
ITSA Programming Challenge 2005

Joseph Cordina, Gordon Pace, Sandro Spina

July 2005

Abstract

This document outlines the problem that has to be solved in the
programming competition held by the Department of Computer Sci-
ence and A.I. The competition will open on Friday, 22nd July 2005
at 20:00 and closes on Sunday, 24th July 2005 at 20:00 ZST1. This
document also specifies the criteria that will be used to judge the en-
tries. The full rules of the Programming Challenge can be found on
the website http://www.cs.um.edu.mt/~itsapc05.

1 Judging Panel

The judging panel is made up of the following three members:

• Joseph Cordina <joseph.cordina@um.edu.mt>

• Gordon Pace <gordon.pace@um.edu.mt>

• Sandro Spina <sandro.spina@um.edu.mt>

Any queries to the panel have to be directed to all three members making use
of the mailing list address <itsapc05support@cs.um.edu.mt>. The role of
the panel is to judge all submissions made to this competition and declare
the winners. The judging panel’s decision is final.

1Zeus Standard Time — the time as set on the UNIX server zeus. The time can be
seen on the Programming Challenge website.

1



2 The Problem

2.1 Problem Definition

Your task is to write a program which given a collection of tetris-like pieces
made up of unit (1× 1) squares, packs them into as small an area as it can
without overlapping pieces. The pieces can be rotated (by 90, 180 or 270
degrees) and moved around. Below is an example — a collection of four
pieces:

Pieces may not be flipped (mirror image) to pack in a smaller area. To
complicate things, pieces may consist of disjoint squares (the green piece
made up of three squares is one such piece).

One possible packing of the pieces given above is:

Note that pieces can only be moved around an exact number of units (eg you
cannot move a piece half a square to the right).

What makes a good packing, or layout? The measure that will be used to
measure the quality of a layout is the area of the smallest rectangle (with
sides parallel to the x and y axes) than encloses the pieces as laid out. In
the above example, the given solution can be enclosed in a 6 × 4 rectangle.
The programs will be tested on a number of collections of pieces and the
ones packing the pieces into the smallest area will get more points. We have

2



secondary measures to resolve a tie, but more about that later.

The problem is known to be a computationally intensive one, so you will
have to use heuristics and rules of thumb to ensure that the program works
in reasonable time. Programs not returning a result in 5 minutes will be
considered to have failed to produce a valid layout.

2.2 Input and Output File Syntax

Your program will be given a file containing a number of named, pieces each
made up of unit squares at given cartesian coordinates. For example the
following input file consists of two identical pieces:

APiece:(0,0)(1,0)(2,0)(0,1)(2,1)(0,2)

AnotherPiece:(0,0)(1,0)(2,0)(0,1)(2,1)(0,2)

Note that each line is made up of an identifier (you can assume that it is a
sequence of alphabetic characters possibly followed by a number of digits),
followed by a colon (:), followed by a sequence of integer2 coordinates. Each
piece in the input file will start at coordinate (0, 0) and will have a unique
identifier. Note that piece identifiers are case sensitive. You can assume that
the input file will always have at least one piece, and that each piece will
consist of at least one square.

Your program should be able to parse such a file and produce another file
with similar syntax, but in which the pieces will be moved and rotated so as
not to overlap. An effective way of putting the above pieces together fitting
into a 6× 4 rectangle is as follows:

AnotherPiece:(1,1)(1,2)(2,2)(3,2)(3,1)(3,0)

APiece:(0,0)(1,0)(2,0)(0,1)(2,1)(0,2)

2You can assume that all given integers will fit in a normal signed 16 bit word. Your
placement coordinates must also satisfy this constraint.

3



A valid output file satisfies the following specification:

• All the pieces appearing in the input file appear exactly once in the
output file.

• Pieces can only be moved as a whole (keeping integer coordinates)
and/or rotated (by 90, 180 or 270 degrees) from how they appear in
the input file.

• No pieces in the output file overlap.

Note that the order in which the pieces appear in the output file does not
need to be the same as the order of the pieces in the input file. Similarly,
any ordering of the coordinates of an individual piece is acceptable.

2.3 Yet Another Example

Below is yet another example with three pieces:

Cross:(0,0)(-1,0)(1,0)(0,1)(0,-1)(0,-2)

Hook:(0,0)(0,1)(0,2)(-1,2)(0,3)

Tee:(0,0)(1,0)(2,0)(1,-1)(1,-2)

One possible layout for these pieces with an area of 24 (6×4) is the following:

4



Hook:(1,0)(2,0)(2,1)(2,-1)(2,-2)

Cross:(0,0)(0,-1)(0,-2)(0,-3)(-1,-1)(1,-1)

Tee:(-1,0)(-1,1)(0,1)(1,1)(-1,2)

3 Submission Rules

Any submissions have to be Microsoft Windows executables. The executable
has to be packaged inside a zip file. The executable has to be called tiles.exe
and will take two parameters. It will be executed with the following command
line parameters:

tiles <input file> <output file>

The program will be executed on an Intel-based PC running at 2GHz and
having 1GB of RAM. The operating system will be Microsoft Windows XP
and it will also have the .NET Framework 1.1 installed. Any submissions
that fail to execute on the mentioned environment or any submission that
take longer than 5 minutes to output a result will not be considered by the
judging team.

Each registered team is allowed to submit as many solutions as it wishes.
The last submission on Saturday, 23rd of July at 8:00pm will be considered
for the lightning prize. The last submission on Sunday, 24th July at 8:00pm
will be considered for the standard submission prize. After these times no
corrections or re-submissions will be allowed.

5



4 Judging Criteria

The judging panel will take all submissions and run them on a number of
pre-defined test problems. For each problem, the programs will be ranked
according to the size of the smallest bounding rectangle (the smaller the
better) and given a score according to the ranking: best (smallest) 50 points,
second 30 points, third 20 points, fourth 10 points and fifth 5 points. The
rest will not be awarded any points. In the case of ties on an individual
problem, all submissions with the same area will get the same ranking, and
hence score.

The winner will be the team that obtains the largest total number of points.
In the case of an overall tie, teams will be ranked and scored according to
the size of the smallest size of the rectangle (again, the smallest wins) and
given the points as explained.

In the unlikely case of unresolved ties, the ranking will be done according
to the execution time of the program (fastest program wins) after which the
judging panel reserves the right to resolve any further tie in as fair a way as
possible using a tie breaker.

5 Sample Problems and Other Resources Pro-

vided

Testing programs: Two programs will be provided to help you test out
your programs. The first takes an input pieces file and an output
layout file and verify their correctness. The program also calculates the
size of the smallest rectangle that can contain all the pieces given. It
can be executed on any Windows operating system using the following
command line:

tiler <input file> <solution file>

The program assumes that the input file is a valid one with all pieces
starting at position (0, 0). Any problems with the files’ syntax and
layout (overlapping pieces, missing pieces) will also be output.

Another program will be provided that is able to generate a Postscript
file from the solution file for visualization. This can be executed as
follows:

6



vis <solution file> <output postscript file>

Note that vis checks for a valid layout, and will thus not work on
input files which always include overlaps (since all pieces in the input
file start at (0, 0)).

Typical problems: The judging team will be providing on the website a
number of sample problems and possible layouts. The aim of these
problems is to enable you to try your submission on typical problems.

The judging suite: To ensure fairness, the problems that will be used for
judging the submissions will also be made available when the challenge
opens. These will be encrypted and at the end of the competition, the
key will be given to ensure that the files were unchanged.

6 Clarifications

During the period between Friday, 22nd July 2005 at 20:00 to Sunday, 24th
July 2005 at 20:00 all the teams can make queries for clarification to the
judging panel on the mailing address itsapc05support@cs.um.edu.mt>. If
the judging panel deems the query to be valid, the answer will be posted on
the website and an e-mail will be sent to all participating teams. The judging
panel will do its best to answer these queries in as short a time as possible.

Good luck!

7


