
KeY + LARVA = STARVOORS

Wolfgang Ahrendt
Jesús Mauricio Chimento

and Gerardo Schneider
Chalmers University of Technology, Sweden

Gordon J. Pace
Department of Computer Science

University of Malta, Malta

Abstract—Over the past decades, various forms of automated
verification techniques have been proposed and explored in the
literature, mostly falling in one of two categories — static and
dynamic verification. On one hand, static verification techniques
have the ability to verify properties across all possible executions
of a system, but fully automated verification is typically not easy
to perform. On the other hand, dynamic verification techniques,
such as runtime verification, can only give feedback on single
executions of the system, but are easy to automate. However,
despite the fact that monitoring is typically easy to automate, its
adoption in industry is limited — primarily due to the overheads
in the system execution that such monitoring typically induces.
In this paper, we explore a novel approach in which we combine
the two approaches — using static analysis to prune parts of
the specification, thus reducing the overheads for the dynamic
verification process. We present our framework STARVOORS,
which embodies this approach by combining the static analysis
tool KeY and the dynamic verification tool LARVA, and discuss
how it has been applied to the Mondex case study — an electronic
purse implementation. The results presented here have been
accepted for publication in [1] and builds upon our previous
results from [2], [3].

I. INTRODUCTION

Runtime verification is concerned with the monitoring of
software, providing guarantees that observed runs comply with
specified properties. Such methods are strong in analysing
systems of a complexity that is difficult to address by static
verification, like systems with numerous interacting sub-units,
heavy usage of mainstream libraries, real (as opposed to ab-
stract) data, and real world deployments. On the other hand, the
major drawbacks of runtime verification are the impossibility
to extrapolate correct observations to all possible executions,
and that monitoring introduces runtime overheads. In the work
we address these downsides by combining runtime verification
with static verification, such that: (i) static verification attempts
to resolve those parts of the properties which can be confirmed
statically with low overhead (or fully automatically); (ii) the
static results, even if only partial, are used to simplify the
property specification such that generated monitors will not
check dynamically what was confirmed statically.

As observed, static and dynamic verification have largely
disjoint strengths — whereas the former excels in data-oriented
properties and struggles to handle complex control-flow logic,
the latter handles control-flow properties with substantially
lower overheads than data-oriented ones. Combining the two
approaches can thus allow the verification process to deal
with richer properties with greater ease. However, one of the
challenges is to identify a specification notation in which
properties which refer to both the data- and control-flow of

a system can not only be expressed, but also decomposed to
ensure applicability of the different verification techniques.

In this paper, we present our ongoing work on building
a framework combining the two approaches, in particular
using the KeY [4] static analysis tool and LARVA [5]runtime
verification tool. Given the difference in specification styles
between the tools, we have also developed a specification
language that captures both control-oriented properties (like
the DATE language used in the runtime verification tool
LARVA) and data-oriented properties (like the Java Modelling
Language JML [6], [7]). In order to evaluate the proposed
framework, we have applied our approach to the Mondex
case study[8], an electronic purse application, which provides
evidence that our approach substantially reduces the overheads
on the runtime monitoring through the use of KeY.

The results reported here are the ones already reported in
our published, and soon to appear works [3], [2], [1].

II. STARVOORS

The STARVOORS framework (STAtic and Runtime Veri-
fication of Object-ORiented Software), originally proposed in
[3], combines the use of the deductive source code verifier KeY
[4] with that of the runtime monitoring tool LARVA [5]. KeY is
a deductive verification system for data-centric functional cor-
rectness properties of Java source code, which generates, from
JML and Java, proof obligations in dynamic logic (a modal
logic for reasoning about programs) and attempts to prove
them. LARVA (Logical Automata for Runtime Verification and
Analysis) [5] is an automata-based runtime verification tool
for Java programs which automatically generates a runtime
monitor from a property using an automaton-based specifica-
tion notation DATE . LARVA transforms the specification into
monitoring code together with AspectJ code to link the system
with the monitors.

Fig. 1 gives an abstract view of the framework workflow.
The framework starts with (i) a Java program P and (ii) a
specification S of the properties to be verified written as a
ppDATE— a specification language which we have developed
to combine DATEs and pre/post-conditions. The pre-/post-
conditions are extracted from S and verified for program P
using the deductive verifier KeY. This verification procedure
might, in principle, statically fully verify the properties re-
lated to pre/post-conditions. Typically, however, parts of the
specification cannot be proved automatically — producing
partial proofs which are used to simplify the specification S,
and producing the simpler set of properties S′, which trigger
runtime checks only for executions which are not covered by



Program'P'

ppDATE'

Deduc&ve(
Verifier(

Specifica&on(
Transla&on(

Pre6/post6
Condi&on(
Generator(

(Par.al)'
Proofs'

Code(
Instrumenta&on(

S'

Par&al((
Specifica&on(
Evalua&on(

ppDATE'

S’'

Program'P’'

DATE'

D' Run&me(
Verifier(

Monitored'
program'

Fig. 1. STARVOORS workflow

the static verification. In order to achieve this, the original pre-
conditions from S are refined to include path conditions for
not statically verified executions. The ppDATE specification
S′ is then translated into a specification D, written in the
DATE formalism — a formalism suitable for the runtime
verifier LARVA. As DATE has no native support for pre/post-
conditions, these are simulated by pure DATE concepts. This
also requires changes to the code base (done by the code
instrumentation module), like adding counters to distinguish
different executions of the same code unit, or adding methods
which operationalise pre/post-condition evaluation. The instru-
mented program P ′ and the DATE specification D are passed
on to the runtime verification tool LARVA, which uses aspect-
oriented programming techniques to capture relevant system
events and monitors, thus producing a monitored program, es-
sentially equivalent to running the original program in parallel
with a monitor of the original property, albeit more efficiently.

The framework has been implemented and is available from
[9]. In order to evaluate how effective the reductions due to
the static analysis are, it was applied to Mondex, a benchmark
problem from the Verified Software Grand Challenge [8].
Mondex is an electronic purse application used by smart cards
products [10]. Mondex’s original sanitised specification written
in Z, together with hand-written proofs of different properties,
can be found in [11]. Our variant is strongly inspired by a
JML formalisation given in [12]. However, using ppDATE , we
could more naturally represent the major status of an observer
as automata states (rather than in additional data). This also
allowed us to naturally differentiate the legal behaviour of code
units after the observer’s status.

From experimental results (see [1] for further details), we
have shown that monitoring overheads are substantially re-
duced through the use of our approach. The relative difference
is quite remarkable: at least 10 times faster for low number
throughput of transactions, and increasing up to 900 times
faster as the transaction throughput increases. This large reduc-
tion in execution time overheads when optimising the monitor
is primarily due to the fact that data-oriented monitoring can
be prohibitively expensive in the first place. In fact, using our
approach, each function with a satisfied precondition fires an
additional automaton being traversed in parallel. This results
in the large overheads in the case study. However, by pruning
away many of these checks through the typical case of a
strengthening of the precondition results in the gains we obtain.
This indicates that using static analysis to pare down the data-

oriented aspect of the properties is ideal in this situation, in
that we are attacking directly the overlap between a strength
of static analysis and a weakness of dynamic analysis.

III. CONCLUSIONS

In this paper we have presented the STARVOORS frame-
work combining KeY and LARVA, even if it can also be
instantiated by other static and dynamic verifiers. Through the
use of ppDATE , which allow us to combine control- and data-
oriented properties in a single formalism, the specifications
can be handled by the different tools. The difference in
performance between the fully monitored and the version with
simplified monitors is, in itself, motivation to look further into
how we can extend our approach. We are currently proving
the soundness of the transformation of ppDATEs to DATEs.

REFERENCES

[1] J. M. Chimento, W. Ahrendt, G. J. Pace, and G. Schneider, “A
specification language for static and runtime verification of data and
control properties,” in Formal Methods — 20th International Symposium
(FM 2015), vol. LNCS, 2015.

[2] W. Ahrendt, J. M. Chimento, G. J. Pace, and G. Schneider, “Starvoors:
A framework for unified static and runtime verification of object-
oriented software,” 2014.

[3] W. Ahrendt, G. J. Pace, and G. Schneider, “A unified approach for static
and runtime verification: Framework and applications,” in ISOLA ’12,
ser. LNCS 7609, 2012.

[4] B. Beckert, R. Hähnle, and P. Schmitt, Eds., Verification of Object-
Oriented Software: The KeY Approach, ser. LNCS. Springer-Verlag,
2007, vol. 4334.

[5] C. Colombo, G. J. Pace, and G. Schneider, “Larva - a tool for runtime
monitoring of java programs,” in SEFM’09. IEEE Computer Society,
2009, pp. 33–37.

[6] Y. Cheon and G. T. Leavens, “A runtime assertion checker
for the Java Modeling Language (JML),” in SERP’02.
CSREA Press, 2002, pp. 322–328. [Online]. Available:
ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf

[7] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller,
J. Kiniry, and P. Chalin, JML Reference Manual. Draft 1.200, 2007.

[8] J. Woodcock, “First steps in the verified software grand challenge.” in
SEW. IEEE Computer Society, 2006, pp. 203–206.

[9] “StaRVOOrS,” www.cse.chalmers.se/ chimento/starvoors/files.html.
[10] “MasterCard International Inc. Mondex,” www.mondexusa.com/.
[11] J. W. S. Stepney, D. Cooper, “An electronic purse: Specification, refine-

ment, and proof,” Technical monograph PRG-126, Oxford University
Computing Laboratory, 2000.

[12] I. Tonin, “Verifying the Mondex case study. The KeY approach,”
Technical Report 2007-4, Universität Karlsruhe, 2007.


