiler directives list is copied into the IMPORTS block.

• The list of events is extracted from the function call tuple defined for each transition.
An entry and exit event is generated for every unique function and argument pair.
The return value is assigned to Result.

• The start state is taken from the initial state() function’s return value.

• The initial state data is set from within the starting state’s state-entry action. On
entering the start state, the automaton invokes the stateData function with the

Chapter 5. Runtime Monitoring in Erlang 96

return value of the initial state data() function as an argument. An alterna-
tive design could invoke the initial state data() function directly from within
stateData’s parameter list.

• The precondition, postcondition and next state data functions are copied into
the METHODS block. Any additional functions defined within the QCFSA module that
do not form part of the automaton structure are also copied.

• The ACCEPTING and BAD state blocks are automatically populated by the idle and
bad states produced by the translation, respectively.

• Every state which appears within the right-hand side of a transition is added to the
NORMAL state block.

• Intermediate states created when splitting events (Section 4.4.2) are automatically
created for each outgoing arc in the QCFSA and are named using a combination of
the source state and event names.

As described in Chapter 4, the initial QCFSA is first rendered total, after which
transitions are split using intermediate states. The TRANSITIONS block is then populated
by mapping each transition in the resultant QCFSA to the general DATE transition form
described in Section 5.3.2.

5.4 Runtime Monitoring DATEs in Erlang

Given the source code of the system under test and the property being verified, the
translator will automatically generate three artefacts, namely:

• The instrumented system under test, with instrumentation code inserted at the entry
and exit point of each function. Events are sent to the runtime monitoring system
using Erlang messages.

• An implementation of the DATE monitor as a server process which listens for events
in the form of Erlang messages and updates its state as necessary.

• An arbiter program which mediates between the instrumentation points and the
monitor processes.

On startup, named arbiter processes are spawned for every DATE property that must
hold during the program’s execution. For example, if a system is being monitored for
the properties φ and ϕ, two arbiter processes φARB and ϕARB will be spawned, with each
arbiter handling one of the property types. Which functions are instrumented depends on
the traces with which the properties are concerned. Given that φf is the set of functions
that appear at least once within any trace in φ’s set of testable traces, every function in φf
would forward its entry and exit events to φARB, and the same would apply for property

Chapter 5. Runtime Monitoring in Erlang 97

φARBstream1 φ1
MON

Figure 5.4: Arbiter mediating between events generated by the system
under test and the property monitor

ϕ. Any functions in φf∩ϕf would forward messages to both arbiters, although the system
does not place any formal guarantees as to which arbiter would receive a message first.

It is conceivable that multiple instances of a given monitor type are required to execute
concurrently. These monitors tend to be concerned with the verification of a system
element of which multiple instances exist. For example, one may want to verify that no
bounded buffers in use by the system will overflow. Such a property could be written in
at least two ways. The first approach would be to create an automaton which receives
events from all buffer access operations and keeps track of their counts using its private
state data, yet this approach suffers from scalability issues. The second, more natural
way of writing this property would be to create a monitor that verifies a single buffer,
and subsequently spawn a separate monitor for each buffer in the system. The property’s
arbiter would serve as an exchange, allocating and maintaining a mapping of buffers to
monitors, forwarding messages and spawning new monitors as required, whilst keeping
monitors oblivious to concurrency. The instrumentation code will always communicate
with the relevant arbiter and lets it manage event re-routing. The process of binding and
mapping clients to monitors is intricate and property-dependent, and will be discussed in
greater detail in Section 5.4.3.

Other than entity binding and message routing, the arbiter also discards events that
arrive between an entry and exit event based on their unique identifier, as described in
Section 4.4.2. This allows the monitor’s code to be written to only accept the correct
exploded QCFSA event stream without having to cater for intermediate actions. Finally,
arbiters maintain logs of all the events that they receive, listing the event details such as
type (entry or exit) and the associated function’s arguments, if it has any. The logs also
show whether events have been forwarded to the relevant monitors, whether new monitors
have been spawned and the result of a monitor taking a transition.

5.4.1 Instrumentation

Functions are instrumented through the use of a trampoline function, as described in
Section 4.4.2. To demonstrate, consider the following function to be monitored which,
given a record of type data, returns the s element for n times.� �

1 −r ecord (data , {s : : s t r i n g () , n : : integer () , id : : integer ()}) .
2
3 repeat (Data = #data{s=S , n=N}) −>
4 l i s t s : concat (l i s t s : d u p l i c a t e (N, S)) .� �

Chapter 5. Runtime Monitoring in Erlang 98

When instrumented, the function is replaced with the following code:� �
1 −r ecord (data , {s : : s t r i n g () , n : : integer () , id : : integer ()}) .
2
3 da t e r epea t (Data = #data{s=S , n=N}) −>
4 l i s t s : concat (l i s t s : d u p l i c a t e (N, S)) .
5
6 repeat (P1 = Data = #data{s=S , n=N}) −>
7 ID = ?ARBITER: nextID () ,
8 proceed=?ARBITER: send event(#event{from=s e l f () ,
9 event=repeat , a rgs=[P1] , r e s u l t=no var , id=ID}) ,

10
11 DATE Result = date r epea t (P1) ,
12
13 proceed=?ARBITER: send event(#event{from=s e l f () ,
14 event=repeat out , a rgs=[P1] , r e s u l t=DATE Result , id=ID+1}) ,
15 DATE Result .� �

The instrumentation of a given function is performed through a series of steps, as
follows:

1. The arbiter to which an event should be forwarded should be identified. In this
case, ?ARBITER refers to the module within which it is defined.

2. The original repeat function is renamed to another unique name by prepending
date to the function header, leaving the body unchanged. An instrumented func-
tion with the original name will be generated, within which a call to the renamed
function will be performed. Using the instrumented trampoline function instead of
instrumenting the original function directly avoids having to analyse the function’s
control flow and exit points and simplifies the collection of its result. Renaming the
function is necessary, as otherwise the program’s calls to the original function will
not be monitored.

3. The new trampoline is created. Executing the trampoline will

(a) Poll a server process exposed by the arbiter that will return a new, unique
integer. Calls to the nextID() function will cause the server’s stored value to
be incremented by 2.

(b) Forward the entry event to the arbiter using a transmit operation implemented
within the arbiter module. The #event record contains all of the necessary
instrumented values, namely the event name, originating process’ PID, the
arguments list with which the function was invoked and the event’s unique
identifier.

(c) Invoke the original function with the original arguments whilst storing the
result in an intermediate value.

(d) Send an exit event to the arbiter once the function terminates. Unlike the first
event transmission, this event will also contain the function’s return value. As

Chapter 5. Runtime Monitoring in Erlang 99

described earlier, the exit result’s ID is equal to the entry event’s identifier,
plus one.

(e) Return the original function’s result so as not to break compatibility with other
parts of the program that make use of the function.

When creating the instrumented trampoline function, it is important that the func-
tion’s arguments are bound to temporary values within the function’s signature, and
that references to arguments within the instrumentation code (when setting the #event
record’s args field) are made using these new references.

Consider the following alternative implementation of the trampoline, where the use
of the temporary variable P1 is omitted, and instead references to the arguments are
performed by simply copying the function’s parameter list.� �

1 repeat (Data = #data{s=S , n=N}) −>
2 ID=?ARBITER: nextID () ,
3 proceed=?ARBITER: send event(#event{from=s e l f () ,
4 event=repeat , a rgs=[Data=#data{s=S , n=N}] ,
5 r e s u l t=no var , id=ID}) ,
6
7 DATE Result = date r epea t (Data=#data{s=S , n=N}) ,
8
9 proceed=?ARBITER: send event(#event{from=s e l f () ,

10 event=repeat out , a rgs=[Data=#data{s=S , n=N}] ,
11 r e s u l t=DATE Result , id=ID+1}) ,
12 DATE Result .� �

If the function were to be called with a #data record with all three fields defined (s,
n and id), the system would bind S and N to the structure’s value, and would bind the
structure with which the function was called to Data. The problem arises in line 4 due to
Erlang’s single assignment mechanism. All three fields of Data are defined, yet it is being
assigned the value of #data{s=S, n=N}. As the latter record does not specify a value
for id, Erlang will give this field the default value of undefined, causing the function to
fail. The use of temporary values avoids such issues by always making use of the original
argument value with which the function was invoked. These variables are assigned as the
leftmost term within the argument. It should be noted that one cannot simply replace the
function’s existing argument list with corresponding temporary variables, as this could
damage the function’s intended control flow by altering its pattern matching logic.

Emitting events from the SUT is a blocking operation. The SUT sends an event to
an arbiter and waits until a proceed message is received. This simple two-way barrier
synchronisation ensures that the automaton will always evolve in tandem with the system.

5.4.2 The DATE Monitor

The DATE monitor is implemented using a server process that listens for messages con-
taining events generated by the instrumentation code that has been inlined into the system

Chapter 5. Runtime Monitoring in Erlang 100

under test. The next state to which the automaton will move will depend on the outgoing
transition chosen.

Listing 5.2: Outline of a DATE Monitor. State contains the current
automaton state, while StateServ is the PID of the state-data store.� �

1 e v e n t s e r v e r (StateServ , State) −>
2 case (l i s t s : member(State , [bad s ta t e])) of
3 true −> bad s ta t e r eached ;
4 fa l se −> true
5 end ,
6
7 receive
8 E=#event{event=Event , args=Args , r e s u l t=Result} −> true
9 end ,

10
11 ?ARBITER: log (. . .) , % Log Automaton S t a t e
12
13 case {State , Event} of
14 {S , E} −>
15 case C of
16 true −>
17 NSDn = α ,
18 ?ARBITER: s end ob j e c t (NSDn) ,
19 e v e n t s e r v e r (StateServ , S′) ;
20 fa l se −>
21 true
22 end
23
24 · · ·
25 −> ?ARBITER: log (. . .) % Log Unexpected Event
26 end .� �

Listing 5.2 is an outline of the general form of a monitoring process. Every transition
(S,E,C, α, S ′) is translated into a case clause, as in lines 14 – 22. Since the arbiter filters
out intermediate events, the monitor will always be able to determine a next state given
an event, as the automaton will have been rendered total prior to its translation. NSDn
will contain the new state returned by the state-changing action α, and the variable name
is unique to each case clause. The send object function serves to signal to the arbiter
process that the SUT may proceed with its execution. The outline presented takes no
action on detecting a bad state. Other than as a signal, the function serves to communicate
back information to the arbiter. The precise mechanics of how this information is used
will be described in greater detail in the following sections.

Chapter 5. Runtime Monitoring in Erlang 101

5.4.3 Object Binding

Within a monitoring framework operating in an object-oriented environment, as that
described in [Col08], one has the facility to bind a property to an entire class of objects.
In general, one may write a a property φ that verifies a given single instance σ of class
Σ, and have the runtime monitor check that ∀σ : Σ · φ(σ). The system would associate
a monitor to every instance of Σ, and would ensure that φ holds for that object with its
private state.

φARB

stream1

stream2

stream3

...

streamN

φ1
MON

φ2
MON

φ3
MON

...

φNMON

Figure 5.5: Multiple event streams to multiple monitors. Multiple
streams may flow from a single process, and a single logical stream
may have events that originate from multiple processes.

It would be desirable for such a mechanism to exist within the Erlang DATE moni-
toring framework, primarily for monitoring operations on data structures, yet Erlang is
not object-oriented. Since operations are implemented as functions rather than methods,
one can only relate a function to a data structure by passing the object being considered
within the arguments list. Unlike instance methods, where the object on which the action
is being performed is evident, the idea of a function as an operation relative to a data
structure is conceptual and is not directly enforced by the Erlang system.

For example, consider the monitoring of a simple incrementing counter. Using object-
oriented programming, one would define a Counter class which exposes an increment()

method. An analogue in Erlang would be the creation of a #counter record and an
increment: : #counter → #counter function that returns an updated version of the
structure passed. In the former scenario, calling increment() would simply update the
object’s internal state. References to the object within the system would remain un-
changed, and any handles or object identifiers would remain consistent after the state
change. Conversely, the Erlang increment function does not explicitly specify the subject
of the operation, and modifications to the data structure are not manifested as updates
to the passed argument, rather as a newly returned structure. Keeping track of an object
within the system over its lifetime thus requires additional information or meta-data.

For the arbiter to be able to bind unique monitors to unique objects, it is essential that
a mechanism for tracking the objects over transformations is implemented. One effective
way of achieving this would be to encapsulate each monitorable datum within a unique
process and only allow modifications to the stored values through a well-defined interface.
In essence, this would solve the tracking issue by giving data structures a unique identifier

Chapter 5. Runtime Monitoring in Erlang 102

that persists over transformations. Such an approach, while simple to manage, would be
cumbersome to apply retroactively to a system that already exists, and would only be
viable when writing programs from scratch.

To overcome these issues, the arbiter launches and maps new monitors to objects based
on the variation of two policies, as follows:

One monitor per process from which an event has originated. On receiving an event
from a process P , the arbiter launches and initialises an automaton PM . Subsequent
events from P that concern PM are always sent to its associated monitor. This mode
can be used in the case of properties that must hold at the process level, or in cases
where the property being monitored is built to accept and handle events originating
from coexisting data structures. The downside of this mode is that it does not allow
multiple monitors of the same type to be bound to individual structures used within
the same process.

Monitor for every new structure of a given type. The function headers in the system
under test are augmented using tags, whereby the object variable is identified and
tagged within the arguments list (this requires that a function header always has
the object on which it is acting as one of the arguments). When sending an event,
the system under test also sends the value of the tagged parameter. Alternatively,
the arbiter must be able to deduce the bound object from the event’s arguments list.
When the arbiter receives an event from a process regarding an object for which it
has not yet spawned a monitor, it will launch a monitor and register the mapping.

So as to track updates to the object, the next state data function must compute
the object’s new value and store it within a defined field within the automaton’s
state data. This value is then transmitted from the monitor back to the arbiter,
which then updates the mapping of the object to the monitor. Transmitting no obj
to the arbiter signifies that the object mapping should not be updated for that event.

The point at which new monitors are spawned is based on two possible interpre-
tations of the for all quantifier. The first interpretation prohibits an arbiter from
spawning new monitors if it has received an entry event and is currently waiting for
the matching exit event. For example, if a call to increment makes internal use of
other #counters prior to returning, then these intermediate counters will not be
tracked. The second interpretation will launch a monitor for any previously-unseen
object of a given monitored data type, even if the event is emitted from within a
nested call.

As will be seen in Chapter 6, object binding policies can only be applied successfully
if the program’s behaviour is known entirely. For example, arbiters cannot discriminate
between streams using process IDs when actions on an object are carried out in separate
processes. Object binding also assumes that several events forming a stream can be related
to each other by a common data structure, and does not automatically isolate streams
based on the logical relationship between their events.

Chapter 5. Runtime Monitoring in Erlang 103

5.5 Conclusion

This chapter has described the implementation of the property translation tool and the E-
LARVA generation and runtime monitoring framework, which is designed to monitor any
DATE script that conforms to its specification. The function of the elements making up a
DATE script is described, and differences between DATEs as used within this project and
LARVA outlined. The theory behind the addition of context to properties is discussed.
In the next chapter, the translation and monitoring framework is examined and tested
extensively through a case study, with an emphasis on the evaluation of E-LARVA’s
context binding mechanisms.

Chapter 6

Case Study

6.1 Introduction

The following chapter documents various experiments conducted on the implementation
of the translation and monitoring framework outlined earlier. The aim of this exercise
is to assert that the translation works within the specified parameters, to gauge the
approach’s effectiveness and to determine any pitfalls which may arise when moving from a
formal construction to its concrete implementation. In particular, the case study analyses
the issue of concurrently-executing monitors and attempts to introduce mechanisms for
handling context. It also serves to determine whether the translation is general enough
to accept any valid QCFSA as an input, and any considerations which have to be made
if it is not.

The case study consists of the translation and verification of four QCFSA properties
on Riak, an open-source distributed database written in Erlang. Each property attempts
to analyse some aspect of the property creation and translation process, investigating the
effects of event granularity, event interleavings, object binding and incoherence between
an automaton’s state data and the system’s state.

6.2 Riak

The Riak1 fault-tolerant distributed database was chosen as the system to be tested. Riak
is an open-source project written in Erlang, and it is used by several large companies
and organisations [Bas11]. Its implementation incorporates many different programming
concepts, which offer varying scenarios for verifying data structures, control flow and
interprocess communication. The following is an overview of Riak’s core functionality and
its high-level operations, continuing with a discussion of its topology and its mechanisms
for robust data storage.

1Project website: http://www.basho.com/ (last accessed July 2011)

104

Chapter 6. Case Study 105

6.2.1 Core Functionality

At a high level, Riak is a database which functions as an associative array (or dictionary),
mapping keys to data items. Every data element stored within the database has a corre-
sponding unique key. Given a key, the system will search for the element to which that
key value is mapped, returning the object if it exists within the database. In addition
to keys, Riak allows multiple concurrent key spaces, or buckets, to exist within the same
database instance. Buckets can be seen as separate dictionaries managed by the same
infrastructure. Each element in the data store can thus be identified by a 〈bucket, key〉
pair, which maps to the stored value. Consequently, while keys within the same bucket
must be unique, keys need not be unique across all buckets. The mapping between a given
bucket and key pair and a data element is defined using a Riak object data structure. This
structure also contains other system-managed fields such as timestamps.

At its core, the system gives a connecting client the ability to

• create an object, associating a 〈bucket, key〉 with a value

• insert an object into the database

• retrieve or delete an object given a 〈bucket, key〉

• update or extract a Riak object’s data value

Riak also provides additional functionality, such as the ability to list all the keys
associated with a given bucket, or to list all registered buckets.

6.2.2 Topology

Riak differs from a simple dictionary in that it is designed to operate within a distributed
environment. The system is hosted over one or more physical servers, or nodes, with the
database’s elements residing across these nodes. The distributed nature of the database
is transparent to the accessing process, and requests to the database can be sent to any
of the participating nodes, with Riak mediating communications between nodes. When a
node receives a request to insert an object into the database, Riak must decide where the
object will be stored. As Riak aims for fault tolerance through replication, multiple copies
of the object are made over a number of nodes. Similarly, when a request to retrieve an
item is received, the system must be able to determine which nodes host the object under
consideration. Several system variables, such as the number of nodes to which objects
must be replicated, can be fine-tuned depending on the underlying infrastructure and the
system requirements.

The location of objects is resolved through the use of hashing and key-space parti-
tioning. Each node is allocated a number of equally-sized and non-intersecting ranges, or
partitions, of a 160-bit integer space, with the entire integer space being allocated. When
performing a database operation, an object’s bucket and key value pair is hashed to a
value within the integer-space. If the resultant value falls within a given node’s range,

Chapter 6. Case Study 106

then that node must handle the operation, storing or retrieving the object in question.
The partitioning of the integer-space and the mapping of partitions to nodes is stored
within a data structure known as a ring.

Interface

Request 〈bucket, key〉

Physical
Nodes

1 2 3

vnodes (1:1
partition)

1 2 3 1 2 · · · 2 3

Ring
0 2160

Figure 6.1: Riak topology for three nodes

Figure 6.1 illustrates the topology of a Riak cluster running over three physical nodes.
A request can be sent to any of the three nodes. Ring partitions are not controlled directly
by physical nodes. Instead, every partition is bound to a virtual node, or vnode, which is
in turn owned by a physical node.

Nodes propagate their local view of the ring to other nodes via a gossip protocol
[vRDGT08]. When a node changes its allocation of partitions over the ring, it communi-
cates the local updated ring structure to other nodes in the cluster, which in turn reconcile
their view with the new ring. Nodes also periodically advertise their ring so as to increase
the probability of convergence to a globally-shared ring view.

Ideally, partitions should be distributed evenly amongst physical nodes, with consec-
utive partitions being owned by different nodes. Thus for N nodes, partitions should be
spaced with a periodicity of N, that is, partitions belonging to the same node should be
distanced by N-1 intermediate partitions. In general,

vnodes/node ≈ # partitions

nodes

6.2.3 Replication

As mentioned previously, Riak attempts to provide fault tolerance through replication.
The degree of replication is controlled by the N-value, which specifies the number of

Chapter 6. Case Study 107

partitions to which an object must be written. The N-value is set at either the node or
bucket level. If the ring is evenly partitioned over a multi-node cluster, then the system’s
resilience to failing nodes will increase, as there will still be multiple copies of an object
available should some of the nodes go offline.

Whenever a node executes a read or write request, it reports the operation’s result
back to the process managing that transaction. This allows database operations to specify
a minimum number of reported successes for the operation to be considered as having
executed correctly. For insert operations, this is known as the W-value. Similarly, fetch
operations may specify a minimum R-value. Subtracting the W-value or R-value
from the N-value gives the number of nodes that can fail before the operation becomes
unreliable.

Operation Value Type Tolerance
Get (Read)
Put (Write)

R
W

N−R
N−W

Table 6.1: Value types and related operation. Tolerance refers to the
number of nodes which can fail before the transition fails.

Once nodes receive and process a write request, they commit the final values to perma-
nent storage. This operation also results in a reply being generated to the transmitting
process. Thus, insert operations may specify an additional durable-write threshold, or
DW-value, to set the minimum number of reported successful commits.

6.3 Translated Properties

The following section details the translation and performance of four QCFSA automata
into equivalent DATE monitors. Each automaton attempts to gauge the translation’s
effectiveness under different scenarios, with a complete analysis of the generated results
presented in Chapter 7. To avoid cluttering automata unnecessarily, any DATEs described
forego the splitting of self-looping transitions on the idle state. This will not affect the
monitor’s set of testable traces or its classification capabilities.

Different modes of object tracking and variations on the approaches presented will be
analysed. With object tracking disabled, the system defaults to launching a monitor per
individual process. Alternatively, the arbiter can be set to maintain only one automaton
for every property type, and forward all of the pertinent events to it irrespective of the
point of origin.

The choice of policy depends greatly on the executing program’s behaviour. For ex-
ample, certain procedures in Riak execute individual steps within separate processes. An
automaton describing such a procedure must be set to receive events from multiple instru-
mentation points within different processes2. On the other hand, maintaining a monitor

2If events originate from multiple processes, then the guarantees on event ordering no longer hold. To
ensure correct monitoring, the system under test should avoid calling monitored functions pertaining to

Chapter 6. Case Study 108

for every separate process could allow coexisting processes to each be monitored. Such
a scenario would be particularly common when monitoring systems that allow multiple
concurrent connections (as does Riak) managed by separate dedicated processes.

All test cases were executed on Riak running across three Erlang nodes (dev1, dev2
and dev3) hosted within the same physical system (localhost or 127.0.0.1). All Riak
operations performed during the test are initiated from dev1.

6.4 Case 1: Coarse-grained Operations

Analyses: basic monitoring scenario, application of high-level Riak operations

6.4.1 Property Description

The first property serves primarily as a sanity test, and investigates the permanence
of Riak objects within the database by repeatedly inserting and retrieving objects and
confirming their consistency. Operations are performed using two high level functions,
put2(Obj) and get2(Bucket, Key), which connect to the database and invoke put

and get, respectively. The property is coarse-grained in terms of the level of detail at
which the control flow is being analysed, as it concerns itself with high-level operations
without testing the intermediate steps taken when executing them. The granularity at
which the system is examined depends largely on the instrumentation points available
and the property that must be verified. Section 7.2.1 exposes a more complete analysis
of the issue.

running

put2(O)

get2(B,K)

Figure 6.2: QCFSA for coarse-grained object insertion and retrieval

Figure 6.2 is a single-state QuickCheck automaton that generates sequences of in-
sertion and retrieval operations (Listing 6.1 describes the complete automaton). The
automaton keeps track of which objects have already been inserted through the use of
its private state data, and ensures that fetch operations for objects that have previously
been inserted will succeed. The property will only fail when an attempt to fetch an object

the same monitor from within separate processes, or alternatively, it should enforce a strict ordering on
event generation.

Chapter 6. Case Study 109

which has been inserted into the system returns a different object. In essence, the prop-
erty keeps track of insertion and retrieval operations on a simple, local data store model
and ensures that operations are mirrored correctly by the database.

running

running
ON put2

running
ON get2

idle state

bad state

0:put2

0:put2 out

1:put2 out

1:put2

3:get2

2:get2

0:get2 out
1:get2 out

0:get2 out

1:put2 out

2:get2

3:put2

Figure 6.3: DATE for coarse-grained object insertion and retrieval. The
index accompanying each event specifies the order in which transitions
are checked. This ranking is derived from the order in which transition
declarations appear in the DATE script [Col08].

The automaton maintains two fields within its state data record, the objects dictio-
nary and gen obs list. The former is used to maintain a list of keys that have already
been bound, and is used to ensure that if the object was inserted, then it must be re-
turned by a fetch operation with that object’s bucket and key pair. The latter specifies
a pool of pre-generated Riak database objects which will be used as arguments for the
Riak operations. As described in Section 4.6.2, this keeps the generation aspect of the
automaton separate from its functions as a recogniser, which facilitates the translation
process.

When operating as a QuickCheck automaton, it is necessary that the pool of objects
be pre-determined rather than built during traversal, so as to ensure that the precondi-
tions and state data transformations produce matching results during the generation and
execution passes (Section 2.5.4). Naturally, hard-coding initial state conditions may be
limiting, as it restricts the set of values with which the tests can be run. The case study

Chapter 6. Case Study 110

Listing 6.1: QCFSA property for coarse-grained operations� �
1 −module(kv putcoarse) .
2 − i n c l u d e l i b (“eqc / inc lude / eqc fsm . h r l ”) .
3 −compi le (e x p o r t a l l) .
4
5 −d e f i n e (SUT, r i a k c l i e n t) .
6 −record (s ta te , { o b j e c t s : : term () , gen obs : : l i s t ()}) .
7 −record (r o b j e c t , {bucket : : term () , key : : term () ,
8 content s : : term () , vc lock : : term () ,
9 updatemetadata : : term () , updatevalue : : term ()}) .

10
11 put2 (O) −> {ok , C} = r i a k : c l i e n t c o n n e c t (‘dev1@127 . 0 . 0 . 1 ’) , C:put (O) .
12 get2 (B,K) −> {ok , C} = r i a k : c l i e n t c o n n e c t (‘dev1@127 . 0 . 0 . 1 ’) , C: get (B, K) .
13
14 i n i t i a l s t a t e () −> running .
15
16 i n i t i a l s t a t e d a t a () −>
17 #s t a t e{ o b j e c t s=d i c t : new () ,
18 gen obs=[r i a k o b j e c t : new(<<“t e s tbucke t”>>, <<“te s tkey1”>>, t e s t 1) ,
19 r i a k o b j e c t : new(<<“t e s tbucke t”>>, <<“te s tkey2”>>, t e s t 2) ,
20 r i a k o b j e c t : new(<<“t e s tbucke t”>>, <<“te s tkey3”>>, t e s t 3) ,
21 r i a k o b j e c t : new(<<“t e s tbucke t”>>, <<“te s tkey4”>>, t e s t 4)]} .
22
23 running(# s t a t e{gen obs=[#r o b j e c t{bucket=B, key=K}=G|]}) −>
24 [{running , { c a l l , ?MODULE, put2 , [G]}} ,
25 {running , { c a l l , ?MODULE, get2 , [B, K]}}] .
26
27 pre cond i t i on (, , ,) −> true .
28
29 po s t cond i t i on (running , running ,# s t a t e{ o b j e c t s=Os} ,{ c a l l , ,Op, Args} , Res) −>
30 case Op of
31 put2 −> true ;
32 get2 −>
33 [B, K] = Args ,
34 Key= {B,K} ,
35 {Code , Obj} = Res ,
36 case d i c t : i s k e y (Key , Os) of
37 true −> (Code == ok) and
38 (d i c t : f e t c h (Key , Os) ==
39 r i a k o b j e c t : g e t v a l u e (Obj)) ;
40 fa l se −> true % may have been added through some oth er proc es s
41 end
42 end .
43
44 n e x t s t a t e d a t a (, ,D=#s t a t e{ o b j e c t s=Os , gen obs=Gs} , , { c a l l , ,Op, Args}) −>
45 case Op of
46 put2 −>
47 [New = #r o b j e c t{bucket=Bucket , key=Key}] = Args ,
48 [G|Gen] = Gs ,
49 D#s t a t e{ o b j e c t s=d i c t : s t o r e ({Bucket , Key} ,
50 r i a k o b j e c t : g e t v a l u e (New) , Os) ,
51 gen obs=(Gen++[G])} ;
52 get2 −> D
53 end .� �

Chapter 6. Case Study 111

presented in Section 6.6 avoids setting fixed initial conditions within the automaton. Re-
call that QCFSA automata are used as arguments to a generator function commands(),
which is in turn used within a QuickCheck property. In addition to a QCFSA, the
commands() generator can also accept a list of arguments to be passed to the automaton’s
initial state data function. This allows object pools to be generated using QuickCheck
generators, with the results being used as initial conditions to an automaton. The advan-
tages of the latter approach are numerous, as will be discussed in Section 7.2.2.

6.4.2 Operation and Results

Listing 6.2 shows the DATE derived from the QCFSA property. Although the QCFSA
consists of merely one state and two transitions, the blow-up experienced under transfor-
mation is appreciable. As mentioned earlier, the number of states in an automaton would
not in itself affect the performance of runtime monitoring, as the monitor is employed as
a recogniser and the system does not attempt to explore the state space in advance. On
the other hand, the out-degree of a node will determine the number of comparisons that
the system would have to perform in order to choose the next state (at worst, all the
outgoing transitions would have to be checked).

Figure 6.4 is a sequence diagram showing the communication that occurs between the
monitoring entities when insert and retrieve operations are executed consecutively. The
monitor spawning policy is to bind a new monitor to every unique PID from which events
originate. The original call to put2 is passed a Riak object O. The first call inserts a
Riak object O into the system, whereas the second call attempts to retrieve an inexistent
object at the bucket and key location 〈<< “b”>>,<< “notexist”>>〉3, which returns an
error. Events from the System Under Test to the arbiter are uniquely numbered, and the
arbiter only forwards paired entry and exit events to the monitor. Entry events have an
unknown return value no var, as the function will not yet have executed.

On the first entry event, the arbiter spawns a new monitor to handle subsequent
events that originate from the System Under Test (SUT). Calls from the SUT to the
arbiter process are blocking, and the program will only continue with its execution once
a proceed message originating from the arbiter is received. On being spawned, the
monitor is automatically initialised to its correct starting state as dictated by the property.
Likewise, its state data server process is launched and assigned the monitor’s initial state
data. If the object’s inexistence within the system were to signify a system failure, then
the final exit event would have placed the automaton into a bad state.

As formulated, the precondition function always evaluates to true, thus allowing the
automaton to monitor any interleaving of get2 and put2 operations. The property only
checks that a get2 operation retrieves the correct object if the object being fetched has
been inserted during the monitor’s lifetime. This is because the automaton stores the
inserted object list within its own private data. Thus, the system will not check the
validity of objects that have been inserted by another process or by the same process

3The << >> operator converts the given value into its binary representation. Buckets and keys must
be binary values.

Chapter 6. Case Study 112

SUT1

〈0.53.0〉 Arbiter
Mon1

〈0.56.0〉

0: put2(O)=no var

spawn
running

put2
running

ON put2Obj=no obj

proceed

1: put2 out(O)=ok

put2 out
running

Obj=O

proceed

2: get2(〈〈 “b” 〉〉, 〈〈 “notexist” 〉〉)=no var

get2
running

ON get2Obj=no obj

proceed

3: get2 out(〈〈 “b” 〉〉, 〈〈 “notexist” 〉〉)={error, notfound}

get2 out
running

Obj=O

proceed

Figure 6.4: Sequence diagram for put() followed by a get() for a non-
existing object

prior to the commencement of runtime monitoring. Ensuring that the model of the
data store is coherent across processes would require that operations performed from any
process also operate on a shared data store. This would complicate the data store model,
introducing concurrency and ordering issues, which could in turn lead to the monitor
malfunctioning as a classifier by allowing unwanted behaviours to remain undetected. In
addition, the property assumes that objects inserted in the system are immutable, and
can only be updated through a fresh call to put2. This assumption would have to be
revised if updates are to be allowed, as the process would not be atomic.

Chapter 6. Case Study 113

Listing 6.2: DATE script for coarse-grained operations� �
1 IMPORTS {
2 −compi le (e x p o r t a l l) .
3 }
4
5 GLOBAL {
6 EVENTS {
7 put2 () = {kv putcoarse : put2 (A)}
8 get2 () = {kv putcoarse : get2 (A,B)}
9 ge t2 out (Result) = {kv putcoarse : get2 (A,B) uponReturning (Result)}

10 put2 out (Result) = {kv putcoarse : put2 (A) uponReturning (Result)}
11 }
12
13 PROPERTY pc {
14 STATES {
15 ACCEPTING {
16 i d l e s t a t e {}
17 }
18 BAD {
19 bad s ta t e {}
20 }
21 NORMAL {
22 running ON get2 {}
23 running ON put2 {}
24 }
25 STARTING {
26 running {
27 stateData (StateServ ,
28 #s t a t e{ o b j e c t s=d i c t : new () , gen obs=[
29 r i a k o b j e c t : new(<<“t e s tbucke t”>>, <<“te s tkey1”>>, t e s t 1) ,
30 r i a k o b j e c t : new(<<“t e s tbucke t”>>, <<“te s tkey2” t e s t 2) ,
31 r i a k o b j e c t : new(<<“t e s tbucke t”>>, <<“te s tkey3” t e s t 3) ,
32 r i a k o b j e c t : new(<<“t e s tbucke t”>>, <<“te s tkey4”>>, t e s t 4)]})
33 }
34 }
35 }
36
37 TRANSITIONS {
38 running −> running ON put2 [put2 \
39 precond i t i on (running , running , stateData (StateServ) ,
40 { c a l l , kv putcoarse , put2 , Args}) \]
41 running ON put2 −> running [put2 out \
42 pos t cond i t i on (running , running , stateData (StateServ) ,
43 { c a l l , kv putcoarse , put2 , Args} , Result) \
44 stateData (StateServ , n e x t s t a t e d a t a (running , running ,
45 stateData (StateServ) , Result ,
46 { c a l l , kv putcoarse , put2 , Args}))]
47 running ON put2 −> bad s ta t e [put2 out \
48 ! pos t cond i t i on (running , running , stateData (StateServ) ,
49 { c a l l , kv putcoarse , put2 , Args} , Result) \]
50 running −> i d l e s t a t e [put2 \
51 ! precond i t i on (running , running , stateData (StateServ) ,
52 { c a l l , kv putcoarse , put2 , Args}) \]
53 running −> running ON get2 [get2 \
54 precond i t i on (running , running , stateData (StateServ) ,

Chapter 6. Case Study 114

55 { c a l l , kv putcoarse , get2 , Args}) \]
56 running ON get2 −> running [get2 out \
57 pos t cond i t i on (running , running , stateData (StateServ) ,
58 { c a l l , kv putcoarse , get2 , Args} , Result) \
59 stateData (StateServ , n e x t s t a t e d a t a (running , running ,
60 stateData (StateServ) , Result ,
61 { c a l l , kv putcoarse , get2 , Args}))]
62 running ON get2 −> bad s ta t e [get2 out \
63 ! pos t cond i t i on (running , running , stateData (StateServ) ,
64 { c a l l , kv putcoarse , get2 , Args} , Result) \]
65 running −> i d l e s t a t e [get2 \
66 ! precond i t i on (running , running , stateData (StateServ) ,
67 { c a l l , kv putcoarse , get2 , Args}) \]
68 i d l e s t a t e −> i d l e s t a t e [get2 out \ \]
69 i d l e s t a t e −> i d l e s t a t e [put2 out \ \]
70 i d l e s t a t e −> i d l e s t a t e [get2 \ \]
71 i d l e s t a t e −> i d l e s t a t e [put2 \ \]
72 }
73 }
74
75 METHODS {
76 pre cond i t i on (, , ,) −> true .
77
78 po s t cond i t i on (running , running ,# s t a t e{ o b j e c t s=Obs} ,
79 { c a l l , , Op, Args} , Result) −>
80 case Op of
81 put2 −>
82 true ;
83 get2 −>
84 [B, K] = Args ,
85 Key= {B,K} ,
86 {Code , Obj} = Result ,
87 case d i c t : i s k e y (Key , Obs) of
88 true −> (Code == ok) and (d i c t : f e t c h (Key , Obs) ==
89 r i a k o b j e c t : g e t v a l u e (Obj)) ;
90 fa l se −> true
91 end
92 end .
93
94 n e x t s t a t e d a t a (, , D=#s t a t e{ o b j e c t s=Obs , gen obs=Gens} , ,
95 { c a l l , , Op, Args}) −>
96 case Op of
97 put2 −>
98 [New = #r o b j e c t{bucket=Bucket , key=Key}] = Args ,
99 [G|Gen] = Gens ,

100 D#s t a t e{ o b j e c t s=d i c t : s t o r e ({Bucket , Key} ,
101 r i a k o b j e c t : g e t v a l u e (New) , Obs) , gen obs=(Gen++[G])} ;
102 get2 −> D
103 end .
104
105 put2 (O) −> {ok ,C} = r i a k : c l i e n t c o n n e c t (‘dev1@127 . 0 . 0 . 1 ’) ,C:put (O) .
106
107 get2 (B,K) −> {ok ,C} = r i a k : c l i e n t c o n n e c t (‘dev1@127 . 0 . 0 . 1 ’) ,C: get (B, K) .
108 }
109 }� �

Chapter 6. Case Study 115

6.5 Case 2: Vector Clocks

Analyses: monitoring data structures, object binding, single threaded monitoring

6.5.1 Property Description

Vector clocks (or vclocks) are used in Riak as part of the mechanism that enforces coher-
ence between objects residing over different nodes [Bas11]. They allow the creation of a
partial ordering amongst object update operations by keeping track of the nodes involved
and the timestamp at which each operation was performed. Using vector clocks, Riak can
determine which version of a given object is the most recent, and can reconcile different
objects through merging.

The property under investigation ensures that any vclocks created after or derived
from a given vclock υ are also its descendants. More specifically, the property checks
that:

1. Incrementing υ will result in a vclock that descends from υ.

2. Merging υ with another vclock will result in a vclock that descends from υ.

unbound running

fresh()

fresh()

increment(Node, Clock)

merge(Clocks)

increment(Node, Clock)

Figure 6.5: Vclock QCFSA property

Figure 6.5 describes the QCFSA of the property being checked. The property is
designed to evaluate the different monitor spawning and binding policies described earlier.
The automaton starts from an initial unbound state and moves to a running state on
creating a new vclock through fresh()4. The vclock returned by the latter operation is
taken to be the object to which the automaton is bound. Vclocks created after the first
vclock has been bound are added to the clocks list in the automaton’s state data.

Apart from creating new clocks, the automaton will either increment or merge clocks
from the vclock pool. Clocks are chosen from the head of the vclock list, which is shuffled
after every operation. The shuffling operation uses known seed values for its randomiser

4New vclocks are initialised as an empty list [].

Chapter 6. Case Study 116

so that the trace generation and execution phases do not produce different orderings.
The merge operation merges the first two clocks in a list, and the increment operation
increments the top vclock using a random node name from a fixed list of dummy nodes.
In both cases, the original vclocks are removed from the clock pool and the resultant
vclock is added.

Listing 6.3: Vector clock QCFSA� �
1 −module(vc lockfsm) .
2 −compi le (e x p o r t a l l) .
3 −d e f i n e (SUT, vc lock) .
4
5 −record (s ta te , {obj : : vc lock () , c l o c k s : : [vc lock ()] ,
6 nodes : : [vc lock node ()] , seed : : term ()}) .
7
8 i n i t i a l s t a t e () −>
9 unbound .

10
11 i n i t i a l s t a t e d a t a () −>
12 #s t a t e{obj=[] , c l o c k s=[] , nodes=[a , b , c , d , e] , seed=random : seed0 ()} .
13
14 unbound (D) −>
15 [{running , { c a l l , ?SUT, f r e sh , []}}] .
16
17 running (D=#s t a t e{ c l o c k s=[C |]=Cl , nodes=[N |]}) −>
18 [{running , { c a l l , ?SUT, f r e sh , []}} ,
19 {running , { c a l l , ?SUT, increment , [N, C]}} ,
20 {running , { c a l l , ?SUT, merge , [l i s t s : s u b l i s t (Cl , 2)]}}] .
21
22 % Pre and po s t c o n d i t i o n s
23 pre cond i t i on (unbound , running , ,) −>
24 true ;
25 p r e cond i t i on (running , running , D=#s t a t e{ c l o c k s=Cs} ,{ c a l l , ?SUT,Op, Args}) −>
26 case Op of
27 f r e s h −>
28 true ;
29 increment −>
30 [Node , Clock] = Args ,
31 l i s t s : member(Clock , Cs) ;
32 merge −>
33 [Ar2] = Args ,
34 (l i s t s : u so r t (Ar2++Cs) == l i s t s : u so r t (Cs))
35 end .
36
37 po s t cond i t i on (unbound , running , , ,C) −>
38 C == [] ;
39 po s t cond i t i on (running , running , D=#s t a t e{obj=Obj} ,{ c a l l , ?SUT,Op, Args} , Res)−>
40 case Op of
41 f r e s h −>
42 (Obj == []) or not ?SUT: descends (Res , Obj) ;
43 increment −>
44 [Node , Vclock] = Args ,
45 ?SUT: descends (Res , Vclock) ;
46 merge −>
47 [A1] = Args ,

Chapter 6. Case Study 117

48 l i s t s : a l l (fun ({Rz , E}) −> ?SUT: descends (Rz , E) end ,
49 [{Res , A} | | A <− A1])
50 end .
51
52 n e x t s t a t e d a t a (unbound , running ,D, Res ,) −>
53 D#s t a t e{obj=Res , c l o c k s=[Res]} ;
54
55 n e x t s t a t e d a t a (running , running ,D=#s t a t e{obj=Obj , c l o c k s=Cs ,
56 nodes=Ns , seed=Seed} , Res , { c a l l , ?SUT, Op, Args}) −>
57 case Op of
58 f r e s h −>
59 Cprime = Cs ++ [Res] ,
60 {S1 , NewCs , NewNs} = s h u f f l e (Cprime , Ns , Seed) ,
61 D#s t a t e{ seed=S1 , c l o c k s=NewCs , nodes=NewNs} ;
62
63 increment −>
64 [Node , Clock] = Args ,
65 NewClocks= (Cs −− [Clock]) ++ [Res] ,
66 {S1 , NewCs , NewNs} = s h u f f l e (NewClocks , Ns , Seed) ,
67 case Clock of
68 Obj −> D#s t a t e{ seed=S1 , c l o c k s=NewCs , nodes=NewNs , obj=Res} ;
69 −> D#s t a t e{ seed=S1 , c l o c k s=NewCs , nodes=NewNs}
70 end ;
71
72 merge −>
73 [A1] = Args ,
74 Unmerged = l i s t s : s u b l i s t (Cs , length (A1) + 1 , length (Cs)) ,
75 Complete = Unmerged ++ [Res] ,
76 {S1 , NewCs , NewNs} = s h u f f l e (Complete , Ns , Seed) ,
77 case l i s t s : member(Obj , A1) of
78 true −> D#s t a t e{ seed=S1 , c l o c k s=NewCs , nodes=NewNs , obj=Res} ;
79 −> D#s t a t e{ seed=S1 , c l o c k s=NewCs , nodes=NewNs}
80 end
81 end .� �

At any one time, the system can make use of multiple vclocks, making the property a
good candidate for deployment with object5 tracking. As a vclock’s lifetime begins with
an invocation to fresh(), calls to it trigger the creation of new monitors. A potential
issue arises due to the fact that events tied to fresh() can appear anywhere within a
trace, due to the existence of the self-loop on the running state. Thus, the system must
decide whether or not to spawn a new monitor with every call to fresh, and which monitor
should receive subsequent events. This is further complicated by the fact that fresh()

takes no arguments and exists as an independent action, not being inherently related to
any single object’s lifetime other than that which it returns as a result of its execution.

6.5.2 Operation and Results

The following tests evaluate the application of the different monitor creation and binding
policies described in Section 5.4.3. In all cases, the runtime monitor was deployed in a live

5The term object is being used generically to refer to a system element, in this case a vclock data
structure.

Chapter 6. Case Study 118

system. Thus, the solution chosen also has to cater for events fired by the vclocks used
internally by the system. Object tracking is managed by the next state data function,
with the initial object’s value being the return value of fresh().

unbound

running
ON fresh

unbound
ON fresh

running ON
increment

running
ON merge

running

idle state

bad state

0:fresh

0:fresh out

1:fresh out

1:fresh

2:merge

3:increment

0:fresh

0:fresh out
1:fresh out

1:fresh

3:increment

5:merge

2:increment

0:increment out

1:increment out

4:merge

0:merge out

1:merge out

0:merge

1:fresh out

2:increment

3:increment out

4:merge out

5:fresh

Figure 6.6: DATE monitoring vclock operations

Single Monitor, No Object Tracking

On receiving the first event from process SUT1, the arbiter is set to launch a monitor and
bind it to that process. Events that originate from different processes are not forwarded.

Chapter 6. Case Study 119

SUT1

〈0.103.0〉
SUT2

〈0.542.0〉 Arbiter
Monitor
〈0.108.0〉

0: fresh()=no var

spawn
unbound

fresh unbound
ON vclock

fresh

Obj=no obj

proceed

1: fresh out()=[]

fresh out running
Obj=[]

proceed

2: fresh()=no var

proceed

3: fresh out()=[]

proceed

4: fresh()=no var

proceed

5: fresh out()=[]

proceed

6: increment()=no var

proceed

7: increment out()=C ′

proceed

8: increment()=no var

proceed

9: increment out()=C ′′

proceed

Figure 6.7: Inserting two objects into a database. Events 0 and 1 are
generated by an internal vclock, and cause the monitoring of the actual
insertion process to be ignored (events 2-9).

Chapter 6. Case Study 120

Figure 6.7 shows the result of creating and inserting two objects into the database.
As SUT1 fires the first vclock event, it causes the arbiter to clamp onto that source PID,
ignoring events from SUT2, which is the process that is executing the actual insertions.
This policy is very fragile, and would only work if all events originate from a single process
or if the process of interest can be identified beforehand.

Single Monitor, Object Tracking

The arbiter is set to spawn a single monitor and maintain an object mapping to it. All
events that do not operate on a value that matches the mapped object are discarded.

SUT1

〈0.40.0〉 Arbiter
Mon1

〈0.46.0〉

0: fresh()=no var

spawn
unbound

fresh unbound
ON vclock

fresh

Obj=no obj

proceed

1: fresh out()=C1

fresh out running
Obj=C1

proceed

10: increment(N1,C1)=no var

increment running
ON vclock

increment

Obj=no obj

proceed

11: increment out(N1,C1)=C ′1

increment out running
Obj=C ′1

proceed

12: fresh()=no var

proceed

13: fresh out()=C2

proceed

Figure 6.8: Single monitor, object tracking enabled

Figure 6.8 shows the event sequence produced on creating a Riak object. As the first
event received is produced by the test, the monitor rejects all other events stemming from
operations on vclocks maintained by the system (events 2-9, omitted in the diagram).
Event 1 sets the object mapping, which is then updated by the increment operation that

Chapter 6. Case Study 121

triggers events 10 and 11. Events 12 and 13 do not contain the tracked object within their
arguments list and are discarded, as the mapping is not stated. As mentioned earlier, one
cannot through inspection determine the objects with which fresh events are concerned,
and in this case, the event should be broadcast to all monitors of this property type whilst
spawning a new monitor bound to its return value.

Single Monitor Per Source PID, No Object Tracking

For this scenario, the arbiter spawns a single monitor for every unique PID from which
events originate. Although the tracked object field within the state data structure is being
updated correctly, it is not used during this exercise.

Figure 6.9 shows the previous test executed with this policy. Unlike in the previous
example, events fired through the use of internal vclocks do not cause subsequent events
to be lost. The assumptions underlying this policy are that events concerning a given
monitor will always originate from a single process, and that a process will only have at
most one automaton for every property being monitored.

Figure 6.10 highlights an event sequence where these assumptions do not hold. The
merge and increment operations (events 64 and above) are handled by a separate process,
which causes a new automaton to be launched and bound. As this automaton is initialised
as unbound, a fresh operation is expected, causing merge to move the automaton to
an idle state.

As shown in Figure 6.10, although object tracking is not being used for monitor
binding, the object mapping and update process is operating correctly. Events 60 and 61
update the monitor’s tracked object field from a fresh vclock to C ′1. As the next event
operates on C2, the object mapping to the monitor is left unaltered as the function is
taken not to pertain to the vclock C ′1.

Monitor Per Unique Source PID and Object Pair

As an extension to the previous cases, the arbiter is set to bind a monitor to every unique
〈SourcePID,Object〉 pair. Requests originating from different PIDs that address the
same object will result in the arbiter launching a new monitor for that event stream. For
correct operation, one should thus serialise requests related to the same object and ensure
that they originate from the same process.

The following is a simple test that checks whether the system will move to a bad state
when a postcondition fails. The postcondition result for a transition to the running
state when executing fresh was inverted, and a new Riak object was created, giving the
following output and logged events:

(myclient@127.0.0.1)2> riak_object:new(<<"buck">>, <<"key">>, [data]).

Bad State bad_state Reached!

Chapter 6. Case Study 122

SUT1

〈0.103.0〉
SUT2

〈0.112.0〉 Arbiter
Mon1

〈0.108.0〉
Mon2

〈0.244.0〉

0: fresh()=no var

spawn
unbound

fresh unbound
ON vclock

fresh

Obj=no obj

proceed

1: fresh out()=[]

fresh out running
Obj=[]

proceed

2: fresh()=no var

spawn
unbound

fresh unbound
ON vclock

fresh

Obj=no obj

proceed

3: fresh out()=[]

fresh out running
Obj=[]

proceed

4: fresh()=no var

fresh running
ON vclock

fresh

Obj=no obj

proceed

5: fresh out()=[]

fresh out running
Obj=[]

proceed

6: fresh()=no var

fresh running
ON vclock

fresh

Obj=no obj

proceed

7: fresh out()=[]

fresh out running
Obj=[]

proceed

Figure 6.9: Inserting two objects into a database, monitor per unique
source PID

Chapter 6. Case Study 123

SUT1

〈0.221.0〉
SUT2

〈0.157.0〉 Arbiter
Mon1

〈0.4762.0〉
Mon2

〈0.4884.0〉

60: increment(N1,C1)=no var

increment running
ON vclock

increment

Obj=no obj

proceed

61: increment out(N1,C1)=C ′1

increment out running
Obj=C ′1

proceed

62: increment(N1,C2)=no var

increment running
ON vclock

increment

Obj=no obj

proceed

63: increment out(N1,C2)=C ′2

increment out running
Obj=C ′1

proceed

64: merge([C ′1,C ′2])=no var

spawn
unbound

merge
idle state

Obj=no obj

proceed

65: merge out([C ′1,C ′2])=C ′1
merge out

idle state
Obj=no obj

proceed

66: increment(N2,C ′1)=no var

increment idle state
Obj=no obj

proceed

67: increment out(N2,C ′1)=C ′′1

increment out idle state
Obj=no obj

proceed

Figure 6.10: Failed monitoring of insertion. C1 and C2 have been de-
clared within process SUT1 and are set to []. Mon2 is attempting to
merge the vclocks, causing monitoring to suspend.

Chapter 6. Case Study 124

(myclient@127.0.0.1)3> arb_vclockfsm:log_print().

ARB: New Automaton [<0.45.0>]

ARB: [<0.38.0>] --> [<0.45.0>] 0:fresh()=no_var

(<0.45.0> , unbound) fresh()=no_var

ARB: [<0.45.0>] --> Object: no_obj

ARB: [<0.38.0>] --> [<0.45.0>] 1:fresh_out()=[]

(<0.45.0> , unbound_ON_vclock_fresh) fresh_out()=[]

ARB: [<0.45.0>] --> Object: no_obj

(myclient@127.0.0.1)4>

Lines beginning with ARB refer to events handled by the arbiter process, with the
remaining lines showing the current monitor state and the received event. The fresh out

event’s condition succeeds for the arc leading to the bad state, causing the monitor to
report a failure.

Figure 6.11 shows the event trace generated when a Riak object is created and inserted
into the system twice, with a vclock object created between insertions. More specifically:

• Events 0-3 are fired on creating object O.

• Events 4-5 are fired on manually creating a separate vclock. This forces the arbiter
into spawning a new monitor for the new object.

• Events 6-7 are fired on re-inserting object O. Riak calls increment as part of its
insert procedure, with O already existing within the database. The arbiter has a
monitor bound to an empty vclock C2. The increment operation is invoked with an
empty vclock as an argument, which is taken to be C2 by the arbiter, causing the
associated update in its mapping.

In some instances, two tracked objects with separate monitors may converge onto the
same value. If the objects are associated with the same source PID, then the arbiter must
decide which automaton should receive events for that object. As an example, consider
the execution of the following commands

(myclient@127.0.0.1)1> O1 = vclock:fresh().

[]

(myclient@127.0.0.1)2> O2 = vclock:fresh().

[]

(myclient@127.0.0.1)3> vclock:increment(node(), O1).

[‘myclient@127.0.0.1’,1,63463461829]

(myclient@127.0.0.1)4> vclock:increment(node(), O2).

[‘myclient@127.0.0.1’,1,63463461846]

Figure 6.12 illustrates the event sequence produced. Events 0 and 2 induce the arbiter
into creating and binding new instances of the property monitor, as the fresh() operation

Chapter 6. Case Study 125

SUT1

〈0.38.0〉 Arbiter
Mon1

〈0.44.0〉
Mon2

〈0.65.0〉

0: fresh()=no var

spawn
unbound

fresh unbound
ON vclock

fresh

Obj=no obj

proceed

1: fresh out()=C1

fresh out running
Obj=C1

proceed

2: increment(N1,C1)=no var

increment running
ON vclock

increment

Obj=no obj

proceed

3: increment out(N1,C1)=C ′1

increment out running
Obj=C ′1

proceed

4: fresh()=no var

spawn
unbound

fresh unbound
ON vclock

fresh

Obj=no obj

proceed

5: fresh out()=C2

fresh out running
Obj=C2

proceed

6: increment(N2,[])=no var

increment running
ON vclock

increment

Obj=no obj

proceed

7: increment out(N1,[])=C ′2

increment out running
Obj=C ′2

proceed

Figure 6.11: Object tracking with monitors per object and process pair

Chapter 6. Case Study 126

SUT1

〈0.38.0〉 Arbiter
Mon1

〈0.44.0〉
Mon2

〈0.47.0〉

0: fresh()=no var

spawn
unbound

fresh unbound
ON vclock

fresh

Obj=no obj

proceed

1: fresh out()=C1

fresh out running
Obj=C1

proceed

2: fresh()=no var

spawn
unbound

fresh unbound
ON vclock

fresh

Obj=no obj

proceed

3: fresh out()=C2

fresh out running
Obj=C2

proceed

4: increment(N1,C2)=no var

increment running
ON vclock

increment

Obj=no obj

proceed

5: increment out(N1,C2)=C ′2

increment out running
Obj=C ′2

proceed

6: increment(N1,C1)=no var

increment running
ON vclock

increment

Obj=no obj

proceed

7: increment out(N1,C1)=C ′1

increment out running
Obj=C ′1

proceed

Figure 6.12: Object tracking with conflicting objects

Chapter 6. Case Study 127

is not bound to a particular object. This will result in two separate bindings to the same
object value [] being maintained. As both monitors are bound to an empty vclock, the
arbiter cannot determine to which automaton event 4 should be forwarded, and chooses
one arbitrarily. When the second increment event 6 is received, the conflict no longer
exists and the arbiter forwards the event accordingly. This ambiguity arises due to the
non-uniqueness of the monitored objects, and is discussed in further detail in Section
7.2.2.

6.6 Case 3: Fine-Grained Insertion

Analyses: effects of test granularity and initial state data

6.6.1 Property Description

Section 6.4 presents a case that tests coarse-grained database operations. The test inserts
and retrieves objects using Riak’s high-level interface, and verifies the system based on
the operations’ results. While this approach is simple and effective, treating operations
as monolithic blocks hinders the ability to isolate failure points should a property be
violated. Points of failure can be localised to a greater degree by moving towards finer-
grained properties that consider an operation’s internal states. By decomposing a high-
level operation’s control flow, an automaton can verify that individual steps or sequences
conform to a property.

Object insertion and retrieval operations are handled using Generic Erlang Finite
State Machines, or gen fsms (Erlang behaviours are covered in Appendix A.4.4). The
logic and control flow that manages either operation is implemented as a finite state
automaton. The following case is concerned with the verification of the object insertion
(put) procedure. Broadly, the automaton goes through three stages.

1. Initialisation, where the automaton’s internal state values are set. These values
define the parameters of the operation, and include the object that is to be inserted,
the W and DW values (Section 6.2.3) and the compilation of an ordered list of
eligible vnodes to which the object is to be committed.

2. Transmission, where the object under question is sent to the identified vnodes.

3. Confirmation, where the transmitting gen fsm waits until the expected number
of write and durable-write confirmations are received.

Every stage of the transmission protocol is implemented as a state transition. On
completing the initialisation and transmission stage, the automaton enters a wait w state.
When the target vnodes reply with a successful write or durable write notification, an
event is received by the automaton, which unblocks and increments locally-maintained
counters. Once the W quota has been reached, the system moves to a wait dw state,

Chapter 6. Case Study 128

in which it begins to harvest durable-write confirmations. If the DW quota had already
been met while the automaton was still in the prior state, then the automaton moves
directly to the end state, otherwise it must wait for the remaining DW signals to arrive.

Figure 6.13 details a QCFSA which replicates the control flow and logic of the gen fsm

that implements the put operation, allowing the generation of traces of the send proto-
col with checks on each stage of the operation. The QCFSA differs slightly from the
implemented gen fsm in that the initialisation phase is broken down into a sequence of
multiple states. In the original automaton, the states s ready and s sent are merged into
a single state, with the transition’s associated functions being called from within a single
function. Splitting transitions into intermediate steps allows the property to inspect the
internal workings of the operation, thus leading to finer-grained testing. As the system
only allows the instrumentation of function entry and exit points, intermediate values of
functions can only be inspected through decomposition. When decomposing functions,
it is imperative that the original function’s entry and exit points remain unaltered, as
otherwise the module’s compatibility with the rest of the program will be violated. De-
composition also requires modifications to the system under test. Section 7.2.1 elaborates
on the issue of decomposition, and its relation to test granularity.

The QCFSA described directly invokes the functions that implement the object in-
sertion routine. The other alternative would have been to use the QCFSA to generate
stimuli which would then be forwarded to an instantiated gen fsm automaton, which
would manage the actual invocation of the relevant functions. Such a property, while be-
ing valid, would not translate well into a runtime monitor. This is because its events would
not be correlated directly to the implemented functions, and would subsequently cause
them to not be monitored. It would also have limited the granularity of the QCFSA’s
tests, as one would only be able to interact with the automaton through the defined event
interface, whereas by deconstructing the automaton, one gains finer control over what
can be tested at the expense of test complexity. Ultimately, this approach would be more
focused towards testing the operation of Erlang gen fsms rather than the implemented
callback functions.

Initial QCFSA Conditions

The case presented in Section 6.4 suffers from the fact that certain test parameters are
hard-coded into the QCFSA’s initial state. In the aforementioned example, the property
only performed insertions and retrievals using a fixed pool of pre-set Riak objects. Ideally,
the pool’s size and contents are changed between tests, verifying the system under a
multitude of conditions. QuickCheck allows properties to override an automaton’s default
QCFSA initial state by specifying the initial conditions as parameters to the generator.

Listing 6.4 details the QCFSA’s initial state data function. Unlike in the cases analysed
previously, the initial state data function accepts a set of arguments. The arguments are
generated using QuickCheck’s data generation functions prior to generating traces from
the QCFSA. The state data fields are the same as those used within the gen fsm’s state
data structure, apart from the q replies field which is used by the QCFSA. Instead of
replicating these fields, one could opt to define a single field within the QCFSA’s state data

Chapter 6. Case Study 129

s pre
init

s ready

s sent

s wait w

s wait
dw

s term

init([ReqID, RObj0, W0, DW0, Timeout, RClient, Options0])

invoke hook(precommit, RClient, Obj)

q send(ReqId,RObj1,Timeout,Options,Ring,Bucket,Key,BKey)

waiting vnode w(Rx,State)

waiting vnode w(Rx,State)

waiting vnode w(Rx,State)

waiting vnode dw(Rx,State)

waiting vnode dw(Rx,State)

Figure 6.13: QCFSA property that generates a command sequence for
inserting objects into Riak

Chapter 6. Case Study 130

Listing 6.4: Initial state data function for put QCFSA� �
1 i n i t i a l s t a t e d a t a (RC, Rng , Bk , Key , Value , RID , W, DW, Reps) −>
2 #s t a t e{
3 rob j=r i a k o b j e c t : new(Bk , Key , Value) ,
4 c l i e n t=not se t , %% update in next s t a t e data
5 r c l i e n t=RC,
6 n=p r o p l i s t s : g e t v a l u e (n val ,
7 r i a k c o r e b u c k e t : ge t bucket (Bk , Rng)) ,
8 w=W,
9 dw=DW,

10 bkey={Bk , Key} ,
11 r e q i d=RID, %% update in next s t a t e data
12 r ep l i ed w=[] ,
13 r ep l i ed dw=[] ,
14 r e p l i e d f a i l=[] ,
15 timeout =2000 ,
16 r ing=Rng ,
17 opt ions=[{returnbody , fa l se}] ,
18 al lowmult=false ,
19 r e p l y a r i t y =1,
20 q r e p l i e s=Reps
21 } .� �

record and store the entire gen fsm’s state within it using the original record definition,
keeping the QCFSA and gen fsm constructs separate.

Moving the initial state data generation logic out of the QCFSA provides a cleaner
separation of the generation and verification aspects of the automaton, yet care must be
taken when converting the automaton to its DATE equivalent, as the arguments with
which the initial state data function is invoked will not be initialised. For example, the
function detailed in Listing 6.4 stores the parameter W in the state data structure. The
remainder of the property assumes that the state data’s W field is defined, and makes
use of it within the pre- and postcondition functions. In this case, the state data’s W
field should be updated at some point within the property during a transition’s action
so as to mirror the live value correctly. Caution must be employed when changing the
initial state at runtime, as the QCFSA should not produce traces whose verdicts change
between generation and execution (Section 2.5.4).

6.6.2 Operation and Results

The act of inserting Riak objects into the database involves two parties, namely the
transmitting node which initiates the put sequence, and the receiving vnodes which store
the object in question. The property is concerned solely with the function call sequences

Chapter 6. Case Study 131

that must be performed by the transmitting node, and does not invoke any functions
which would normally be used by the receiving vnodes.

s pre init

s pre init
ON init

s ready

s ready ON
invoke hook

s sent

s sent ON
q send

s wait w

s wait w
ON waiting

vnode w

s wait dw

s wait dw
ON waiting
vnode dw

s term

s term
ON nop

idle state bad state

0:init

0:init out

1:init out

0:invoke hook

0:invoke hook out

1:invoke hook out

0:q send

0:q send out 1:q send out

0:waiting vnode w

2:waiting vnode w

4:waiting vnode w

0:waiting vnode w out

2:waiting vnode w out

4:waiting vnode w out

1:waiting vnode w out

3:waiting vnode w out

5:waiting vnode w out

0:waiting vnode dw

2:waiting vnode dw

0:waiting vnode dw out

2:waiting vnode dw out

1:waiting vnode dw out

3:waiting vnode dw out

0:nop out

1:nop out

0:nop

1:waiting vnode dw

3:waiting vnode dw

4:nop

5:init

6:waiting vnode w

7:q send

8:invoke hook

1:waiting vnode w

3:waiting vnode w

5:waiting vnode w

6:nop 7:init 8:q send

9:invoke hook

10:waiting vnode dw

1:q send

2:nop

3:init

4:waiting vnode w

5:invoke hook

6:waiting vnode dw

1:invoke hook

2:nop

3:init

4:waiting vnode w

5:q send

6:waiting vnode dw

1:init

2:nop

3:waiting vnode w

4:q send

5:invoke hook

6:waiting vnode dw

1:nop

2:init

3:waiting vnode w

4:q send

5:invoke hook

6:waiting vnode dw

0:nop out

1:invoke hook out

2:waiting vnode w out

3:nop

4:q send out

5:init

6:waiting vnode w

7:q send

8:waiting vnode dw out

9:init out

10:invoke hook

11:waiting vnode dw

Figure 6.14: DATE for fine-grained Riak object insertion

As described previously, the transmitter’s protocol is implemented in Riak through
the use of a gen fsm. After the transmitter broadcasts the object to be stored to the
relevant vnodes, it blocks and waits for W and DW replies to arrive. These replies are
generated by the receiving ends by sending an event to the transmitting gen fsm. Each
event consists of a tuple 〈Type, Index,RequestID〉, where Type is either w or dw, Index
is an identifier for that vnode’s communication and RequestID is an identifier assigned
to the entire insertion operation. These events are normally passed as arguments to the

Chapter 6. Case Study 132

state functions at wait w and wait dw, which add the messages to the replied w and
dw fields stored within the gen fsm’s state data.

The QCFSA property is primarily concerned with the validity of the transmitting
process’s implementation rather than the examination of network effects. Thus, when
operating as a QCFSA, the system initialises the automaton’s q replies field within the
state data structure with a stream of W and DW reply messages that matches that
expected by the transmitter. For example, if the put operation requires W and DW
values of 3 and 2, respectively, then the property’s q replies field will be initialised with
a list of five corresponding gen fsm event tuples. Depending on the automaton’s current
state, the functions waiting vnode w and dw are then invoked using events taken from
this list as an Rx argument.

Generating a matching stream of reply events allows the property to be executed
outside of a live Riak system, as it will not require responses from the target system. It
also obviates the need to emulate the gen fsm’s blocking nature within the property,
as otherwise the property would have to implement a method for harvesting replies.
Nevertheless, when executing the runtime monitor on a live system, as is the case in
the following examples, the target vnodes will send corresponding reply messages to the
system under test. As the runtime monitoring framework makes use of Erlang messages to
communicate between the arbiter and the SUT, these events were found to interfere with
the monitoring process, particularly when the SUT blocks waiting for proceed signals
originating from the arbiter. As a workaround, the SUT was set to queue any received
non-RV related messages within a buffer when the SUT was expecting a message from the
arbiter. Once the expected message is received, the SUT repeats the buffered messages to
itself, ensuring that no signals are lost and that the system’s execution proceeds normally.
Naturally, the blocking nature of the monitoring process may violate any time constraints
placed on the system, as would the additional overheads induced by runtime verification
(Section 3.1.1). As the property only tests single object insertions at a time, object
tracking is disabled, and the arbiter simply binds a monitor to each unique SUT PID.

Object Creation and Insertion, Mismatched State Data Contents

The first test attempts to illustrate the effects of mismatches between the DATE’s state
data values and the actual system state. These mismatches may arise if the QCFSA’s,
and subsequently, DATE’s internal state data structure is initialised with invalid values,
which are then used within the monitor for trace classification.

Figure 6.15 shows the event sequences which are generated and handled when creating
a Riak object and inserting it into a database. Although the insertion is performed cor-
rectly, event 9 moves the automaton into an idle state. This happens because although
the put operation was invoked with the default W and DW values of 2, the QCFSA
automaton’s initial state data was set with W = 3 and DW = 2. Consequently, the sys-
tem only generates two W-confirmation signals before generating a waiting vnode dw
event, whereas the automaton is still expecting another W-confimation to arrive. As
waiting vnode dw events are not handled at state s wait w in the original QCFSA,
the system moves to an idle state.

Chapter 6. Case Study 133

SUT1

〈0.309.0〉 Arbiter
Mon1

〈0.314.0〉

6: waiting vnode w({w,I1,RID},SD)=no var

waiting vnode w
s wait
w ON
waiting

vnode w

Obj=no obj

proceed

7: waiting vnode w out({w,I1,RID},SD)={next state,waiting vnode w, SD}
waiting vnode w out

s wait w
Obj=RObj′

proceed

8: waiting vnode w({w,I2,RID},SD)=no var

waiting vnode w
s wait
w ON
waiting

vnode w

Obj=no obj

proceed

9: waiting vnode w out({w,I2,RID},SD)={next state,waiting vnode dw,SD}
waiting vnode w out

s wait w
Obj=RObj′

proceed

10: waiting vnode dw({w,I3,RID},SD)=no var

waiting vnode dw
idle state

Obj=no obj

proceed

11: waiting vnode dw out({w,I3,RID},SD)={next state,waiting vnode dw,SD}
waiting vnode dw out

idle state
Obj=no obj

proceed

12: waiting vnode dw({dw,I3,RID},SD)=no var

waiting vnode dw
idle state

Obj=no obj

proceed

13: waiting vnode dw out({dw,I3,RID},SD)={next state,waiting vnode dw,SD}
waiting vnode dw out

idle state
Obj=no obj

proceed

14: waiting vnode dw({dw,I2,RID},SD)=no var

waiting vnode dw
idle state

Obj=no obj

proceed

15: waiting vnode dw out({dw,I2,RID},SD)={stop,normal,SD}
waiting vnode dw out

idle state
Obj=no obj

proceed

Figure 6.15: Creation and insertion of an object into Riak with incorrect
initial state data values. Events 7, 9, 11, 13, 15 return the next state
tuples used by the gen fsm (events 1 to 6 are identical to those in Figure
6.16).

Chapter 6. Case Study 134

SUT1

〈0.357.0〉 Arbiter
Mon1

〈0.362.0〉

0: init([RID, RObj, W , DW , T , C, Op])=no var

spawn
s pre init

init s pre init

ON initObj=no obj

proceed

1: init out([RID, RObj, W , DW , T , C, Op])={ok, initialize, SD, 0}

init out s ready
Obj=RObj

proceed

2: invoke hook(precommit, C, RObj′)=no var

invoke hook s ready
ON
invoke

hook

Obj=no obj

proceed

3: invoke hook out(precommit, C, RObj′)=RObj′

invoke hook out s sent
Obj=RObj′

proceed

4: q send(RID, RObj′, T , Op, Ring, B, K, 〈B,K〉)=no var

q send s sent
ON q

send

Obj=no obj

proceed

5: q send out(RID, RObj′, T , Op, Ring, B, K, 〈B,K〉)=vnodes

q send out
s wait w

Obj=RObj′

proceed

6: waiting vnode w({w,I1,RID},SD)=no var

waiting vnode w
s wait
w ON
waiting

vnode w

Obj=no obj

proceed

7: waiting vnode w out({w,I1,RID,SD)={next state,waiting vnode w,SD}
waiting vnode w out

bad state
Obj=no obj

proceed

Figure 6.16: Inserting an object into Riak with the postcondition for
waiting vnode w events at s wait w negated

Mismatches between the state data and live values will result in the monitor gener-
ating incorrect verdicts, as in the case illustrated. In general, if a property accesses the
automaton’s state data from within a transition’s conditional or next state data functions,
then one must ensure that the internal values and the live system state values are har-
monised. One could achieve this by updating the internally-stored values with live values
that are determined at runtime. For example, the next state data function related to
the first call to init could update the W and DW values to those being used by the
put operation, as they are available as arguments to the function. Updating the internal
state is not always possible without breaking the property’s operation as a QCFSA due
to QuickCheck’s use of symbolic variables during generation.

Although the arbiter does not make use of object tracking in this experiment, monitors
still send messages containing objects as acknowledgement signals to the arbiter. As de-

Chapter 6. Case Study 135

scribed earlier, these objects are simply the second element of the automaton’s state data
structure, and in this case are taken as proceed signals whose values bear no significance.
Finally, although the monitor moved to the idle state, the insertion operation executed
successfully, and a fetch operation using the object’s bucket and key values returned the
object correctly. The act of moving to an idle state only suspended monitoring and did
not directly affect the insertion operation. Nevertheless, the monitor’s deficiency led to
parts of the operation not being verified.

6.7 Case 4: Translation of Arbitrary Properties

Analyses: application of translation on arbitrary QCFSAs

6.7.1 Property Description

In the previous cases, QCFSA properties were drafted with the express purpose of being
translated into DATE properties. Consequently, the QCFSAs were written with consid-
erations for the runtime environment, and certain non-translatable elements of the prop-
erties were factored out during their creation. Thus, for example, the QCFSA properties
presented did not access state data values which were not bound at runtime.

stopped

running

start vnode2(S)

start vnode2(S) get index(S)neverreply(S)returnreply2(S)

stop(S)

latereply2(S)

get counter(S)

restart master2()

Figure 6.17: A QCFSA packaged with Riak that tests the vnode-master
service

The purpose of this test case is to examine the translation of a Riak property that

Chapter 6. Case Study 136

was written without these considerations, that is, properties that are not biased towards
being translatable into DATEs. Riak’s source files are packaged with several QCFSAs that
were developed for testing. Figure 6.17 is one such automaton, which tests the processes
involved in creating and managing a vnode in Riak. This automaton was converted
into a DATE monitor without any modifications, other than minor cosmetic changes to
the event names which were required due to the underlying functions’ existence within
different modules.

running

running ON
get counter

running ON
neverreply

running ON
stop

running ON
returnreply2

running ON
latereply2

running
ON restart

master2

running
ON start
vnode2

running ON
get index

idle state

stopped

stopped
ON start
vnode2

bad state

bad state

0:start vnode2

0:start vnode2 out

1:start vnode2 out

0:start vnode2
0:start vnode2 out

1:start vnode2 out

2:get index

0:get index out

1:get index out

4:get counter

0:get counter out

1:get counter out

6:neverreply

0:neverreply out

1:neverreply out

8:returnreply2

0:returnreply2 out

1:returnreply2 out

10:latereply2 0:latereply2 out

1:latereply2 out

12:restart master2

0:restart master2 out

1:restart master2 out

14:stop

0:stop out

1:stop out

1:start vnode2

3:get index

5:get counter

7:neverreply

9:returnreply2

11:latereply2

13:restart master2

15:stop

1:start vnode2

2:restart master2

3:neverreply

4:latereply2

5:returnreply2

6:get index

7:stop

8:get counter

0:start vnode2

1:restart master2 out

2:get counter out

3:get counter

4:stop out

5:returnreply2 out

6:restart master2

7:neverreply out

8:get index out

9:neverreply

10:latereply2

11:latereply2 out

12:returnreply2

13:stop

14:get index

15:start vnode2 out

Figure 6.18: DATE for Riak vnode master

6.7.2 Operation and Results

The automaton’s state data is set to fixed values on automaton creation, removing any
issues related to mismatched live and stored data. The derived DATE monitor is launched

Chapter 6. Case Study 137

within the live system. The arbiter is set to spawn a new monitor for every unique SUT
source PID.

Immediate Monitor Idling

When writing properties, one must keep in mind that traces not within the automaton’s
set of testable traces will cause monitoring to be suspended. Figure 6.19 illustrates the
effects of performing the following command sequence

(myclient@127.0.0.1)1> core_vnode_eqc:start_servers().

ok,<0.41.0>

(myclient@127.0.0.1)3> mock_vnode:restart_master2().

ok,<0.50.0>

where start servers() is an unmonitored function which initialises the vnodes being
tested. The restart master2() command sends a corresponding event to the automaton,
which is still in the stopped state. As this behaviour is not expected by the QCFSA,
the automaton moves to an idle state.

SUT1

〈0.38.0〉 Arbiter
Mon1

〈0.49.0〉

0: restart master2()=no var

spawn
stopped

restart master2 idle state
Obj=no obj

proceed

1: restart master2 out()={ok, 〈0.50.0〉}
restart master2 out idle state

Obj=no obj

proceed

Figure 6.19: The event restart master2, returning a handle to
the gen server launched on adding a vnode, is received prior to
start vnode2, causing monitoring to cease.

Demonstration of Nested Event Rejection

Figure 6.20 shows the event sequence generated when two vnodes are started. The se-
quence is a clear example of the intermediate event rejection mechanism at work. Within
the start vnode2 operation (event 0), the system invokes the restart master2 function,
which fires corresponding entry and exit events (events 2 and 3). Since these arrive prior

Chapter 6. Case Study 138

to start vnode2’s matching exit event, they are not not forwarded to the monitor by the
arbiter. Consequently, the arbiter only accepts new events once event 1 (the out event)
arrives and is forwarded. The process is repeated when the second vnode is launched, with
matched events 4 and 5 being forwarded and intermediate events 6 and 7 being blocked.

SUT1

〈0.38.0〉 Arbiter
Mon1

〈0.51.0〉

0: start vnode2(ID1)=no var

spawn
stopped

start vnode2 stopped
ON start

vnode2

Obj=no obj

proceed

2: restart master2(ID1)=no var

proceed

3: restart master2 out(ID1)=ok

proceed

1: start vnode2 out(ID1)=ok

start vnode2 out running
Obj=[ID1]

proceed

4: start vnode2(ID2)=no var

start vnode2 stopped
ON start

vnode2

Obj=no obj

proceed

6: restart master2(ID2)=no var

proceed

7: restart master2 out(ID2)=ok

proceed

5: start vnode2 out(ID2)=ok

start vnode2 out running
Obj=[ID2,ID1]

proceed

Figure 6.20: Nested event rejection. ID1 and ID2 are partitions within
the ring.

As always, although the arbiter does not make use of object tracking, the monitor still
reports the first element of its state data structure back to the arbiter. In this case, this
corresponds to the list of partitions to which the property’s initialised vnodes are bound.

Chapter 6. Case Study 139

6.8 Conclusion

This chapter has focused on the translation and monitoring of four properties using dif-
ferent event forwarding policies. The aim of the case study was to analyse the monitor’s
performance and behaviour when deployed in different verification scenarios. The next
chapter interprets the results, evaluating the approach’s general applicability and outlin-
ing ways to mitigate any identified shortcomings.

Chapter 7

Evaluation and Comparison with
Related Work

7.1 Introduction

The following chapter builds on the results produced by the case study, highlighting the
main issues encountered during translation and discussing the method’s overall effective-
ness, as well as the prime considerations that have to be followed when writing input
properties. Other relevant points concerning the translation of models into different rep-
resentations are also analysed towards the end of the chapter.

7.2 Evaluation of Approach

This section describes the performance of the principal components of the monitoring
system and indicates the most relevant details and considerations.

7.2.1 Instrumentation

When instrumenting the system under test to generate events, the solution presented
makes use of static code inlining. The solution also limits itself to instrumenting function
entry and exit points. The use of static inlining facilitated the evaluation, as the system
could be instructed to execute any arbitrary code at the instrumentation points, offering
very fine control over the contents of event messages and the event transmission process.
This also simplified the implementation of blocking instrumentation points by halting the
execution of the system under test until the monitor confirms the event’s reception.

A less intrusive method of collecting program executions would be to use Erlang’s
in-built tracing [Eri10d] tools. Tracing allows one to track system-wide events, as well
as events occurring within individual processes. Events can consist of inter-process com-
munication and function entry and exit. Tracing can also automatically match function

140

Chapter 7. Evaluation and Comparison with Related Work 141

entry and exit pairs whilst foregoing the logging of intermediate events. Events can be
timestamped if necessary. Logged events can be forwarded at runtime to a monitoring
process, such as a property arbiter. Such an approach would be ideal for monitoring, but
would be more restricted if the system under test is to perform additional tasks at its
instrumentation points other than event reporting. In addition, triggers do not cause the
system to block, making it harder to synchronise a monitor with the program.

When employing message passing to coordinate instrumentation and event reporting,
one must ensure that runtime monitoring messages do not interfere with other messages
used within the system under test. One should also appreciate the fact that runtime
monitoring, even through Erlang’s tracing facilities, can add significant overheads to the
system which were not originally present. Delays are further aggravated if the system
under test blocks until the monitor sends a reply. Consequently, monitoring could cause
certain time-critical processes to fail or time out.

Logging

As described in Section 5.4.1, the implemented solution uses an arbiter process to manage
the forwarding of events and acknowledgements between the system under test and the
DATE monitors. One advantage of such a system is that the arbiter can analyse the live
event streams, which makes logging communications a very simple matter. By analysing
logs, one may also extrapolate statistics regarding events and their frequencies. These
facilitate the augmentation of the property’s QCFSA through the addition of weights on
its arcs, where one can promote or decrease the frequency with which certain traces are
generated by the QuickCheck engine depending on how often they have been verified at
runtime.

Granularity of Tests

The granularity at which properties operate depends largely on the framework’s instru-
mentation capabilities. Although the insertion of instrumentation points at arbitrary
program locations is technically feasible, especially when employing static inlining, it
would complicate the automation process, as the association of events to code locations
would no longer be implicit. This would also necessitate changes to the QCFSA model
by redefining what constitutes an event. Thus, functions are regarded as the base event
type.

When writing properties that concern a sequence of events, one must create an au-
tomaton that accepts all the transitions necessary for that trace to behave correctly,
notwithstanding the fact that some of these transitions might not require verification. To
illustrate, consider a trace concerning three functions f(), g(), and h(), that are called
in sequence within the system under test. Although one may only be interested in mon-
itoring the results of f() and h(), an arc must be added within the automaton for the
intermediate function g(), as otherwise the QCFSA would generate traces without g(),
which might not normally be executed by the system under test.

Chapter 7. Evaluation and Comparison with Related Work 142

In general, if the traces require that a specific sequence of functions be executed,
then the automaton must enforce the ordering. Also, once a function is instrumented,
a transition must be placed at every state at which the event may arrive in order to
ensure that the monitor does not move prematurely to an idle state. Thus, properties
must be very precise in defining what constitutes a correct program behaviour. The effect
of this precision is that the complexity of a property, with regards to control flow logic
and transitions, tends to increase as the granularity of the system under test becomes
finer. As an example, one may compare the cases analysed in Section 6.4 and 6.6. The
former case tests the correctness of an insert operation by analysing the result of a single
function call, whereas the latter replicates every step being performed internally by Riak
and verifies each individual step. While the latter property can isolate failure points more
precisely, it is more complex and harder to follow, and requires detailed knowledge of the
system’s internals. Coarse-grained properties tend to be straightforward, as they are only
concerned with a function’s high-level behaviour. Although the pre- and postcondition
and next state data computations can be arbitrarily complex, the automaton’s control
flow can be very simple, as it does not analyse the function’s internal state changes and
execution path. Finding the right granularity at which to operate is crucial, since very
fine-grained monitoring may lead to the system’s complete behaviour being replicated
within the property, whereas very coarse-grained testing would not allow the monitoring
of intermediate steps.

Since instrumentation is not performed at arbitrary program points, the system may
only be inspected at a finer granularity by decomposing and chaining functions. When
decomposing functions, it is important that the original function’s header and ultimate
return value remain unmodified. The case presented in Section 6.6 makes extensive use
of decomposition in order to access intermediate variables whose values are then checked
either as arguments or return values. Moving to coarser granularities would require that
the automaton calls the relevant functions in a sequence that constitutes a single grain.
One should not create a new function which performs this sequence and call it from within
the property, as it would result in the system instrumenting an alien entry point that is
never invoked at runtime. Testing may require significant restructuring of the system
under test, unless one develops the system and the property simultaneously or opts to
follow disciples such as test-driven development (Section 2.6).

7.2.2 Issues Affecting Translation

This section describes the issues identified during the evaluation process which limit the
translation’s applicability to arbitrary QuickCheck automata, suggesting principles that
should be followed when building a property.

Symbolic Variables

Certain properties that would normally be very easy to verify using DATEs can be hard
to implement using QCFSAs. One prominent recurring issue encountered throughout the
case study was QuickCheck’s use of symbolic variables during the trace generation phase.

Chapter 7. Evaluation and Comparison with Related Work 143

By replacing function return values with symbolic variables (tokens), the system prevents
properties from manipulating or directly inspecting a function’s return value, and [Quv10]
recommends that this should be avoided, with results being treated as immutable black
boxes. Thus, one would have to constrain properties and only examine abstract program
behaviours rather than individual low-level operations. Alternatively, one could replicate
the relevant state-data changing procedures within the automaton through actions over
transitions, removing the property’s reliance on externally-generated results. The latter
approach violates the principle of never re-implementing a function that is being tested
within the test, whereas the former results in clearer properties and cleaner logic at the
expense of control.

Pre-generated State Data

As a consequence of its use of symbolic variables, QuickCheck requires that an automa-
ton’s initial state data be determined entirely during its initialisation and that it remains
the same both during the trace generation and execution phases of the automaton. For
example, one cannot initialise a variable to a random value within the initial state data,
as this may lead to different paths being taken during the two phases. Instead, one could
use a known, fixed seed for the random number generator and update the seed value de-
terministically, as in the case presented in Section 6.5. Alternatively, one could move the
generation code out of the automaton and into the QuickCheck property harness, comput-
ing the random values prior to trace generation and fixing the initial state data to these
values. This approach leads to the generation of cleaner runtime verification monitors, as
the amount of state data that must be maintained over each transition decreases.

As evident in the case presented in Section 6.6, if the initial state data is not set using
values that reflect the actual system state, then the use of a QCFSA’s state data may
mislead verification. For example, one could use the automata’s state data structure to
store dummy values which the property then uses within its checks. If these dummy values
have live counterparts within the system, then the automaton should replace them with
the actual readings taken from the runtime environment using a state changing action. An
exception to this would be if the state data is being used to restrict the analysis of certain
traces (such as ignoring all traces exceeding a given length), in which case the values
should remain unaltered. State data values that are set from within the QuickCheck
property harness and are vital to verification must be copied into or recalculated within
the initial state data function, as otherwise the values would remain undefined.

Concurrency and Object Tracking

QuickCheck automata execute within a precisely-controlled environment. The test har-
ness manages the setup and shutdown procedures prior to every trace execution, which
execute as separate processes. This also shields the process from external interactions
other than those brought about as a consequence of the functions being tested.

These assumptions do not necessarily hold within a live, multiprocessing environment.
As a QCFA manages its own trace generation and threading, it can implicitly identify

Chapter 7. Evaluation and Comparison with Related Work 144

which function invocations belong to which trace. Thus, even if one were to test multiple
QCFSAs in parallel, the properties will keep track of their traces and progress.

Problems may arise if multiple instances of a monitor for a given property exist simul-
taneously during verification. The issue arises on account of the scope of events. When
running two QCFSAs in parallel, executing a function within one automaton’s traversal
would not affect the other’s monitoring1. On the other hand, when an event is fired within
a runtime environment, it is forwarded to all the monitors that are listening for that event.
This implies that events are global, and that multiple automata will all receive the same
interleaved sequence of events. Thus, the concept of object tracking was investigated in
an attempt to bind events to specific contexts.

Object tracking centres around the identification of an object which serves as a com-
mon link between events, where each event pertaining to a given thread is bound to the
same object, with the resultant thread monitored by a dedicated runtime monitor. For
example, the case presented in Section 6.5 uses vector clocks as the common factor be-
tween related events, with each unique vclock being allocated its own monitor which only
considers events that concern that vclock. This allows properties to be written with a
narrower scope and without having to consider the entire system as a whole.

Object tracking is limited by three core factors. The first is that it is hard to track
and distinguish between objects within the system. Data structures are not automatically
assigned unique identifiers, and therefore require an additional mechanism for maintain-
ing mappings between event sources and objects (and consequently, monitor processes).
To further complicate matters, events related to the same object may originate from dif-
ferent processes, or conversely, unrelated events originating from different processes may
concern objects whose values happen to be the same. The second requirement is that,
in the absence of unique identifiers, the system must keep track of objects as they evolve
throughout the system. This would demand that all updates to the object are tracked
by the system, necessitating a duplication of effort and precise program analysis. Finally,
the relation between events may be very contrived as the approach assumes that a prop-
erty’s events revolve around a single, shared and evolving object. Thus, this approach
is mostly confined to properties that verify data structures. Unless objects can be as-
signed unique identifiers, these ambiguities cannot easily be resolved and require that the
system’s internals be fully understood so as to employ the appropriate mapping policies.

While properties with a global context are simpler to verify, one must still exercise
caution when verifying events which originate from different processes. Erlang places no
guarantees on the order in which messages sent from different processes are placed onto the
shared destination queue. Thus, the order of events in a monitor’s incoming verification
stream may not correspond to the true order in which the events were generated during
the program’s execution. This must be catered for either at the property level, with
properties written so as to accept different event interleavings, or by serialising events
through a single process which re-orders them as necessary.

1Unless they share some state across processes.

Chapter 7. Evaluation and Comparison with Related Work 145

7.3 Results

Based on the translation and proofs presented in Chapter 4, as well as the results ob-
tained during the evaluation, it can be seen that the translation works, provided that the
following conditions hold:

• There cannot be any hidden setup or environment-changing functions. In the trans-
lation procedure’s formal description, the system state is assumed to be global, and
the monitor’s execution environment should be the same as that which exists dur-
ing QCFSA testing and test case generation. Similarly, the automaton’s state data
should be initialised entirely from within a QCFSA, either using the initialisation
function or by binding values when executing actions during transitions. If an au-
tomaton’s state data is initialised externally prior to executing the automaton, as in
the case presented in Section 6.6, then the property must ensure that unbound val-
ues are updated correctly during the automaton’s traversal prior to their use. Any
other relevant initialisation functions would have to be invoked using a transition
in the QCFSA.

• The correct monitor spawning and binding policy must be used. Ultimately, the
context binding mechanisms all address the same issue, namely that of routing
the correct event streams to their associated monitors. The translation and proofs
described inherently assume that one event stream is being produced by the system
under test. Failing this, parallel event streams should be forwarded to separate
monitors, providing the illusion that each monitor exists on its own. If events were
to be interleaved, that is, if a monitor had to receive an event generated by a
different sequence of operations, then the initial assumption would fail, invalidating
the automaton’s verdict.

To illustrate, consider a system making use of a data structure D which, on being
initialised, throws an init event and is then operated upon by one or more exec

events. A monitor M verifying this structure would thus check event sequences of
the form init · exec+. Within a QuickCheck environment, one would invoke and
verify calls on D directly, removing any ambiguity as to which event is being checked.
When monitoring at runtime, if only one instance of D exists at any one time within
the system, then it follows that the event sequence is directly related to that data
structure. Yet if multiple instances of D exist, then the event stream will contain
an interleaving of events. Thus, a monitor could receive init · init · exec+, which
is outside its set of testable traces, causing it to suspend monitoring. Similarly,
if a monitor M1 were to receive an exec event that was meant for M2, then the
automaton’s verdict is no longer reliable as the stream being monitored does not
match the system’s true behaviour, even though the resultant trace is still within
the automaton’s testable trace set.

In general, interleaving event streams from multiple points of origin will present a
monitor with a sequence of events which will cause it to either:

– move to an idle state, as the current transition’s associated precondition
will fail on account of the trace being outside of the automaton’s test set

Chapter 7. Evaluation and Comparison with Related Work 146

– take a transition, leading to a false negative or positive classification

– enter an undefined state on receiving an event which is outside its set
of interesting events. Such a trace is trivially outside the monitor’s testable
trace set, and should cause the monitor to idle. Conversely, it could also
be argued that such an occurrence signals an unexpected behaviour and is
definitely outside the set of acceptable system traces, implying a bad state.
The view adopted by the presented model is to ignore unexpected events, as
they do not, by definition, form part of an automaton’s set of interesting events,
which is assumed to be fully specified.

To summarise, a runtime monitor placed within a live environment will produce a
correct verdict provided that only a single event stream is produced, with events being
received in the same order with which they are produced and with no events being lost.
Additionally, any necessary initialisation routines which must be performed should be
incorporated into the QCFSA. One problem which may be encountered when initialising
an automaton’s state using values obtained externally is that the values of interest may
not always be passed as arguments to monitored events. This situation would demand a
more complex initialisation routine or the decomposition of functions in the system under
test into signatures which offer access to intermediate values, as was done in the case
study presented in Section 6.6.

As described earlier, the translation adopts the closed-world [KMM07] model of events,
whereby if a received event does not form part of an automaton’s set of interesting events,
then it is ignored. While this view is often adopted, differences arise in how the reception of
interesting events for which no outgoing arcs from the current state exist is handled, as will
be seen in Section 7.4. The model described in this document assumes that the property is
fully specified, and that the monitor should move to an idle state if an event is received and
the original automaton cannot advance a step. This can be observed in the first scenario
of the case study presented in Section 6.7, where a restart master directive is received
before a start master event, causing the automaton to move to an idle state. To quantify
the property over all event sub-sequences, that is, to generalise the property so that it
is verified over all traces containing start master and restart master events in the
correct order, one would have to create self-loops on the start state to consume all events
in {start master}. When adding self-loops, one must be careful not to introduce non-
determinism. Other approaches assume that properties are implicitly quantified over the
entire trace, with failing preconditions causing no transitions to be taken. The rationale
offered is that systems are often partially specified, with verification being performed on
a subset of traces, while discarding intermediate and unrelated events. This increases
the size of the test set, and restrictions would then have to be added explicitly through
events triggered on unwanted behaviours. Conversely, the approach adopted within the
translation described in this project is additive, starting with an empty testable trace set
which grows as the number of transitions increases.

A final observation is that it is relatively easy to write an invalid QCFSA property
which translates into a correct DATE. For example, directly inspecting the return value
of a function executed within a QCFSA transition is not allowed within QuickCheck, yet
a runtime verification monitor derived from such a property would operate correctly.

Chapter 7. Evaluation and Comparison with Related Work 147

7.4 Related Work

This project examined different aspects of verification, including the problem of gener-
ating suitable properties to test and verify, the difficulties in translating properties into
alternative representations, and the methods by which they can subsequently be verified.
The following is a discussion of existing alternative approaches to these tasks. Some of
the translations presented make assumptions other than those adopted by this project,
including different views on the input property’s completeness (whether or not they are
fully specified), interpretations of totality, and handling of non-determinism.

7.4.1 Translating and Enriching Models into Properties

The language in which models are expressed often varies across different model-based
verification techniques, based on their aims and mode of operation. For instance, while
DATEs serve as acceptors describing valid strings of system events, a QCFSA incorporates
both a model of a subset of the system’s behaviour and a property for classifying traces.

When transforming a model from one notation to another, one must ensure that the
original model contains enough information with which to build the target model, or, al-
ternatively, one must seek secondary sources from which the missing required information
can be derived. The QCFSA structures used within this project carry at least as much
information as the DATEs into which they are translated, and the process requires no
further user input aside from directives to the E-LARVA framework for regulating context
and object binding. Nevertheless, one does not always have immediate access to a precise
specification of a system’s behaviour, and weaker models may have to be used as a start-
ing property. In such cases, one could express the initial requirements using a simplified
model, which would then be incrementally refined until they are considered complete.

The techniques described by [DLvL06] aim to facilitate the automatic translation from
simplified user-specified Message Sequence Charts (MSC) into Labelled Transition Sys-
tems (LTS) with the assistance of a user’s interaction, which is kept to a minimum. The
input MSC defines legal sequences of a system’s events, and an LTS is built through gram-
matical inference (Section 2.3.5) by generating system use-cases which are then classified
by the user as positive or negative scenarios. This serves to characterise the automaton’s
negative trace set from its set of testable traces. Several additional techniques must be
applied during the induction stage, as otherwise the number of questions that are posed
to the user may grow very large. Consequently, the system applies heuristics to prioritise
state merges, and outgoing events from merged states are not added automatically so as
to limit the automaton’s size. Other extensions aim towards improving the generated
model’s consistency, which may be jeopardised should induction over-approximate the
inferred grammar, and also towards automating steps such as the incorporation of certain
safety properties.

Chapter 7. Evaluation and Comparison with Related Work 148

7.4.2 From Models to Runtime Monitors

This project has focused on the derivation of runtime monitors from QCFSAs, yet other
translations accepting specifications expressed in a different notation can be devised.
[KMM07] describes a process of converting an input MSC into a state machine, which is
then used for deriving AspectJ runtime monitors2. The resulting monitors limit them-
selves to the observation of communication patterns amongst components rather than
their implementation, and classify a system as operating correctly when the messages
being transmitted follow the protocol set by the input MSCs. As with the translation
described in Chapter 4, generated monitors operate under the closed-world assumption,
and any events with which the property is not directly concerned will be ignored. This
allows MSCs which do not fully describe a system’s behaviour to be monitored, that is,
it allows the monitoring of MSCs whose set of testable traces is not a superset of the set
of all possible interaction patterns.

As when translating QCFSAs, the process assumes that the input specification is
deterministic, which simplifies the task of tracking the current state during monitoring.
Since the input sequences are finite strings, the output automaton should be regular.
The state machines into which MSCs are synthesised have messages as transition labels,
and also support guard conditions. Each transition must specify whether a message
is incoming or outgoing. Using this automaton, a monitor can detect messages that
are repeated or received out-of-order, yet it cannot detect lost messages unless timeouts
are used. While message ordering and consequentiality can be verified using QCFSA
constructs, timeouts must be implemented at the program level, and a property would
have to detect their occurrence indirectly. Thus, a similar effect could be achieved by
setting a timer within the system under test prior to communication and instrumenting its
associated event handler function. The event would then have a corresponding transition
within the QCFSA that leads to a bad state. Alternatively, one could extend the QCFSA
model to support guards with clocks, which could then be translated to timed events
within DATEs.

7.4.3 Combining Runtime Verification and Testing Automata

While QCFSAs were designed for use within QuickCheck, this project has demonstrated
that they can be successfully repurposed for runtime verification. Ideally, properties
should be written in a form which can be easily translated into the input language of
different verification tools. This promotes modularity by freeing one from the confines of
a single verification approach.

[RBJ00] proposes Input Output Symbolic Transition Systems (IOSTS), which extend
Labelled Transition Systems (LTS) by allowing the use of parameters and variables over
transitions, as a base logic for writing properties which could then be translated and fed
to different test case generation and verification tools. The extensions allow parameters
to be handled symbolically, which can avoid the invalidation of certain testing techniques

2AspectJ is also used within the LARVA framework [Col08] to interleave monitoring code with the
system under test.

Chapter 7. Evaluation and Comparison with Related Work 149

that would otherwise fail due to the state space explosion. Test generators can thus make
use of symbolic values combined with techniques such as constraint propagation and static
analysis.

An IOSTS consists of an initial location, transitions and input, output and internal
actions. Locations can be pass, inconclusive or failing. Transitions between locations
are guarded, and consist of an action, a list of data types corresponding to the related
function’s argument list, and a set of variable assignment operations. A specification is
an IOSTS in its initial configuration, with its initial variables bound. While the QCFSA
to DATE translation described in this document requires an intermediate step in which
the input automaton is rendered total (Section 4.4.2), IOSTS are implicitly complete,
and employ a different notion of totality. Actions for which there are no outgoing arcs
are consumed without changing the current state, and arcs whose guard condition fails
trigger a transition into a reject state. The rationale given is that a test purpose should
only focus on specifying a correct behaviour, whereas completeness should be handled by
the test case generation tool. Thus, when generating test cases, an automaton must be
input complete, and for every state and value pair, one should be able to find a next state
without performing internal actions. Non-determinism is removed heuristically for the
common case, or non-deterministic choices are postponed to as late a stage as possible.

A conformant trace is one which produces equivalent output when used to traverse a
specification and an implementation. A test case is considered to be correct with respect
to a test purpose and an implementation if it is sound, relatively complete, accurate and
conclusive. A sound trace conforms to an implementation, and relative completeness
assures that non conformance is detectable. An accurate trace is one which succeeds and
is within the test purpose, and a conclusive trace is one which, if extended, would return
an inconclusive result. Although the generator attempts to minimise test cases using
model checking and invariant detection techniques, [RBJ00] states that the reduction
phase requires further investigation. The difficulty in writing test purposes is also noted,
and that test cases should ideally be generated from program abstractions rather than
concrete specifications.

Additional logics may also be eligible for writing properties which are used both as
test case generators and runtime monitors. For example, [ABG+05] developed several
verification techniques based on the use of the discrete temporal logic Eagle. Eagle is
expressive in that it allows other temporal logics, such as LTL, to be embedded within
it, and yet it aims towards being simple so as to avoid the high computational cost
associated with the verification of more expressive properties. Consequently, a property’s
computational cost depends on the complexity of the encapsulated logic and the property’s
size. An input property can be used either as a test case generator or an event observer.
In the former case, properties are used as inputs to the Java PathFinder model checker,
which is extended with symbolic execution capabilities. For runtime verification, Eagle
properties are used to derive monitors that examine parametrised events.

The system under test is instrumented using a combination of code wrapping and in-
sertion. Wrapping involves replacing calls within the SUT with calls to wrapper functions,
while insertion is used to directly insert event-generating code into the source or object
code. The latter approach is the one that was used by this project, as it only demands

Chapter 7. Evaluation and Comparison with Related Work 150

the instrumentation of the functions that must be observed, and no other changes to the
program have to be made. The Eagle framework also requires that any values on which
a subsequent computation within a trace depends are initialised beforehand. This is also
a requirement of QCFSA properties, as the initial state data must be precomputed or set
prior to its use.

7.4.4 Alternative Model-Based Test Case Generation Logics

QuickCheck Finite State Automata were chosen as the base property’s representation for
several reasons which were discussed earlier, yet other model-based test case generation
tools exist. Gast [KP03] is a tool similar to QuickCheck, which allows the automatic
testing of reactive systems using properties over functions and data types expressed using
first-order logic or an LTS. Properties are functions defined in the CLEAN functional pro-
gramming language, and Gast automatically drives tests using generators for creating
input values. A property fails if at least one failing counterexample is found. Support for
LTS input properties is obtained by transforming their description into CLEAN, embed-
ding its logic into the property language and executing it. This differs from the approach
taken by QuickCheck, which provides support for automata through a separate library
that dictates the precise structure and semantics of QCFSAs.

An LTS can be non-deterministic, that is, several transitions may be eligible for traver-
sal from a given state under the same input. Non-determinism is handled during automa-
ton traversal by storing the current state as a list of possible states. While this might
suffice when testing generated traces of a short, finite length, it may preclude the logic’s
translation into a runtime monitor. This is because monitors can be long-lived (such
as when verifying server processes), and successive non-deterministic choices could cause
them to run out of memory.

Input sequences are generated by traversing the LTS. For deterministic automata,
testing prefixes of a path known to be valid will not uncover additional errors. This
reduces the number of generated test cases, and encourages the generation of longer and
more meaningful input sequences. In addition, the traversal avoids generating paths
which have already been produced. Input sequences are terminated and tested if their
continuation would require taking a transition too often, otherwise the system attempts
to proceed with the generation of longer traces. Testing is black box, and only functions’
outputs are observed. The method requires that the system under test is input-enabled,
that is, its state must be specified for any input in any reachable state, although states
can be marked as being invalid.

Gast differs from QuickCheck primarily in its approach to generating values, as it
explores the input space systematically and avoids repeating test cases. Given a finite
input space and sufficient computational resources, a Gast property can be verified over
all possible input values without resorting to full enumeration, and the property will have
been proven. Yet for large type domains, Gast will normally resort to a semi-random
search, first checking the common border cases and small input values and moving on to
larger inputs, until a set number of tests are executed without a counterexample being
encountered, as is the case with QuickCheck. The systematic exploration of the state space

Chapter 7. Evaluation and Comparison with Related Work 151

may help in refining runtime monitoring, as tested behaviours can be safely excluded from
the monitor’s test set, reducing unnecessary monitoring.

7.4.5 Automatic Property Generation and Testing in Erlang

While this project has focused primarily on combining testing and runtime monitoring,
there are other facets of the testing process which can also be unified. The ProTest project
[DWA+10] adopts a holistic view towards testing and verification in Erlang by integrating
and automating the steps involved in creating and verifying properties. Of note, the
project investigated the translation of UML specifications into QuickCheck properties
and the use of QuickSpec to automatically derive a set of likely invariant properties which
could then be tested. As with Daikon, invariance alone does not imply relevance. Other
research on offline analysis on log files using the Exago tool, which extracts abstract
representations of system events from logs and verifies the traces against a defined finite-
state model of the system, was conducted. The Onviso tool was subsequently created
for online event tracing across multiple nodes, and also contributed to the PULSE user-
level thread scheduler, which can be employed within QuickCheck for testing scenarios
involving concurrency. Finally, the project produced a method for efficiently converting
LTL to Buchi automata, employing LTL rewriting, translation and automaton reduction.
Such an automaton could then be used to derive a runtime monitor for verifying temporal
properties, as also described in [GH01].

7.5 Conclusion

This chapter served to evaluate the procedure adopted by this project by analysing the
results obtained when translating concrete examples into runtime monitors. It high-
lighted the primary issues related to context, event interference and invalid initial state
data. It also described the conditions under which the translation will fail, making rec-
ommendations which should be adhered to when constructing an input QCFSA property.
Other approaches towards the translation of models into different representations were
also analysed. The next chapter provides a final summary of the results presented, as well
as possible avenues for future research.

Chapter 8

Conclusion

The following chapter concludes the project, describing the core results and possible
directions for future research.

8.1 Summary

The project’s main aim was to investigate the integration of testing and runtime verifica-
tion by demonstrating a suitable and effective procedure for translating testing properties
into runtime monitors. The source and target logics used were QuickCheck Finite State
Automata (QCFSAs) and Dynamic Automata with Timers and Events (DATEs). These
automata-based logics differ in that QCFSAs incorporate both a partial model of the
system and a property specifying its correct behaviour, whereas DATEs only serve as
classifiers. The translation dissected the QCFSA structure, using the model component
to define the set of behaviours over which a verdict should be produced, that is, the
testable trace set, and the classifying property to characterise the negative trace set.

While it was proven that the translation preserved the original property’s negative
trace set, the process assumed that all and only events relevant to that property are re-
ceived by the generated monitor, and that the automaton’s internal state reflects the live
system’s state. During the case study, mechanisms for inferring context were examined.
Through context, the system was able to separate interleaved traces and forward them to
their respective monitor, yet the construct was unwieldy and required detailed knowledge
of the environment within which the monitors were to operate. Language-level support
for context would help solve many of its associated problems, and would avoid the use
of ad hoc monitor creation and binding policies. Ensuring consistency between the au-
tomaton’s internal state and the system’s actual state is harder, as an automaton’s initial
state is typically populated with test values which would then be used by the generated
test cases. Thus, for QCFSAs to be translated correctly, they must adhere to a set of
recommendations identified within the previous chapter.

In summary, this project has achieved the following aims:

152

Chapter 8. Conclusion 153

• it provided an overview of testing and several techniques that can be used to auto-
mate different testing processes, notably property and test case generation

• it introduced the concept of a property’s set of testable and negative traces

• it defined a formal model of QuickCheck automata, as well as a procedure for ren-
dering automata total based on the notion of testable and negative trace sets as
applied to QCFSAs

• it described a formal procedure for translating QCFSA’s interval-based events into
point-based entry and exit events, which was then shown to preserve the input
property’s negative trace set through the use of unique event identifiers

• it described an Erlang implementation of the property translator and a runtime ver-
ification framework for monitoring DATEs, outlining any pertinent implementation
issues

• it demonstrated the translation of four properties designed for testing Riak, and
analysed the deployment of the generated monitors in the environment of the system
under test

• it investigated the problem of relating a monitor to a context without explicit
property-level constructs or directives.

8.2 Future Work

8.2.1 Event Logging and Statistics

Within the current framework, all events are handled by a single arbiter process, which
reroutes messages to the relevant monitors. This arbiter has a global view of events as they
occur within the system, and currently maintains an event log. This log could potentially
be exploited to derive statistical information, such as the frequency with which an event
fires as well as system failure rates. Such statistical information could then be tapped
for further modulating runtime verification and testing. In the former case, one could
opt to forego the monitoring of certain event sequences which are judged to have proven
themselves consistently valid. This could be achieved either by making the preconditions
more selective and contracting the automaton’s testable trace set, or by simply omitting
the relevant transitions, perhaps eventually switching off the monitor entirely. Similarly,
one could use frequency analysis during test case generation to direct testing by associating
weights with transitions, discouraging the traversal of certain automaton branches.

8.2.2 From Runtime Verification to Testing Automata

This project has focused primarily on the translation of testing automata into runtime
verification monitors, yet the reverse operation is also of interest. By automating the

Chapter 8. Conclusion 154

translation of runtime verification properties into testing automata, one could move be-
tween representations given a property written in either notation. In conjunction with
statistical analysis of logged events, the framework could automatically fine-tune the ver-
ification process by updating properties on-the-fly based on the derived information.

QCFSA DATE
X

?

Figure 8.1: From QuickCheck Automata to DATEs . . . and back?

The process may be hampered by the difficulty in moving from point-based events
to intervals. Since not every transition in a user-supplied DATE will necessarily form a
matching pair of entry and exit events, problems will arise when trying to discriminate
between recursive calls and top-level consecutive calls to the same function. Consequently,
the translation process may also require analysis of the control flow of the system under
test.

8.2.3 Channel Communication Analysis

Events are currently assumed to correspond directly to function calls, yet the system may
be extended to monitor channel communication between processes. While this could be
implemented within the runtime verification monitor by adding a communication event
type, special constructs may have to be added to the QCFSA notation, which currently as-
sumes that transitions correspond solely to function calls. To leave the current framework
unmodified, one could wrap channel communication operations within functions. Special
considerations may also have to be made due to the possible introduction of side-effects,
which could also affect monitoring.

8.2.4 Temporal Properties

DATEs support temporal properties through the use of real-valued clocks and timer op-
erations. As QuickCheck’s temporal property verification capabilities are broadened, the
translation procedure may be augmented to support their verification.

8.3 Concluding Note

Verification is a field that has much to gain from increased automation, which can de-
crease human involvement and improve interoperability between verification tools, lead-
ing to more thorough and consistent results. Identifying additional translations focuses
testing further. By devising translations to refashion models into inputs for different ver-
ification tools, one can improve synergism between the various test processes employed,
thus amplifying monitoring reliability.

Appendix A

Erlang

A.1 Introduction

The following is an overview of Erlang, a multi-paradigm programming language with a
strong focus on concurrency and distributed programming. The primary constructs of
the language and its approach to concurrency, especially interprocess communication, are
illustrated, ending with a description of behaviours and generic server processes.

A.2 Overview

Erlang1 is a declarative programming language with functional programming concepts
which was designed for the creation of highly-concurrent applications. It facilitates the
programming of distributed systems in a quick and efficient manner. It also contains
mechanisms for implementing fault tolerance, increasing applications’ robustness. Threads
are managed by an underlying virtual machine. Memory allocation is automatic, with
variable deallocation being handled by a garbage collector. [CT09]

Erlang is based on the use of concurrent lightweight threads, which communicate exclu-
sively through asynchronous message passing and signals, the latter being an event-based
variation of the former. These alleviate the need for shared memory and locks. Erlang
was originally developed for applications within telecommunications, yet nowadays it is
being used in other problem domains. [CT09] claims that this is primarily due to its
concurrency model as well as its fault tolerance capabilities, which result in code that is
often both clearer and more compact than the equivalent program implemented in another
high-level language such as C.

1Project website: http://www.erlang.org (last accessed July 2011)

155

Appendix A. Erlang 156

A.3 Basic Concepts

The following section introduces the fundamental language constructs used in Erlang,
which are used throughout examples presented within this document.

A.3.1 Variables and Atoms

Erlang employs a dynamic type system [CT09], where variable data types are determined
at runtime. Assignment, comparison and retrieval operations on variables are performed
using pattern matching. Variables are initially unbound, and can only be assigned a
value once. The interpreter will attempt to match subsequent assignment values with the
existing bound values, generating an exception on failure.

Listing A.1: Assignment operation� �
1 A = 12 , % F i r s t assignment succeeds and r e t u r n s 12
2 A = 12 , % Succeeds (v a l u e matches f i r s t assignment)
3 A = 24 . % F a i l s and g e n e r a t e s an e x c e p t i o n� �

Sequential composition of statements is denoted by the , operator, while . signifies
the end of an execution block. Variable names must begin with an uppercase letter.
Variables can be bound to data of any type, including integers, lists, tuples, atoms and
functions.

The atom data type [Eri10e] is used extensively in Erlang when representing named
entities. Atoms serve as constant literals and perform a role similar to that of enumera-
tions in other programming languages. Atoms must be declared with a leading lowercase
letter, and can be encapsulated within single quotes. Atoms only support one operation,
namely comparisons with other atoms. While the role of atoms could in theory be fulfilled
using integers or some other enumeration, they help in making code more legible and are
also handled more efficiently than the former.

A.3.2 Tuples, Lists and List Comprehensions

Tuples

Tuples [Eri10c] are a composite data type with a fixed number of elements of a possibly
varying type, delimited by { }. Different forms of data are often represented using tuples
with an atom as their first element, which serves to describe that tuple’s data type. Such
atoms are known as tags [CT09]. Instead of using tags, one could declare a data type using
records [Eri10e]. Record structures are declared using the -record compiler directive, and
are populated using #recordname, as shown in Listing A.2.

Appendix A. Erlang 157

Listing A.2: Defining and populating records� �
1 % Dec lar ing the ‘ person ’ record s t r u c t u r e
2 −r ecord (person , {name , surname}) .
3
4 . . .
5 % Assignment
6 Guy1 = #person{name=“Joe” , surname=“Random”} ,
7
8 % Same as 1 (order not important)
9 Guy2 = #person{surname=“Random” , name=“Joe”} ,

10
11 % E q u i v a l e n t us ing t u p l e s
12 Guy3 = {person , “Joe” , “Random”} .� �

Lists

Lists are Erlang’s primary collection type. Lists are sequences of objects, which need not
necessarily be of the same type. Lists are delimited by [], with individual elements in
a list separated by commas. Non-empty lists can be divided into a head and a tail, head
being the first element and tail being the remainder of the list. The split between a list’s
head and tail is delimited by the constructor operator |. The tail can itself be a list. Lists
with an empty list as a last tail element are said to be well-formed [CT09].

Listing A.3: Examples of equivalent lists of atoms� �
1 A = [a | [b]] ,
2 A = [a , b] ,
3 A = [a , b | []] .� �

Several standard list operations are pre-defined within the lists module (modules are
described in Section A.3.4. [Eri10f] enumerates and describes each function within this
module, which includes

append(L1, L2) Returns a list L1 ++ L2
reverse(L) Returns a list with all the elements of L in reverse order
foreach(Fun, L) Applies function Fun on each element in L
sort(L) Returns L with its elements sorted

List Comprehensions

List comprehensions allow one to map functions onto each element of a list and to filter
elements based on some specified criteria. The general form of list comprehensions is
given as

Appendix A. Erlang 158

[Expression || Generators and/or Guards]

Generators are of the form Pattern ← List. Each element in the list is bound to a
specified pattern, which can then be used in other list comprehension components.

Guards are boolean expression which determine whether an element should be included
within the result list, typically based on the value of the patterns bound by gener-
ators.

Expression is the element which will be placed into the resultant list.

Listing A.4: List comprehension returning all prime numbers up to N� �
1 Primes = range (2 ,N) −− [X∗Y | | X <−range (2 ,N) , Y <−range (2 ,N)] .� �

Listing A.4 is an example using list comprehensions which produces a list of primes up
to a given number N. The function range(N,M) produces a list containing all the integers
between N and M inclusive, and is defined in Section A.3.4. Alternatively, one could use
the seq() function which is provided with the standard library under the lists module
[Eri10f]. The list comprehension produces the products of all possible pair combinations
of integers between 2 and N. The resultant list is then removed from the list of all numbers
from 2 to N, leaving only the primes2.

A.3.3 Preprocessor

Erlang allows the creation of header files and macros. Macros allow text to be substituted
at the pre-compilation stage. Macros are defined using the -define directive, as in

-define(ORIGINAL, replacement)

For replacement to occour, tokens in the source file must be preceded by a ‘?’ char-
acter. Thus, using the previous declaration, code containing ?ORIGINAL would be
replaced with replacement. There are also several standard macros, such as ?MOD-
ULE (translates to the name of the module within which the token exists), which are
pre-defined in Erlang. [Eri10e].

A.3.4 Program Structure and Control Flow

Functions

Programs in Erlang consist of functions, with related functions typically grouped into
single modules. Functions that are to be exposed to external modules should be marked

21 is not considered prime.

Appendix A. Erlang 159

by listing them within the -export() compiler directive. Modules can be replaced and
loaded at runtime. Function names are considered as atoms. [CT09]

When invoking a function, Erlang uses pattern matching to compare the supplied
function arguments with the parameters defined in the function’s signature. Consider the
definition of the function invert() in Listing A.3.4:� �

1 i n v e r t (true) % Input == t r u e
2 −> fa l se ; % return f a l s e
3 i n v e r t () % Input == anyth ing e l s e
4 −> true . % return t r u e� �

The function is composed of two clauses which are checked sequentially, starting from
the top definition. A function returns the value of the last expression executed within
its body. When passed the atom true, the function returns false. If this is not the
case, the second function is considered. The parameter is a wildcard and matches any
input, discarding its value. Thus, the function will always return true should the first
comparison fail. Functions are terminated with a period. If none of the clauses were to
match, the system would generate a function clause runtime error [Eri10c]. Functions
are called by value, meaning that arguments given to a function are evaluated before
the function is invoked, and the function will operate on local copies of the arguments.
Local variables in a function are unique to each invocation, and their bindings are not
maintained between calls [CT09].

Erlang supports higher-order functions, where functions can be defined, passed as
parameters, assigned to variables and subsequently executed. Anonymous functions are
defined using the fun() keyword [Eri10e].

Listing A.5: Example using Higher-Order Functions� �
1 map(, []) −>
2 [] ;
3 map(Func , [H| Tai l]) −>
4 [Func (H) | map(Func , Ta i l)] .
5
6 t e s t () −>
7 L = map(fun (X) −> X ∗ X end , [1 ,2 ,3 ,4 ,5]) .� �

Listing A.5 is an example showing an application of higher-order functions. It defines
the function map(Func, List), which applies function Func on each element in List and
places the return values in a result list (an implementation of map() can be found in
the lists module [Eri10f]). The map() function makes use of recursion. An anonymous
function that squares a given value is declared and passed as a parameter to map(), along
with a list on which the function will be applied. Each element of the list is passed as an
argument to the function, which then maps the given value with the placeholder variable
used when defining the function.

Appendix A. Erlang 160

Recursion

Recursion is a technique for diving a large problem into smaller and simpler tasks. A
function is recursive if it invokes itself at some point in its execution. Recursion is often
used as a technique for iterating through lists, performing an operation on each element
with every iteration and calling the same function with the remaining elements as an
argument. When creating recursive functions, one often defines a trivial or base case
which stops the function from recurring. Without a base case, a function would keep
recurring, which can sometimes be the desired behaviour as in the case of server processes.

[CT09] states that when implementing direct recursion, a function could be imple-
mented in such a way that each intermediate call’s stack frame would have to be saved
until the recursion has reached its base case. For example, implementing a function which
generates a list of all numbers within a range as� �

1 range (N,M) when N > M −> % Reverse v a l u e s
2 range (M,N) ;
3 range (N,N) −> [N] ;
4 range (N,M) −> [N] ++ range (N+1,M) .� �

would require that range() be unravelled to its full depth, after which the generated
lists are appended.

Another alternative described is to use tail recursion [CT09]. This makes use of an
accumulating parameter, whereby instead of expressing the result in terms of an operation
between the current stage and the subsequent recursive call’s return value, the local result
is calculated and stored in an accumulator and the recursive call is invoked at the end of
the function clause. Thus, a tail-recursive version of range() would be as follows� �

1 range1 (From , From , Res) −>
2 l i s t s : r e v e r s e ([From | Res]) ;
3 range1 (From , To , Res) −>
4 range1 (From + 1 , To , [From | Res]) .
5
6 range (From , To) when From > To −>
7 range (To , From) ;
8 range (From , To) −>
9 range1 (From , To , []) .� �

The range() function initialises the accumulator as the empty list and invokes a
helper function range1(). This then iterates recursively, adding the current value to
the accumulator at each stage and invoking the function anew. Although the order of
elements in the resultant list was not specified as a formal requirement, the final call to
the terminating clause returns a reversed version of the accumulator, since the values are
appended to the front of the accumulator during the iterations and are thus in reverse
order.

While tail recursion should theoretically be more efficient than its direct-recursion
counterpart (as it avoids having to allocate a new stack frame with each call), recent

Appendix A. Erlang 161

releases of Erlang include optimisations which often make it no longer the case. When
opting for high performance, [CT09] suggests that one tries the different options and
chooses the adequate one after measuring their characteristics.

A.4 Concurrency

Erlang has a strong focus on concurrency, allowing massively parallel systems to execute
efficiently. Erlang threads are actually lightweight processes, as they do not share mem-
ory directly. Data exchange and synchronisation between threads is performed through
message passing, eliminating the need for explicit locks or memory barriers. This makes
Erlang a good candidate for developing software on multi-core platforms, as parallelism
is inherent in the paradigm and is automatically catered for. [CT09]

A.4.1 Threads

Threads are created using the spawn() function, which takes a function name and a list
of arguments as a parameter and returns a Process Identifier (PID) [Eri10d]. This creates
a process that executes the specified function, with the original caller’s thread continuing
with its execution from after the spawn command. A PID can also be mapped to an
arbitrary atom using the register() function [Eri10d]. Once an atom is registered, it
can be used to refer to the process endpoint in the same manner as a PID would, with
some caveats, as will be described in Section A.4.2.

The two basic communication operations are sending and receiving messages, which
operate as follows.

Sending is an asynchronous operation [CT09], where the sending process transmits a
packet of information such as an atom, tuple or any valid variable, and continues
with its execution. This data is then placed on the destination process’ receive
queue. The notation for sending atom a to process P is

P ! a

, where P is a PID or a registered process name. A process can retrieve its own PID
using the self() function. Sending messages to a specified PID never fails, even
if the process does not exist. Conversely, if a message is sent to an unregistered
process, an exception will be thrown. [Eri10e]

Receiving causes a listening process to block until at least one element is placed on its
receive queue. The process then handles the incoming messages selectively based
on the conditions specified by its receive clause, which defines a series of guarded
conditions to which the input elements are compared. If a condition is matched, the
related conditional branch is pursued. The general form for the receive construct
is

Appendix A. Erlang 162

receive

atom →
% Matches value ‘atom’

...
Any →

% Binds input value to ‘Any’ end

Figure A.1 illustrates an example of two sending processes communicating with a
single server process. In this example, the server process waits for either an a or a b atom
and outputs the respective received value to standard output. The server process will
execute indefinitely, as once it receives either element, it invokes the function once again.
Otherwise, the process would terminate once execution fell through. If either process were
to send an element other than one that matches the guards (such as the atom c), the
process would simply move to the next item in its receive queue [CT09]. If there are no
remaining unprocessed elements on the receive queue, then the process will block once
again.

server

senderA

senderB

server ! a

server ! b s e r v e r () −>
receive

a −> i o : format (“A˜n”) ;
b −> i o : format (“B˜n”)

end ,
s e r v e r () .

Figure A.1: Two sender processes transmitting to a single server process

A receive block can also specify a timeout in milliseconds using the after guard
clause. This will cause the process to resume and execute the associated code block
should the process block for the specified amount of time. Timeouts are often used when
waiting on external events so as to avoid blocking indefinitely. [Eri10e]

Signals

Apart from simple interprocess communication via channels, Erlang also supports signals.
Processes can be linked to other existing processes using the link() function. On ter-
mination, a process sends a signal to every process to which it is linked. Processes can

Appendix A. Erlang 163

terminate normally once their associated function returns. Alternatively, a process can
force termination using the exit() [Eri10e] function, which also takes a parameter which
specifies the reason for exiting. Linked processes can then perform an action based on the
terminating process’ exit status.

Signals are often employed for monitoring purposes, with arbiter processes (typically
the parent thread which launched the child processes) listening on other processes’ termi-
nation codes and ensuring that faults and abnormal terminations are handled correctly.
One could also create a hierarchy of such supervising processes.

A.4.2 Distributed Systems

Syntactically, extending a concurrent application to allow distribution across a network
of nodes requires a few minor modifications. These are described by [Eri10e] as follows:

• Each node on the network must be assigned a unique name which will be used when
specifying a channel endpoint.

• When sending a message to a process registered on another node, the destination is
changed from a single identifier (as described in Section A.4.1) into a tuple of the
form

{registered process name, node name} ! data

If the process’ PID is known, then a message can be sent without specifying the node
name, as the PID data structure also contains information related to the process’
location.

• Nodes that would like to communicate with each other must all share an agreed-
upon password, which is then stored in a file on each node within a magic cookie.

A node can obtain its own node name by using the node() function. Additionally,
processes within a distributed system can choose to spawn new threads remotely on
another node within the network by using a variant of the spawn() [CT09] function. This
is invoked in the same manner as when programming for single-node systems, except that
the target node name must also be supplied. The spawned process’ standard input and
output are automatically rerouted to the parent node.

A.4.3 Generic Servers

Certain applications and their implementations follow similar patterns, and in some cases,
these patterns may be generalised into common behaviours. Identifying general behaviours
simplifies the programming effort by allowing the common elements of programs to be
reused, thus offering an increase in productivity and robustness.

Appendix A. Erlang 164

One behaviour implemented by the Erlang OTP library [Eri10d] is that of a generic
server (gen server). Many server processes follow the same pattern, listening on an
incoming connection and performing an action based on the contents of the received
message and the current server state. Thus, given a description of how to handle incoming
messages, Erlang can generate a server which will process these messages and react to
them in the specified manner. One need only supply the automaton’s transition functions
and actions as callback functions, and Erlang will manage the creation of all the boilerplate
code related to communications, event monitoring and message management.

Function Operation
start link launches the server process, returning a handle to the server
call sends a synchronous event (request) from a client to a specific

gen server

cast similar to call, but asynchronous
abcast sends a multicast to one or more registered gen servers

Table A.1: Core generic server functions

Table A.1 lists the essential functions that are exposed by a module implementing the
generic server behaviour. Calling any of these functions will result in a message being
sent to the gen server in question. This message is interpreted by the server, and the
relevant implemented callback function is invoked. The core functions that a callback
module must implement are:

1. init, which initialises the process’ state and is invoked through start link

2. handle call, which defines how the server should react to a given event generated
through call and how the internal state should be updated

3. handle cast, which fulfils the role of handle call for asynchronous messages sent
through casts

A.4.4 Generic Finite State Machines

Generic Finite State Machines, or gen fsms, are similar in some ways to gen servers, in
that they are based on the use of a callback module which is invoked from a standardised
and automatically-generated engine. Generic FSMs are used to implement finite state
automata within Erlang. Automata are created using start link, which spawns a new
gen fsm process initialised using the state data specified. An event E can be sent asyn-
chronously to automaton A by calling send event(A, E) function. If A is implemented
within module M, then the automaton will invoke function M:StateName with E as an
argument, where StateName is the name of the automaton’s current state (it follows that
a function must be defined for every state within the automaton). Each state function
must return a tuple which specifies the automaton’s next state. An automaton also opt
to stop, in which case the process is terminated. On entering the new state, the gen fsm

blocks until the next event is received. Generic servers, FSMs and other behaviours are
described in greater detail in [Eri10f].

Appendix A. Erlang 165

A.5 Conclusion

This chapter has provided an overview of the fundamentals of Erlang. It is by no means
comprehensive, limiting itself to those language features that directly concern this docu-
ment. For a more thorough description of the language, one may refer to [CT09], or the
online language reference [Eri10c] and manual [Eri10d].

Bibliography

[AB05] Cyrille Artho and Armin Biere. Combined static and dynamic analysis. In
Proceedings of the AIOOL 05, ENTCS, pages 98–115. Elsevier Science, 2005.

[ABG+05] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sar-
fraz Khurshid, Mike Lowry, Corina Pasareanu, Grigore Rosu, Koushik Sen,
Willem Visser, and Rich Washington. Combining test case generation and
runtime verification. Theoretical Computer Science, 336:209–234, May 2005.

[ACH08] Thomas Arts, Laura M. Castro, and John Hughes. Testing erlang data
types with quviq quickcheck. In ERLANG ’08: Proceedings of the 7th ACM
SIGPLAN workshop on ERLANG, pages 1–8, New York, NY, USA, 2008.
ACM.

[AHJW06] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing
telecoms software with quviq quickcheck. In ERLANG ’06: Proceedings of
the 2006 ACM SIGPLAN workshop on Erlang, pages 2–10, New York, NY,
USA, 2006. ACM.

[AN08] Irem Aktug and Katsiaryna Naliuka. Conspec – a formal language for policy
specification. Electronic Notes in Theoretical Computer Science, 197(1):45–
58, 2008.

[AO08] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, Cambridge, UK, 2008.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Pro-
cessing Letters, 21(4):181–185, October 1985.

[AT10] Thomas Arts and Simon Thompson. From test cases to fsms: augmented
test-driven development and property inference. In Proceedings of the 9th
ACM SIGPLAN workshop on Erlang, Erlang ’10, pages 1–12, New York,
NY, USA, 2010. ACM.

[Bas11] Basho. The riak wiki. http://wiki.basho.com/ (last accessed 19 March
2011), March 2011.

[BBCF08] F. Benigni, A. Brogi, S. Corfini, and T. Fuentes. Service contracts in a secure
middleware for embedded peer-to-peer systems. In Proceedings of the 2nd
Workshop on Formal Languages and Analysis of Contract-Oriented Software
(FLACOS), 2008.

166

Bibliography 167

[Ber07] Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering, 2007. FOSE ’07, pages 85–103,
Washington, DC, USA, 2007. IEEE Computer Society.

[BHJP05] Johan Blom, Anders Hessel, Bengt Jonsson, and Paul Pettersson. Spec-
ifying and generating test cases using observer automata. In Proc. 4 th
International Workshop on Formal Approaches to Testing of Software 2004
(FATES04), volume 3395 of Lecture Notes in Computer Science, pages 125–
139. SpringerVerlag, 2005.

[BHL+07] Eric Bodden, Laurie J. Hendren, Patrick Lam, Ondrej Lhoták, and No-
mair A. Naeem. Collaborative runtime verification with tracematches. In
Workshop on Runtime Verification, pages 22–37, 2007.

[BJ03] Johan Blom and Bengt Jonsson. Automated test generation for industrial
erlang applications. In In ERLANG 03: Proceedings of the 2003 ACM SIG-
PLAN workshop on Erlang, pages 8–14. ACM Press, 2003.

[BJPW99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien
Watkins. Making components contract aware. Computer, 32(7):38–45, 1999.

[BLS07] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verifi-
cation for LTL and TLTL. ACM Transactions on Software Engineering and
Methodology, 2007.

[Car10] Neal Carothers. The babylonian method: Examples. http://personal.

bgsu.edu/~carother/babylon/Examples.html (last accessed 25 February
2010), 2010.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Co-
rina S. Pasareanu, and Hongjun Zheng. Bandera: Extracting finite-state
models from java source code. In Proceedings of the 22nd International
Conference on Software Engineering, pages 439–448. ACM Press, 2000.

[CM05] Séverine Colin and Leonardo Mariani. Model-Based Testing of Reactive Sys-
tems, chapter 18 Run-Time Verification, pages 525–555. Springer, 2005.

[CM08] Jun Chen and Steve MacDonald. Towards a better collaboration of static
and dynamic analyses for testing concurrent programs. In PADTAD ’08:
Proceedings of the 6th workshop on Parallel and distributed systems, pages
1–9, New York, NY, USA, 2008. ACM.

[Col08] Christian Colombo. Practical runtime monitoring with impact guarantees
of java programs with real-time constraints. Master’s thesis, University Of
Malta, 2008.

[CPS08] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic event-
based runtime monitoring of real-time and contextual properties. In Formal
Methods for Industrial Critical Systems (FMICS), volume 5596 of Lecture
Notes in Computer Science, pages 135–149, L’Aquila, Italy, 2008.

Bibliography 168

[CR99] S.J. Cunning and J.W. Rozenblit. Automatic test case generation from re-
quirements specifications for real-time embedded systems. In 1999 IEEE In-
ternational Conference on Systems, Man, and Cybernetics, volume 5, pages
784–789, Piscataway, N.J., 1999. IEEE Press.

[CR09] Richard Carlsson and Mickael Remond. Eunit - a lightweight unit testing
framework for erlang. http://svn.process-one.net/contribs/trunk/

eunit/doc/overview-summary.html (last accessed 26 May 2010), May
2009.

[CSH10] Koen Claessen, Nicholas Smallbone, and John Hughes. Quickspec: guessing
formal specifications using testing. In Proceedings of the 4th international
conference on Tests and proofs, TAP’10, pages 6–21, Berlin, Heidelberg,
2010. Springer-Verlag.

[CT09] Francesco Cesarini and Simon Thompson. Erlang Programming: A Concur-
rent Approach to Software Development. O’Reilly Media, 1005 Gravenstein
Highway North, Sebastopol, CA 95472, first edition, 2009.

[DLvL06] Christophe Damas, Bernard Lambeau, and Axel van Lamsweerde. Scenar-
ios, goals, and state machines: a win-win partnership for model synthesis. In
Proceedings of the 14th ACM SIGSOFT international symposium on Foun-
dations of software engineering, SIGSOFT ’06/FSE-14, pages 197–207, New
York, NY, USA, 2006. ACM.

[DWA+10] John Derrick, Neil Walkinshaw, Thomas Arts, Clara Benac Earle, Francesco
Cesarini, Lars-Åke Fredlund, Victor Gulias, John Hughes, and Simon
Thompson. Property-based testing: the protest project. In Proceedings
of the 8th international conference on Formal methods for components and
objects, FMCO’09, pages 250–271, Berlin, Heidelberg, 2010. Springer-Verlag.

[EFD05] Clara Benac Earle, Lars-Åke Fredlund, and John Derrick. Verifying fault-
tolerant erlang programs. In Proceedings of the 2005 ACM SIGPLAN work-
shop on Erlang, ERLANG ’05, pages 26–34, New York, NY, USA, 2005.
ACM.

[Eri10a] Ericsson. Academic and historical questions. http://www.erlang.org/faq/
academic.html (last accessed 14 March 2010), February 2010.

[Eri10b] Ericsson. Common test reference manual version 1.4.7. http://

www.erlang.org/doc/apps/common_test/ (last accessed 22 March 2010),
February 2010.

[Eri10c] Ericsson. Erlang reference manual user’s guide version 5.7.5. http://www.

erlang.org/doc/reference_manual/users_guide.html (last accessed 14
March 2010), February 2010.

[Eri10d] Ericsson. Erlang run-time system application (erts) reference manual version
5.7.5. http://www.erlang.org/doc/apps/erts/index.html (last accessed
14 March 2010), February 2010.

Bibliography 169

[Eri10e] Ericsson. Getting started with erlang user’s guide version 5.7.5. http://

www.erlang.org/doc/getting_started/users_guide.html (last accessed
14 March 2010), February 2010.

[Eri10f] Ericsson. Stdlib reference manual version 1.16.5. http://www.erlang.org/
doc/man/STDLIB_app.html (last accessed 14 March 2010), February 2010.

[FMPW04] Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes. Mock roles,
not objects. In OOPSLA ’04: Companion to the 19th annual ACM SIG-
PLAN conference on Object-oriented programming systems, languages, and
applications, pages 236–246, New York, NY, USA, 2004. ACM Press.

[GH01] Dimitra Giannakopoulou and Klaus Havelund. Automata-based verification
of temporal properties on running programs. In Proceedings of the 16th IEEE
international conference on Automated software engineering, ASE ’01, pages
412–, Washington, DC, USA, 2001. IEEE Computer Society.

[GJ08] Alex Groce and Rajeev Joshi. Extending model checking with dynamic
analysis. In VMCAI’08: Proceedings of the 9th international conference
on Verification, model checking, and abstract interpretation, pages 142–156,
Berlin, Heidelberg, 2008. Springer-Verlag.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed auto-
mated random testing. PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, 40(6):213–
223, June 2005.

[HBAA10] Hadi Hemmati, Lionel Briand, Andrea Arcuri, and Shaukat Ali. An en-
hanced test case selection approach for model-based testing: an industrial
case study. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, FSE ’10, pages 267–276,
New York, NY, USA, 2010. ACM.

[HJK+11] Andreas Holzer, Visar Januzaj, Stefan Kugele, Boris Langer, Christian
Schallhart, Michael Tautschnig, and Helmut Veith. Seamless testing for
models and code. In Proceedings of 14th International Conference on Fun-
damental Approaches to Software Engineering (FASE 2011), volume 6603 of
Lecture Notes in Computer Science, pages 278–293. Springer, April 2011.

[HSRT08] A. Hoole, I. Simplot-Ryl, and I. Traore. Integrating contract-based security
monitors in the software development life cycle. In Proceedings of the 2nd
Workshop on Formal Languages and Analysis of Contract-Oriented Software
(FLACOS), 2008.

[HW05] Geng-Dian Huang and Farn Wang. Automatic test case generation with
region-related coverage annotations for real-time systems. In Doron Peled
and Yih-Kuen Tsay, editors, Automated Technology for Verification and
Analysis, volume 3707 of Lecture Notes in Computer Science, pages 144–
158. Springer Berlin / Heidelberg, 2005.

Bibliography 170

[JM97] Jean-Marc Jézéquel and Bertrand Meyer. Design by contract: The lessons
of ariane. Computer, 30(1):129–130, 1997.

[JuRJBP07] Muhammad Jaffar-ur Rehman, Fakhra Jabeen, Antonia Bertolino, and An-
drea Polini. Testing software components for integration: a survey of issues
and techniques. Software Testing, Verification and Reliability, 17(2):95–133,
2007.

[JVSJ06] Pankaj Jalote, Vipindeep Vangala, Taranbir Singh, and Prateek Jain. Pro-
gram partitioning: a framework for combining static and dynamic analysis.
In WODA ’06: Proceedings of the 2006 international workshop on Dynamic
systems analysis, pages 11–16, New York, NY, USA, 2006. ACM.

[KMM07] Ingolf H. Krüger, Michael Meisinger, and Massimiliano Menarini. Runtime
verification of interactions: from mscs to aspects. In Proceedings of the
7th international conference on Runtime verification, RV’07, pages 63–74,
Berlin, Heidelberg, 2007. Springer-Verlag.

[KP03] Pieter Koopman and Rinus Plasmeijer. Testing reactive systems with gast.
In Stephen Gilmore, editor, Trends in Functional Programming 4, pages
111–129. Intellect Books, September 2003.

[LPSS09] A. Lomuscio, W. Penczek, M. Solanki, and M. Szreter. Runtime monitoring
of contract regulated web services. In Proceedings of the 12th International
Workshop on Concurrency, Specification and Programming (CS&P09), 2009.

[LQS08] Alessio Lomuscio, Hongyang Qu, and Monika Solanki. Towards verifying
contract regulated service composition. In ICWS ’08: Proceedings of the
2008 IEEE International Conference on Web Services, pages 254–261, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime veri-
fication. Journal of Logic and Algebraic Programming, 78(5):293–303, May
2009.

[Mey92] Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40–51,
1992.

[MFC01] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-testing: unit testing
with mock objects. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[MH03] Vincent Massol and Ted Husted. JUnit in Action. Manning Publications
Co., Greenwich, CT, USA, 2003.

[NE02] Jeremy W. Nimmer and Michael D. Ernst. Automatic generation of pro-
gram specifications. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, pages 229–239,
New York, NY, USA, 2002. ACM.

Bibliography 171

[PA09] Javier Paris and Thomas Arts. Automatic testing of tcp/ip implementations
using quickcheck. In ERLANG ’09: Proceedings of the 8th ACM SIGPLAN
workshop on ERLANG, pages 83–92, New York, NY, USA, 2009. ACM.

[PE05] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and
classification of test inputs. In 19th European Conference on Object-Oriented
Programming, pages 504–527, 2005.

[PMBF05] Patrizio Pelliccione, Henry Muccini, Antonio Bucchiarone, and Fabrizio Fac-
chini. TeStor: Deriving test sequences from model-based specifications. In
George Heineman, Ivica Crnkovic, Heinz Schmidt, Judith Stafford, Clemens
Szyperski, and Kurt Wallnau, editors, Component-Based Software Engineer-
ing, volume 3489 of Lecture Notes in Computer Science, pages 267–282.
Springer Berlin / Heidelberg, 2005.

[Pnu77] Amir Pnueli. The temporal logic of programs. In SFCS ’77: Proceedings
of the 18th Annual Symposium on Foundations of Computer Science, pages
46–57, Washington, DC, USA, 1977. IEEE Computer Society.

[PPW+05] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner. One evaluation of model-based testing
and its automation. In Proceedings of the 27th international conference on
Software engineering, ICSE ’05, pages 392–401, New York, NY, USA, 2005.
ACM.

[Quv10] Quviq AB. QuickCheck Documentation Version 1.191, March 2010.

[RBJ00] Vlad Rusu, Lydie Du Bousquet, and Thierry Jeron. An approach to symbolic
test generation. In Proceedings of Integrated Formal Methods, pages 338–357.
Springer Verlag, 2000.

[SC07] Yannis Smaragdakis and Christoph Csallner. Combining static and dynamic
reasoning for bug detection. In Proceedings of the 1st International Confer-
ence on Tests And Proofs (TAP), pages 1–16. Springer, 2007.

[vRDGT08] Robbert van Renesse, Dan Dumitriu, Valient Gough, and Chris Thomas.
Efficient reconciliation and flow control for anti-entropy protocols. In Pro-
ceedings of the 2nd Workshop on Large-Scale Distributed Systems and Mid-
dleware, LADIS ’08, pages 6:1–6:7, New York, NY, USA, 2008. ACM.

[ZH02] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering, 28(2):183–200,
2002.

