
An Intelligent Contract Editor

Shaun Azzopardi
Department of Computer Science

University of Malta
Email: shaun.azzopardi.10@um.edu.mt

Gordon Pace
Department of Computer Science

University of Malta
Email: gordon.pace@um.edu.mt

Albert Gatt
Institute of Linguistics

University of Malta
Email: albert.gatt@um.edu.mt

Abstract—Architects have computer tools that complement
their specialist knowledge, as do engineers. Notaries, however, do
not. This is in spite of the work that has been done in formally
modelling contracts, the basic work of notaries being contract
drafting.

We are currently working on a solution aimed at aiding and
complementing notaries’ expertise. This will take the form of add-
in in to MS Word, the document processing program of choice
of local notaries.

Some of the functionality envisioned includes cross-
referencing with the laws of Malta, automatically identifying
parties involved in a clause, tracking contract changes and conflict
detection.

I. INTRODUCTION

The main place of IT in any professional’s life has been to
provide solutions that aid them in their day-to-day work. For
example, architects and engineers both use intelligent design
solutions that complement their technical knowledge.

Other professionals, specifically notaries, do not have such
intelligent solutions. Notaries engage in contract-drafting, with
the only computer aids available to them being simple word
processing solutions and spell-checking. This is surprising
given that contracts have been studied extensively by both
philosophers and computer scientists.

Contracts are agreements between two or more parties
consisting mainly of obligation, permission and prohibition
clauses that restrict the involved parties’ behaviour. These
concepts have been studied formally in the field of deontic
logic, allowing formal modelling of contracts [2].

Work has also been done in the translation from a spe-
cific subset of English to formal languages [1]. This formal
modelling allows us to formally analyse contracts, for example
certain formalisms allow us to detect conflicts between clauses
automatically [2].

Our project will focus on providing a working solution for
notaries while also building tools that allow us to formally
analyse natural language contracts. Some of the features al-
ready implemented include cross-referencing with the laws of
Malta, identifying the named entities mentioned and coming up
with a set of keywords for the contract. The more theoretical
aspect of our project will focus on using linguistic tools to
extract semantic information from contracts and thus make it
amenable to formal analysis. Other features we are working
to implement are conflict detection, party identification and
changes tracking.

Fig. 1. Solution pluggability architecture.

We have also developed an appropriate architecture for
our contract editor, using a dependency injection pattern. This
ensures that specific features are implemented into specific
modules, that can be replaced at runtime without the need for
re-compilation. This ensures loose coupling and easy updating
of different features without affecting the whole solution.

The current prototype, that uses this architecture, has been
developed using C#.NET. It’s user interface is as a Microsoft
Word [3] add-in, using Add-In Express [4] that allows the
add-in to work on every full version of Microsoft Office on
Windows.

The next section will detail this architecture. Then we look
at the user experience by looking at some of the features we
have developed. Finally we conclude with a summary of the
work done and future work.

II. AN ARCHITECTURE FOR CONTRACT WRITING
SUPPORT

As noted, our solution involves the use of linguistic tools,
such as a dependency parser and a part-of-speech parser. There



are multiple implementations of these, and moreover most are
not developed in C#, our language of choice. To overcome this
problem our architecture uses loosely coupled modules and C#
wrappers for packages from other languages.

Figure 1 details this architecture. It consists of three layers:
the user interface, the function layer and the package layer.
Communication between these layers in our implementation
occurs via the JSON protocol that specifies the module and
function to be called. This ensures that each layer is also
replaceable with something with the same interface. The
modules developed can also be used in other solutions without
any need for modification.

As can be seen from the figure, the function and package
layers have a similar structure. They both consist of handlers
and of modules, in the case of the function layer these consist
of specific functionality tied to contract-drafting, while for the
package layer these consist of needed general packages. The
latter modules are also wrapped with a C# class, given that
most linguistic tools tend not to have the same interface and
not be developed in C#.

The bottom two layers also share a handler structure, which
consists of a main handler (Function Handler and Package
Handler) and of a sub-handler for each module. The purpose
of the former is to serve as the only entry point for the
layer. These then pass on any request to the sub-handler
associated with the needed module. These sub-handlers handle
any conversion and packaging of any parameters and output
of the package, which is passed back to the main handler.

Each sub-handler knows which module to call through
the use of a configuration file. This file can be edited to
change the module that is called. For example, one of the
linguistic modules is a Named Entity Recognition (NER). NE
recognisers use a statistical model to identify human and non-
human named entities. Consider now a situation in which
an existing NER module, the Stanford NER [6], has been
incorporated into the system, but now needs to be replaced by
a new one, say, the LingPipe NER module [5]. In this case, the
transition can be achieved seamlessly by simply editing the file
and re-running the solution without the need for re-compilation
of the solution.

Our architecture thus allows different modules to be devel-
oped separately and independently of our system, and as long
as they expose the same interface then they can be used in the
system easily.

III. UX CONSIDERATIONS

Each of our solution’s current working features have been
finalized as a task pane in Word.

In Figure 2 one can see three different task panes, the
first identifying any entities mentioned in the contract through
named entity recognition, the second identifying keywords and
the third allowing cross-referencing terms appearing in the
contract with the laws of Malta.

The first two features also tag the contract with their results,
i.e. clauses are marked with entities mentioned in them and
keywords, if any. They also allow highlighting of the selected
terms in the contract, for easy retrieval of clauses mentioning
them.

Fig. 2. Different features as exposed to the user.

The search task pane enables the relevant law to be
opened simply with a double click on the relevant item, and
automatically the word searched for is marked in the document
opened.

IV. CONCLUSION

Our prototype for an intelligent contract editor already has
several features already included, with the next step being
testing it with notaries to get their response, especially on the
user interface.

An interesting aspect of this prototype is the architecture
we have developed that allows easy exchanging of modules
before run-time, which is useful for testing and also enables
easy upgrading of these modules. This architecture also en-
sures the re-usability of the modules we have packaged and
the features we have developed.

Future work includes working on the contract changes
tracker, to identify any inconsistencies or conflicts that a
change to a contract might have We also aim to use this to
formally analyse the different versions of the same contract
with respect to each other. More work also is being done on
identifying the parties, using a semantic role labeller, which
is essential to being able to translate the contract to a formal
model.

REFERENCES

[1] S. M. Montazeri, N. K. S. Roy, and G. Schneider, “From Contracts in
Structured English to CL Specifications,” in 5th Workshop on Formal
Languages and Analysis of Contract-Oriented Software 2011 (FLA-
COS’11), ser. Electronic Proceedings in Theoretical Computer Science,
E. Pimentel and V. Valero, Eds., vol. 68, Málaga, Spain, September 2011,
pp. 55–69.

[2] S. Fenech, G. J. Pace, and G. Schneider, “Automatic Conflict Detection
on Contracts,” in 6th International Colloquium on Theoretical Aspects
of Computing (ICTAC’09), ser. Lecture Notes in Computer Science, vol.
5684. Springer Verlag, 2009.

[3] Microsoft, “Microsoft Word,” https://products.office.com/en-us/word/.
[4] Add-in Express Ltd., “Add-In Express,” https://www.add-in-

express.com/.
[5] Alias-i, “LingPipe 4.1.0. ,” http://alias-i.com/lingpipe/, 2008.
[6] The Stanford Natural Language Processing Group, “Named Entity

Recognition ,” http://nlp.stanford.edu/ner/.


