
ORIGASMI
2013 ICTSA Programming Challenge

// Version 1.5

Christian Colombo, Jean-Paul Ebejer, Karl Fenech,
Gordon J. Pace, Chris Porter

November 27, 2013

This document outlines the programming challenge task that has to be
solved in the 2013 ICTSA Programming Challenge. The competition opens
on Friday, 29th Nov 2013 at 20:00 and closes on Sunday, 1st Dec 2013 at
20:00 ZST1. This document also specifies the criteria that will be used to
judge the entries. The rules of the Programming Challenge can be found on
the website http://www.ictsamalta.org/?p=725

1 Origasmi - paper folding joy

Countless authors, including J.K. Rowling and any student with a thesis
submission deadline, have at some point in their careers suffered from writer’s
block. Indeed, in the words of William Goldman, ‘The easiest thing to do
on earth is not write’. For more details on writer’s block, please refer to
Appendix A. A common remedy is procrastination, more specifically folding
the paper you should be writing upon.

Your task this year is to write a computer program, which will automate
this paper folding and enable prominent authors to get back to work.

1.1 A simple example

Origami, from “ori” meaning folding and “kami” meaning paper, is the
traditional Japanese art of paper folding and is the inspiring theme behind
this year’s programming competition. The main difference is that in origami,
a sheet of paper is folded into a three dimensional model (e.g. a crane) while
in the programming competition you will be asked to approximate a two
dimensional (flat) shape. Cutting the paper (e.g. with scissors) is not allowed.

1Zeus Standard Time — the time as set on UNIX server zeus, based at the Department of Computer
Science at the University of Malta. This time can be seen on the Programming Challenge website

1

http://www.ictsamalta.org/?p=725

An example of how a paper may be folded to give a rather unceremonious
two dimensional hat is shown in Figure 1.

Figure 1: This rectangular paper folded at three different locations (shown with a red
line), gives a two dimensional kappell tal-bennej.

1.2 Operators

Your code will be given a set of two dimensional shapes, which you need to
approximate by applying three operations:-

translate(dx, dy): Moves the paper dx units to the right, and dy upwards.
Negative values are allowed (and effectively move the paper to the left
and downwards).

rotate(θ): Rotates the sheet of paper around the origin by θ radians in a
clockwise direction.

fold(): Folds the sheet of paper along the x-axis, placing the part below the
x-axis above, and flattening the sheet completely before continuing.

2

1.3 Initial conditions – paper size, orientation and position

The paper size is of 2×1 units. Initially the paper is laid in landscape
orientation with its lower left corner sitting at the origin. The co-ordinates of
the four paper corners at the beginning are (0,0) for lower left, (2,0) for lower
right, (2,1) for upper right, and (0,1) for upper left.

1.4 Scoring function

A fold is scored by placing a 2D grid over the paper. Equation (1) will be
used to assess the quality of a paper fold.

score =
max(|S ∩O| − |S \O|, 0)

|O|
(1)

Where S is the set of grid points in the submitted shape; O is the set of grid
points in the original (i.e. the shape you are trying to approximate). Note
that this definition is governed by a two dimensional grid of points starting
at (0,0). With an arbitrary chosen resolution of 0.015625 (1/64) on a 2×1
paper the grid consists of 129×65 points. Equation (1) therefore informally
reads as the number of grid points in common between the submitted and
the original shapes minus the number of points in the submission which are
not in the original shape. We then divide this by the number of points in
the original shape - this normalization factor allows us to compare differently
sized puzzles. The max function guarantees that we always get a score in the
interval [0.0, 1.0].

Note: Perfect scores (1.0) cannot be achieved for some partic-
ular shapes. (This may be for a number of reasons, including the 1,000
operations limit.) For these shapes, you should aim to come up with the best
approximation possible.

2 The Task

2.1 Competition entry specification

We will run your entry using a command line similar to the below.

origasmi shape to approximate file output op file

However your competition entry is run (see Section 4 for more details),
it will take two command line arguments. These are described in the table
below.

3

Command line argument Description

shape to approixmate file The file containing the definition of the shape to
approximate.

output op file The output file where the origami folding opera-
tions will be written.

2.2 Shape file (shape to approximate file)

This text file with extension .shape will contain a list of polygons, each of
which will contain a list of (x, y) points. In the case of solid polygons (i.e.
polygons without any “holes”), this file will contain only one polygon and
the list of points will define the ordered vertices of the polygon. The last
vertex defined for every polygon is connected to the first one to “close” the
polygon. In the case of polygon with holes, i.e. an interior boundary, a
number of polygons are specified. The union of these polygons specifies the
final, complete shape which has to be approximated. Note that the .shape

file may define two (or more) disjoint polygons, with different polygon ids.
A .shape file is a text file, in which blank lines are ignored. Every line

in this file is composed by a triplet of numbers representing a vertex of the
polygon and has the following form:

polygon id x y

Parameter Domain Description

polygon id polygon id ∈ Z The polygon identifier, used to determine when
multiple polygons are specified (i.e. a polygon
with a hole). The final shape is defined by the
union of the polygons.

x x ∈ R The x co-ordinate of a specific polygon vertex.
y y ∈ R The y co-ordinate of a specific polygon vertex.

Examples of polygon shapes and their respective .shape files are shown in
Table 1.

4

Table 1: Examples of two polygon specifying files

File: plus.shape

1 0 1

1 0 2

1 1 2

1 1 3

1 2 3

1 2 2

1 3 2

1 3 1

1 2 1

1 2 0

1 1 0

1 1 1

File: hole box.shape

1 0 0

1 0 3

1 1 2

1 1 1

2 1 2

2 0 3

2 3 3

2 3 0

2 0 0

2 1 1

2 2 1

2 2 2

5

2.3 Output operations file (output op file)

Your program will, given a text file containing the shape to approximate,
generate an origami operations file. This is a text file, with extension .op,
which contains a single origasmi operation on every line. Blank lines will
be ignored. Contrary to good software engineering principles, comments are
not allowed in this file. The syntax described below is case sensitive, and
space aware. The order of the operations in the file will define the order
that these operations will be applied to the folding paper. There is a 1,000
instructions limit to this file. The syntax for the allowed operations is
as follows:

2.3.1 Translate

T x y

Parameter Domain Description

x x ∈ R The amount to move (translate) the paper horizontally.
Positive values move the paper right, and negative
values move the paper left.

y y ∈ R The amount to move (translate) the paper vertically.
Positive values move the paper up, and negative values
move the paper down.

2.3.2 Rotate

R θ

Parameter Domain Description

θ θ ∈ R Angle in radians by which to rotate the paper. This
rotation happens in a clockwise direction around the
origin. Negative values will rotate the paper in an
anti-clockwise motion.

2.3.3 Fold

The following command folds the paper along the x-axis.

F

6

2.3.4 Example .op file

The following is an example of a working .op file. A step-by-step visual guide
to these operations is given in Section 3.1.

T -0.5 0.0

R 0.7853982

F

T -0.35355338 0.0

R 1.5707964

F

T 0.0 -0.70710677

F

T 0.0 -0.35355338

R 0.7853982

F

R 1.5707964

F

R 0.7853982

3 Worked Examples

The following worked examples are available in the tools package (you
may download these from the PC website http://www.cs.um.edu.mt/svrg/

34t49ohheiufrgh45/Game_of_Codes/#task).

3.1 An arrow pointing west

7

http://www.cs.um.edu.mt/svrg/34t49ohheiufrgh45/Game_of_Codes/#task
http://www.cs.um.edu.mt/svrg/34t49ohheiufrgh45/Game_of_Codes/#task

(a) Starting state (b) T -0.5 0.0 (c) R 0.7853982

(d) F (e) T -0.35355338 0.0 (f) R 1.5707964

(g) F (h) T 0.0 -0.70710677 (i) F

(j) T 0.0 -0.35355338 (k) R 0.7853982 (l) F

(m) R 1.5707964 (n) F (o) R 0.7853982

Figure 2: An arrow pointing west with the outline of the original paper shown in red.

8

3.2 A pin hole needle

(3.1) Starting state (3.2) T -0.5 0.0 (3.3) R 0.7853982

(3.4) F (3.5) T -0.35355338 0.0 (3.6) R 1.5707964

(3.7) F (3.8) T 0.0 -0.70710677 (3.9) F

(3.10) T 0.0 -0.35355338 (3.11) R 0.7853982 (3.12) F

Figure 3: A pin-hole needle

9

(3.13) R 1.5707964 (3.14) F (3.15) R 0.7853982

(3.16) R -0.32175058 (3.17) F (3.18) R 0.64350116

(3.19) F (3.20) R 0.32175058 (3.21) R 0.23182383

(3.22) T 0.0 0.35 (3.23) F (3.24) T 0.0 -0.35

Figure 3: A pin-hole needle (continued)

10

(3.25) R -0.46364766 (3.26) T 0.0 -0.35 (3.27) F

(3.28) T 0.0 -0.35 (3.29) R 1.3389726 (3.30) T 0.0 0.88

(3.31) F (3.32) R 3.1415927

Figure 3: A pin-hole needle (continued)

11

4 Submission Guidelines

A single competition entry program is to be called origasmi. You can
submit an unlimited number of solutions throughout the weekend. The last
submission on Sunday, 1st Dec 2013 at 20:00 ZST will be considered for
the prize. After these times no corrections or resubmissions will be allowed.
Submissions can only be done through the programming challenge website –
note that the program must finish uploading before the aforementioned time.

There is no strict requirement about which programming language to use,
but in the case of languages not mentioned in Table 2 an executable file which
runs on either Ubuntu Linux 12.04.2 (64-bit) or Windows Server 2012 (64-bit)
should be provided (you have to specify which).

Table 2: Supported competition programming languages
and their versions.

Programming
Language

Linux Version Windows Version

Erlang 5.8.5
Go go1 1.1.2
Haskell 7.4.1 7.6.3
Java 1.7.0 25 1.7.0 45
Lisp 2.49
Mono 2.10.8.1
.NET 4.5
Perl 5.14.2 5.16.3
PHP 5.3.10 5.3.27
Python 2.7.3 2.7.6
Ruby 1.8.7 1.8.7

Depending on the programming language used there is some variation on
how the competition entries will be run. In the case of Java, a jar file is to be
supplied which will be run using java -jar origasmi.jar. In the case of
interpreted languages (e.g. python, perl, ruby, php) the program will be run
by calling the interpreter with the appropriate competition entry file. In the
case of interpreted languages, your program should have the appropriate file
extension (e.g. python origasmi.py ...). For compiled languages such as
C or C++, the executable should be statically linked.

In any case the program has to accept the two command line arguments
described earlier in Section 2.1.

No graphical user interfaces are to be opened by the program. The program
will be executed on a AWS m1.large Instance with 4 EC2 Compute units
cores and having 7.5GiB of RAM. The operating system will be either Ubuntu
Linux 12.04.2 LTS (64-bit) or Windows Server 2012 (64-bit). For more details

12

about Amazon AWS cloud instances please refer to http://aws.amazon.

com/ec2/#instance. Any submissions that fail to execute on the mentioned
environment or any submission that take longer than 1 minute to output a
result will not be considered by the judging panel.

Also, there will be a special prize for instructions leading to the
most original fold. This is a .op file submission, which is separate
from the origasmi program.

5 In-competition support

During the period between Friday, 29th Nov 2013 at 20:00 and Sunday,
1st Dec 2013 at 20:00, all the teams can send queries for clarification
through the use of the designated competition Google group which can be
accessed by clicking the “Got a question?” button in the navigation menu of
the website (http://www.cs.um.edu.mt/svrg/34t49ohheiufrgh45/Game_
of_Codes/). No emails sent directly to the judges will be answered. If the
judging panel deems the query to be a valid one, and not answered in this
document, the answer will be posted back to the group. The judging panel
will do its best to answer these queries in as short a time as possible.

6 Judging Panel & Criteria

The judging panel is made up by the authors of this document. Their
decisions in any matters relating to the programming challenge are final and
unappealable.

The judging panel will run all submissions on a number of .shape test cases.
Each program will be given up to 1 minute to generate an operations file for
each problem instance. Programs not terminating on a particular problem
within 1 minute, or producing wrong output (e.g. illegal operations) will get
no points for that problem. The .op file will be scored using a program which
implements the scoring function described in Equation 1. We provide the
scoring program along with this specification document.

For each shape, the programs will be ranked according to the highest score.
A score is then given to each team according to their ranking: best 50 points,
second 30 points, third 20 points, fourth 10 points and fifth 5 points. The
rest will not be awarded any points.

In the case of ties on an individual problem, the team with the lowest
number of operations is given priority. In case the tie is still not resolved,
they will be given the same ranking for that problem.

The winning team will be the one which obtains the largest total number
of points. In the unlikely case of unresolved ties, the ranking will be done
according to the number of operations on all the problem set (lowest wins)
after which the judging panel reserves the right to resolve any further tie in
as fair a way as possible using a tie breaker.

13

http://aws.amazon.com/ec2/#instance
http://aws.amazon.com/ec2/#instance
http://www.cs.um.edu.mt/svrg/34t49ohheiufrgh45/Game_of_Codes/
http://www.cs.um.edu.mt/svrg/34t49ohheiufrgh45/Game_of_Codes/

Appendix A - Writer’s Block Details

14

	Origasmi - paper folding joy
	A simple example
	Operators
	Initial conditions – paper size, orientation and position
	Scoring function

	The Task
	Competition entry specification
	Shape file (shape_to_approximate_file)
	Output operations file (output_op_file)
	Translate
	Rotate
	Fold
	Example .op file

	Worked Examples
	An arrow pointing west
	A pin hole needle

	Submission Guidelines
	In-competition support
	Judging Panel & Criteria

