Device Centric Monitoring on Mobile Devices

Luke Chircop, Christian Colombo, Gordon J. Pace

I. INTRODUCTION

Mobile devices have become an integral part of our modern
society. In fact, the use of these devices has grown to such an
extent that nowadays they are finding their way to virtually
every household. Various companies have also started to
show interest in using such devices to support sales and
productivity whilst facilitating the employees’ jobs. Naturally,
there are various mobile devices that one can choose from,
but with a market share of over 50 percent [1] Android based
devices have become a popular choice.

II. THE ANDROID OPERATING SYSTEM

The Linux based Android [2] operating system was de-
signed from its roots to provide the same experience across
a variety of devices with different hardware and capabilities.
This was achieved by building the operating system to operate
in a stack like design as shown in figure 1 (ignoring the shaded

part).

Android Device

APP 1 APP 2 APP 3 APP 4

Android Framework Layer

Central

Linux Kernel Layer Bchotrator

Fig. 1. Figure showing Android OS structure and Instrumentation Technique

As shown in figure 1 (ignoring the shaded part), the
operating system is made up of three main layers that work
on top of each other providing layers of abstraction[2]. The
bottom layer consists of an adapted version of the Linux
kernel which acts as an intermediate layer between the
device’s hardware and the software running on the device.
This layer provides all the basic system functionality along
with device specific drivers for hardware such as Wi-Fi and
GPS. On top of this layer one finds a set of libraries and
frameworks. These provide high-level services that allow
applications to interface with the device specific hardware
such as Wi-Fi and GPS. Finally the top layer contains all
the applications that are installed on the device (example
Contacts, Messaging App, etc).

The Android operating system was also designed to operate
on devices with limited environment resources, therefore every
application operates inside a low level (register) based machine
(Dalvik Virtual Machine [3]) that acts as a blackbox. It
also restricts communication between other applications and
requires permission to be granted by the device owner for
some features to be accessible.

III. PROBLEM DEFINITION

As mentioned in section II, the operating system gives
device owners the ability to grant or deny any permissions
that are requested by applications while they are being
installed. Sometimes this is not enough since there can be
cases where device owners would want to limit some of the
features or access that the device user would have when using
their device. For example, let us consider a parent that is
concerned with how much her children spend playing games.
If the parent allows the game to be installed on the device,
she would not have the power to control how much time is
spent playing it.

To provide such limitation and control over mobile
devices Runtime Verification techniques can be used.
Runtime verification [4], [5], [6] was introduced as a
concept to dynamically analyze executions according to a
set of predefined properties. This is achieved by weaving
monitoring code inside the application or system that is going
to be monitored. Therefore, every time an instrumented event
executes, it is detected and the monitoring code executes
allowing us to check for property violations and possibly take
action.

A popular approach taken by most runtime verification tools
on mobile devices is to provide users with the ability to
monitor application-centric properties.

Android Device

APP 1 APP 2 APP 3

Runtime Runtime Runtime
Monitor Monitor Monitor

Fig. 2. Figure showing App centric instrumentation technique

This usually involves the instrumentation of runtime mon-
itors inside applications (as seen in figure 2) while they are
being installed on the device. Therefore once instrumented,
the runtime monitors are able to capture events and report or

take action on any property violations. An example of some
tools that are capable of instrumenting such runtime monitors
include Weave Droid [1], RV-Droid [7] and Aurasium [8].
Unfortunately this approach has its share of limitations. One of
which is the fact that applications are usually downloaded from
the Android market and then instrumented. Therefore users can
easily uninstall the instrumented application and install a clean
version to bypass all the checks. Furthermore, there are a group
of device-centric properties that cannot be monitored using
these tools. An example of such a property is the following.
Let us consider a parent that does not want her children to
send more then 100 messages per hour. This property cannot
be implemented using such a technique since the children
could cheat by installing a number of applications capable
of sending messages, hence allowing them to send more than
100 messages without triggering a property violation.

IV. PROPOSED SOLUTION

Our research tackles this problem and proposes a tool
that allows for device-centric properties to be monitored
correctly. Amongst many properties, the proposed tool will
allow device owners such as parents to for example specify
how many hours their children can spend playing games. It
will also be possible for device owners to specify properties
that monitor browsing behavior and block potentially harmful
URL requests. This technique could also be used by corporate
companies to limit what applications its employees can
install or use and impose files access restrictions to prevent
unwanted exposure of sensitive data.

A different approach needed to be taken to achieve the goal
of being able to monitor device-centric properties. Therefore,
instead of instrumenting every application while it is being
installed, our poposed technique instruments the Java and
Android framework layer as seen in figure 1 (including
the shaded part). This approach was taken since in most
cases when device owners want to monitor device-centric
properties, they are only concerned with interactions that
occur between the application and framework layer. Using
this technique also eliminated the need to instrument every
application that is installed on the device.

Instrumenting the frameworks layer to catch application
interactions is not enough since there can be cases where it
would not be able possible to communicate or have access to
any related behavior or information from other applications.
This is essential when wanting to for example specify
device-centric properties that do not allow for more than
100 messages to be sent per hour from the mobile phone.
To tackle this problem the proposed tool also introduces a
centralized orchestrator which is injected inside the kernel
layer as seen in figure 1(including the shaded part) and can
be reached from the frameworks layer without any permission
requirements. Therefore once the events are captured, the
central orchestrator is notified allowing it to determine if the
event violates any predefined device-centric property and take

action if necessary.

V. CONCLUSION

In this abstract we have identified the desire for device
owners to be able to limit functionality and access to device
users. It was also observed that the Android operating system
did not offer such features but runtime verification techniques
could be used. Existing techniques and tools were discussed
and a common limitation was found. This limitation did not al-
low for device-centric properties to be observed. Therefore,we
successfully introduced a technique that allows device owners
to monitor such properties by instrumenting the framework
layer and introducing a central orchestrator.

REFERENCES

[1] Y. Falcone and S. Currea, “Weave droid: aspectoriented programming on
android devices: fully embedded or in the cloud.” in ASE, M. Goedicke,
T. Menzies, and M. Saeki, Eds. ACM, 2012, pp. 350-353. [Online].
Available: http://dblp.unitrier.de/db/conf/kbse/ase2012.html#FalconeC12

[2] C. Nimodia and H. Deshmukh, “Android operating system,” Software
Engineering, ISSN, pp. 2229--4007, 2012.

[3] D. Ehringer, “The dalvik virtual machine architecture,” 2010.

[4] C. Colombo, G. Pace, and G. Schneider, “Dynamic eventbased
runtime monitoring of realtime and contextual properties,” in Formal
Methods for Industrial Critical Systems, ser. Lecture Notes in
Computer Science, D. Cofer and A. Fantechi, Eds. Springer
Berlin Heidelberg, 2009, vol. 5596, pp. 135-149. [Online]. Available:
http://dx.doi.org/10.1007/9783642032400_13

[5] O. Sokolsky and G. Rosu, “Introduction to the special issue on runtime
verification,” Formal Methods in System Design, vol. 41, no. 3, pp. 233-
235, 2012. [Online]. Available: http:dx.doi.org/10.1007/s1070301201740

[6] C. Colombo, G. Pace, and G. Schneider, “Larva safer monitoring of
realtime java programs (tool paper),” in Software Engineering and Formal
Methods, 2009 Seventh IEEE International Conference on, Nov 2009, pp.
33-37.

[7]1 Y. Falcone, S. Currea, and M. Jaber, “Runtime verification and
enforcement for android applications with rvdroid,” in Runtime
Verification, ser. Lecture Notes in Computer Science, S. Qadeer and
S. Tasiran, Eds. Springer Berlin Heidelberg, 2013, vol. 7687, pp. 88-95.
[Online]. Available: http://dx.doi.org/10.1007/9783642356322_11

[8] R. Xu, H. Saidi, and R. Anderson, “Aurasium: Practical policy
enforcement for android applications,” in Proceedings of the 21st
USENIX Conference on Security Symposium, ser. Security’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 27--27. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2362793.2362820

