
polyLarva Plugin for PHP

Jonathan Attard

Supervisor: Dr. Christian Colombo

Faculty of ICT

University of Malta

March 2014

Submitted in partial fulfillment of the requirements for the degree of
B.Sc. I.C.T. (Hons.)

Faculty of ICT

Declaration

I, the undersigned, declare that the dissertation entitled:

polyLarva Plugin for PHP

submitted is my work, except where acknowledged and referenced.

Jonathan Attard

6th March 2014

ii

Acknowledgements

I would like to express my appreciation and gratitude towards all those who, in
some way or another, supported and helped me in completing this work.

Special thanks goes to my supervisor Dr. Christian Colombo, for guiding me in
choosing the study area for this dissertation and for his interest, suggestions, and
constructive evaluation of this work. I would like to thank my family members,
for providing me with motivation and courage in times of need. And last but not
least, my girlfriend, who provided me with the love, patience, and support needed
in order to overcome difficult situations along the way.

iii

Abstract

Web Applications (WA) are increasingly being expected to behave correctly with a
high degree of confidence with the growing presence of mission, safety and business
critical applications over the web, as they allow no room for failure as lives could
be lost or financial losses could be incurred. PHP is a popular scripting language
designed specifically for dynamic web page creation, used for the development of
mainstream WAs such as Moodle and Wordpress. Its dynamic and concise nature
aids in achieving development targets faster than the alternatives. However, its
dynamicity renders verification techniques, based on exhaustive traversal of the
state space, such as model checking, not suitable for its verification. Runtime
Verification (RV) is a light-weight verification technique that has been shown to be
a viable solution for the verification of large complex systems.

polyLarva is a technology-agnostic RV tool that can be extended for the run-
time verification of systems developed in any technology, given the availability of
a technology-specific plugin. In this work, we present our approach to extending
polyLarva with a PHP plugin, for the runtime verification of any PHP WA. poly-
Larva had never been extended to scripting languages before, and this presented a
new category of challenges for its extension to PHP. For polyLarva to be able to
monitor a PHP WA, it is first required that target PHP WA scripts be enhanced
with monitoring functionality so that their behaviour becomes observable. Once
their behaviour can be observed, properties can be defined, using the polyLarva
specification language, for the verification of such behaviour.

Following a thorough investigation of the PHP language and ways of expressing
correctness properties on such language, we came up with a PHP plugin that was
eventually tested in a case study on an e-learning PHP WA called Moodle. A
number of properties, based on configurations from a real-life Moodle installation,
have been successfully verified by polyLarva by means of the PHP plugin. Through
the verified properties we were able to show that the PHP plugin is able to employ
monitoring functionality for different real-life properties, specified on PHP script
code behaviour, while supporting the flexibility allowed by polyLarva of splitting
such properties across the monitored system and the monitor.

iv

Contents

1. Introduction 1
1.1 Report Structure . 3

2. Background 5
2.1 Introduction . 5
2.2 polyLarva . 5

2.2.1 Runtime Verification (RV) 6
2.2.2 Aspect-Oriented Programming (AOP) 9
2.2.3 polyLarva Architecture . 11
2.2.4 Property Specification Language 13
2.2.5 Communication between the Remote Monitor and System-

side Monitoring Code . 26
2.2.6 Conclusion . 27

2.3 PHP . 28
2.3.1 PHP Language . 29
2.3.2 Conclusion . 34

2.4 Conclusion . 34

3. Problem Definition 35
3.1 Introduction . 35
3.2 Aims and Objectives . 36
3.3 Conclusion . 38

4. PHP Plugin Design 39
4.1 Introduction . 39
4.2 Challenges for polyLarva in Monitoring PHP WAs 40
4.3 Enhancing the Property Specification Language for the PHP Language 41

4.3.1 Applying Event Declarations to Subsets of PHP WA Scripts 42
4.3.2 The Extraction of Monitoring Events from Unstructured PHP

Code . 44
4.4 Instrumentation of Event Extraction Code into PHP WA Code . . . 48

4.4.1 AOP PHP . 49
4.4.2 Translating Event Declarations to AOP PHP Code 53
4.4.3 Event Declarations not Translatable to AOP PHP Code . . 54

v

4.4.4 Event Generation Code . 55
4.5 System-side Monitoring Logic Evaluation 55

4.5.1 Monitoring Contexts and System-side Evaluation Functionality 56
4.6 Conclusion . 58

5. PHP Plugin Implementation Details 60
5.1 Introduction . 60
5.2 polyLarva Generic Plugin Interface and Structure 61

5.2.1 Extracting an Intermediate Specification for Monitoring Code
Compilation . 63

5.3 Monitoring Code Compilation and Instrumentation 66
5.3.1 Instrumenting Event Extraction Code into Target PHP Scripts 70
5.3.2 PHP Plugin Architecture . 72

5.4 Conclusion . 72

6. Case Study 74
6.1 Introduction . 74
6.2 Moodle . 75

6.2.1 Property#1 - Cross-verifying Moodle Permission
Management (MPM) . 76

6.2.2 Property#2 - Further Protection on Moodle Administration 83
6.2.3 Property#3 - Limiting Login Attempts 86
6.2.4 Property#4 - Timing Out Expired Moodle Sessions in Real

Time . 92
6.3 Evaluation . 96

6.3.1 Testing the Set Objectives against the Case-Study 96
6.3.2 Impact of Case-Study on the PHP Plugin 100
6.3.3 Appraisal of the Case-study 101

6.4 Conclusion . 101

7. Related Work 102
7.1 Introduction . 102
7.2 Other polyLarva plugins . 102
7.3 Swaddler . 104
7.4 Conclusion . 105

8. Conclusion 107
8.1 Future Work . 109
8.2 Concluding Thoughts . 109

References 111

vi

List of Figures

2.1 Architecture of a generic RV tool[16] 8
2.2 Separation of cross-cutting concerns with aspect-oriented Program-

ming . 10
2.3 polyLarva architecture . 12
2.4 polyLarva local monitoring compiler featuring technology-specific

plugins . 13
2.5 Monitoring execution sequence for ‘ruleAddFailedLogin’ rule [16] . . 21
2.6 Sequence of events triggered by event ‘closeSession(Session sesn)’[16] 26
2.7 The requesting and execution process between the client, web server

and PHP engine.[18] . 28

4.1 Identical definitions of add() across scripts. 43
4.2 Dynamic inclusion of scripts in PHP WAs. 47
4.3 System-side monitoring code . 57

5.1 Monitoring code compilation process mapping 62
5.2 Exemplary PHP monitoring code structure 63
5.3 Intermediate specification mapping from a property specification script 64
5.4 Intermediate specification: @CODECONTEXT block 67
5.5 Intermediate specification: @EVENTS block 68
5.6 Intermediate specification: main specification structure 68
5.7 Monitoring code structure . 69
5.8 Instrumentation points in PHP scripts 70
5.9 Overall PHP plugin architecture . 72

6.1 Moodle permission management . 76
6.2 Descriptive field used for global user role 81
6.3 Assigned moodle role in study units 81
6.4 Permission violations for ’mod/forum:deleteanypost’ 82
6.5 Incorrect ‘Student’ permission . 82
6.6 Student attempting access to ‘/moodle/admin/index.php’ 85
6.7 Property violations indicating the attempted URL with parameters,

and the User ID . 85
6.8 Communication model for property#3 90

vii

List of Tables

6.1 UoM VLE abridged permission specification 77
6.2 Type of events specified in the case-study properties 98

viii

1. Introduction

Almost everything we do nowadays revolves in some way or another around the web

- be it socially, recreationally or professionally. Over the years we have moved from

a static and unstructured web to a more dynamic and structurally-conformist one.

In particular, web applications (WA), which are of the latter sort, have changed

the way we deal with information and are used in a variety of domains such as

e-commerce, education, entertainment, etc. Moreover, mission, safety and business

critical applications are increasingly moving to this paradigm over the web where

they allow no room for failure as lives could be lost or financial losses could be

incurred.

Due to their widespread use and criticality in certain domains, WAs are increas-

ingly being expected to behave correctly with a high degree of confidence. However,

there are some important differences between WAs and traditional software, ad-

versely affecting the applicability of traditional correctness-checking techniques on

WAs. One of the main differences is that they are by and large developed in dy-

namic languages, providing straightforward syntax to alleviate the developers effort

through more conciseness and flexibility[17]. PHP1 is a very popular dynamic lan-

guage, mainly targeted for dynamic web page creation, that is relatively easy to

work with when compared to static and other dynamic languages. Despite all its

advantages, however, the verification of WA logic written in PHP is considered to

1http://php.net/

1

Chapter 1. Introduction

be much tougher than that of software written in static languages. This is by virtue

of the fact that the resultant PHP WAs are likely to be comprised of extremely

loose and dynamically coupled components[1].

Traditionally one considers two main verification techniques: testing and formal

verification. Testing covers a wide field of methods for finding bugs but it is never

completely exhaustive and cannot guarantee the absence of bugs. Formal verifica-

tion is another alternative to testing where a system is formally verified with respect

to a set of properties. Model checking[2] is such an example; it attempts to ensure

that all execution traces of a system will obey a specific set of properties. The

problem with model checking is that it does not scale well to real-world systems as

the number of execution paths for analysis grows exponentially, hence impractical

to verify all. Since PHP is considered to be tougher to verify that other static

languages, the formal verification of PHP WAs is even more unrealistic, forcing the

necessary verification to be performed at runtime.

Runtime Verification (RV) is a verification technique that attempts to estab-

lish a trade-off between testing and formal verification, and is being pursued as a

lightweight technique complementing both verification techniques[10, 15]. It has

been shown to be a viable solution for the verification of large complex systems[5].

In contrast to model checking, RV, rather than considering all possible execution

paths, only considers the current runtime path for analysis while still guaranteeing

detection (albeit at runtime) of property violations. Currently there are no RV

tools supporting PHP notwithstanding the popularity of the language.

Rather than designing and implementing a RV tool from scratch, we considered

extending a RV tool called polyLarva[4, 5, 16], currently supporting the monitoring

of systems developed in Java, C and Erlang. It is claimed to be easily extensible,

but the effort required to extend it some language, such as PHP, really depends on

the nature of such language. When considering polyLarva for the runtime verifica-

tion of PHP WAs certain factors must be taken into account such as the paradigm

shift from static languages to dynamic languages. The programming unit of PHP

2

Chapter 1. Introduction

is a file, commonly called a script, which is the recurring element of PHP WAs.

Scripts are the embodiment of sequential statements executed every time a script

call is issued via an HTTP request. A script is also the place where functions

and classes can be declared. Currently polyLarva has been extended only to static

languages where the notion of scripts or files is missing.

In this report we present a PHP plugin as a support to polyLarva for its abil-

ity to monitor PHP WAs. To assess whether the resulting PHP plugin has been

able to fully cater for the dynamic aspect of PHP, and the notion of scripts, we

have applied it to a case study (Chapter 6) on an elearning system called Moodle,

based on configurations from a real-life Moodle installation. The emphasis of this

case-study was on the extent of properties that can be verified by polyLarva, by

means of the PHP plugin, on PHP WA behaviour.

1.1 Report Structure

Chapter 2: Background This chapter gives an overview of the relevant parts in

polyLarva and PHP. Further work in other chapters is based on such parts.

Chapter 3: Problem Definition This chapter gives the definition of the prob-

lem, for extending polyLarva to PHP, and states the main aim and objectives for

a successful PHP plugin.

Chapter 4: PHP Plugin Design This chapter focusses on the design of the PHP

plugin by investigating the relationship between the PHP language and prevalent

PHP WA structures, and polyLarva.

Chapter 5: PHP Plugin Implementation Details This chapter gives the

implementation details of the PHP plugin, highlighting discrepancies between the

3

Chapter 1. Introduction

generic polyLarva plugin structure and the requirements for a PHP plugin, and

ways of overcoming them.

Chapter 6: Case Study This chapter gives details about a case study on a real-

life PHP WA, aimed at evaluating the way in which the resulting plugin reaches

the goals of this work.

Chapter 7: Related Work This chapter relates the resulting PHP plugin with

other polyLarva plugins and Swaddler, an approach for anomaly detection whose

concepts are similar to polyLarva, and which has been implemented for use with

PHP WAs.

Chapter 8: Conclusion This chapter concludes by summarising the achievements

of this work. It also gives the direction for future work and a recommendation for

future plugins.

4

2. Background

2.1 Introduction

The main aim of this chapter is to give background on polyLarva and PHP, as an

aid in understanding the polyLarva PHP plugin design process (Chapter 4), its

implementation details (chapter 5), and the case-study (chapter 6).

2.2 polyLarva

polyLarva is a monitoring tool that is able to perform the monitoring of systems

developed in any technology, based on theoretical foundations from an area of

software verification called runtime verification. Monitoring is based on a formal

behaviour specification that is handed over with the system to be monitored. Sys-

tems are enhanced with monitoring code, according to such specification, in order

for them to be able to be monitored by a polyLarva monitor. polyLarva is able

to perform such enhancements to systems developed in any technology, given the

availability of an attributed technology-specific plugin.

In this section we start by giving some background on runtime verification (RV)

(Subsection 2.1.1), with an aim to set a basis of understanding of the theoretical

framework used by polyLarva. Then, we introduce a programming paradigm that

is widely used by RV tools for structured instrumentation of monitoring code (Sub-

5

Chapter 2. Background

section 2.1.2), followed by an illustration of the polyLarva architecture (Subsection

2.1.3). Then, we illustrate the fundamentals of the polyLarva specification lan-

guage through a running example, together with showing other monitoring aspects

in relation to such example (Subsection 2.1.4). Finally, we give some comments on

the way different monitoring parts interact with each other, focussing on aspects

of communication between such parts. (Subsection 2.1.5).

2.2.1 Runtime Verification (RV)

Software verification includes all techniques suitable for showing whether a soft-

ware system satisfies its specification. There are various verification techniques and

methods, all varying in the way verification is applied to the candidate software.

The main determinant factors in verification are scalability and exhaustiveness,

usually determining the suitability of a verification technique for use with a par-

ticular class of software, such as safety-critical systems. Scalability is the extent of

system complexity a verification technique can handle, and exhaustiveness is the

extent of coverage a verification technique can provide. Scalability and exhaustive-

ness are factors orthogonal to each other which can be depicted on a tension scale

placed on opposite ends.

Traditionally, one considers verification techniques such as theorem proving[8],

model checking[2], and testing. Theorem proving is a technique that is applied

manually in order to show whether a software is correct with respect to its specifi-

cation. It is similar to how proofs are carried out based on a mathematical theorem.

Model checking, on the other hand, is an automatic verification technique which

bases itself on a formal model describing the system, and can be applied on finite-

state systems. Both theorem proving and model checking are aimed at performing

an exhaustive analysis on software. They are used to verify that for every possible

execution path a software program can be in, a certain property always holds; such

certainty is something which is highly desirable in verification. However, this has

its limits, since their exhaustiveness highly impinges on the extent of their scala-

6

Chapter 2. Background

bility. In model checking various abstraction and reduction techniques have been

proposed in order to alleviate scalability problems, however, the full verification of

large-scale systems still remains largely unattainable with such technique. Testing

is extensively used for the verification of large-scale systems due being scalable,

however, it cannot give guarantees of whether a software is correct with respect

to its specification since it is not exhaustive. Nowadays, software is becoming

increasingly complex such that no real life system can ever be tested exhaustively.

Runtime verification (RV)[10, 15] is a verification technique that inherits qual-

ities from both ends of the scale, between scalability and exhaustiveness; in fact

it is seen as a lightweight verification technique complementing testing and model

checking, establishing a trade-off between them. The main difference in RV is that

it performs verification while the software is executing, or on an execution trace

obtained from a software run. Its main focus is the execution trace (a single ex-

ecution path), ignoring all other possible execution paths a program can exhibit.

This greatly alleviates the problem of scalability while still being able to carry out

analysis for the particular execution trace.

The essential components required for runtime verification, which should be

considered over and above the target system, are a monitoring mechanism and a

verification mechanism. The monitoring mechanism is used in order to elicit events

in the system at the time they are occurring, and the verification mechanism is used

for the verification of the succession of such events. Events are communicated to

the verification mechanism in order to be verified in the sequence they are received,

so it can be determined whether the execution trace adheres at all times to a given

system specification. If the verification mechanism detects a violation, it should

raise an alarm together with providing an indicator, pointing in the execution trace,

where such violation happened.

When designing a RV tool, the focus is usually on two main parts: 1) the for-

mal language in which correctness properties are specified, and 2) the translation

of correctness properties into monitoring code, and its instrumentation into target

7

Chapter 2. Background

Figure 2.1: Architecture of a generic RV tool[16]

system code, in order to make the target system monitorable. In order for RV to

be effective and as a verification technique, the formal notation used for the spec-

ification of correctness properties should be more abstract and concise than the

implementing language of the equivalent monitoring code; otherwise, the probabil-

ity of making an error in a correctness property specification would be the same as

that when writing the monitoring code directly in implementing language.

The process of making a system monitorable generally requires two components:

the target system for monitoring and a formal specification comprised of correctness

properties on the system behaviour, illustrated in Figure 2.1. The two are given

as input to a runtime monitoring code generator for the automatic generation of

monitoring code and the eventual instrumentation of such monitoring code into

the target system.

The generated monitoring code is directly translated from the supplied formal

specification, and it is usually comprised of two main parts: the implementation

8

Chapter 2. Background

code for the monitoring logic and meta-code for the elicitation of events at code

parts of interest in the target system. The instrumentation of monitoring code into

the target system is performed in a way such that when the modified system exe-

cutes, it does so in conjunction with the monitoring code, hence taking advantage

of the new verification functionality.

A typical property in RV can be like the following: the number of failed transac-

tions in a system cannot exceed 500, among all system users. When this property

is compiled, from its formal representation, the implementation code of the mon-

itoring logic will typically be comprised of a counter representing the number of

failed transactions, together with attributed code for its incrementing with every

failed transaction, and the checking of whether the counter has exceeded 500. If

the counter exceeds 500 the verification mechanism should be able to raise a prop-

erty violation, possibly triggering functionality to give feedback to the system. The

event-elicitation code, on the other hand, will specify how the target system should

be modified, so that whenever a transaction takes place, an event, with accompany-

ing information about the success of the transaction, is generated and transferred

to the verification mechanism for verification.

In the following section we give background on a programming paradigm, called

aspect-oriented programming (AOP), that is widely used by RV implementations,

such as in [3] and [16], as a technique for instrumenting monitoring code into the

target system code.

2.2.2 Aspect-Oriented Programming (AOP)

Aspect-Oriented Programming (AOP)[14] is a programming paradigm aimed at

complimenting other programming techniques, in particular object oriented pro-

gramming (OOP). The main advantage of AOP is that it provides the developer

with an abstraction layer over which he can implement cross-cutting concerns in

separate modules. Figure 2.2 illustrates this by showing cross-cutting concerns

tangled and scattered with core-level concerns in implementation modules on one

9

Chapter 2. Background

Figure 2.2: Separation of cross-cutting concerns with aspect-oriented Programming

side, and the same cross-cutting concerns and core concerns implemented in sepa-

rate modules on the other side, through the use of AOP techniques. An example

of a common cross-cutting concern that can benefit from AOP modularisation is

logging. The only linking between logging functionality and business functionality

is that of execution locality, such that when business functionality is called for

execution, logging functionality is also called for execution. This causes logging

functionality to become tangled and scattered across business functionality. With

AOP techniques logging functionality can implemented completely independently

from business functionality.

In order for AOP code to be actuated, it has to be weaved into the original

system code by an automated weaving process, either at compile time, load time

or runtime1. The weaving process injects the necessary triggers at selected points

in the system code in order for extraneous code to be executed at such points, while

the system is running. Such points, also known as joinpoints, are identifiable by the

matching rules as provided by the particular AOP implementation. Matching rules

can include the selection of joinpoints around particular method calls, exception

throws and so forth. The code injected at a particular joinpoint, or at various

joinpoints, is known as advice. An advice is executed whenever an attributed

1http://docs.spring.io/spring/docs/2.5.4/reference/aop.html

10

Chapter 2. Background

joinpoint is encountered during system execution. An advice can be set to process

any runtime information that is made available at the selected joinpoints. For

example, if an advice is injected at a joinpoint after a method call, the runtime

information that is made available to such advice can include the arguments passed

to the particular method as well as the returned value.

Runtime monitoring can be viewed as a cross-cutting concern to the system

being monitored. It is a concern that is usually invisible to the running system,

cross cutting the target system for the capturing of an execution trace, for its veri-

fication. AOP techniques suit well for the identification of points at which runtime

information of monitoring interest becomes available in the system code, for the

instrumentation of monitoring code at such points. J.Cook et al. in [7] confirm

the increased use of AOP in runtime monitoring as an aid for the instrumentation

process.

2.2.3 polyLarva Architecture

polyLarva[5, 6, 16] is a technology-agnostic RV framework that be extended for the

monitoring of systems developed in any programming language. Its architecture

is based on the generic architecture of RV tools presented in Figure 2.1. The

main differences lie in the separation of monitoring code compilers (generators).

In addition to the compilation of monitoring code that is instrumented into the

original system, a separate remote monitor is compiled as a program in its own

right. Both the remote monitor and local monitoring code are compiled from the

same polyLarva specification script. The remote monitor and local monitoring code

communicate with each other over TCP sockets during monitoring. The main role

of the remote monitor is to orchestrate monitoring and execute monitoring logic

in response to the events it receives from the local monitoring code. The main

role of the local monitoring code is to extract events from the monitored system

and channel them to the remote monitor. It can also perform the evaluation of

monitoring logic as part of the system, usually for system-bound information.

11

Chapter 2. Background

Figure 2.3: polyLarva architecture

The remote monitor is always compiled in Java, while the local monitoring code

is compiled depending on the programming language of the system to be monitored.

The local monitoring code is comprised of aspect code, for the extraction of event

information, and other monitoring code. The aspect code is generated in the AOP

language of choice, for the particular programming language, while the other mon-

itoring code is generated directly in the particular programming language. The

latter includes the necessary functionality for communicating monitoring informa-

tion to and from the remote monitor, and the execution of any local monitoring

logic.

Figure 2.4 gives more details on the way the local monitoring compiler gen-

erates local monitoring code for the different programming languages. A system

developed in some programming language can only have its local monitoring code

compiled by the local monitoring compiler only if a technology-specific plugin for

such programming language exists. For example, if a system developed in Java is

12

Chapter 2. Background

Figure 2.4: polyLarva local monitoring compiler featuring technology-specific plu-
gins

to be monitored, a technology-specific plugin for Java needs to be available. The

main role of technology-specific plugins is to compile the necessary monitoring code

in the equivalent technologies, from the given polyLarva specification script, and

instrument such monitoring code into the monitored system, becoming one with

it.

2.2.4 Property Specification Language

The polyLarva property specification language is a technology-agnostic language,

used for the specification of correctness properties on the behaviour of systems

developed in any technology. It is best explained directly from its language def-

initions, however, for the sake of conciseness we are going to illustrate the most

important parts via a running example. The main running example we are going

to consider is from a dummy ATM system developed in Java. This ATM system

allows for the logging in of one user at a time, by the entering of a pin number. If

the pin number is a valid one, the user will be given the facility to carry out mul-

tiple actions against his account such as balance checks, deposits and withdrawals.

Below are some properties (in a descriptive form) for the ATM pin authentication

process.

13

Chapter 2. Background

• If the entered pin is not accepted by the ATM system, the user is given the

opportunity to re-enter his pin number again. There cannot be more than

three successive bad login attempts.

• If the entered pin number is not accepted by the ATM system, there should

be a twenty seconds block on the authentication mechanism before one can

proceed with another pin entry attempt.

The above properties must always hold during the time the ATM system is in

operation. We will translate these into a polyLarva property specification, for il-

lustration of both how to compose a general property specification and to show

certain monitoring aspects, such as the communication sequence between the mon-

itored system and the remote monitor for a certain property.

When planning to monitor a system, one should start by identifying which parts

in the system code relate to the correctness properties considered for monitoring.

This, so that the necessary events can be generated at such code parts. The above

properties seem to be driven by one particular event happening at the system: that

of pin number verification. In this example we find that the ATM system has a

particular method called verifyPin(), used for the verification of the pin inserted

by the user. Therefore, it is required that an event is generated after verifyPin() is

called, so that with every such method call, the remote monitor receives an event

and checks whether the attributed properties hold in the succession of such events.

Dummy ATM System Property Specification (pin validation part)

The polyLarva property specification language is a guarded-command style lan-

guage, with properties expressed as a list of rules of the form[16]:

event |condition ->action

Whenever the remote monitor receives an event, the list of rules is traversed in

14

Chapter 2. Background

order to match any rules specified on such event. Rules are processed one after

the other, first by matching the event, then by evaluating the condition, and if the

condition has evaluated to true, by executing the action.

1 events {

2 l o g i nFa i l (r e s u l t) = {∗ . v e r i f yP in (∗) uponReturning (Boolean r e s u l t) }

3 }

This code snippet illustrates an events declaration section, comprising one event.

In this example all properties considered for monitoring are driven by this one event.

There can be as many event declarations within an events section, as required. On

the left hand side of an event declaration is the event name, together with captured

runtime information that is made available by such an event. This particular event

is declared with name LoginFail, and captures runtime information result, upon

its occurrence. On the right hand side of the event is the event matching signa-

ture, *.verifyPin(*) , specifically stating that LoginFail event should fire whenever

a method in the system code, under the name verifyPin(), declared in any class,

and taking any number of parameters, is called by the monitored system. up-

onReturning(Boolean result) intends that such event should specifically fire after

verifyPin() returns a value, which in this case is of type Boolean. The declaration

of the parameter type is important so as for the remote monitor to know what kind

of runtime information to expect accompanying an event.

15

Chapter 2. Background

1 cond i t i on s {

2 monitorSide {

3 l og inT imer Inva l id = { l a rva : timerUnder (loginTimer , 20) ;}

4 log inAttemptsVal id = { re turn loginAttempts < 3 ;}

5 }

6 systemSide {

7 i sP inVa l id = { re turn r e s u l t == f a l s e ;}

8 }

9 }

This code snippet illustrates the conditions section, which holds the conditions

(monitoring logic) of the considered properties. This section is further partitioned

into another two sections. polyLarva allows for monitoring logic to be evaluated

either at the monitor side or at the system side. Those conditions which are

declared in the monitorSide section are compiled as part of the remote monitor,

hence, are evaluated at the monitor side, and those conditions which are declared

in the systemSide section are compiled as part of the local monitoring code, and are

evaluated at the system side. Each condition is designated to return a true/false

result, as determined by the monitoring logic. On the left hand side of a condition

declaration is the condition name, while on the right hand side it is specified the

monitoring logic for the evaluation of such condition.

In this example there are three conditions, two of them are evaluated at the

monitor side, and another at the system side. Those evaluated at the monitor side

are expressed in the Java language, since the runtime monitor compiles to Java

code. isPinValid, in this example, is also expressed in the Java language, since

the dummy ATM system is implemented in Java. If the monitored system was

implemented in another programming language, the system-side condition would

have been expressed in that particular language. loginTimerInvalid is a timer con-

dition which returns true if declared timer loginTimer hasn’t yet elapsed 20 seconds

from the time it was started/reseted. It is used for the verification of whether the

16

Chapter 2. Background

authentication mechanism gets blocked for 20 seconds in between login attempts.

loginAttemptsValid performs a value comparison to check whether the number of lo-

gin attempts has exceeded the set threshold, using declared loginAttempts counter.

isPinValid is a condition which determines the truth value of result, returned from

verifyPin(). The aim of such condition is to determine the success of a login at-

tempt.

1 a c t i on s {

2 systemSide {

3 logAttemptsErr = {System . out . p r i n t l n (”No more l o g i n

4 re−attempts a l lowed a f t e r three f a i l e d t r i e s ”) ;

5 }

6 logTimerErr = {System . out . p r i n t l n (”A l o g i n re−attempt

7 i s not a l lowed be f o r e 20 s have e lapsed from l a s t

8 tryyy . ”) ;

9 }

10 }

11 monitorSide {

12 addFai ledLogin = {++loginAttempts ;

13 }

14 r e s e t l og inT imer = { l a rva : t imerReset (loginTimer) ;

15 }

16 }

17 }

This code snippet illustrates the actions section. Just like conditions, actions

can be declared to execute either at the monitor side or at the system side. Most of

the time, actions are declared at the monitor side in order to update the monitoring

state, such as in the form of a counter or a timer, but they can also be used for

the altering of the monitored system state, by executing code at the system side.

In this example there are four actions, two of which are declared for execution at

the monitor side and the other two are declared for execution at the system side.

17

Chapter 2. Background

addFailedLogin is set to increment declared loginAttempts counter by value one,

while resetloginTimer is set to reset the declared loginTimer to zero seconds. Both

logAttemptsErr and logTimerErr are set to output a monitoring message at the

ATM system, as they are executed as part of the monitored system.

1 t imers {

2 log inTimer

3 }

This code snippet illustrates the timers declaration section, where separate

timers (maintained by the remote monitor) can be declared for use with time-

related properties. In this example there is the declaration of one timer with name

loginTimer.

1 s t a t e s {

2 monitorSide {

3 i n t log inAttempts {

4 saveWith {}

5 restoreWith { log inAttempts = 0 ;}

6 }

7 }

8 systemSide {

9 }

10 }

This code snippet illustrates the states declaration section, where states of any

data structure/type can be declared. This states section, just like conditions and

actions, is further partitioned into another two sections, depending on whether

these are to be maintained at the monitor side or the system side. In this example,

there is only one state declared with name loginAttempts, of type int, initialised

with value 0, and set to be maintained at the monitor side. Such state is only made

18

Chapter 2. Background

accessible to conditions and actions set to execute at the monitor side. Likewise, a

state declaration set to be maintained at the system side can only be made acces-

sible to monitoring logic set to execute at the system side.

1 r u l e s {

2 timeBlock = l o g i nFa i l (Boolean r e s u l t) \ l og inT imer Inva l id −>

logTimerErr

3

4 ruleAddFai ledLogin = l o g i nFa i l (Boolean r e s u l t) \ (

log inAttemptsVal id &&

5 i sP inVa l id) −> addFailedLogin , r e s e t l og inT imer ;

6

7 ruleTooManyFails = l o g i nFa i l (Boolean r e s u l t) \ (! log inAttemptsVal id

&&

8 i sP inVa l id)−> logAttemptsErr ;

9 }

Rules are declared within the rules section. In this example, timeBlock,

ruleAddFailedLogin and ruleTooManyFails, are rules that trigger whenever loginFail

event is received from the monitored system. timeBlock is a rule that, when trig-

gered, it evaluates condition loginTimerInvalid to check whether there has been a

twenty seconds delay from the last login attempt. If it evaluates to true, action log-

TimerErr is executed, resulting in an error message at the system side. The other

rules use the same two conditions, however, they are expressed logically different,

yielding a different result. In rule ruleAddFailedLogin, if both conditions loginAt-

temptsValid and isPinValid evaluate to true, both actions addFailedLogin and reset-

loginTimer are executed, with the result of incrementing loginAttempts counter and

resetting loginTimer back to zero seconds respectively. In rule ruleTooManyFails, if

condition loginAttemptsValid evaluates to false and ruleTooManyFails evaluates to

true, action logAttemptsErr is executed, outputting an error message at the ATM

system.

19

Chapter 2. Background

1 g l oba l {

2 t imers { . . . }

3 s t a t e s { . . . }

4 events { . . . }

5 cond i t i on s { . . . }

6 a c t i on s { . . . }

7 r u l e s { . . . }

8 }

In order for all the described sections to work together, they should be placed

within a global section, the outermost encapsulation of a property specification

script, denoting a global monitoring context.

System-side Evaluation for Pin Verification in ‘ruleAddFailedLogin’

In the processing of rule ruleAddFailedLogin the monitor is required to verify

whether the return value of verifyPin() indicates an invalid login, since the outcome

of such rule is partly determined by such value. Return value result is a variable

bound to the system (determined by the variable type), and therefore the remote

monitor needs to query the system in order to obtain an evaluation of the truth

value of such variable. Figure 2.5 demonstrates, through the use of a sequence di-

agram, how the remote monitor communicates with the system for the evaluation

of such variable.

In Figure 2.5, an event is generated and communicated to the remote monitor

with every call to verifyPin(), through the aspect code that is weaved into the

system. Upon its receipt, the remote monitor proceeds by matching any rules

specified on such event. ruleAddFailedLogin is one such rule, where at some point

in its processing it requires to evaluate whether the result of the pin verification

is valid or not. This is seen in the evaluation request the remote monitor makes

to the monitored system for the execution of condition isPinValid(). isPinValid()

20

Chapter 2. Background

Figure 2.5: Monitoring execution sequence for ‘ruleAddFailedLogin’ rule [16]

forms part of the monitoring code generated by the local monitoring code compiler,

through the Java plugin. Once such condition is executed, an evaluation result

true/false is channelled back to the remote monitor, after which the processing of

ruleAddFailedLogin can resume for the incrementation of the number of bad logins,

if the entered pin was invalid.

Nesting of Monitors for Contextual Properties

The process of pin validation, if successful, leads to the creation of a new session

for the user logging into the ATM. If we consider properties on functionality ex-

ecuted from within a particular session, it is required that a monitoring state be

maintained for each session. An example of this is the maintenance of separate

counters on the number of failed transactions that occur from each session. In such

a scenario, it is required that properties on contextual behaviour be replicated for

the different contexts, in this case for each session. The polyLarva specification

language supports a kind of properties termed contextual properties[3, 16], provid-

21

Chapter 2. Background

ing special language constructs which allow for the replication of monitors, each

representing a different monitoring context. Monitoring contexts are defined hi-

erarchically, with the global context defined as the outermost encapsulation, and

child contexts defined within it, and where these can also have their children, and

so forth.

All monitoring contexts, irrespective of their position in the hierarchy of con-

texts, have an identical structure, with events, timers, states, conditions, actions

and rules of their own. The best analogy that can be drawn for a better visual-

isation of monitoring contexts is from the object-oriented paradigm, where each

context is compared to a class, and each monitor compared to an object instanti-

ated from such a class. An object can be composed of other objects, and so forth,

and where a parent object holds the references to its child objects. The same is

with multi-level contexts.

1 g l oba l {

2 . . .

3 events {

4 . . .

5 newSess ion (ATMSession s e s s i o n) = { ∗ . doLogin (∗) uponReturning (

s e s s i o n) }

6 }

7 . . .

8 r u l e s {

9 ruleAddFai ledLogin = { . . . }

10 ruleTooManyFails = { . . . }

11 upon {

12 ru leNewSess ion = newSession (ATMSession s e s s i o n) \

13 ! l og inT imer Inva l id −>

14 r e s e t l og inT imer {

15 saveWith { }

16 restoreWith { }

17 }

22

Chapter 2. Background

18 }

19 load s e s s i o n {

20 . . .

21 events {

22 addTransaction (trans , se sn) = {ATMSession

23 se sn . doTransact ion ()

24 uponReturning (Transact ion t rans) }

25 where { s e s s i o n = sesn ;}

26 }

27 . . .

28 r u l e s {

29 . . .

30 }

31 }

32 }

33 }

This is an abridged property specification set to illustrate the nesting of moni-

tors. The outermost clause denotes a global context. For the purpose of illustration,

newSession is an event declaration in the such context, used by rule ruleNewSession

for the creation of new contexts based on newly created sessions, made available

through object session. Every time the remote monitor is notified of a newSession

event, ruleNewSession, declared in an upon clause, is activated and executed. Since

this rule does not have a condition, it directly proceeds for the execution of the

action. After the action is executed, it then proceeds to the load clause, where

the sub-context is specified, for its initialisation. The sub-monitor is similar to the

global monitor with the difference that it has a monitoring handle through which it

can be identified. In this case, a sub-monitor is created for every session, therefore,

the handle used for each sub-monitor is the session object, made available through

event newSession.

Within the session sub-context, lies an event declaration addTransaction, with

sesn being the session object from which the transaction is performed. At the time

23

Chapter 2. Background

the remote monitor receives such an event, it would not have yet determined which

sub-monitor should be loaded for the particular session. It is eventually determined

by the where clause, where session = sesn;, where the existing sub-monitor session

handles are matched against the incoming runtime information sesn. Following sub-

monitor matching, the particular sub-monitor is loaded in order to have the rules

matched with the incoming event processed in relation to the monitor, comprised

of counters, timers, etc.

Internal Events

So far, we have discussed properties with rules defined on events generated by the

local monitoring code. polyLarva supports another category of events, called in-

ternal events. Typical scenarios for the need of internal events is when there is

the need that certain events fire as a result of some other rule resolving to true, or

some monitor timer reaching a certain count.

1 g l oba l {

2 . . .

3 . . .

4 r u l e s {

5 upon{

6 . . .

7 }

8 load s e s s i o n {

9 . . .

10 . . .

11 r u l e s {

12 . . .

13 r u l eC l o s eS e s s i on = c l o s e S e s s i o n (Se s s i on sesn) −>

14 l a rva : f i r e (checkContents (ca r t)) ;

15 upon {

16 createNewShoppingCart = getNewShoppingCart (shoppingCart)

17 \ shoppingCartDoNotExist −> logNewShoppingCart

24

Chapter 2. Background

18 }

19 load shoppingCart {

20 . . .

21 events {

22 checkContents (S t r ing ca r t) = {? checkContents (ca r t) }

23 where { shoppingCart = car t ;}

24 }

25 . . .

26 }

27 }

28 }

29 }

30 }

This is an abridged property specification from an e-commerce system scenario.

It is primarily intended for the illustration of how internal events work. It is clear

that there are two levels of sub-monitors nested within each other, the first being

for the different sessions that are created, and the second for shopping carts within

sessions. Such a monitoring setup represents properties monitored per session per

shopping cart.

This property specification script ensures that whenever a session is closed, the

system empties the shopping cart for the particular session. Rule ruleCloseSession,

triggered for processing by event closeSession, immediately proceeds to execute the

action part. The action is comprised of directive larva:fire(), used for the firing of

internal events. For this to work, the event name supplied to the directive must

match with at least one declared event in any of the specified contexts. In this

example, the event name referred to is checkContents(cart), which is also declared

as an internal event in the shoppingCart context. The rightmost part of an internal

event declaration varies from the standard way of declaring events, as it includes the

same event name prefixed with ‘?’. This ensures that whenever ruleCloseSession

is processed by a session sub-monitor, event checkContents is fired in the context

of the attributed shoppingCart sub-monitor for the processing of rules that check

25

Chapter 2. Background

Figure 2.6: Sequence of events triggered by event ‘closeSession(Session sesn)’[16]

whether a shopping cart has been emptied.

Figure 2.6 illustrates the sequence of how the closing of a session (informed

by an external event) triggers the checking of whether a shopping cart has been

emptied (informed by an internal event).

2.2.5 Communication between the Remote Monitor and

System-side Monitoring Code

The communication between the remote monitor and the system-side/local moni-

toring code is carried out over TCP Sockets, in a message-based, request-response

style protocol.

A new TCP socket connection is initiated every time the system-side monitoring

code communicates a generated event with the remote monitor. For this reason,

the remote monitor is set up to listen for connection requests that are issued by

the system-side monitoring code. Following an event, the remote monitor can start

a trail of to-and-fro messages on the same established connection, depending on

the the system-side functionality that needs to be evaluated, until all the rules, at

the monitor side, are processed. Following that, the remote monitor concludes by

sending message ’Done.’ to the system-side monitoring code.

26

Chapter 2. Background

There can be monitoring situations where an event occurs outside the bounds

of the monitored system, such as due to an internal event, or due to an event gen-

erated by another monitored system. Such events can trigger rules which require

that the evaluation of some system-side functionality be carried out at the moni-

tored system. In such circumstances, the remote monitor will not have an already

established connection upon which to send evaluation requests to the system-side

monitor. Therefore, the remote monitor proceeds by issuing a connection request

itself to the system-side monitoring code, requiring that the system-side monitor

be also set up to listen for connection requests. Following the establishment of

a TCP socket connection, the monitoring sequence is similar to that following an

event.

2.2.6 Conclusion

Runtime verification (RV) has evolved as a compromise to the scalability problem

of verification techniques such as model checking, and the exhaustiveness problem

of testing. It is a verification technique that has given rise to a number RV im-

plementations, for the runtime verification of systems against a formal property

specification. The static process of a typical RV tool is that of first generating a

runtime monitoring code from a given formal property specification, then instru-

menting such code into the target system. A popular way of instrumenting such

monitors in RV is by the use of aspect-oriented programming (AOP) techniques.

polyLarva is an extensible, technology-agnostic RV tool, allowing for the spec-

ification of properties on the behaviour of systems developed in any programming

language, given the availability of an attributed technology-specific plugin. Its lan-

guage also allows for properties to be replicated for different monitoring contexts

in a system. The static process of polyLarva involves the compilation of a separate

remote monitor, common to all technologies, and local monitoring code, through an

attributed technology-specific plugin. The latter code is eventually instrumented

into the target system code using AOP. This separation allows for a clear sepa-

27

Chapter 2. Background

ration between logical monitoring operations and technology-specific monitoring

operations. It preserves much of the work involving logical operations across the

various supported technologies, requiring technology-specific plugins to cater only

for technology-specific operations.

2.3 PHP

In the past, the web was comprised only of static services, where HTML web pages

were simply requested and delivered exactly as were coded. HTML alone would

not have produced much on its own, and as a result, scripting languages were born,

and continued to grow more popular with an unrelenting drive for dynamic con-

tent creation. Scripting languages differ from compiled languages in that they are

interpreted by an executable program instead of becoming an executable program

themselves; they cannot work on their own. Scripting languages fall into two main

categories: client-side and server-side. The main difference between the two is ex-

ecution locality. For example, JavaScript2 is a very popular client-side language,

used for the creation of dynamic elements in HTML, and is executed by the browser

on the client’s computer; PHP[12] is a very popular server-side language, mostly

used as a logical layer between the user and various other server applications, such

as databases and identity management. Users are not given access to PHP code.

Figure 2.7: The requesting and execution process between the client, web server
and PHP engine.[18]

PHP has been used for the development of various popular web applications

2http://www.w3schools.com/js/

28

Chapter 2. Background

such as Moodle, Wordpress and MediaWiki. It has the ability to process any

information as well as interact with other system components such as databases,

files, and email on the server/network. According to the official PHP website3 it is

described as an HTML embedded scripting language, since it can be coded together

with HTML code in the same file. PHP code is distinguished from HTML code by

the enclosing PHP opening and closing tags. When a web page comprising PHP

code is requested from a browser, the web server delegates all the code, residing

within these PHP special tags, to the PHP engine for processing, and delivers to

the requester only the HTML output resulting from such processing, as illustrated

in Figure 2.7. Other content residing outside these special tags is delivered directly

to the requester exactly as coded in the file. Once a PHP engine is installed and

configured correctly on a server (usually the same as that for the web server),

running a PHP script becomes as simple as placing a PHP file into the web server

public directory (the same used for HTML files), and navigate to the file via a

URL through a browser. By default, any file that contains PHP code must end

with extension ‘.php’.

2.3.1 PHP Language

PHP code is placed in blocks called code islands. A conventional way of opening

and closing a code island is by the use of <?php and ?>. There can be as many

code islands as one wants in a script. Tags are necessary for the PHP interpreter

to switch into PHP parsing mode, in order to interpret and execute the PHP code.

The basic unit in PHP code is a statement. Statements are separated from each

other by a semicolon, and are conventionally placed on different lines, for better

visibility.

3http://php.net

29

Chapter 2. Background

1 <html>

2 This i s my f i r s t </br>

3 <?php

4 echo ” he l l o , world” ;

5 ?>

6 This i s my second </br>

7 <?php

8 echo ” he l l o , world” ;

9 ?>

10 </html>

The code above represents a PHP script ‘somefilename.php’. The code starts

with regular HTML, but interspersed in it are two PHP code islands. Its output

looks like the following when requested from a browser:

This is my first

hello, world

This is my second

hello, world

Variables in PHP are distinguished from text or other statements by a dollar sign

prefixing their name. In PHP, variables are generally declared typelessly, where ev-

erything can be assigned to them without a prior declaration of their type. Their

type is determined at runtime according to the data elements they are assigned.

A variable type can resolve to any one type such as string, integer, floating-point,

array, object (complex data with functionality), or an information resource, such

as an image. Moreover, types can change during the script execution upon the

assignment of some other value with a different type. For example, if a variable

is first assigned an integer and then a string, it will first resolve to a type integer,

then to type string. One main disadvantage of PHP variables is their very short

life span. They are disposed of upon the script execution reaches the PHP closing

30

Chapter 2. Background

tag.

1 <?php

2 f unc t i on printMyName($name , $ i t e r a t i o n) {

3 echo ” my name i s ” . $name . ” in i t e r a t i o n ” . $ i t e r a t i o n . ”
” ;

4 }

5

6 $x = 0 ;

7 whi le ($x < 4) {

8 i f ($x == 0) {

9 $name = ”Jonathan ” ;

10 } e l s e i f ($x == 2) {

11 $name = ”Mario” ;

12 }

13 printMyName($name , $x) ;

14 $x++;

15 }

16 ?>

This PHP code starts by the declaration of a function, with two typeless ar-

guments. The actual code execution starts with the variable declaration of ’$x’

and its value assignment in line 6. It is followed by a while statement with two

subsumed if-then statements; both the while and the if-then statements operate

in the same way as in other static programming languages. Variable ’$name’ is

first declared and assigned a value from within the first conditional construct. It is

referred to again from within the second conditional construct and eventually from

outside the conditional statements. In most programming languages such out-of-

scope referencing is not permitted, as a declared variable usually becomes available

for use only from within the scope it is declared in, and any of the child scopes.

In PHP, this flexibility is only allowed in between the running code sequence; it is

not allowed in between encapsulating constructs, such as objects and functions.

The latest PHP versions have been enhanced in order to incorporate a full ob-

ject model, with OO constructs similar to those in Java and C#. However, despite

31

Chapter 2. Background

the provision of such constructs, PHP web applications kept abiding to a kind of

structure where the primary functional unit remained the script (representing some

page and its related functionality). Although OO is not so much popular in PHP,

we are still going to give it an exposure, since it is going to be referred to in the

development process of the PHP plugin.

1 <?php

2 c l a s s Process {

3 pub l i c $User = nu l l ;

4 pub l i c func t i on setVar ($User) {

5 $th i s−>User = $User ;

6 }

7 Pr ivate func t i on checkUser () {

8 re turn $th i s−>User === ”Jonathan” ;

9 }

10 Publ ic s t a t i c func t i on checkResult ($User) {

11 $proce s s = new Process () ;

12 $process−>setVar ($User) ;

13 i f ($process−>checkUser ()) {

14 echo ”User ok” ;

15 } e l s e {

16 echo ”User not ok” ;

17 }

18 }

19 }

20

21 Process : : checkResult (”Jonathan”) ;

22 ?>

The above code starts with the declaration of a class, and the various elements

within it. Data elements are declared typelessly, and are given an access modifier.

Class/object functions operate much in the same way as normal functions, with

the difference that they can be declared with an access modifier, and can operate

32

Chapter 2. Background

statically within a class. An object instance of a class refers to its data elements

using the $this keyword; $this refers to the current object instance of a class.

The execution of the script starts from static function call to checkResult() of

class Process at line 21. A static function call is explicitly made by a double

colon following the class name. Static function checkResult(), in turn, creates an

instance of class Process into object variable $process. Following object creation,

object function setVar() is called from instance $process; an object function call

is explicitly made by an arrow following the object instance. Finally, another

object function is called, returning a boolean value. checkResult() terminates by

evaluating such value and outputs either ”User ok” or ”User not ok” accordingly.

Script Inclusion and Superglobal Variables

PHP web applications are comprised of various scripts, grouped according to their

main functional purpose, and placed in a hierarchy of directories accordingly. As

already mentioned, the programming unit of PHP WA is a script, and scripts are

included into other scripts in order to achieve more complex script functionality.

Scripts, therefore, can execute either in response to a direct request or by their

inclusion into other scripts.

In PHP, the statements that can perform script inclusion are mainly require(-

<scriptname>) and require once(<scriptname>). When either of these execute in

a PHP script, the specified script executes as if its entire code had been interleaved

into the main script. The latter instruction prevents that the same script is included

more than once in the executing script thread.

PHP reserves a set of variables called superglobals. These are special purpose

variables which can be referenced to from anywhere within the script code. Each

of these represent a specific aspect relating to the execution of a script, such as for

cookie information or for information about the script requester. Below are some

of the most useful superglobals:

33

Chapter 2. Background

$ SERVER - carries information such as the requestor IP address, executing script

name and request time

$ GET/$ POST - carry information from a submitted HTML form

$ COOKIE - makes available loaded cookie information

$ SESSION - used for the preservation of session information across subsequent

script requests, in order to maintain the contexts in which users operate.

2.3.2 Conclusion

In this section, we have given an overview of the core PHP language elements, with

enough background to understand the main working elements of PHP WAs and

the design decisions contributing to the PHP plugin.

2.4 Conclusion

In this chapter we have introduced polyLarva as an extensible RV tool with a

technology-agnostic language for the specification of properties for systems devel-

oped in any technology, and PHP as a flexible and dynamic scripting language.

These two are the main components upon which investigations for the extension

of polyLarva to PHP will be based. In the following chapter we give the problem

definition followed by the main aim and objectives for a successful PHP plugin.

34

3. Problem Definition

3.1 Introduction

Extending polyLarva with a PHP plugin requires that we first take an in-depth look

into the PHP language and how PHP WAs are generally structured. This, since

monitoring a PHP WA requires a two-step pre-monitoring process of 1) compiling

PHP monitoring code from a given polyLarva specification and 2) instrumenting

such code into the target PHP WA code, making the PHP WA monitorable. The

way monitoring code is generated and instrumented into target systems is differ-

ent for different technologies, with such differences catered for by the different

technology-specific plugins.

In total there are three other polyLarva plugins: for Java, C and Erlang. All

of these plugins totally rely on aspect-oriented programming (AOP) techniques for

the instrumentation of monitoring code into the target systems. They generate two

sets of code: AOP code for the chosen AOP implemention for the technology they

support, and additional monitoring code in the programming language in question.

AOP has been shown to be sufficient as an instrumentation technique for the kind

of properties expressed on systems developed in these languages. AOP is mainly

used for the instrumentation of event extraction code at specified points in the

system code. Programs developed in these languages are usually well structured

and exhibit runtime information of monitoring interest around well defined struc-

35

Chapter 3. Problem Definition

tures i.e. methods and functions; for these kind of programs, most of the runtime

information of monitoring interest can be captured by AOP.

The problem with PHP WAs is that sometimes they lack in structure, with the

consequence that important runtime information gets blended into unstructured

sequences of executing code, which cannot be captured by AOP. This suggests that

in addition to the identification of an AOP implementation for PHP, other means

for instrumentation have to be found for full instrumentation of PHP monitoring

code into PHP WA code.

3.2 Aims and Objectives

The overall aim of this project is to extend polyLarva with a PHP plugin that

is adequate enough for the monitoring of any PHP WA. The PHP plugin should

cater for various scenarios of PHP monitoring, from the monitoring of individ-

ual PHP scripts to systems comprised of PHP and other technologically-different

components. A PHP plugin should serve as an intermediary between polyLarva

and PHP WAs, for the runtime verification of properties expressed on PHP WA

behaviour. More specifically, the PHP plugin should be able to modify PHP WA

script code, according to a given polyLarva specification script, in order to enable

a PHP WA for the required monitoring. Modifications to PHP script code include

the generation of events at points of interest in code, communication to and from

the remote monitor, and support for local monitoring functionality. The objectives

to accomplish these are as follows:

Event generation: The PHP plugin should provide a considerable choice of points

in PHP script code at which monitoring events can be extracted, for ability to

capture the maximum runtime information of monitoring interest from any

executing PHP code. The diversification of code structures (such as method-

/function calls or code structures) around which such points are made se-

lectable must be sufficient enough as to the kind of properties specified on

36

Chapter 3. Problem Definition

PHP WA behaviour. Properties can be defined on event declarations pointing

at various points in script code, such as before/after regular or class function

definitions within PHP scripts, or at specific points in sequences of PHP code.

The PHP plugin should be able to automatically generate event extraction

code from event declarations in polyLarva specification script and instrument

such code at selected points in the PHP WA code.

Communication to and from the remote monitor: The PHP plugin should

generate the necessary communication functionality (as part of the system-

side monitoring code) in order for monitoring messages to be communicated

to and from the remote monitor. More specifically, the communication func-

tionality should cater for: 1) the initiation of a TCP socket connection with

the remote monitor, performed every time an event is extracted from the

monitored system; 2) the maintaining of a TCP socket connection with the

remote monitor, and bidirectional communication over an established con-

nection using the polyLarva communication message definitions[16]; 3) the

listening for connection requests issued by the remote monitor, performed

every time the remote monitor requests for some local monitoring evaluation

without an already established connection.

Support for local monitoring functionality: Local monitoring functionality in-

cludes system-side property conditions and actions, together with attributed

system-side monitoring states[16]. The PHP plugin should be able to ex-

tract system-side monitoring functionality (readily expressed in PHP), from

a given polyLarva specification script, and integrate them as part of the lo-

cal monitoring code. Such functionality should be compiled in a way that

when requested to carry out some representative evaluation, it is given access

to functional elements and variables made available in the execution script

thread of the triggering PHP WA script. The PHP plugin should also gener-

ate the necessary functionality (as part of the system-side monitoring code)

37

Chapter 3. Problem Definition

for the preservation of different monitoring states at the monitored system.

3.3 Conclusion

In this chapter we have given an overview of what makes a technology-specific

plugin, together with highlighting the general concerns with extending polyLarva

to a PHP plugin. Then we have stated the main aim for the project and the

specific objectives for a successful PHP plugin. These objectives are evaluated in

a case-study, presented in Chapter 6.

38

4. PHP Plugin Design

4.1 Introduction

The monitoring of any system by polyLarva is performed by means of interacting

monitors. The first kind of monitor, called the remote monitor, is implemented

separately from the monitored system, and is mainly responsible for monitoring

orchestration and the verification of monitoring information. The other kind of

monitor is weaved into the monitored system, and is mainly responsible for the

extraction of monitoring events from the monitored system, the communication of

such events with the remote monitor and the verification of system-bound moni-

toring information. The monitoring of PHP WAs requires that a monitor, of the

latter kind, be designed specifically for the PHP language in order for it to be able

to peek into the PHP WA state and perform the related tasks.

In this chapter, we start by PHP and other programming languages with an

existing plugin in the context of polyLarva (Section 4.2), and apply any necessary

core design changes to cater for the identified language differences, particularly

with regards to event extraction (Section 4.3). Then, we look into the translation

of event declarations into implementable code, and the instrumentation of such

code into PHP WAs (Section 4.4), and conclude by giving a holistic view of the

system-side monitoring code and describe how local monitoring evaluations are

performed in attributed monitoring contexts (Section 4.5).

39

Chapter 4. PHP Plugin Design

4.2 Challenges for polyLarva in Monitoring PHP

WAs

We approach design with reusability in mind, hence, in this section, we are drawing

a contrast between PHP and programming languages with an existing polyLarva

plugin. This, in order to bring out the main differences of PHP from such languages

in the context of polyLarva. At the time we were designing the PHP plugin, there

were two existing plugins, one for Java and one for C.

Java and C programs are generally developed with an attention to code struc-

turing and modularity. In fact, Java programs are predominantly modularised in

terms of classes and methods, and C programs in terms of modules and functions.

PHP is not much different from these in the way its code can be modularised, as it

supports the use of classes, methods, functions and so forth. Despite the availabil-

ity of such constructs, however, PHP WAs are still largely modularised in terms of

loosely bound scripts, organised into file system directories according to their main

functional purpose. The net effect of this is mostly felt in the resultant script code.

There is the tendency that scripts become coded with long sequences of statements

for the carrying out of specific tasks, exhibiting little to no structure in their code.

Moodle is a popular PHP WA which we used as our case-study (Chapter 6). It

has a significant amount of such scripts, with some of them having over 500 lines

of code, comprised of sequential if-then and loop statements.

When it comes to monitoring with polyLarva, the way a program is structured is

of utmost importance, since probing into the code of a program, for the extraction

of monitoring events, is purely guided by the program structure. The fact that

PHP WAs are usually comprised of ill-structured code, it makes their monitoring

with polyLarva more challenging.

Another main difference lies is in the way functional elements, such as classes

and functions, are handled in PHP scripts. In Java and C, classes, methods and

functions are uniquely defined as part of one consolidated program, and can be

40

Chapter 4. PHP Plugin Design

referenced to without ambiguity from anywhere within such program, given they

are visible. In PHP, classes and functions are uniquely defined, but only within

a script. This leads to the possibility of having identical definitions of classes

and functions across the various scripts comprised in a PHP WA, which might

be unrelated to each other functionally. Their uniqueness is only enforced in the

thread of an executing script request.

Event declarations, in polyLarva, are based on a two-level event matching sig-

nature, specified in terms of object/module and method/function names. This,

in order to be able to target a particular code structure in the system code for

the instrumentation of event extraction around such structure (before or after, de-

pending on other specifics of the event declaration). Consider the following event

declaration:

1 newCustomer (long cus t Id) = {∗ . add (cus t Id ,∗) }

The event matching signature of this event declaration specifies that a monitoring

event should be extracted from the system every time method/function add() is

called. If the same event matching signature is applied to PHP WAs, it can easily

lead to the instrumentation of event extraction code at unwanted places. For

example, in Moodle, function add() is defined in 29 different scripts, where some

functionally different from others, and where such function is called from 5035

places across all Moodle scripts.1.

4.3 Enhancing the Property Specification Lan-

guage for the PHP Language

In view of the highlighted PHP language differences and the monitoring issues dis-

cussed in the previous section, the particular area of concern that needs addressing

1http://www.sourcexref.com/xref/moodle/nav.html

41

Chapter 4. PHP Plugin Design

is the extraction of monitoring events from PHP WA. We are therefore looking into

the event declaration syntax, part of the property specification language, for the

identification of any limitations impinging on the ability to specify events for PHP

WA. For every identified limitation we will present an analysis, based on the PHP

language properties and common PHP WAs structures, and conclude each with a

syntactic enhancement for the catering of such limitation. In this section we are

particularly looking into the following PHP monitoring concerns:

1. The inability to distinguish between identical method/function definitions

across script code for event extraction around specific methods/functions.

2. The inability to probe into unstructured script code for event extraction at

points other than around methods/functions.

4.3.1 Applying Event Declarations to Subsets of PHP WA

Scripts

Since PHP does not force uniqueness in class and function definitions across scripts,

the current event matching signature syntax turns out to be not expressive enough

to distinguish between identically defined code structures in PHP code. Consider

the scenario in Figure 4.1:

Figure 4.1 illustrates a typical scenario where a function is defined in more than

one script. The scripts defining such function are included into other scripts for use

of such function in their code. As already indicated, the current event matching

signature only allows for the specification of a class/module and a method/function

name. A specification on function add(), in this scenario, will result in extraction of

events at every script calling a function with name add. The directory path of the

scripts defining add() indicates the functional purpose of such scripts. For example,

‘/comment/lib.php’ suggests that it is totally different, functionally, from the other

scripts. It is therefore desirable to have an ability to distinguish between the

42

Chapter 4. PHP Plugin Design

Figure 4.1: Identical definitions of add() across scripts.

different directories or scripts, for the applicability of an event matching signature

only to particular directories or scripts.

With having the possibility of specifying a path, in addition to an event match-

ing signature, one can specify the target script/s to which of an event matching

signature should be applied. Consider the various narrowing-down possibilities ex-

pressed by following event declarations:

1 event1 () = {/∗ ∗ . add () }
2 event2 () = {/ l i b /∗ ∗ . add () }
3 event3 () = {/ l i b /∗∗ ∗ . add () }
4 event4 () = {/ l i b / nav i g a t i o n l i b ∗ . add () }
5 event5 () = {/ l i b / s c r i p t b ∗ . add () }

All event matching signatures presented above are prefixed by a path, either to a

directory or to a script. In line 1, the event matching signature is equivalent to not

43

Chapter 4. PHP Plugin Design

having a specified path at all, as it includes all scripts in the WA scope. In line 2,

the event matching signature specifies a directory, meaning that it should only be

applied to scripts in directory ‘/lib’. In Figure 4.1, in directory ‘/lib’ there are two

scripts defining add(). The net result by this event declaration is that all the three

scripts including such scripts will generate an event upon calling add(). In line 3

the main difference from line 2 is that the event matching signature is applied not

only to first level scripts, but also to scripts in sub-directories within the specified

directory. In line 4, the event matching signature specifies a script that is included

by two scripts. The net result of this is that these two scripts making use of add()

will generate events upon calling add(). Finally, in line 5, the event matching

signature specifies a script which does not directly define add(), but rather make

reference to it in its code. Such event declaration is applied only to such script, for

the generation of events upon calling add(), defined in ‘/lib/navigationlib.php’.

Below is the BNF of an enhanced event matching signature, defined as <Script-

PrimEvent>, composed of a script path variation in addition to the original event

matching signature <PrimitiveEvent>, defined in [16].

1 <Path> : := <DirectoryPath> ’ / ’<ScriptNameWithoutExtension> |
<DirectoryPath> ’ /∗ ’ | <DirectoryPath> ’ /∗∗ ’

2 <ScriptPrimEvent> : := <Path> ’ ’<Primit iveEvent>

4.3.2 The Extraction of Monitoring Events from Unstruc-

tured PHP Code

In PHP WAs it is very common to find task-oriented scripts that are coded in a

procedural fashion, for the carrying out of a specific task. Consider the following

Moodle script:

1 <?php

44

Chapter 4. PHP Plugin Design

2 // block . php − a l l ows admin to ed i t a l l l o c a l c on f i g u r a t i on v a r i a b l e s

f o r a block

3 r e qu i r e on c e (’ . . / c on f i g . php ’) ;

4 r e qu i r e on c e ($CFG−> l i b d i r . ’ / adminl ib . php ’) ;

5 $b lock id = required param (’ b lock ’ , PARAM INT) ;

6 i f (! $b lockrecord = b l o c k s g e t r e c o r d ($b lock id)) {

7 p r i n t e r r o r (’ b l o ckdoe sno t ex i s t ’ , ’ e r r o r ’) ;

8 }

9 admin externa lpage setup (’ b l o c k s e t t i n g ’ . $b lockrecord−>name) ;

10 $block = b l o ck i n s t an c e ($b lockrecord−>name) ;

11 . . .

12 /// I f data submitted , then proce s s and s t o r e .

13 i f ($ c on f i g = data submitted ()) {

14 i f (! c on f i rm se s sk ey ()) {

15 p r i n t e r r o r (’ conf i rmsesskeybad ’ , ’ e r r o r ’) ;

16 }

17 . . .

18 r e d i r e c t (”$CFG−>wwwroot/$CFG−>admin/ b locks . php” , g e t s t r i n g (”

changessaved ”) , 1) ;

19 e x i t ;

20 }

21 /// Otherwise p r i n t the form .

22 $strmanageblocks = g e t s t r i n g (’ manageblocks ’) ;

23 $strblockname = $block−>g e t t i t l e () ;

24 . . .

25 echo ’<form method=”post ” ac t i on=”block . php”> ’ ;

26 echo ’<p> ’ ;

27 f o r each ($hiddendata as $name => $va l) {

28 echo ’<input type=”hidden” name=” ’ . $name . ’ ” va lue=” ’ . $va l .

’ ” /> ’;

29 }

30 . . .

31 echo $OUTPUT−>f o o t e r () ;

45

Chapter 4. PHP Plugin Design

This script is not a very lengthy one (around 50 lines of code), compared to other

Moodle scripts, but it is still considered to be unstructured as it is set to execute

a sequence of instructions from beginning to end. The two factors that usually

determine the place where event extraction code should be inserted in the system

code are: execution locality, for the extraction of events upon executing a certain

code, and the runtime information of monitoring interest that is made available

by such execution code. For example, if one wants to extract an event for the

capturing of variable $strblockname made available in line 23, upon its assignment,

it is tempting to have an ability to instrument event extraction code at line 24.

The only problem with specifying events by line number is that a specification can

easily be rendered inconsistent by updates to such script.

In consideration of the fact that PHP code is generally reused by the dynamic

inclusion of common scripts into main executing scripts, points around script inclu-

sion, in addition to those around method and function calls, can be ideal candidates

for event extraction. Such points are as brittle as points around method and func-

tion calls, therefore can be specified for with little concern of rendering an event

declaration inconsistent with any updates. Moreover, following inclusion, it is likely

that other variables and functional declarations become available for use in the main

executing script. Much of the functionality and variables used in ‘block.php’ have

been made available after the inclusion of config.php and admin.php, in line 3 and

4 respectively.

Figure 4.2 gives a high level view of how scripts are generally reused in PHP

WAs. For example, when script d.php is requested for execution, at some point in

its code it includes for execution script a.php, and then at a subsequent point it also

includes for execution script c.php, until script d.php finally terminates and returns

its output. Similarly, script e.php, when requested for execution, at some point it

includes for execution script a.php, and near its termination it includes for execu-

tion script b.php, until it finally terminates and returns its output. script a.php

is shared by both scripts. Script inclusion is generally carried out by PHP in-

46

Chapter 4. PHP Plugin Design

Figure 4.2: Dynamic inclusion of scripts in PHP WAs.

structions require(<scriptpath>) or require once(<scriptpath>), as in line 3 and 4

of the preceding PHP script (block.php). Consider the following event declarations:

1 event6 (S t r ing id) = { a f t e rRequ i r e / d i r / s c r i p t d ” s c r i p t a . php”} where

{ id = $USER−>id ;}

2 event7 (S t r ing id) = {uponExit / d i r / s c r i p t a } where { id = $USER−>id ;}

3 event8 (S t r ing username) = {uponEntry / d i r / s c r i p t b } where {username =

$ POST [”username”] ; }

In the above event declarations we present three new event constructs. These

event constructs were identified during the process of looking into possible ways of

expressing the required events for the chosen properties in the case-study (chapter

6). In line 1 is specified an afterRequire event, for the extraction of events after

the inclusion of script a.php in script d.php, every time script d.php is executed.

Moreover, at such point it captures runtime information that is made available

by script a.php, via the where clause. In line 2 is specified an uponExit event, for

the extraction of events upon terminating script a.php. At such point it captures

the same runtime information as in the previous event, made available along the

execution of script a.php. The main difference is, that, since script a.php is a shared

script, an event is extracted both at script d.php and script e.php, by the inclusion

47

Chapter 4. PHP Plugin Design

of script a.php. Similarly, in line 3, is specified an uponEntry event. The main

difference from uponExit is that an event is extracted upon entering script b.php

for execution. At such point it can still capture runtime information but from any

of the PHP superglobal variables. In this example it captures specific information

from a submitted HTML form via the post method.

Below is the BNF for the addition of three event constructs: afterRequire,

uponEntry and uponExit.

1 <Path> : := <DirectoryPath> ’ / ’<ScriptName> | <DirectoryPath>
’ /∗ ’ | <DirectoryPath> ’ /∗∗ ’

2 <AfterRequire> : := ’ a f t e rRequ i r e ’<Path> ’ ” ’<RequireParam> ’ ” ’
3 <UponEntry> : := ’ uponEntry ’<Path>
4 <UponExit> : := ’ uponExit ’<Path>
5 <ScriptBodyPoints >::= <AfterRequire> | <uponExit> | <uponEntry>
6 <ScriptPrimEvent> : := <ScriptBodyPoints> | <Path> ’ ’<Primit iveEvent>

4.4 Instrumentation of Event Extraction Code

into PHP WA Code

A popular way of instrumenting event extraction code, as mapped from event

declarations, into the system code is by the use of aspect-oriented programming

(AOP) techniques. In fact, the implemented polyLarva plugins for Java and C

resort only to AOP techniques for the instrumentation of such code. The reason

for this is that, all possible events declarations targeting their programs can be

mapped to AOP code, for their particular AOP implementation.

Considering the syntactical additions we made to the event declaration syntax,

in the previous section, we want to find a way of mapping the modified syntax to an

instrumentation technique suitable for use with PHP scripts. The most preferable

method of instrumentation remains AOP, so our decisions will favour AOP over

other methods of instrumentation.

In Section 4.3.1 we presented syntactical additions for the inclusion of a path to

48

Chapter 4. PHP Plugin Design

the original event matching signature. Since the original event matching signature

can fully map to the selected AOP implementations for Java and C, it is likely that

it can also map to AOP implementations for PHP. The only difference for PHP is

that an event declaration cannot not applied across the whole PHP WA, but only

to a given path. This implies that an AOP implemention for PHP should be able

to narrow down its applicability to at least a script. We looked into various PHP

AOP implementations, such as PHPaspect2 and Aspect-Oriented PHP3, however,

the closest to this requirement, and the most comprehensive implementation we

found was AOP PHP4. In the following sub-sections we are giving the details of

AOP PHP together with examples of how it can be used for the instrumentation

of event extraction code into PHP WA code.

4.4.1 AOP PHP

AOP PHP is a runtime-weaving implementation serviced via a PHP PECL exten-

sion5. PHP PECL extensions are generally used for the addition of specific func-

tionality for use in scripts, such as to connect to a specific database (e.g. MySQL).

AOP PHP makes available AOP constructs for their direct use in scripts just like

regular PHP code.

In other implementations of AOP, such as AspectJ, used for the Java plugin,

AOP code is declared separately from the target code, and is weaved into the target

code at compile time. In PHP, AOP statements require no intermediate steps in

order for them to work. They are interpreted and executed along with other PHP

code within a script, performing a weaving-like process at runtime. Consider the

following example:

2http://code.google.com/p/phpaspect/
3http://www.aophp.net/
4https://github.com/AOP-PHP/AOP
5http://pecl.php.net/

49

Chapter 4. PHP Plugin Design

1 <?php

2 Class MyClass {

3 pub l i c func t i on someFunction () {

4 echo ”some func t i on
” ;

5 }

6 }

7

8 f unc t i on logSomeFunction () {

9 echo ” Ca l l i ng somefunct ion ()
” ;

10 }

11

12 aop add be fore (’MyClass−>someFunction () ’ , ’ logSomeFunction ’) ;

13

14 $myObject = new MyClass () ;

15 $myObject−>someFunction () ;

16 ?>

The above PHP code starts with the declaration of a class comprised of one ob-

ject function. It is followed by the declaration of regular function logSomeFunc-

tion(), intended for use as an AOP advice, which is activated by AOP state-

ment aop add before. It declares that advice logSomeFunction() must be called

before every calling to object function someFunction(), matched by rule MyClass-

>someFunction(). The output of this PHP code, if requested from a web browser,

is the following:

Calling someFunction()

some function

Similarly, an AOP declaration can be specified to trigger after a call to some-

function(), by the following code:

50

Chapter 4. PHP Plugin Design

1 <?php

2 . . .

3 aop add a f t e r (’MyClass−>someFunction () ’ , ’ logSomeFunction ’) ;

4 . . .

5 $myObject−>someFunction () ;

6 ?>

Output:

some function

Calling someFunction()

In practice, AOP is not much effective if used only for the execution of isolated

advices around target functions. It is mostly of use when used for the processing

of any runtime information that is made available around the target functions.

Such processing can range from the validation of form data to transaction logging.

In AOP PHP, runtime information can be extracted for use in advices through a

special AOP object, of type AopJoinPoint, which is passed as a function parameter

to executing advices.

One might argue that by employing AOP declarations directly in the target

script one still does not benefit from the AOP modularisation concept of crosscut-

ting concerns. We corresponded with the developer of the AOP PHP extension

about this and suggested a way how to alleviate this problem. He suggested that

it is best that AOP instructions be coded into separate scripts, and include such

AOP scripts into the target scripts. In this way target scripts will be modified only

with a one-liner. Consider the following PHP code:

51

Chapter 4. PHP Plugin Design

1 <?php

2 // f i l e : aopcode . php

3

4 f unc t i on logSomeFunction (AOPJointPoint $ob j e c t) {

5 $args = $object−>getArguments () ;

6 $returnedValue = $ob j e c t −>getReturnedValue () ;

7 echo ”Value : ” . $args [0] . ” Twice the value : ” . $returnedValue ;

8 }

9

10 aop add a f t e r (’MyClass−>someFunction () ’ , ’ logSomeFunction ’) ;

11 ?>

1 <?php

2 r e qu i r e on c e (”aopcode . php”) ;

3 Class MyClass {

4 pub l i c func t i on someFunction ($ id) {

5 re turn $ id ∗2 ;

6 }

7 }

8

9 $myObject = new MyClass () ;

10 echo $myObject−>someFunction (20) ;

11 ?>

The above PHP code blocks represent two separate PHP scripts, the first with

AOP code and the second with the target PHP code. The second script includes

the first script (aopcode.php) in the first line of its code, in order to apply the AOP

code across its subsequent code.

In the AOP script, advice function logSomeFunction() takes one parameter,

$object of type AopJoinPoint. An AopJoinPoint object can make available informa-

tion such as call function parameters, the object from which function was triggered,

and the returned value. In the above code, the advice function extracts two pieces

52

Chapter 4. PHP Plugin Design

of information from $object: the passed functions parameters, by calling $object-

>getArguments(), and the returned value, by calling $object->getReturnedValue().

Since there can be more than one function parameter, function parameters are

outputted as an array of objects; the returned value is outputted as an object.

4.4.2 Translating Event Declarations to AOP PHP Code

In order for event declarations, as presented in Section 4.3, to be actuated, for

the extraction of events from a PHP WA, it is required that they be translated

into implementable code and instrumented into the PHP WA code. The following

example illustrates a typical translation:

Event Declaration:

1 newCustomer (BankAccount account , long cus t Id) = {/ t e s t i n g /∗ account .
add (cus t Id ,∗) }

Equivalent AOP PHP code:

1 <?php
2 // f i l e : event1 . php
3

4 f unc t i on event1 (AOPJointPoint $ob j e c t) {
5 $args = $object−>getArguments () ;
6 $objectValue = $object−>ge tTr igge r ingObjec t () ;
7

8 //Event Generation Code
9 }

10

11 aop add be fore (’ BankAccount−>add () ’ , ’ event1 ’) ;
12 ?>

The above AOP PHP code, as translated from the event declaration, is comprised

of two main components: 1) the AOP declaration, defined at line 11, specifying the

target object method and the attributed advice name, and 2) the advice, defined

at line 4, comprised of the required runtime information extractions and the event

extraction code. Such event script is applied, by script inclusion, to the path

53

Chapter 4. PHP Plugin Design

specified in the event declaration, in this example to all immediate scripts under

directory /testing.

4.4.3 Event Declarations not Translatable to AOP PHP

Code

In Section 4.3.2 we presented syntactical additions for the addition of new event

constructs. Such event constructs cater for event declarations oriented around

script inclusion, and are specified differently from regular events based on method-

s/functions. Such event constructs cannot be translated to AOP code and therefore,

have to be instrumented by their direct injection into PHP WA code, at their re-

spective points. Consider the following example:

Event Declaration:

1 htmlform (St r ing username) = {uponEntry / d i r / s c r i p t b } where {username
= $ POST [”username”] ; }

Equivalent Event Construct code:

1 <?php
2 // f i l e : event2 . php
3

4 f unc t i on uponEntry2 () {
5 $username = $ POST [”username”] ;
6

7 //Event Generation Code
8 }
9 ?>

The above event construct code is similar to that implemented using AOP PHP,

however, without the declaration of an AOP matching rule. Such event script is

applied, by script inclusion, to the path specified in the event declaration, in this

example to script ‘/dir/script b.php’. The only difference from AOP PHP is that

the an event method call is injected directly in the target script at its indented

54

Chapter 4. PHP Plugin Design

point in code. In this example, uponEntry2() is called upon entering script b.php,

right after the inclusion of the event script.

4.4.4 Event Generation Code

The role of the event generation code is to generate an event message based on

runtime information made available in the advice, initialise a TCP socket connec-

tion with the remote monitor, and communicate the generated message over the

established connection to the remote monitor. Below is the message structure used

for the generation of an event message[16]:

’1,’<event_id>’,’[<parameter_identifiers>]

The event id is a numerical representation of an event declaration, agreed upon be-

tween the remote monitor and the event extraction code. The parameter identifiers

is a comma delimited list of parameters (for extracted runtime information) that

is channelled along with an event. An example message, from the event example

given in Section 4.4.3, is:

1,2,ratt0034

4.5 System-side Monitoring Logic Evaluation

Monitoring logic (states, conditions, actions) in a property specification script can

be specified to execute either at the monitor side or at the system side. Any mon-

itoring logic specified to execute at the system side should be readily expressed in

the programming language of the system to be monitored in the property specifica-

tion script; in this case in the PHP language. This, since it is meant to execute as

part of the monitored system. System-side monitoring evaluations can take place

from two main points in the monitoring process, in the scenarios below:

1. Following the generation and communication of an event, the remote monitor

replies back, on the same connection, with a request for the evaluation of some

55

Chapter 4. PHP Plugin Design

system-side monitoring logic. A trail of to-and-fro communication between

the remote monitor and the system-side monitoring code can take place on

the same connection, with a single round of communication for each system-

side evaluation request, until all rules triggered by the initial event at the

remote monitor are processed.

2. An event is fired outside the boundary of the monitored system, triggering

rules which require that certain evaluations be carried out at the monitored

system. As a result, the remote monitor tries to send an evaluation request

to the monitored system, however, since there will not be an already avail-

able connection established by a preceding event, as in point 1, the remote

proceeds by trying to initialise a connection itself with the monitored system,

in order to communicate the evaluation requests on such connection. This

requires that the system-side monitoring code be continually in a TCP-socket-

listening state in the course of monitoring, by means of a PHP monitoring

server. Following the establishment of a connection, the remote monitor pro-

ceeds in the same way as in point 1, after the generation and communication

of an event.

4.5.1 Monitoring Contexts and System-side Evaluation Func-

tionality

Figure 4.3 illustrates the main interacting parts of the system-side monitoring code.

As already highlighted, system-side monitoring evaluations can take place, either by

an evaluation request following the extraction of an event, at the instrumentation

layer, or by a direct evaluation request through the PHP monitoring server. There

can be declared multiple local monitoring contexts in a property specification script,

each with their own system-side functionality and state variables. In the course

of monitoring, local monitors are instantiated from such local monitoring contexts

in representation of a particular monitoring instance with its own state values,

56

Chapter 4. PHP Plugin Design

Figure 4.3: System-side monitoring code

such as for each newly created PHP WA session or shopping cart. Local monitors

are identified by an attributed monitor handle (such as the particular session or

shopping cart object) and are preserved in session elements of the PHP $ SESSION

superglobal variable. Any monitoring logic that is evaluated at the system side, by

means of system-side functionality, is evaluated in relation to some local monitor.

An evaluation request by the remote monitor, for the execution of a particular

system-side functionality, is made by a message in the following message structure.

eval func id is a numerical representation of the particular system-side functionality

to be executed, and parameter identifiers are parameters which can include a local

monitor handle and event related information.

57

Chapter 4. PHP Plugin Design

’2,’<eval_func_id>’,’[<parameter_identifiers>]

The response to an evaluation request is a true/false message, in the following

structure:

’2,’<eval_func_id>’,’<true/false>

When the remote monitor issues an evaluation request for the execution of an

evaluation functionality residing in some context (except for the global context),

it does so by including a local monitor handle in the parameters section of the

evaluation message. Such handle serves for the retrieval of the particular local

monitor from the PHP $ SESSION prior the execution of the requested system-

side functionality, in order to make available its state variables for use during

such execution. Following evaluation, the local monitor is preserved back in PHP

$ SESSION so as to maintain any updates made by evaluation functionality to

such variables.

4.6 Conclusion

In order to cater for the PHP language and PHP WA structures, the event matching

signature of polyLarva had to be enhanced to include components that are specific

to PHP scripts. Such enhancements required that the chosen AOP implementation

for PHP (AOP PHP) be able to narrow down the applicability of AOP code to

specified scripts, for ability to apply an event matching signature only to scripts in

a specified path. Event declarations based on the original event matching signature

were successfully translated to AOP PHP code, but other event declarations, due

to targeting code structures specific to PHP scripts, were translated into functions

(similar to AOP PHP advices) and instrumented into PHP WA code by direct

injection.

Apart from event extraction, the system-side monitoring code also allows for

the evaluation of any system-bound monitoring functionality to be carried out at

58

Chapter 4. PHP Plugin Design

the system side, which can be requested for by the remote monitor at specific

monitoring scenarios. The execution of any system-side functionality is carried

out in relation to a particular monitoring instance (local monitor), representing a

particular local monitoring state for the evaluation taking place. In PHP, local

monitors are preserved in session elements of the PHP $ SESSION superglobal

variable.

59

5. PHP Plugin Implementation

Details

5.1 Introduction

The process of mapping a property specification script to monitoring code is me-

diated through a generic plugin structure, which every technology-specific plugin

should follow. Such structure is meant to be technology inclusive, based on abid-

ing principles of how monitoring code should be compiled and instrumented into a

target system. PHP is the first dynamic language to be supported, bringing with

it certain fundamental differences from other supported programming languages.

The way the PHP plugin was designed, for the catering of such differences, also

had its effects on the way it was implemented.

In this chapter we start by looking into the generic plugin structure (section

5.2) and see how it fits with regards to the PHP monitoring code requirements

(section 5.2.1). Following this, we present a way of extracting the system-side

parts from a polyLarva specification script, using the plugin structure, into an

easily parseable intermediate specification (section 5.2.3), for input to a bespoke

monitoring code compiler and instrumentor. Then, we present a schematic view

of the PHP monitoring code, as compiled from a given intermediate specification

(section 5.3). Finally we give an overall view of the resulting PHP plugin structure

60

Chapter 5. PHP Plugin Implementation Details

(5.3.2), highlighting parts which can be reused by prospective plugins.

5.2 polyLarva Generic Plugin Interface and Struc-

ture

In polyLarva, plugins are implemented in Java through a generic plugin interface.

Such interface serves the purpose of aiding the plugin developer, as much as pos-

sible, in the extraction of system-side sections from a property specification script

for the compilation of monitoring code in the intended programming language. It

prescribes a number of methods, serving as placeholders, for their implementation

in the plugin class. The body of such methods is where the plugin developer speci-

fies the logic of how the resulting aspect and monitoring code should be generated,

using system-side specification extractions made available for use for the particular

sections of code generation. The whole process of monitoring code generation is

driven by a common process, which invokes the prescribed plugin methods in a

specific order, for the generation of both the aspect and monitoring code. The

most notable methods of such process which make use of the prescribed plugin

methods, are [16]:

• createContextFiles - invokes prescribed plugin methods for the compilation

of code, comprised of local monitoring functionality and states, per context.

Separate files are created for each context.

• createContextAspectFiles - invokes prescribed plugin methods for the com-

pilation of aspect code per context, in the aspect language of the AOP im-

plementation selected for the target programming language. Separate aspect

files are created for each context.

The problem with the mapping presented in Figure 5.1 is that the resulting moni-

toring code structure is primarily designed to cater for AOP implementations that

take as input aspect code (comprised of all event extraction code in a particular

61

Chapter 5. PHP Plugin Implementation Details

Figure 5.1: Monitoring code compilation process mapping

context) in separate files, and perform compile-time weaving into the target system

using such AOP files. AOP PHP is a runtime-weaving implementation, requiring

that for each event declared in a context, a representative script be created and

included only into target scripts. The aspect files generated by the common com-

pilation process are meant to be applied across the whole target system, and do

not take into consideration script paths. Moreover, the added event constructs

for PHP: uponEntry, uponExit and afterRequire, cannot be instrumented by aspect

code. Consider the following mapping from event declarations to a PHP monitoring

code structure:

1 g l oba l {
2 . . .
3 events {
4 newSess ion (Se s s i on s e s s i o n) = {/ t e s t /∗ c r e a t eS e s s i o n (∗)
5 uponReturning (s e s s i o n) }
6 htmlform (St r ing username) = {uponEntry / d i r / s c r i p t b }
7 where {username = $ POST [”username”] ; }
8 }
9 . . .

10 }

62

Chapter 5. PHP Plugin Implementation Details

Figure 5.2: Exemplary PHP monitoring code structure

In the global context of the above code are declared two events, the first targeting a

script directory and the second targeting an individual script. As presented in the

previous chapter, event scripts are created for each event declaration, and where

these are included into their target scripts. Figure 5.2 illustrates an exemplary

monitoring code structure as mapped from its preceding event declarations. In

this example, a context script is shared among all events declared in the same

context, and where events targeting a directory of scripts are also shared among

their target scripts. In the mapping presented in Figure 5.1, also partly shown

in Figure 5.2 in dotted squares, the level of granularity for event scripts, and the

relationship between event scripts and target scripts, through a given path, are not

supported.

5.2.1 Extracting an Intermediate Specification for Moni-

toring Code Compilation

In order to overcome the limitations of the prescribed plugin structure, it is needed

that certain code compilation processes be carried out outside such structure bounds.

63

Chapter 5. PHP Plugin Implementation Details

Figure 5.3: Intermediate specification mapping from a property specification script

The plugin structure is going to be used only for the extraction of the required

system-side parts from a supplied property specification script, in the form of an

intermediate specification, whose mapping is illustrated in Figure 5.3. A special

purpose polyLarva plugin was implemented for the extraction of an intermediate

specification, tweaked to output all system-side extractions into a single file, rather

than in separate files. The intermediate specification is structured in a way that

it can easily be parsed and tokenised by another program, for the compilation of

PHP monitoring code (system-side monitoring code). Below is an example of the

mapping between a property specification script and an extracted intermediate

specification from such specification:

Property Specification Script:

1 g l oba l {

2 s t a t e s {

3 systemSide {

4 PHPVar sess ionCount { . . . }

5 }

6 }

64

Chapter 5. PHP Plugin Implementation Details

7 cond i t i on s { }

8 a c t i on s {

9 systemSide {

10 incrementSess ionCount = {

11 i f ($ th i s−>sess ionCount == ” nu l l ”) {

12 $th i s−>sess ionCount = 1 ;

13 }

14 $th i s−>sess ionCount++;

15 }

16 }

17 }

18 events {

19 newSess ion (Se s s i on s e s s i o n) = {/ t e s t / s e s s i o n c r e a t eS e s s i o n (∗)

20 uponReturning (s e s s i o n) }

21 htmlform (St r ing username) = {uponEntry / d i r / s c r i p t b }

22 where {username = $ POST [”username”] ; }

23 }

24 r u l e s { . . . }

25 }

Extracted Intermediate Specification:

1 @CODECONTEXT:START:0

2 %PARENTCONTEXT:NULL:NULL:NULL

3 %EVENTVARS: s e s s i on , : f a l s e ,

4 %SYSTEMSIDEVARS: sess ionCount ,

5 %CONDITIONS:START

6 %CONDITIONS:END

7 %ACTIONS:START

8 #ID : 0 : incrementSess ionCount

9 i f ($ th i s−>sess ionCount==” nu l l ”) { $th i s−>sess ionCount = 1 ;}

10 $th i s−>sess ionCount++;

11 #ID : 0 :END

12 %ACTIONS:END

13 @CODECONTEXT:END:0

14

65

Chapter 5. PHP Plugin Implementation Details

15 @EVENTS:START:0

16 %PATH:/ t e s t / s e s s i o n

17 %JOINPOINT: Ca l l :NULL

18 %EVENTID:1

19 %METHODNAME: c r e a t eS e s s i o n

20 %VAR:RETURN: 0 : f a l s e : s e s s i o n

21 −−

22 %PATH:/ d i r / s c r i p t b

23 %JOINPOINT: uponEntry :NULL

24 %EVENTID:2

25 %VAR:WHERE: 0 : t rue : username = $ POST[” username ”] ;

26 −−

27 @EVENTS:END:0

A intermediate specification is divided into two main sections, one for local monitor-

ing functionality and states, with label ‘@CODECONTEXT’ (line 1), grouped by

context, and the other for events, with label ‘@EVENTS’ (line 15), also grouped by

context. Individual events are separated by a double dash in ‘@EVENTS’ context

blocks. Both ‘@CODECONTEXT’ and ‘@EVENTS’ context blocks are enclosed

by special start and end labels, and are identified by the attributed context ID.

Since there is only one context in this example, there is one context block for local

functionality and states, and another context block for events.

Figures 5.4, 5.5 and 5.6 present the BNF of the intermediate specification, di-

vided according to the main sections:

5.3 Monitoring Code Compilation and Instrumen-

tation

In the previous section we described the initial process of monitoring code compila-

tion, that of extracting the system-side definitions, from a given property specifica-

66

Chapter 5. PHP Plugin Implementation Details

1 <Primit ive> : := ’ t rue ’ | ’ f a l s e ’
2 <ParentCtxtID> : := <ID> | ’NULL ’
3 <ParentCtxtVar>::= <Var> | ’NULL ’
4 <Prim> : := <Primit ive> | ’NULL ’
5 <ParentCtxt> : := <ParentCtxtID> ’ : ’<ParentCtxtVar> ’ : ’
6 <Prim>
7 <Pr imit ives> : := <Primit ive> ’ , ’ | <Pr imit ives><Primit ive>
8 <EvtVar> : := <VarName> ’ , ’
9 <EvtVarList> : := <EvtVar> | <EvtVarList><EvtVar>

10 <EventVars> : := <EvtVarList> ’ : ’<Pr imit ives>
11 <SysSideVar> : := <VarName>
12 <SysSideVars> : := <VarName> ’ , ’ | <SysSideVars><VarName>
13 <SysSideFunc> : := ’#ID : ’<FuncID> ’ : ’<FuncName><PHPCode> ’#ID : ’<FuncID> ’

:END’
14 <Condition> : := <SysSideFunc>
15 <Condit ions> : := <Empty> | <Condition> | <Condit ions><Condition>
16 <Action> : := <SysSideFunc>
17 <Actions> : := <Empty> | <Action> | <Actions><Action>
18 <Context> : := ’%PARENTCONTEXT: ’<ParentCtxt>
19 ’%EVENTVARS: ’<EventVars>
20 ’%SYSTEMSIDEVARS: ’<SysSideVars>
21 ’%CONDITIONS:START’<Condit ions> ’%CONDITIONS:END’
22 ’%ACTIONS:START’<Actions> ’%ACTIONS:END’

Figure 5.4: Intermediate specification: @CODECONTEXT block

tion script, into an intermediate specification. In this section we are breaking away

from the prescribed plugin structure, and rely totally on the intermediate specifi-

cation for the compilation and instrumentation of monitoring code. In Figure 5.7

we present a schematic view of the overall monitoring code. The monitoring code

is comprised of five main parts:

• Event Scripts incorporate all the necessary functionality for the generation

of events. Each event script is the functional representation of one event

declaration, as mapped from the intermediate specification. Event scripts are

included into their target scripts by a bespoke monitoring code integrator,

using the path entry which is made available the intermediate specification.

Events scripts also have the facility to perform any system-side monitoring

evaluations (through the Context Script) for cases when the remote monitor

requests so, following an event.

67

Chapter 5. PHP Plugin Implementation Details

1 <Return> : := ’RETURN: ’<OccurNo> ’ : ’<Primit ive> ’ : ’<VarName>
2 <Target> : := ’TARGET: ’<OccurNo> ’ : ’<Primit ive> ’ : ’<VarName> ’ : ’<

VarType>
3 <MthodParam> : := ’PARAM: ’<OccurNo> ’ : ’<Primit ive> ’ : ’<VarName>
4 <MthodParams>::= <MthodParam> | <MthodParams> ’ , ’<MthodParam>
5 <Where> : := ’PARAM: ’<OccurNo> ’ : ’<Primit ive> ’ : ’<WhereAssignment>
6 <Wheres> : := <Where> | <Wheres> ’ , ’<Where>
7 <Path> : := ’%PATH: ’ <DirectoryPath> ’ / ’<ScriptName> | <

DirectoryPath> ’ /∗ ’ |
8 <DirectoryPath> ’ /∗∗ ’
9 <JoinPoint> : := ’%JOINPOINT: ’ <EventType> ’ : ’<afterRequireParam>

10 <EventID> : := ’%EVENTID: ’ <ID>
11 <MethodName> : := ’%METHODNAME: ’ <Name>
12 <Var> : := ’%VAR: ’<Return>|<Target>|<MthodParams>|<Wheres>
13 <Vars> : := <Var> | <Vars><Var>
14 <Event> : := <Path><JointPoint><EventID><MethodName><Var> ’−− ’
15 <CtxtEvents> : := <Event> | <CtxtEvents><Event>

Figure 5.5: Intermediate specification: @EVENTS block

1 <Contexts> : := ’@CODECONTEXT:START: ’<CtxtID><Context>
2 ’@CODECONTEXT:END: ’<CtxtID> | <Contexts><Context>
3 <EventCxts> : := ’@EVENTS:START: ’<CtxtID><CtxtEvents>
4 ’@EVENTS:END: ’<CtxtID> |
5 <EventCtxts><CtxtEvents>
6 <Sp e c i f i c a t i o n> : := <Contexts><EventCtxts>

Figure 5.6: Intermediate specification: main specification structure

• Contexts Script incorporates all the monitoring contexts, and where it is in-

cluded in every event and the PHP monitoring server scripts, providing them

with necessary functionality for the carrying out of system-side monitoring

evaluations. Each context in this script is encapsulated with its own local

monitoring functionality and states, as mapped from the given intermediate

specification. Contexts are implemented as OO classes, for their instanti-

ation into objects when a contextual evaluation needs to take place. An

object structure facilitates a contextual interaction between local monitoring

functionality and state variables.

• Communication Script incorporates all communication information, includ-

ing the IP address and port of the remote monitor, and the necessary func-

68

Chapter 5. PHP Plugin Implementation Details

Figure 5.7: Monitoring code structure

tionality for the ability to communicate over TCP sockets with the remote

monitor. Its main purpose is to provide helper functions to the other moni-

toring scripts, for the sending and receiving of monitoring messages, to and

from the remote monitor.

• Utilities Script incorporates helper functions for use by the other monitoring

scripts. It is comprised of functionality for the preservation and retrieval of

state variables (representing some local monitor) for use during monitoring

evaluations across script executions. Such functionality is achieved by the

use of PHP superglobal $ SESSION variable, in which state variables are

preserved.

• PHP Monitoring Server Script is an independent PHP script which is never

meant to terminate. It is executed independently right after the PHP engine

is started. Its main task is to listen for connections requests that can be

69

Chapter 5. PHP Plugin Implementation Details

Figure 5.8: Instrumentation points in PHP scripts

issued by the remote monitor. The process, following the establishment of

a connection, is very similar to that when the remote monitor gets back to

the monitored system, after an event, requesting for the evaluation of some

system-side functionality.

In Figure 5.7 are illustrated the various script inclusions that occur among

the monitoring scripts. At the very beginning of their code, event scripts include

the contexts, communication and utilities scripts, in order to make available their

functionality and data structures for use by subsequent event script code. The

same is performed in the PHP monitoring server script.

5.3.1 Instrumenting Event Extraction Code into Target PHP

Scripts

In Chapter 4 we highlighted about the need for an event to be applied in the confines

of a target script or scripts, and not across the whole PHP WA. A path was added

to the event matching signature in order to facilitate this. Such path, which is also

70

Chapter 5. PHP Plugin Implementation Details

made available in the intermediate specification, serves the purpose of identifying

which script or scripts (if it is a directory path) in a PHP WA are targeted for

instrumentation by a particular event declaration. Identified scripts are injected

with code for the inclusion of the event script, as mapped from the particular

event declaration, using a bespoke implementation for automatic code injection.

More specifically, an event script is included at the very beginning of the target

script/s, as illustrated in Figure 5.8, for the applicability of event functionality to

all subsequent target script instructions.

PHP scripts can have various instrumentation points at which events can be

extracted. Figure 5.8 illustrates two kinds of instrumentation points, differentiated

by the different arrows shapes pointing at the script code. The first kind are those

which can be latched on to by AOP declarations. With AOP PHP, event gen-

eration functionality can automatically be latched on to functions or class/object

functions, either before or after they are called for execution. Declared AOP code

for these is generated as part of the event script code, and is applied to target

script functionality via the inclusion of such event script into the target scripts.

Therefore, for events involving AOP PHP code, target scripts are only modified to

include an event script. The other kind of instrumentation points represent event

constructs uponEntry, uponExit and afterRequire. These kind of instrumentation

points cannot be latched code on to by AOP, but by the direct injection of event

methods calls at their intended points. For example, if an event declaration is of

type uponEntry, a method uponEntry() is generated as part of the relative event

script code, similar to an AOP advice. The only difference from an AOP advice is

that a method call to uponEntry() is directly injected at the designated point in

the target script code; in such case, just after the inclusion of the defining event

script, as illustrated in Figure 5.8.

71

Chapter 5. PHP Plugin Implementation Details

Figure 5.9: Overall PHP plugin architecture

5.3.2 PHP Plugin Architecture

The PHP plugin archictecture presented in Figure 5.9, unlike the other imple-

mented plugins, was implemented with an intermediary element, for the extraction

of an intermediate specification. The intermediate specification extractor was im-

plemented as a polyLarva plugin in itself, using the prescribed plugin structure. It

is technology agnostic, since its extractions can be used for the compilation and

instrumentation of monitoring code in systems developed in any technology. Fol-

lowing the extraction of an intermediate specification, it is then given as input to

the bespoke PHP monitoring code compiler and instrumentor to first compile the

required PHP monitoring code, then instrument such code into the target PHP

WA code.

5.4 Conclusion

The presented plugin structure, as prescribed by polyLarva, could not entirely fit

a PHP plugin for the direct compilation of PHP monitoring code, as it is primar-

72

Chapter 5. PHP Plugin Implementation Details

ily designed to fit plugins making use of compile-time weaving AOP implementa-

tions. Consequently, we used the plugin structure only for the extraction of an

easily parseable intermediate specification, comprised of system-side sections from

a property specification script. Following this, we presented a schematic for moni-

toring code that is compiled by the bespoke PHP compiler and instrumentor from

a given intermediate specification. We also have gone into the details of how the

system-side monitoring code is instrumented into a PHP WA, in order to make a

PHP WA monitorable. Finally, we presented the overall plugin architecture, com-

prised of a combined reusable intermediate specification extractor, implemented

as a polyLarva plugin in itself, and a bespoke PHP monitoring code compiler and

instrumentor.

73

6. Case Study

6.1 Introduction

To show the practicality of polyLarva with PHP scripts, it is essential that it

is evaluated against a real-life PHP WA, preferably one that exhibits interesting

properties and is widely used in its intended context. The main advantage of PHP

WAs is that their code is by definition open, since it is not compiled, and that

they are mostly maintained by open source communities. In contrast to closed and

proprietary systems, one is usually able to browse PHP WA documentation and

find related community forums with relative ease, for acquaintance with their PHP

code and to gain knowledge of any related concerns.

The main aim of this chapter is to appraise the validity and relevancy of the

polyLarva PHP plugin through a number of monitoring scenarios, presented in a

case study. The case-study is an e-learning WA called Moodle1 (fully implemented

in PHP). We will look into some sections of Moodle for analysis and verify them

for properties based on a certain specification and security criteria handed to us by

the Moodle team at the University of Malta (UoM), as employed for their Moodle

implementation, branded as the UOM Virtual Learning Environment (VLE)2. The

terms VLE and Moodle are used interchangeably in this chapter. Moreover, we

1https://moodle.org/
2http://www.um.edu.mt/vle

74

Chapter 6. Case Study

will consider other properties, common to the majority of PHP WA, such as on

session timeouts. Lastly, we will go through the project objectives and test them

through the presented case-study scenarios, providing a coherent justification of

how they were sufficiently met. In the following section we will go into the details

of the case-study.

6.2 Moodle

Moodle is a PHP-based e-learning platform aimed at providing online tools for the

creation and delivery of educational content, operating in a managed environment

which can scale up to over a million users. It provides an online environment for

tutors and students to come together in the context of educational courses, allowing

for various forms of communication, such as online forums and quizzes. It has been

employed in various sites (mostly universities), most notably in the US with over

eleven thousand Moodle installations. The UoM uses Moodle in order to provide an

online platform for study units (courses) which are taken up by classes of students.

In a study unit, tutors and students can share material and thoughts relevant to the

topics covered. These include the publishing of notes and assignment descriptions,

forums for discussion, wikis, and even a facility for assignment submission.

During the development of the PHP plugin various functionality aspects were

tested on a local installation of Moodle with configurations analogous to that of

the VLE of UoM. We have set up a dummy study unit for testing with the same

educational components (modules) as set up in the UoM VLE. We also created a

handful of disparate users to serve as actors for the necessary testing and running

of the case-study.

A number of properties on Moodle behaviour were verified using polyLarva, through

the developed PHP plugin. The properties are described in detail below.

75

Chapter 6. Case Study

Figure 6.1: Moodle permission management

6.2.1 Property#1 - Cross-verifying Moodle Permission

Management (MPM)

Figure 6.1 shows a Moodle permission page in relation to a ‘forum’ module, giving

the facility to manage its permissions based on Moodle roles. For each permission,

there can be assigned as many roles for the granting or denying of such permission.

Roles are not attributed to users directly, but are assigned to them in the context

of a study unit. For example, a user can have a teacher role in one study unit and

a student role in another study unit. This gives the facility for permissions to be

assigned differently in different study units.

As a general policy, the UoM VLE team decided to set up user permissions

identically across all study units, assigning UoM users with one role for use across

all enrolled-in study units. Thus, they created a one-to-many relationship table be-

tween the enabled feature permissions and the available roles, in the form of a basic

permission specification. Such specification is eventually mapped to actual Moodle

permission settings. Table 6.1 is an abridged representation of such specification.

76

Chapter 6. Case Study

Permission Group Permission Description Tutor Student
Forums Create a Forum Allow Deny

Read Post Allow Allow
Add Post Allow Allow
Remove post Allow Deny

Table 6.1: UoM VLE abridged permission specification

We have set the permission settings in our local Moodle installation according

to the permission descriptions, as in Table 6.1, by mapping them with the relative

Moodle permissions. For example, ‘Create a Forum’ permission maps to Moodle

permission ‘add a new Forum’ with Moodle code ‘mod/forum:addinstance’, and

‘Remove Posts’ maps to Moodle Permission ‘delete any posts (any time)’, with

Moodle code ‘mod/forum:deleteanypost’.

In the VLE, users are created in batch, by the importation of data from other

UoM systems. A user is imported with a descriptive field denoting his global user

role, and where such field is used for the eventual assigning of a Moodle role, upon

the user enrols into some study unit. During the importation process there is a

mechanism that checks, for already existing users, whether their assigned study

unit roles still reflect the newly imported global user role. If it finds that the global

user role is different from the study unit roles, it reconciles the study unit roles in

order to reflect the updated global user role. A failure in such mechanism can lead

to users being granted or denied permissions erroneously when navigating Moodle.

We want to define a property, to be verified by polyLarva, for the checking

of whether permissions are granted or denied correctly by Moodle by checking

for inconsistencies between the supplied permission specification supplied and the

actual Moodle permissions settings, based on the global user role and the actual

assigned Moodle roles.

Moodle takes the approach of inserting permission check functionality in various

places across its PHP scripts, in order to check permissions in relation to the

executing code. Below is a code snippet illustrating some permission checking

functionality cross-cutting the presentation logic of a Moodle PHP script.

77

Chapter 6. Case Study

1 i f ($ i s f r on tpag e) {
2 $PAGE−>s e t page l ayou t (’ admin ’) ;
3 r e q u i r e c a p a b i l i t y (’ moodle/ s i t e : v i ewpa r t i c i pan t s ’ , $systemcontext) ;
4 } e l s e {
5 $PAGE−>s e t page l ayou t (’ i n cou r s e ’) ;
6 r e q u i r e c a p a b i l i t y (’ moodle/ course : v i ewpa r t i c i pan t s ’ , $context) ;
7 }

The function require capability() serves the purpose of checking whether a per-

mission, in a particular context, should be granted. If it finds fault with the combi-

nation an error is thrown, resulting in a Moodle error page. This function is used all

over Moodle scripts for such purpose. In the body of this function there is another

function has capability(), which returns a boolean value, determining whether re-

quire capability() should throw an error or not. Sometimes, has capability() is also

used directly for certain permission checks in conditional statements.

Below are the most important parts of the polyLarva specification for the veri-

fication of this property:

1 s t a t e s {
2 monitorSide {
3 PermissionMap<Str ing , Str ing> map { . . }
4 }
5 }

The purpose of state PermissionMap in this property is to hold a list of Moodle

permissions and their attributed Moodle roles in a dictionary. This, in order to load

the VLE permission specification into the remote monitor for use by the monitoring

logic. Below are some example entries from the specification that is loaded into

the monitor, in the form of Moodle permission codes and their allowed Moodle

roles. For example, ‘mod/forum:startdiscussion’ can be granted to both ‘Tutor’

and ‘Student’ roles.

78

Chapter 6. Case Study

1 mod/forum : addinstance\&
2 mod/forum : de l e t eanypos t\&Tutor
3 mod/forum : s t a r t d i s c u s s i o n\&Tutor , Student

These specification entries are loaded from a file using standard Java file manage-

ment code, placed within the state clauses of PermissionMap.

1 events {
2 a c c e s s r i g h t s (S t r ing perm , St r ing ro l e , S t r ing path , Boolean r e su l t

, S t r ing user) = {/ l i b / a c c e s s l i b h a s c apab i l i t y (perm , ∗)
3 uponReturning (r e s u l t) }
4 where {
5 r o l e = $USER−>aim ;
6 path = $ SERVER[”REQUEST URI”] ;
7 user = $USER−>idnumber ;
8 }
9 }

Event access rights is set to fire every time function has capability(), located at

‘lib/accesslib.php’, returns a value. ‘accesslib.php’ is a shared Moodle script which

is included in almost every other Moodle script. Through this event are made

available, the permission code being evaluated by the function, via the captured

function parameter, and the permission granting result, via the returned value.

This event also includes a where clause by which certain other runtime information,

outside the bounds of the calling function, is captured, which includes the global

user role, the path of the executing script and the user ID.

1 cond i t i on s {
2 monitorSide { r u l eEx i s t s = { . . }
3 i sAl lowed = { . . }
4 }
5 systemSide {
6 eva lResu l t = { re turn $th i s−>r e s u l t == true ;}
7 }
8 }
9 a c t i on s {

10 monitorSide {
11 p r i n t i n f o = {System . out . p r i n t l n (”User : ” + user + ” Path : ” +
12 path + ” Vio l a t i on : ” + perm) ;}
13 }
14 }

79

Chapter 6. Case Study

In this property there are three conditions in total, two of them evaluated at the

monitor side, and another at the system side. ruleExists checks whether the per-

mission in question is included is the permissions specification, while isAllowed

checks whether a permission, in the permissions specification, is allowed or denied

in relation to the captured global user role. evalResult reflects whether Moodle has

allowed or denied the permission in question.

In the actions section there is one action, to be executed whenever the property

is violated. It outputs a message at the monitor side, giving details about the

particular violation.

1

2 r u l e s {
3 i s I n c on s i s t en tA = a c c e s s r i g h t s (perm , des ig , path , r e su l t , user)
4 \(r u l eEx i s t s && ! i sAl lowed && eva lResu l t))
5 −> p r i n t i n f o ;
6 i s I n c on s i s t e n tB = a c c e s s r i g h t s (perm , des ig , path , r e su l t , user)
7 \(r u l eEx i s t s && isAl lowed && ! eva lResu l t))
8 −> p r i n t i n f o ;
9 }

The rules for this property are set to compliment each other, as they check for

inconsistencies between Moodle and the permission specification, in the granting/-

denying of a particular permission. isInconsistentA evaluates to true if the permis-

sion is deemed as grantable by the permission specification, but denied by Moodle,

and isInconsistentB its converse. Their processing to true leads to a property

violation.

Detecting a Violation for Property#1

In order to simulate a property violation, we intentionally rendered permissions

inconsistent in Moodle from two different points, simulating scenarios: 1) when

the global user role is updated and the role reconciliation process fails and 2) when

the Moodle administrator grants permissions for testing purposes to a certain role,

and he fails to remove them prior Moodle goes live.

80

Chapter 6. Case Study

Figure 6.2: Descriptive field used for global user role

The first is a case where an education student, ‘Ritianne Attard’, who is par-

ticipating in an eLearning course, is temporarily promoted to a ‘Tutor’ role in the

VLE. The general procedure is that her global user role be changed to ‘Tutor’ from

the source student record in the student management system, in order to effect the

Moodle field, as illustrated in Figure 6.2, in the following data import from such

system. With a change like this, during data import, the reconciling mechanism

should flag the user and update all her assigned study unit roles to ‘Tutor’. The

problem was that the reconciling mechanism failed during such process, due to

requiring a revision update.

Figure 6.3: Assigned moodle role in study units

Figure 6.3 shows the actual assigned role for ‘Ritianne Attard’, in relation to

her study units. The reconciling mechanism should have removed the role ‘Student’

and added ‘Tutor’ instead, in order to reflect the global user role as in Figure 6.2.

When ‘Ritianne Attard’, with user ID ‘ratt0034’, entered into the discussion

page of the forum, certain checks were performed in order to determine what links

to functionality should be placed on the rendered HTML page; one of these was

for the creation of a delete link for posts. Since ‘Ritianne Attard’ is still assigned a

‘Student’ role in the mentioned study unit, this was determined by Moodle as not

being permissible, while the monitor, basing on the global user role, as captured in

the event, and the given permission specification, in Table 6.1, has determined that

such permission is grantable. This mismatch resulted in the property violations

illustrated in Figure 6.4.

Below is a monitor log illustrating a permission checking event leading to a

81

Chapter 6. Case Study

Figure 6.4: Permission violations for ’mod/forum:deleteanypost’

property violation:

[FINE]Received from system: 1,1,51eb7fca040e3,mod/forum:deleteanypost,Student,

/moodle/mod/forum/discuss.php?d=2,ratt0034

[INFO]Context {permission_0} received message that matches Event Collection

{access_rights}

[INFO]Context {permission_0} Rule activated {isInconsistentA}

[INFO]Sending to System : Context {permission_0} evaluate Condition

{evalResult}

[FINE]Sending to system: 2,2,mod/forum:deleteanypost,Student,

/moodle/mod/forum/discuss.php?d=2,51eb7fca040e3,ratt0034,

[FINE]Received from system: 2,2,false

[INFO]Context {permission_0} Rule activated {isInconsistentB}

[INFO]Context {permission_0} Rule {isInconsistentB} evaluates to TRUE.

Rule Processed..

In the second scenario, the administrator is testing some functionality on an

upgraded version of Moodle, by the adding and removing of roles to permissions

as in Figure 6.5.

Figure 6.5: Incorrect ‘Student’ permission

Here, the administrator added a ‘Student’ role to ’mod/forum:deleteanypost’ for

testing purposes, and failed to take it off when ready. Similar to the previous sce-

nario, it occurred that when students navigated to the forum discussion page of

the particular study unit, a property violation occurred as in Figure 6.4. Moodle

82

Chapter 6. Case Study

determined that the deletion of any post is permissible for the role ‘Student’ while

the monitor, basing on the global user role ‘Student’, and the permission specifi-

cation, determined that such permission is not grantable.

6.2.2 Property#2 - Further Protection on Moodle Admin-

istration

In the previous property we employed a cross-verification mechanism on the grant-

ing/denying of permissions between Moodle and a permission specification, reflect-

ing permission configurations in Moodle. This property, however, was based on

the assumption that permission checking functionality is always in place, where

permissions need to be checked. There is no guarantee that permission checking

functionality is placed exactly and appropriately before any restricted function-

ality, in every script. With a Moodle version upgrade such cross-cutting checks

can easily be removed erroneously from PHP scripts, and where in their absence

the monitor cannot produce any violations, since the primary event that triggers

verification is generated due to the execution of the checking function itself.

The UoM technical team has given the VLE team a partial solution, that of

protecting Moodle administration scripts for such possibilities via further restric-

tions on the URL, using a reverse proxy3 mechanism. A reverse proxy mechanism

acts as an intermediary between users and Moodle. Users will not be able to com-

municate directly with Moodle, but only through such mechanism. Having this in

place, it will allow restrictions to be placed at such mechanism based on various

parameters, such as the URL and the requester IP address.

Moodle administration scripts are all grouped under directory ‘/moodle/ad-

min/*’. In the reverse proxy mechanism, restrictions were placed so that all admin-

istration scripts are allowed to be requested only from certain IP address ranges

within the UoM campus. If requests are made from IP addresses outside such

3http://www.f5.com/glossary/reverse-proxy/

83

Chapter 6. Case Study

ranges, the reverse proxy mechanism automatically responds to such requests with

an error page, without executing any Moodle PHP script.

We want to define a property so as to compliment such mechanism, by checking

whether any allowed access (based on IP Address) is given to users having a global

user role ‘Manager’. This time, rather than relying on permission checking func-

tionality, for the generation of events, we want to base event generation directly on

script requests, for the execution of administration scripts.

Below are the most important parts of the polyLarva specification for the veri-

fication of this property:

1 events {
2 s c r ip tReque s t (S t r ing ro l e , S t r ing user , S t r ing path) =
3 { a f t e rRequ i r e /admin/∗∗ ” . . / c on f i g . php”}
4 where {
5 r o l e = $USER−>aim ;
6 path = $ SERVER[”REQUEST URI”] ;
7 user = $USER−>idnumber ;
8 }
9 }

Event scriptRequest is set to fire after the inclusion of ‘config.php’, in any script

within ‘/admin’ directory of Moodle, and its subdirectories. This event has a where

clause by which the necessary runtime information is captured, which includes the

global user role, the path of the executing script and the user ID. The reason this

event is set to fire after the inclusion of ‘config.php’ is due to certain required

runtime information (‘$USER’ related) becoming available after the inclusion of

such script.

1 cond i t i on s {
2 monitorSide {
3 isManager = { re turn r o l e . equa l s (”Manager”) ;}
4 }
5 }

Condition isManager uses Java object method string.equals() on string role, rep-

84

Chapter 6. Case Study

resenting the global user role, to check whether it matches ‘Manager’, returning a

boolean value indicating so.

1 r u l e s {
2 i sNotAllowed = sc r ip tReques t (ro l e , user , path) \ ! isManager −>

p r i n t I n f o ;
3 }

Rule isNotAllowed specifies that if a script request is not made by a user with global

user role ‘Manager’, it raises a property violation at the monitor side, outputting

a message by executing action printInfo.

Detecting a Violation for Property#2

Figure 6.6: Student attempting access to ‘/moodle/admin/index.php’

‘Ritianne Attard’ is currently in the range of IP addresses which are allowed to

request for the execution of administration scripts, however, she is currently with

global user role ‘Student’. Since she is a student, Moodle itself does not allow her

to access such pages and redirects her to an error page, as illustrated in Figure 6.6.

Figure 6.7: Property violations indicating the attempted URL with parameters,
and the User ID

The remote monitor, on the other hand, takes into consideration the global user

role for the determining of whether she should have access to administrative scripts.

85

Chapter 6. Case Study

Since the only role that is allowed to access such scripts is ‘Manager’, a property

violation occurs every time she tries to access a Moodle administration script. Fig-

ure 6.7 illustrates three property violations from the same user, each representing

different attempts to the same administration script, but with different URL pa-

rameters. Such property can serve for the identification of users, in allowed IP

ranges, who deliberately attempt to access Moodle administration scripts without

themselves having global user role ‘Manager’.

6.2.3 Property#3 - Limiting Login Attempts

Moodle allows for the configuration of the number of login attempts that can be

performed from one session. If a user, on a given session, performs a number of

login attempts more than the established amount, Moodle will issue an error indi-

cating so. We want to have a property mirroring this setting so as to ensure that

no anonymous user is able to attempt to login for a number of times beyond the set

threshold in Moodle. If this happens, the monitor should raise a property violation

reporting the last attempted user name, together with the IP address from which

such attempts occurred. Furthermore, the monitor should proceed by blacklisting

the IP address and intervene in the Moodle logic in order to prevent further login

attempts from such IP address on any given session.

Below are the most important parts of the polyLarva specification for the verifica-

tion of this property:

1 events {
2 l og inEvent (S t r ing user , S t r ing s e s s i on , S t r ing ipaddress , Boolean

r e su l t ,
3 auth p lug in base auth) = {/ l i b /moodle l ib auth . u s e r l o g i n (user ,

∗)
4 uponReturning (r e s u l t) }
5 where {
6 s e s s i o n = $USER−>s e s skey ;
7 i paddre s s = $ SERVER[”REMOTEADDR”] ;
8 }
9 b lackL i s t IP (St r ing ipaddre s s) = {? b lackL i s t IP (ipaddre s s) }

10 }

86

Chapter 6. Case Study

Event loginEvent is set to fire after object function user login(), made available

in ‘/lib/moodlelib.php’, returns its login success. In this event are made available

the username attempted logged in with, via the captured function parameter, and

the login success value, via the captured returned value. This event also includes a

where clause by which certain other runtime information, outside the bounds of the

calling function, is captured, which includes the session ID from which the login

attempt was performed and the IP address of the requesting user.

Event blackListIP is set to listen for internal events broadcasted by any of the

sub-monitors, representing a particular session, fired due to raising a violation on

an exceeded amount of login attempts from the same session, for the blocking of

the user IP address.

1 a c t i on s {
2 systemSide {
3 r ed i r e c tB l a ckL i s t ed = {header (”Locat ion : http ://www.um. edu .mt/”)

;}
4 }
5 monitorSide { . . . }
6 }
7 r u l e s {
8 markIP = blackL i s t IP (ipaddre s s) −> markBlackListed ;
9 b lackL i s t ed = log inEvent (user , s e s s i on , ipaddress , r e su l t , auth) \

10 i sB l a ckL i s t ed −> r ed i r e c tB l a ckL i s t ed ;
11 upon {
12 ru leNewSess ion = log inEvent (user , s e s s i on , ipaddress , r e s u l t ,

auth) \
13 (f a i l e dLog i n && isNewSess ion) −> addNewSession{ . . . }
14 }
15 load s e s s i o n { . . . }
16 }

Rule markIP specifies that whenever a sub-monitor requests for the blacklisting

of an IP address, it will proceed by adding such IP address to the list of blacklisted

IP addresses.

Rule blacklisted specifies that if a user tries to log in from any session with an IP

address that is blacklisted, the monitor intervenes in the Moodle logic to redirect

the user to an information page instead, by system-side action redirectBlackListed.

Rule ruleNewSession specifies that if an attempted login was a failure, through

87

Chapter 6. Case Study

system-side condition failedLogin, and the session has not an attributed sub-monitor

yet, by condition isNewSession, it will proceed by creating a sub-monitor based on

session.

1 load s e s s i o n {
2 s t a t e s {
3 systemSide {
4 PHPVar sysLoginCount{ . . . }
5 }
6 }
7 cond i t i on s {
8 systemSide {
9 sub f a i l edLog in = { re turn $th i s−>r e s u l t === f a l s e ;}

10 exceededSysLoginCount = { i f ($ th i s−>sysLoginCount == ” nu l l ”)
11 { $th i s−>sysLoginCount = 1 ;}
12 re turn $th i s−>sysLoginCount > 10 ;
13 }
14 }
15 a c t i on s {
16 systemSide {
17 incrementSysLoginCount = { i f ($ th i s−>sysLoginCount == ” nu l l ”)
18 { $th i s−>sysLoginCount = 1 ;}
19 e l s e { $th i s−>sysLoginCount++;}
20 }
21 }
22 monitorSide {
23 logTooManyLoginAccesses={ . . . }
24 }
25 }
26 . . .
27 }

For each session, a system-side state sysLoginCount is maintained for the count-

ing of login attempts. Since PHP variables are declared typelessly, a default PHP-

Var is given as a type for PHP-side variables in polyLarva. By default, the system-

side monitor initialises any such variable with value ‘null’. The actual initialisation

of sysLoginCount is performed from either of its attributed system-side condition

or action, exceededSysLoginCount or incrementSysLoginCount respectively.

System-side condition subfailedLogin checks whether the login attempt was a

failure while condition exceededSysLoginCount checks whether sysLoginCount has

exceeded the value 10. System-side action incrementSysLoginCount increments

88

Chapter 6. Case Study

sysLoginCount by 1 whenever executed.

1 load s e s s i o n {
2 . . .
3 r u l e s {
4 incrementSubLoginCounter = subLoginEvent (user , subse s s i on ,

ipaddress ,
5 r e su l t , auth) \ sub fa i l edLog in−> incrementSysLoginCount ;
6 exceededLimit = subLoginEvent (user , subse s s i on , ipaddress ,

r e su l t , auth) \
7 (sub f a i l edLog in && exceededSysLoginCount) −>

logTooManyLoginAccesses ,
8 l a rva : f i r e (b lackL i s t IP (ipaddre s s)) ;
9 }

10 }

Rule incrementSubLoginCounter is specified to increment sysLoginCount with

every failed login attempt, triggered by event subLoginEvent. In rule exceededLimit,

whenever subfailedLogin and exceededSysLoginCount evaluate to true, it is specified

to log the IP address from which the login attempt occurred and broadcast it via

an internal event to blackListIP, declared at the global monitor, for the blocking

of such IP address.

Figure 6.8 illustrates the various aspects of monitoring for this property through

active communication messages that occur between the remote monitor and the

system-side monitoring code. With every failed login attempt occurring from a

new session, sub-monitors are created both at the monitor side and the system side,

representing the new session. Thereafter, with every failed login attempt occurring

from sessions with an already existing sub-monitor, a counter is incremented at the

system-side sub-monitor of such sessions. Furthermore, if such counter exceeds the

set threshold of login attempts, the system-side sub-monitor informs its equivalent

monitor-side sub-monitor of the IP address from which the user is attempting to

log in. This, in turn, triggers an internal event broadcast to the global monitor, at

the remote side, for the adding of such IP address to the black-listed IP addresses

list. Whenever a login attempt is made from a blocked IP address, the system-side

monitoring code immediately intervenes in Moodle logic to redirect the user to an

89

Chapter 6. Case Study

Figure 6.8: Communication model for property#3

information page instead (not illustrated in Figure 6.8).

Detecting a Violation for Property#3

In order to be able to detect a violation, we adjusted the login attempt threshold

in Moodle to allow for eleven attempts, while in the property specification we

specified that no more than ten login attempts can occur from the same session. It

occurred that when we attempted to log in the eleventh time, Moodle redirected us

to ‘http://www.um.edu.mt/’ , as anticipated. Below is a monitoring log starting

from the event extracted by the eleventh login attempt to the execution of the

redirection action redirectBlackListed, illustrating the various evaluation requests

and responses that took place between the remote monitor and the system-side

monitoring code before redirecting the user to an information page:

[FINE]Received from system: 1,8,jDRyE21JkM,72ba2e923797d3,fc1c149afbf4c8,

rewr,jDRyE21JkM,127.0.0.1,jDRyE21JkM

[INFO]Context {context_1} received message that matches Event Collection

90

Chapter 6. Case Study

{subLoginEvent}

[INFO]Context {context_1} Rule activated {incrementSubLoginCounter}

[INFO]Sending to System : Context {context_1} evaluate Condition {subfailedLogin}

[FINE]Sending to system: 2,6,jDRyE21JkM,rewr,jDRyE21JkM,127.0.0.1,fc1c149afbf4c8,

72ba2e923797d3,

[FINE]Received from system: 2,6,true

[INFO]Context {context_1} Rule {incrementSubLoginCounter} evaluates to TRUE.

Rule Processed.

[INFO]Sending to System : Context {context_1} evaluate Action

{incrementSysLoginCount}

[FINE]Sending to system: 2,9,jDRyE21JkM,rewr,jDRyE21JkM,127.0.0.1,fc1c149afbf4c8,

72ba2e923797d3,

[FINE]Received from system: 2,9,true

[INFO]Context {context_1} Rule activated {exceededLimit}

[INFO]Sending to System : Context {context_1} evaluate Condition {subfailedLogin}

[FINE]Sending to system: 2,6,jDRyE21JkM,rewr,jDRyE21JkM,127.0.0.1,fc1c149afbf4c8,

72ba2e923797d3,

[FINE]Received from system: 2,6,true

[INFO]Sending to System : Context {context_1} evaluate Condition

{exceededSysLoginCount}

[FINE]Sending to system: 2,7,jDRyE21JkM,rewr,jDRyE21JkM,127.0.0.1,fc1c149afbf4c8,

72ba2e923797d3,

[FINE]Received from system: 2,7,true

[INFO]Context {context_1} Rule {exceededLimit} evaluates to TRUE. Rule Processed.

[INFO]Context {context_1} throwing Internal Event {blackListIP}

[INFO]Context {context_0} received message that matches Event Collection

{blackListIP}

[INFO]Context {context_0} Rule activated {markIP}

[INFO]Context {context_0} Rule {markIP} evaluates to TRUE. Rule Processed.

[FINE]Received from system: 1,1,f7bfd135512c3b,fc1c149afbf4c8,rewr,jDRyE21JkM,

127.0.0.1

[INFO]Context {context_0} received message that matches Event Collection

{loginEvent}

[INFO]Context {context_0} Rule activated {blackListed}

[INFO]Context {context_0} Rule {blackListed} evaluates to TRUE. Rule Processed.

91

Chapter 6. Case Study

[INFO]Sending to System : Context {context_0} evaluate Action

{redirectBlackListed}

[FINE]Sending to system: 2,3,rewr,jDRyE21JkM,127.0.0.1,fc1c149afbf4c8,

f7bfd135512c3b,

[FINE]Received from system: 2,3,true

6.2.4 Property#4 - Timing Out Expired Moodle Sessions

in Real Time

Moodle allows for the configuration of how much time a session can remain inactive,

after which the session will be timed out. The problem is, that, since Moodle is

developed in PHP, sessions cannot be not timed out in real time. This, since

changes to a PHP WA state can only occur during the execution of some script.

Therefore, timeouts are only processed at subsequent script executions, following a

timeout, in the context of an expired session. Such an approach leaves Moodle with

many abandoned sessions left unprocessed after timeout. In Moodle, sessions are

preserved in the form of files, and where a separate file is created for each Moodle

session with the file name reflecting the session ID. Files accumulate over time, and

require that they be cleaned up periodically.

We want to have a property that not only mirrors the timeout as specified in

Moodle, but also overrides Moodle to time out sessions in real time, by deleting

the representative session files. In order to be able to do so, the remote monitor

should be able to instruct the system-side monitoring code, at the time it deems

that a session has expired, to delete the file of the particular session, based on the

session ID.

Below are the most important parts of the polyLarva specification for the verifica-

tion of this property:

92

Chapter 6. Case Study

1 events {
2 s c r ip tReque s t (S t r ing s e s s i o n) =
3 {uponExit / c on f i g }
4 where {
5 s e s s i o n = $ COOKIE [”MoodleSess ion ”] ;
6 }
7 }
8 r u l e s {
9 upon {

10 ru leNewSess ion = sc r ip tReque s t (s e s s i o n) \ (i sNewSess ion) −>
11 addNewSession{ . . . }
12 }
13 load s e s s i o n { . . . }
14 }

In order to be able to monitor Moodle for session timeouts, it is required that

with every kind of activity that happens on Moodle the monitor receives an event

indicating such activity. There are various ways how this can be done, but a

favourable one is that of a having an event extracted in a script, that is included

in every other script. Event scriptRequest is set to generate events upon exiting

‘config.php’. This script is included in every other script, and therefore it is a good

candidate for event generation. Event scriptRequest includes a where clause, by

which the session ID, based on cookie information, is made available at such event.

Rule ruleNewSession is set to create sub-monitors for newly created sessions.

It is based on scriptRequest event and condition isNewSession, checking whether

a session exists in the list of sessions already having an existing sub-monitor. If a

session is not in such list, a new sub-monitor is created representing such session.

93

Chapter 6. Case Study

1 load s e s s i o n {
2 t imers {
3 sess ionTimer
4 }
5 a c t i on s {
6 systemSide {
7 removeSess ion = { unl ink (”C:\Program F i l e s (x86) \
8 EasyPHP−12.1\moodledata\ s e s s i o n s \ s e s s ” . $ th i s−>s e s s i o n) ;}
9 }

10 monitorSide {
11 r e s e tSe s s i onTimer = { l a rva : t imerReset (ses s ionTimer) ;}
12 }
13 }
14 . . .
15 }

In the timers section, of the session context, timer sessionTimer is declared for

the purpose of keeping the time of inactivity for each session. System-side action

removeSession is set to remove the file from the web server for the session in context,

while monitor-side action resetSessionTimer is set to reset timer sessionTimer by

using the timerReset directive.

1 load s e s s i o n {
2 . . .
3 events {
4 noAct iv i ty () = { l a rva : timerAt (sess ionTimer , 600) }
5 subscr ip tReques t (S t r ing subSess ion) = . . .
6 }
7 r u l e s {
8 sess ionTimeout = noAct iv i ty () −> removeSess ion ;
9 r e s e t S e s s i o n = subscr ip tReques t (subSess ion) −> r e s e tSe s s i onTimer

;
10 }
11 }

In the events section, event noActivity is set to fire upon sessionTimer counting

up to 600 seconds. Event subscriptRequest is almost identical to event scriptRequest,

declared in the global context, as it is to fire upon every request to ‘/config.php’

Rule sessionTimeout specifies that when event noActivity fires, action removeSes-

sion should be executed. Since noActivity is an internal event, and removeSession

94

Chapter 6. Case Study

is a system-side action, the remote monitor will find no available connection upon

which it can communication the request for the execution of removeSession. There-

fore, the remote monitor, prior to making such request, proceeds by first initiating

a connection by sending a connection request to the system-side monitor. From

the system-side end, this is achieved through the PHP monitoring server, which is

executed just after the PHP engine is started. It makes possible that a connec-

tion request, in the direction of the system-side monitor, be established, for the

processing of any monitoring requests made by the remote monitor.

Cleaning up Session files with Property#4

In order to test the workings of this property, we have set the property session

timeout threshold to twenty seconds, much lower than that in Moodle. We opened

two different browsers, and logged into Moodle with both browsers in order to be

given two different sessions. Then, we opened directory ‘../moodledata/sessions’

to view the files for the newly created sessions. Eventually, we stopped using

one browser and continued using the other with less than twenty seconds intervals

between each activity on Moodle. The inactive browser session, following a delay

beyond the set threshold, has had the attributed session file automatically removed

by the remote monitor from the sessions directory. We tried to continue using

Moodle from such browser but were asked to log in again, given that Moodle has not

found its session file. The other browser has not had the session file removed, due to

not being inactive for an amount of time beyond the set threshold. This verifies that

the overall monitoring functionality is successfully overriding the Moodle timeout

functionality, and that it is treating each session independently according to its own

inactivity. Below is a monitoring log showing subsequent stages of monitoring:

######################

Monitoring activity leading to timer reset

######################

[INFO]Context {context_1} received message that matches Event Collection

{subpageRequest}

95

Chapter 6. Case Study

[FINE]Received from system: 1,6,km86l81bf49vo874494btmv700,

km86l81bf49vo874494btmv700,km86l81bf49vo874494btmv700

[INFO]Context {context_1} Rule activated {resetSession}

[INFO]Context {context_1} Rule {resetSession} evaluates to TRUE. Rule Processed.

######################

Session timeout

######################

[INFO]Context {context_1} received Timer Event on Timer {sessionTimer}

[INFO]Context {context_1} received message that matches Event Collection

{noActivity}

[INFO]Context {context_1} Rule activated {sessionTimeout}

[INFO]Context {context_1} Rule {sessionTimeout} evaluates to TRUE. Rule Processed.

######################

Remote Monitor initiating connection to delete session file

######################

[INFO]Sending to System : Context {context_1} evaluate Action {removeSession}

[FINE]Sending to system: 2,2,km86l81bf49vo874494btmv700,

km86l81bf49vo874494btmv700,

[FINE]Received from system: 2,2,true

6.3 Evaluation

6.3.1 Testing the Set Objectives against the Case-Study

To be able to measure whether the PHP plugin has satisfied the overall objectives,

it is imperative that we go through each project objective and provide a ratio-

nale, using the case-study, of how it has been met. The overall aim was that the

PHP plugin should serve as an intermediary between the remote monitor and the

monitored PHP scripts, for the verification of properties expressed on PHP script

96

Chapter 6. Case Study

behaviour. This involves the ability of the PHP plugin to modify the original PHP

scripts, based on the supplied property specification script, in order to make them

monitorable. Modifications in PHP code include the generation of events at points

of interest in code, communication to and from the central monitor, and support

for local monitoring functionality.

Initially, these properties were going to be tested on the actual UoM VLE during

and upgrade phase, in a time where various IT staff were assigned to perform

tests on an instance of an new version of Moodle. However, due to a premature

PHP plugin at the time, and inappropriate versioning of the PHP engine (for

compatibility with AOP PHP extension), we decided to implement the monitoring

code generated from these properties on a local Moodle instance that reflected,

more or less, the actual VLE configurations.

Event Generation

In the PHP plugin, event generation was one of the aspects which required a com-

plete reconsideration with respect to the given plugin structure and core polyLarva

design. The case-study includes properties using different kinds of event declara-

tions.

First and foremost, the inclusion of a script or a directory path was crucial for

all properties, for their ability to target specific scripts in which the event matching

signature should apply. Moodle is comprised of over ten thousand PHP scripts,

with most of its functions and classes declared more than once across its scripts.

The inclusion of a path provided the necessary focus to the instrumentation pro-

cess which helped eliminating the ambiguity present in the previous event matching

signature. Moreover, the tested properties where specified to generate events at

different points in the PHP code. The table 6.2 illustrates the kind of events spec-

ified for such properties.

97

Chapter 6. Case Study

Regular/Object Function uponEntry uponExit afterRequire
Property#1 x
Property#2 x
Property#3 x
Property#4 x

Table 6.2: Type of events specified in the case-study properties

In properties#1 and #3, event declarations were based on regular matching sig-

natures. In property#1, event generation was based on a regular function, defined

in a script that is included in every other script, and where its event was declared

to fire upon its returning. In property#3, event generation was based on an object

function. Here, the same event was declared similarly twice, in the global context

and in the session context. The reason for having doubly events is due to having

contextual counters based on one continually occurring event, in this case on login

attempts for each session. On the first login attempt from a session, by the event

in the global context, a representative sub-monitor is created for such session. On

subsequent login attempts from such a session, by the event in the session context,

a login counter is incremented with each login attempt for such session. In OO

languages, such as Java, this is a not so common scenario, as sub-monitors are

usually created by events declarations specified on object constructor functions.

In properties#2 and #4, event declarations were based on the event constructs

added specifically for PHP code. In property#2, it was required that events be

generated every time a script, residing in the ‘/admin’ directory, is requested. We

specified that this should occur just after the inclusion of ‘config.php’, by means

of an afterRequire event construct, in every script under ‘/admin’ and it subdirec-

tories. In property#4, it was required that events be generated every time any

Moodle script is requested. We adopted a similar idea from property#2, however,

rather than opening up the path to target all Moodle scripts, we have chosen to

target a common script instead (same latched-upon script in property#2) using the

uponExit event construct. This enabled us not only to centralise event extraction,

but also to capture the required runtime information made available by the shared

98

Chapter 6. Case Study

script.

The diversity of properties tested in the case-study shows that the PHP plugin

caters sufficiently well for the specification of events on PHP scripts, in considera-

tion of PHP WA script structures and PHP coding conventions.

Communication to and from the Remote Monitor

With regards to communication, the case-study exploited all the communication

possibilities that can occur between a monitored system and a remote monitor.

Property#3 was the most communication-intensive property, due to having much

of its monitoring functionality specified to perform at the system side. As shown

in the monitoring log for such property, rules incrementSubLoginCounter and ex-

ceededLimit involved a long trail of to-and-fro messages on the same connection,

initiated by the system-side monitoring code by event subLoginEvent.

Property#4 involved a kind of communication where the remote monitor had to

initiate a connection itself with the system-side monitoring code, upon the firing of

an internal event at the remote monitor. The request for the execution of system-

side action removeSession was carried out on such connection, through the PHP

monitoring server. This is illustrated in the last section of the monitoring log

provided with such property.

Support for Local Monitoring Functionality

Property#1 and #3 show that runtime information result, although its actual value

is bound to the system, can still be evaluated but at the system side. This involved

the preservation and retrieval of such information at the system side, through

an identifier, representing such information, which is communicated to and from

the remote monitor in the monitoring process. Local monitoring functionality were

able to make reference to such runtime information unreservedly in their evaluation

process.

99

Chapter 6. Case Study

Property#3 also involved the maintaining of a counter at each session system-

side sub-monitor. Such counter was made available during each system-side eval-

uation, by means of a local monitor representing the session in question, where

it was compared against a constant and updated. After each evaluation the local

monitor was being preserved in order to maintain changes across the various script

request evaluations.

Property#3 and #4 illustrates the potential of the PHP plugin in terms of the

kind of actions that the remote monitor can take in order to mitigate a PHP WA

state. In Property#3, the monitoring logic was evaluated in synchronous with the

monitored system, following event loginEvent. When the remote monitor deter-

mined that a login attempt originated from an IP address that is blacklisted, it

executed system-side action redirectBlackListed in order to exit the current WA

script execution and redirect the user to an information page. In Property#4,

the remote monitor placed an asynchronous request to the system-side monitoring

code for the execution of system-side action removeSession, upon it deemed that a

particular session has timed out. This, in order to delete the file representing the

timed-out session.

The variety of system-side functionality employed in the case-study, shows that

the PHP plugin caters sufficiently well for any specified system-side functionality,

for its implementation and execution alongside PHP WA scripts.

6.3.2 Impact of Case-Study on the PHP Plugin

The case-study mostly influenced the PHP plugin in the design phase, during the

identification of structural points within sequences of PHP code. Through the case-

study, we were able to identify which points in PHP script code exhibited the most

structural strength and runtime information of monitoring interest, in addition to

method and function definitions, for event generation. We based event constructs

uponEntry, uponExit and afterRequire on findings in the case-study.

100

Chapter 6. Case Study

6.3.3 Appraisal of the Case-study

We think that this case-study was an effective academic exercise, as through it we

were able to design a versatile PHP plugin that can work with any PHP monitor-

ing scenario. The case-study helped us visualise the typical properties expressed

on PHP WA behaviour as well as picture the best way monitoring code can be

structured and instrumented into a PHP WA. We were also able to appraise the

effectiveness of polyLarva, in relation to a real-life PHP WA, by comparing the

amount of work it took us to write the case-study properties with the amount of

work it would have taken us to employ the equivalent monitoring code directly

without polyLarva.

Moreover, the case-study properties served as a test-base, for continual design

refinements, during the development of the intermediate specification extractor and

the PHP monitoring compiler and instrumentor.

6.4 Conclusion

Through the case-study, it has been shown that polyLarva has been successfully en-

abled, by means of the PHP plugin, for the monitoring of any kind of PHP WA. The

case-study consisted of monitoring scenarios from a real-life Moodle installation,

which exhibited a number of PHP WA properties which were effortlessly expressed

in the polyLarva specification language and successfully verified for by polyLarva,

through the PHP plugin. Such properties were selected both for illustrating the

effectiveness of polyLarva, for the monitoring of real-life properties of any PHP

WA, and to have a basis of justification for the testing of the set objectives.

101

7. Related Work

7.1 Introduction

Any related work to the PHP plugin can be drawn from two main streams of

literature: from other polyLarva plugins, implemented for other technologies, and

from tools employing similar techniques to polyLarva, for the verification of PHP

WA.

In this chapter we start by comparing other plugins with the PHP plugin. Then,

we introduce Swaddler, an approach to the anomaly-based detection of attacks

against WA, implemented for use with PHP WA, and compare it with polyLarva

both at the level of the general polyLarva architecture and the PHP plugin.

7.2 Other polyLarva plugins

In total there are three other plugins, for Java[16], C[16] and Erlang[11]. The Java

Plugin was the first plugin to be implemented in polyLarva. The prescribed plugin

structure that is used for all plugins was determined based on decisions made with

respect to monitoring code compilation and instrumentation for Java programs. In

fact, the plugin structure and the common monitoring code compilation process,

detailed in Chapter 5, are a tailored, yet technology-inclusive fit for the Java plugin.

The C and Erlang plugins were successfully implemented in their entirety in the

102

Chapter 7. Related Work

prescribed structure set by the Java plugin. For the PHP plugin, the prescribed

plugin structure was only used for the implementation of a technology-agnostic

intermediate specification extractor, illustrated in Figure 5.9, for the extraction of

an intermediate specification. This, since the PHP monitoring code structure could

not fit in the prescribed plugin structure, discussed in Chapter 5.

All the other plugins generate two main sets of code: aspect code for the extrac-

tion of events from the monitored system and additional monitoring code for the

implementation of system-side monitoring logic and functionality for the maintain-

ing of a system-side monitoring state. The aspect code, that is generated through

the plugin structure, is intentioned to be passed as input to some compile-time

weaving AOP implementation, for the carrying out of the required monitoring

code instrumentation into the target system. The Java plugin generates aspect

code for AspectJ[13], a compile-time implementation for Java, in separate aspect

files per context; the C plugin generates aspect code for AspeCt-oriented C (ACC)1,

a compile-time implementation for C, in one aspect file for all contexts; the Erlang

plugin generates aspect code for a combined compile-time weaving AOP imple-

mentation, from from Krasnopolski’s plugin2 and Clifford Valletta’s plugin[11], in

separate pointcut files per context, and a common advice file (Erlang module). The

PHP plugin uses a combination of load-time weaving AOP implementation and di-

rect monitoring code injection for the required monitoring code instrumentation

for PHP.

The way events are declared for the technologies supported by the other three

plugins is very similar to one another. For Java programs, the event matching

signature allows for the specification of an object (for instantiated objects from a

particular class, specified in the event declaration), if any, a method, and method

arguments, if any. Similarly, for C and Erlang programs, the event matching sig-

nature allows for the specification of a module, if any, a function, and function

arguments, if any. All the three plugins employ a two-level event matching signa-

1https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc/
2http://erlaop.sourceforge.net/

103

Chapter 7. Related Work

ture: object/module and method/function. For PHP scripts, the event matching

signature allows for the specification of two categories of events: the two-level event

matching signature as for the other plugins, and specific points in PHP scripts

such as afterRequire. In addition to these events, a script path is specified, for

the narrowing down of the applicability of an event declaration to specified scripts.

Therefore, at most, the PHP plugin employs a three-level event matching signature:

script path, object/module and method/function.

7.3 Swaddler

Swaddler[9] is an approach to the anomaly-based detection of attacks against WA.

Unlike polyLarva, Swaddler does not verify a WA against a formal behaviour spec-

ification, but bases its detection techniques on a set of statistical models used to

characterize certain features of the state variables. Properties of state variables

and combinations of such variables are dynamically captured using such models.

Swaddler is made up of two main components: the sensor, analogous to the

event extraction code as generated and instrumented by polyLarva plugins, and the

analyser, analogous to the polyLarva remote monitor. The sensor, which is applied

to the WA code, collects data at the beginning of each basic block (sequence of

instructions without branches) and encapsulates such data in the form of an event

and sends it to the analyser. This is similar to the way the polyLarva system-side

monitoring code generates and communicates events to the remote monitor. The

analyser, on the other hand, maintains profiles for each basic block using recipient

events, for the identification of anomalous application states. When anomalous

states are detected, the analyser, similar to the polyLarva remote monitor, raises

a violation which can lead (optionally) to the termination of the executing code.

Swaddler was implemented as a prototype tool for the detection of anomalies

in PHP WAs. Of most interest is the way it extracts events from executing PHP

scripts. Rather than resorting to AOP, it extended the core PHP engine at different

104

Chapter 7. Related Work

points in its processing cycle for the extraction of event information directly from

its core execution process. The main advantage of such an approach is that the

target PHP WA script code is never modified for the extraction of events. The PHP

implementation of Swaddler, however, stopped at event extraction in this regard,

since the role of a sensor is only that of informing the analyser of the execution

trace. If this approach is to be extended to monitoring operations beyond event

extraction, such as for the evaluation of system-bound information at the system

side, it might prove to be difficult to implement at the level of the PHP engine,

as it really depends on how flexible and structured the PHP engine architecture

is in order to be able to do so. Moreover, any modifications performed to the

PHP engine cannot be detached from the main PHP sources 3, and therefore any

work performed on one PHP engine version should be reapplied, with possible

modifications, to every future version. The PHP plugin, in this regard, takes the

approach of integrating system-side functionality, readily expressed in the PHP

language, directly into the target PHP WA code, for execution as part of the PHP

WA. Its main advantage over Swaddler is that any monitoring enhancements to

PHP WAs are totally independent from the PHP engine, and therefore system-

side monitoring code expressions and related work can be preserved across future

versions of PHP engines.

7.4 Conclusion

In this chapter we have drawn on aspects from related work that were subject to

analysis in the design and implementation phases of the PHP plugin. The PHP

plugin has been shown to have significant differences from the other polyLarva

plugins, from the way events are specified, to how the PHP plugin was finally

implemented. This is mainly due to the fact that the PHP language is dynamic

and script oriented, and where the notion of scripts in polyLarva, prior PHP, was

3http://www.php.net/manual/en/internals2.ze1.zendapi.php

105

Chapter 7. Related Work

entirely missing. Swaddler has been shown to be similar to polyLarva in its ap-

proach for anomaly detection, and where its PHP-specific implementation resorted

to extending the core PHP engine rather than target PHP scripts directly (with

AOP), for the extraction of PHP script events, which is advantageous. However,

for monitoring operations beyond event extraction, using such an approach might

prove to be difficult to implement at the level of the PHP engine.

106

8. Conclusion

PHP is a scripting language that is increasingly being used, most especially in open

source projects, for the development of large and complex WAs. A long-standing

problem with PHP WA is that they cannot be verified in their completeness us-

ing traditional verification techniques, such as model checking, given their complex

and dynamic nature. Runtime verification (RV) is a verification technique based

on extracting runtime information from systems for its verification, in order to

detect and possibly react to behaviour violating any specified properties. RV has

been shown to be a viable solution for the verification of large complex systems.

In account of this, we considered using an extensible, technology agnostic RV tool

called polyLarva. polyLarva can be extended for the monitoring of any program-

ming language, by the development of a technology-specific plugin. One problem

with polyLarva was, that, it had never been extended to dynamic languages, such

as PHP. The notion of scripts or files was missing in its property specification

language, which impinged on its ability to define correctness properties on PHP

WA behaviour. In order to cater for this variance, we enhanced the event matching

syntax, part of the specification language, so that it can also include the path of the

target script/s along with the provided event matching signature. This facilitated

a way of restricting the application of an event declaration only to the specified

script/s, instead all PHP WA scripts. Moreover, we observed that PHP WA struc-

tures are usually different from those of systems developed in static languages,

107

Chapter 8. Conclusion

such as Java and C. Code reuse in PHP WA is mostly done by the inclusion of

common scripts into the main requested scripts, and where runtime information of

monitoring interest is likely to be made available after the inclusion of such scripts.

In consideration of this, we identified an additional three structural points in PHP

code where events can be extracted. This required that the event matching signa-

ture be also enhanced by the addition of three new event constructs, representing

the identified points.

Technology-specific plugins are usually implemented, in their fullness, through

a generic plugin structure as prescribed by polyLarva. Given that PHP is a dy-

namic language, and the way of compiling monitoring code through such plugin

structure does not cater for PHP differences, the PHP plugin could not have been

implemented, in its fullness, through such structure as the other plugins. We used

the plugin structure only for the extraction of an easily parseable intermediate

specification, comprised of system-side sections from a given polyLarva specifica-

tion script. The aim of having an intermediate specification was to break away

from the prescribed plugin structure, for ability to compile the monitoring code

(from such specification) by another program in a structure as deemed fit for PHP

WA.

The resulting PHP plugin implementation was tested in a case study on an e-

learning PHP WA called Moodle. A number of properties, based on configurations

from a real-life Moodle installation, have been successfully verified by polyLarva

by means of the PHP plugin. Through the verified properties we were able to

show that the PHP plugin is able to employ monitoring functionality for different

real-life properties, specified on PHP script code behaviour, while supporting the

flexibility allowed by polyLarva of splitting such properties across the monitored

system and the monitor.

108

Chapter 8. Conclusion

8.1 Future Work

Since most of the applications we used nowadays are increasingly being made avail-

able through the browser, client-side scripting technologies, such as JavaScript and

ActionScript, are being used extensively in addition to server-side scripting for lo-

cal processing, such as to control the browser, communicate asynchronously with

the web server, and alter the document content that is displayed on the browser.

Being able to marry the verification of server-side scripts, such as PHP, to client-

side scripts will give a more holistic approach to the verification of PHP WA, for

consistency between both sides.

polyLarva is also able to perform the verification for spanning properties on the

collective behaviour of multiple components developed in different technologies[5].

To start exploring this area, therefore, all it is needed is a technology-specific plugin

supporting some client-side scripting technology, for the verification of properties

spanning PHP and some client-side scripting technology.

8.2 Concluding Thoughts

polyLarva is aimed at being extended to different technologies with minimal effort.

For this reason, it prescribes a plugin structure, used by a common monitoring code

compilation process, for the development of technology-specific plugins through

such structure. The plugin structure aids in reducing much of the development

effort for implementing the plugin code, as the plugin developer is only required

to fill the structure placeholders. The problem with such approach, however, is

that it impinges on the flexibility a plugin can have for supporting a particular

technology. In the case of PHP, the plugin did not entirely fit in the prescribed

plugin structure, as the monitoring code for PHP was required to be structured

differently from what is prescribed by the structure.

We recommend that a balance be found between plugin support and flexibil-

ity. This can be achieved by allowing various options for implementing a plugin,

109

Chapter 8. Conclusion

such as by providing various prescribed plugin structures, based on programming

paradigms, and a facility for the extraction of an extendible, technology-agnostic,

system-side specification, for monitoring code generation and instrumentation by

bespoke programs.

110

References

[1] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing web applications by
modeling with fsms. Software & Systems Modeling, 4(3):326–345, 2005.

[2] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[3] C. Colombo. Practical runtime monitoring with impace guarantees of java
programs with real-time constraints. Master’s thesis, Univeristy of Malta,
2013.

[4] C. Colombo, A. Francalanza, R. Mizzi, and G. J. Pace. polylarva: runtime ver-
ification with configurable resource-aware monitoring boundaries. In Software
Engineering and Formal Methods, pages 218–232. Springer, 2012.

[5] C. Colombo, A. Francalanza, R. Mizzi, and G. J. Pace. Extensible technology-
agnostic runtime verification. arXiv preprint arXiv:1302.5169, 2013.

[6] R. M. C. Colombo, A. Francalanza, and G. Pace. Considerations for monitor-
ing highly concurrent systems.

[7] J. Cook and A. Nusayr. Using aop for detailed runtime monitoring instru-
mentation. In Proceedings of the Seventh International Workshop on Dynamic
Analysis, pages 8–14. ACM, 2009.

[8] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–158.
ACM, 1971.

[9] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. Swaddler: An approach
for the anomaly-based detection of state violations in web applications. In
Recent Advances in Intrusion Detection, pages 63–86. Springer, 2007.

[10] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and catalog of runtime
software-fault monitoring tools. Software Engineering, IEEE Transactions on,
30(12):859–872, 2004.

[11] I. Galea. polylarva plugin for erlang, 2013.

[12] P. Hudson. PHP in a Nutshell. O’Reilly, 2006.

111

References

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of aspectj. In ECOOP 2001Object-Oriented Programming, pages
327–354. Springer, 2001.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. Springer, 1997.

[15] M. Leucker and C. Schallhart. A brief account of runtime verification. Journal
of Logic and Algebraic Programming, 78(5):293–303, 2009.

[16] R. Mizzi. An extensible and configurable runtime verification framework. Mas-
ter’s thesis, Univeristy of Malta, 2013.

[17] L. D. Paulson. Developers shift to dynamic programming languages. Com-
puter, 40(2):12–15, 2007.

[18] L. Ullman. PHP for the Web: Visual QuickStart Guide. Peachpit Press, 2009.

112

