
Considerations for Monitoring Highly Concurrent Systems

Ruth Mizzi Christian Colombo Adrian Francalanza Gordon Pace
Department of Computer Science

University of Malta
{rmiz0015 | christian.colombo | adrian.francalanza | gordon.pace}@um.edu.mt

ABSTRACT
Sequential monitoring tools such as Larva are impractical for mon-
itoring highly concurrent systems such as online establishments
handling hundreds of transactions a second — they lock valuable
resources which may otherwise be used to serve valid user requests.
In the context of an open-source e-commerce system, we discuss
design issues involved in allowing monitors to run concurrently
while at the same time ensuring that they remain correct: free from
race conditions and faithful to the properties they embody.

1. INTRODUCTION
The extensive use of software systems in everyday operations

requires the guarantee that they do not fail or act in unexpected
ways once deployed. Runtime monitoring [2, 5, 1] can play an
important part in ensuring the quality and correctness of software
systems. A runtime monitor can be viewed as an external entity that
oversees the behaviour of a system’s execution and gives feedback
to an observer if and when this behaviour goes against a pre-defined
specification.

Larva [4] is a synchronous runtime verification architecture with
a focus on the expressiveness of a specification language for defin-
ing system properties and contextual monitoring. With their rigid
locking mechanism, Larvamonitors process system events sequen-
tially. Sequential monitoring is impractical for highly concurrent
systems such as online establishments processing hundreds of trans-
actions simultaneously — valuable parallel resources would lie idle
waiting for sequential monitor feedback. To address this (and other)
issues we are currently building polyLarva, a second generation of
the tool Larva. The focus of this paper is to discuss the design de-
cisions taken for the polyLarva runtime monitoring framework in
order to support highly concurrent systems, taking into considera-
tion performance overheads.

The paper is structured as follows: In the next section we give an
introduction to the runtime monitoring architecture implemented
in polyLarva and highlight the issues that might occur during mon-
itoring of concurrent systems. In Section 3 the various alterna-
tives considered for solving these issues are highlighted with details
given as to why each alternative is appropriate or what disadvan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tages are associated with it. We conclude in Section 4 by giving an
indication of the future work that can be built on our conclusions.

2. CONCURRENCY AND RUNTIME
MONITORING

While Larva has been applied to runtime monitor real-life sys-
tems [3], monitoring properties over parts of the system which run
concurrently can be rather challenging: Property satisfaction/vio-
lation frequently depends on inputs from several concurrent exe-
cution threads. The complexity increases further if the properties
depend on the system state, which may change while monitoring.
Since nowadays many applications support thousands of parallel
threads (making global locking unfeasible), this is an important
challenge to be addressed. For runtime monitoring to be useful,
we need to ensure that the original system does not suffer large per-
formance overheads. In addition, the monitoring logic must not be
adversely affected by different processes running in parallel on the
system and interacting with it.

In order to illustrate the issues that concurrency imposes on the
design of polyLarva, we first explain the architecture of a polyLarva
runtime monitor in the context of monitoring an open-source e-
commerce system1. The choice of an e-commerce system, de-
signed to support multiple user sessions running in parallel, em-
phasises the issues that arise in a multi-transactional, concurrent
system.

A traditional e-commerce system offers features such as (i) user
registration, where new users can open an account with the online
shop; (ii) user account log-in, which allows a user to log into his
account and start an online shopping session; (iii) shopping cart,
which is used during a session to accumulate a list of items for pur-
chase; and (iv) payment, which normally involves communication
with a payment gateway that can authorize or refuse credit card
transactions. A runtime monitor observing such a system would be
made aware of certain system events occurring, among which will
be events associated with each of the stated functions.

A simple property that can be monitored on an e-commerce sys-
tem is that of keeping a count of failed transactions (where failed
transactions are ones refused by the payment gateway) and alerting
an administrator if it grows uncommonly large or fast. Figure 1
shows that the interaction between system and monitor occurs ev-
erytime a payment fails on the system. The monitor acts on that
notification to carry out the required monitoring logic, in this case
a simple increment of its state variable.

Such monitoring is straightforward, but it quickly becomes less
so when, for example, we attempt to monitor the count of failed
payments per user account (thus giving an administrator a clear

1JadaSite e-commerce solution — http://www.jadasite.com

failedPaymentCnt

System MonitorfailedPayment
increment

Figure 1: Monitoring of failed payments

idea of whether there are particular user accounts which regularly
encounter problems). Such a property would be more naturally
monitored through a modular approach where, instead of regarding
the monitor as one global entity, we set up a monitor per user ac-
count. While decomposing monitors facilitates their specification,
it introduces several concurrency issues which are further discussed
in what follows.

2.1 Contexts
Just as in Larva, polyLarva facilitates the observation of proper-

ties that are specific to particular system entities during their life-
time by introducing the notion of contexts.

A context can be viewed as a monitoring entity which is created
dynamically during runtime monitoring, when a new specific in-
stance of a concept appears. Typically, in a language such as Java,
these concepts correspond to instances of classes, but in general,
they can have a different interpretation (e.g. each new thread, or
new file opened). Furthermore, one can have nested contexts, with
each context being aware of its container’s data. For instance, ev-
ery user can have a separate context, each of which may contain a
separate context for each transaction carried out by that user. Con-
cretely, a context is described by a trigger which will create an in-
stance of that context, and a description of the content of each such
instance, consisting of:

• Data structures storing the local monitoring state of the in-
stance of that context.

• A number of properties which will be monitored on the in-
stance.

• A number (possibly zero) of sub-contexts, instances of which
would be children of this particular instance.

The key to state partitioning is that contexts induce a tree of con-
text instances, with the properties at a particular node in the tree be-
ing able to access (read and write) the local monitoring state within
that node and the nodes of its ancestors. Access to other nodes’
local state (including siblings and children) is not possible.

In the e-commerce scenario, each user will have a separate con-
text, responsible for monitoring properties which are related to it.
Such a model would ensure that every user account context keeps
its own record of failed payments. Another important context is
that of a session, used to check properties such as ensuring that a
session is not inactive for more than ten minutes.

One may model both types of contexts at the same level of ab-
straction (see Figure 2), creating contexts for each new user en-
countered and session opened. However, each session is associated
to a particular user, and one may want to monitor, for instance, a
property stating that:

A user account may not have more than 3 active ses-
sions.

This would require the different contexts to have access to shared
state (at the global level) to store the number of active sessions per
user, which can lead to intricate race conditions, which would be
undesirable. In our case, all sessions owned by the same user would
need to access a variable storing the number of open sessions that
each user has. For this reason, an alternative and more appropri-
ate context model is to have the session contexts nested inside the
context of the user (their owner). In this manner, the shared state
is local to the user context and can be easier to handle correctly.
Figure 3 shows a system with three user accounts being monitored,
each of which may have a number of active sessions. In this ex-
ample there are two concurrent active sessions for the user holding
account C. The local state storing the sessions count is kept sepa-
rate at each user’s context node. As highlighted in this figure, the
contexts are now related to each other. Since we know that every
user session is associated with one user account, we can adopt a
hierarchical model where the user session context started for a new
active session is immediately linked to its associated user account
context. This simplifies monitoring of related properties. When
a user logs into the system, the monitor is notified so that it can
launch a new user session context for a particular user account con-
text. There is therefore a direct link to the state of the user account
context which includes the count of currently active sessions.

The context-based model permits a structured decomposition of
a monitor into separate submonitors which observe the behaviour
of different parts of the system. In our example, the monitors can
work independently since the properties they monitor have no over-
lap. For instance, the user account monitor is taking care of observ-
ing failed payments while the user session monitor is concerned
with the length of the said session.

Program 2.1 polyLarva specification
foreach useraccount:UserAccount {

local failedPaymentLimit = 0

on (useraccount a.setFailedPaymentLimit()) do
update local (failedPaymentLimit)

foreach session:UserSession {
local failedPaymentCount = 0

on (session s.paymentFail()) do
update local (failedPaymentCount)

on (session s.paymentFail()) do
compare local(failedPaymentCount)
to shared (failedPaymentLimit)

}
}

The setting becomes more intricate when there are dependencies
between context levels. For instance, consider the property:

Every user account has its own fixed threshold of al-
lowable failed payments per session and an error is to
be logged if a session exceeds this limit.

If the system gives facilities to an administrator to modify the failed
payment limit associated with an account at any point in time, both
a user transaction and such an action may trigger the monitor repa-
ration. An extract of the polyLarva specification for this behavior
is shown in the code extract given in Program 2.1. A hierarchical
structure of contexts is adopted in order to maintain a link between
a user account context and its sessions. The specification shows
that a user account context is made up of:

failedPaymentCnt

globalfailedPaymentCnt

failedPaymentCnt failedPaymentCnt

UserSession C1

For Each Session

UserAccount CUserAccount B

Global

UserAccount A

For Each UserAccount

UserSession A1 UserSession C2

Figure 2: Contexts in monitor model

UserAccount

globalfailedPaymentCnt

failedPaymentCnt failedPaymentCnt failedPaymentCnt
userSessionCnt userSessionCnt userSessionCnt

For each

For each

UserSession

UserAccount B UserAccount C

UserSession A1 UserSession C2UserSession C1

Global

UserAccount A

Figure 3: Hierarchy of contexts in monitor model

• a local variable failedPaymentLimit maintaining the limit of
failed payments allowed on that particular account.

• a property that specifies the action that is to occur whenever
the system’s failed payment limit for the associated account
is modified. In this case, the local variable is updated to re-
flect the new system limit.

• a sub-context, session, instances of which will be related to
this particular instance of user account.

The behaviour of the session context is defined in terms of two
actions that occur sequentially whenever a session payment trans-
action fails.

Figure 4 illustrates the polyLarva monitor model resulting from
the specification given in Program 2.1. The user session context
needs to communicate at each failed payment event with its corre-
sponding user account to access the threshold value and compare
with its current count. An administrator user might be modifying
the user account settings on the system to change the threshold of
accepted failed payments for a particular account while (concur-
rently) the customer is making a payment. The concurrent access
on the value of failedPaymentLimit leads to potential race condi-
tions. Such an example highlights the fact that to observe more
complex and interesting properties, some form of communication
between the different contexts is necessary. This concurrent inter-
context communication requirement in the monitored systems may
lead to problems in the monitoring logic, unless these resources are
handled properly. Locking down all such resources solves these
problem, but at too high a cost on performance. We will look into
ways of addressing this issue in a more fine-grained manner.

3. CONCURRENCY IN MONITORING
In the previous section we highlighted how concurrency may un-

desirably lead to race-conditions in the monitoring logic. Two pos-

from system

COMPARE TO

LOG ERROR

failedPaymentCount

UA.failedPaymentLimit

failedPaymentCount

c2.paymentFail()
Monitor

failedPaymentLimit

INCREMENT

UserAccount C

UserSession C1 UserSession C2

Figure 4: Monitors require inter-communication

sible extreme solutions are to either lock the whole system while
monitoring, or asking the specification writer to manually handle
possible race-conditions. The former is unreasonable since con-
currency is crucial in transaction handling, while the latter means
that monitoring becomes more error-prone, which is clearly unde-
sirable. The use of contexts is key to the solution, since it partitions
data access across different parts of the monitor. There are two is-
sues arising from concurrent data access that we need to address:
(i) since every monitoring context maintains a local state, we need
to ensure that no race conditions occur due to concurrent process-
ing of system events; and (ii) access to shared variables: different
monitoring contexts might concurrently access and modify shared
variables belonging to their ancestor(s). In this section we will look
into different ways of handling these issues from global to selective
local locking of resources to make monitor design with shared state
more tractable.

3.1 Full Locking

The simplest approach to monitoring concurrent processes is to
lock all resources of the runtime monitor every time an event oc-
curs on the system which is relevant for any of the contexts in the
polyLarva monitors. This ensures that the monitor only processes
one event at a time, providing a solution to both issues identified
— a monitor’s local state can only be accessed by one event at
one time, and concurrent access to shared variables may not occur.
However, the approach induces high overhead on the system. For
instance, in the e-commerce scenario, this approach will lead to
many requests being queued waiting for the release of the monitor
lock which would thus result to substantial system slow-down.

3.2 Locking on a context
Contexts provide a natural partitioning of the monitor state. One

can thus use this structure to identify boundaries at which parts
of the shared state need to be locked before proceeding. Figure 5
shows how the monitor acquires a lock on the session context to
act on the event when it is notified of a failed payment received for
a particular user session. This ensures that a monitor’s local state
is never accessed concurrently by other monitors in that context.
Although the lock queues failed payments on other sessions of the
user until the lock is released, other monitorable events occurring
on the system effecting other users are still allowed to proceed. For
instance, administrator actions that affect other user account con-
texts by modifying failedpaymentLimit is still processed.

This solution, however, still does not offer a solution for the prob-
lem of concurrent access on states by different contexts. A lock on
the user session monitor would be acquired to process a failed pay-
ment on that session. The processing of this event would require
access to the associated user account’s failedpaymentlimit. In this
setup there is no guarantee that this variable is not concurrently un-
dergoing a change in value by the user account monitor. This can
occur since the user session context and user account context are
not controlled by the same lock.

3.3 Locking on Selected Actions

Program 3.1 Specification with explicit locking
foreach useraccount:UserAccount {

local failedPaymentLimit = 0

with lock (useraccount.failedPaymentLimit)
do {

on (useraccount a.setFailedPaymentLimit())
do
update local (failedPaymentLimit)

}

foreach session:UserSession {
local failedPaymentCount = 0

with lock (useraccount.failedPaymentLimit)
do {
on (session s.paymentFail()) do
update local (failedPaymentCount)

on (session s.paymentFail()) do
compare local(failedPaymentCount)
to shared (failedPaymentLimit)

}
}

}

Since contexts share state with their descendants (as highlighted

in the script given in Program 2.1), a user session monitor may
access the state of the associated user account monitor. Assum-
ing such a shared state means that we have to control access to
the context’s state variables to avoid problems occuring with con-
current access. This can be done through explicit specification on
what monitor variables need to be locked during the processing of
a particular event. The specification of the monitor contexts given
in Program 2.1 could therefore be extended to state that the events
setFailedPaymentLimit() and paymentFail() should not be handled
before a lock on the commonly accessed variable failedPayment-
Count is acquired, which would require a specification as shown in
Program 3.1.

Figure 6 depicts how this approach works: All events that need
access to the user account monitor state variable failedPaymentLimit
must first acquire a lock on that variable before being processed.
Since each user session is associated with one user account then
the lock is acquired on the variable associated with that particular
account. Figure 6 shows how such a locking mechanism would
ensure that concurrent access on the same instance variable is con-
trolled while still allowing events on other user session and account
entities to be processed. In the example shown, the paymentFail()
notification occurring on session A1 can be processed while con-
current events on account C and session C2 are being controlled by
the locking process. This setup solves both issues identified at the
start of Section 3: Locks on specific variables ensure that concur-
rent events do not attempt to access the same variables, both when
considering one particular context as well as in the case of different
contexts accessing common variables.

3.4 Message Passing
While locking on selected variables is a valid approach towards

controlling concurrent data access, identifying which locks need to
be acquired requires considerable work and can be error-prone. An
alternative approach is to allow contexts to share (state) informa-
tion through message passing. Thus, access to the global and an-
cestors’ states is disallowed except through explicit channel com-
munication, which ensures that all shared data access is safely done
at the cost of more verbose specifications. Further details on this
approach are given in the next subsection.

3.5 Approach chosen
The approach adopted in polyLarva is a hybrid of message pass-

ing and context locking. It uses message passing to enable commu-
nication and state sharing between the contexts, but controls con-
current events on individual contexts through context locking. Fig-
ure 7 shows the setup as adopted by polyLarva in the context of
the failedPaymentLimit example. Locking occurs by default at the
context instance level — if a context is loaded for user account A,
then a lock is associated with this monitor context and must be ac-
quired every time this context is called to carry out any evaluation.
In our example, a user session context will be started every time a
login under user account A occurs on the system. A separate lock is
associated with each session context. In the figure these locks are
highlighted as shaded boxes.

Figure 7 also depicts an applications of the message passing
mechanism: A failedPayment occurs on a session and, concur-
rently, the associated account’s failedPaymentLimit variable is up-
dated. Both of these events are related to user account C. Since
polyLarva monitors do not support shared state then, when the
failedPayment() is processed in session C1 monitor, the compari-
son to the account’s failedpaymentLimit variable cannot occur di-
rectly. Instead, the context associated with session C1 will send an
internal message to user account C. Internal messages are parame-

failedPaymentLimit

For each

UserSession

failedPaymentLimit failedPaymentLimit

from system

C2.paymentFail();

Lock Session C1 Lock Session C2

failedPaymentCount failedPaymentCount failedPaymentCount

from system

A1.paymentFail();

from system

C.setFailedPaymentLimit();

Lock Session A1

Lock Account A Lock Account B Lock Account C

For each

UserAccount

UserAccount C

UserSession C2UserSession A1

UserAccount BUserAccount A

UserSession C1

Global

Figure 5: Locking on an object approach

Lock C.failedPaymentLimit

from system

A1.paymentFail();

from system

C2.paymentFail();

from system

C.setFailedPaymentLimit()

For each

UserSession failedPaymentCount failedPaymentCount failedPaymentCount

Lock A.failedPaymentLimit Lock B.failedPaymentLimit

For each

UserAccount failedPaymentLimit failedPaymentLimit failedPaymentLimit

UserSession A1 UserSession C1 UserSession C2

UserAccount A

Global

UserAccount B UserAccount C

Figure 6: Locking on an action

failedPaymentLimit failedPaymentLimit failedPaymentLimit

failedPaymentCount failedPaymentCount

A1.paymentFail();

from system

UserAccount

UserSession

internal message(failedPaymentCount)

C2.paymentFail();

from system

C.setFailedPaymentLimit()

For each

For each

Lock Account C

failedPaymentCount

from system

Lock Account A Lock Account B

Lock Session A1 Lock Session C1 Lock Session C2

UserAccount C

Global

UserAccount BUserAccount A

UserSession A1 UserSession C2UserSession C1

Figure 7: Internal Message Passing for Variable Updates in polyLarva

terised meaning that the current failedpaymentCount for session C1
will be passed to user account C which can then evaluate the com-
parison. The advantage obtained through internal message passing
is that the message sent from other contexts is handled as an event
and won’t be processed until the lock on the user account monitor
can be acquired. This prevents concurrent access on any of the state
variables in the contexts. With message passing, the specification
needs to be updated from that shown in Program 2.1. The user ac-
count context specification is extended to include support for the
receipt of the internal message as shown in Program 3.2.

Program 3.2 Internal message passing specification
foreach useraccount:UserAccount {

local failedPaymentLimit = 0

on (useraccount a.setFailedPaymentLimit()) do
update local (failedPaymentLimit)

on (compareCountToLimit(sessionCount)) do
compare local(failedPaymentLimit)
to (sessionCount)

foreach session:UserSession {
local failedPaymentCount = 0

on (session s.paymentFail()) do
update local (failedPaymentCount)

on (session s.paymentFail()) do
send internal message to
useraccount(
compareCountToLimit(failedPaymentCount))

}
}

4. CONCLUSIONS AND FUTURE WORK
We have presented the various alternatives considered when im-

plementing support for the monitoring of concurrent systems in
polyLarva. The various issues which each alternative brings to the
runtime monitoring model were highlighted and communication
via message passing was identified as a possible solution to these
issues. With message passing, the different contexts in a polyLarva
runtime monitor can transfer knowledge regarding the occurrence
of particular system events. A parametrised approach to message
passing also allows state variables to be transferred from one con-
text to another. Future work includes the implementation of the
suggested solution and the evaluation of its performance on a live
case study.

5. REFERENCES
[1] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee,

G. J. Pace, G. Rosu, O. Sokolsky, and N. Tillmann, editors.
Runtime Verification - First International Conference, RV
2010, St. Julians, Malta, November 1-4, 2010. Proceedings,
volume 6418 of Lecture Notes in Computer Science. Springer,
2010.

[2] S. Colin and L. Mariani. Run-time verification. In
Model-Based Testing of Reactive Systems, volume 3472 of
Lecture Notes in Computer Science, pages 525–555. Springer,
2004.

[3] C. Colombo, G. J. Pace, and P. Abela. Compensation-aware
runtime monitoring. In Proceedings of the First international
conference on Runtime verification, RV’10, pages 214–228.
Springer, 2010.

[4] C. Colombo, G. J. Pace, and G. Schneider. Larva — safer
monitoring of real-time java programs (tool paper). In Seventh
IEEE International Conference on Software Engineering and
Formal Methods (SEFM), pages 33–37. IEEE Computer
Society, 2009.

[5] M. Leucker and C. Schallhart. A brief account of runtime
verification. Journal of Logic and Algebraic Programming,
78(5):293–303, 2009.

