
Dynamic Automata in Larva

John Paul Cassar
Dept. of Comp. Science

University of Malta
jcas0021@um.edu.mt

Christian Colombo
Dept. of Comp. Science

University of Malta
christian.colombo@um.edu.mt

Gordon Pace
Dept. of Comp. Science

University of Malta
gordon.pace@um.edu.mt

ABSTRACT
As computer systems become larger and more sophisticated,
they bring about an increased level of possible execution
paths and environment configurations, which, generally, can-
not be reliably catered for by testing due to its inherent lack
of coverage. As such, many developers are turning onto run-
time software verification to be able to provide higher system
quality assurance, intercepting undiscovered bugs as they
arise. However, sophisticated systems tend to involve large
specification properties and thus pose a considerable over-
head when the states of such properties are fully enumerated
to perform runtime verification. The problem is even more
intricate with infinite-state properties where enumeration is
not possible. A solution to this issue is through the use of
on-the-fly state generation techniques where the next state is
dynamically computed at runtime. In this paper, we present
dLarva — an extension of the Larva runtime verification
tool supporting on-the-fly state-generating automata. This
enables the definition of automata in a symbolic manner
while also making it possible to traverse infinite state proper-
ties. To demonstrate the possibilities of dLarva, we provide
an implementation of dLarva that accepts properties using
regular expressions which are dynamically evaluated at run-
time using derivatives. This implementation is used as the
basis for a simple rule-based intrusion detection system for
the AnomicFTPD FTP server.

1. INTRODUCTION
Computer systems are today, more than ever, present

in our daily lives. They are increasingly becoming larger
and more sophisticated, bringing about an increased level
of possible execution paths and environment configurations,
ultimately making them more error prone. It is becoming
more evident that, due to lack of coverage, testing alone
cannot provide the required guarantees. For this reason,
developers are turning onto dynamic software verification,
where the system’s current execution path is monitored to
check for any wrong behaviours [1]. Moreover, using run-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

time verification, which applies dynamic software verifica-
tion while the system is running, offers the possibility to
correct wrong behaviour occurring at runtime. This allows
software developers to provide a higher system quality as-
surance.

Runtime verification properties can be encoded using var-
ious representations including formal logics and automata.
Automata are generally represented by completely enumer-
ating all the possible states and the transitions between
them. This may pose an overhead when working with so-
phisticated systems as they tend to involve large specifica-
tion properties in order to monitor their behaviour.

In this paper, we present an alternative approach where
the user can specify states symbolically by using a transition
function which, given the current system’s configuration and
an event, is able to produce the next automaton’s state. This
eliminates the need for explicit state enumeration since it
uses an on-the-fly dynamic state generation approach. This
makes it possible to traverse infinite state automata which
brings about numerous advantages such as always having
a concise representation of the property and its state at
hand. Moreover, we posit that in certain cases, it could be
easier to specify a dynamic automaton by specifying its tran-
sition function rather than specifying an equivalent static
automaton which would need to be statically derived from
its (possibly natural) dynamic definition.

In what follows, we first provide background knowledge of
runtime verification and detail Larva’s current implemen-
tation in section 2 and then describe our system, dLarva, in
section 3. Finally, before concluding this paper, in section 4
we describe an implementation of dLarva that accepts prop-
erties using simple regular expressions, which are then eval-
uated at runtime using derivatives. We also provide a simple
case scenario where these are used to implement a rule-based
intrusion detection system for the Anomic FTPd server.

2. BACKGROUND

2.1 Runtime Verification
Dynamic software verification is a branch of software ver-

ification where only the system’s current execution path
is monitored [1]. However, because of this, it can only
guarantee correctness for one particular execution trace and
not for all possible executions.

A dynamic software verification technique is runtime soft-
ware verification, which apart from analysing the behaviour
of the monitored system, is also able to act on the monitored
system in order to attempt to correct any wrong behaviour

[1]. This typically occurs via the use of a monitor, which is
able to receive events from the system and act upon them
(see Figure 1).

Monitored
Program

Actions

Events

Specification
file

Monitor

Figure 1: Generalisation of how runtime verification

works

2.2 Larva
Larva [2] is a runtime verification tool for Java programs

which uses event-triggered automata at the core of its specifi-
cation language. Properties are defined as a set of automata,
events, timers and channels. Events are either method-based
events, timer-generated events, or channel-receive events.
Method-based events can be set to trigger either on method
calls; method termination; or the throwing or handling of
an exception within a method. Timers enable Larva to
monitor timed properties while channels are used to allow
automata to communicate together.
Larva defines three different types of automaton states:

accepting states, bad states, and normal states. When an
automaton reaches an accepting state, this means that the
property being monitored has been satisfied. On the other
hand, bad states generate an alarm in Larva, since the
monitored property was not respected and thus the system
exhibited an unexpected behaviour. The last state type,
normal states, are simply those states that are neither prop-
erty breakers nor satisfiers.
Furthermore, Larva provides support for property con-

texts which essentially provide per object property defini-
tions, namely, a copy of the monitor is generated for each
new encountered object. A simple example of such defini-
tions would be when, in a banking scenario, it is required
to individually monitor account instances to verify whether
any transactions requested should be marked as suspicious.

2.3 Dynamic Automata with Timers and Events
Dynamic Automata with Timers and Events (DATEs) [2]

— the underlying mathematical framework of Larva — are
symbolic automata with event-based transitions supporting
timers and channels. Transitions from one state to another
are performed based on the occurrence of specific events
given that a condition on the current automaton’s state
(namely its internal variables and timer states) holds. More-
over, in DATEs, when an automaton performs a state tran-
sition, it is able to perform an action upon the monitored
system (or the monitor itself) which may trigger yet another
event. DATEs also provide the concept of timers which can
be set, paused, and reset. They also provide asynchronously
communicating channels that can be used by different au-
tomata to communicate with each other.
DATEs allow three event types: system events which are

triggered by a system’s action, timer events which fire at
specific timer intervals, and channel events which are trig-
gered upon receiving a message on a particular channel.
Since each property in DATEs is defined as an automaton,

Conn

Auth

useDB

exec

bad

connect\conok

connect\!conok

authorisation\authok

authorisation\!authok

dbSel\dbSelok

dbSel\!dbSelok

execute
dbSel

close

**

*

*

Figure 2: A session sequentiality property for a

typical database scenario

DATEs are defined as being composed of a set of initial
automata and a set of event-triggered automata (property)
constructors. Thus, for example, in a banking scenario, a
property can be defined for each instance of the customer
class, in which case, the creation of a new customer class
instance will also trigger the creation of a new automaton
which will be associated to that particular instance.

To further illustrate the expressiveness of DATEs, con-
sider a database monitoring scenario where it is required
to monitor that commands to the database are executed in
a particular order. One such sequence could be that after
opening a connection to the database manager, the client
must seek authentication and select the database to work
with. The database session ends with the closure of the
connection, at which point the client may start the sequence
all over again. Assuming that all database interactions are
performed within a provided SQLRunner class, the DATE
property in Figure 2 captures the required property.

2.4 Example
Implementing the database scenario mentioned in the pre-

vious section can be done by first converting the property
into a DATE automaton as shown in Figure 2. From this
automaton, it is possible to construct the equivalent Larva
specification, a snippet of which is given in Listing 1. The
DATE in Figure 2 can be read as: (i) first the user connects
to the database manager (conn), (ii) performs authentica-
tion (auth), (iii) selects the database (useDB), (iv) then
either executes an SQL query or selects another database,
and (v) finally the user closes the connection (at which
point the user session can start again). If the user does
not successfully perform any step, the user is expected to
repeat the last step until it succeeds, otherwise the DATE
enters the bad state bad. As such, all that is required is
to enumerate all the possible states, and then describe the
possible transitions. There is only one bad state: bad and
four normal states: auth, useDB, exec, and conn (note that
this state is marked as a starting state). These represent the
normal state flow for our user session example. Moreover,

GLOBAL
{
FOREACH (SQLRunner r)
{
EVENTS
{
connect (boolean conok) = {
SQLRunner r1 . openConnection ()
uponReturning (conok)

} where { r = r1 ;}
. . .

}
PROPERTY userSe s s i onProper ty
{
STATES
{
BAD{bad}
NORMAL{auth useDB exec }
STARTING{conn}
}
TRANSITIONS
{
conn −> auth [connect \conok \]
conn −> conn [connect \ ! conok \]
%% th i s l i n e s e r v e s as a catch a l l
%% c l au s e (i t i s the l a s t o f the three
%% t r a n s i t i o n s and w i l l thus be matched
%% only i f the above ones f a i l)
conn −> bad [a l lmethods \\]
. . .

}
}

}
}

Listing 1: Extract of the Larva specification for the

property shown in Figure 2

using Larva’s contexts, we can monitor each SQLRunner

class independently of each other.

2.5 Larva Monitoring Architecture
Larva’s underlying monitoring architecture is quite so-

phisticated and involves three main phases:

Code generation: where Larva takes a set of system
properties specified as DATEs (similar to the one given
in Listing 1) to create various source files including a
single Java class per Larva context. Each property
is encoded as a Java method that emulates automata
operations using a series of Java if statements and
is placed into the relevant context class. When com-
piled, these are semantically equivalent to the intended
DATE specification.

Code compilation and instrumentation: Larva leaves
code compilation and instrumentation to the AspectJ
compiler which is a generic Java-based instrumenter
that supports various instrumentation constructs. As-
pectJ requires all instrumentation code to be encapsu-
lated within an aspect file which is then automatically
compiled and instrumented at the required points in
the monitored system.

Monitor running: When the monitor is in the running
phase, it is executed as an integral part of the system.

In fact, the monitor generated by Larva is an in-pro-
cess monitor and so it runs in the same thread as the
one executing the main system.

3. DLARVA

Monitor

Larva Script

ClassesAspects

AspectJ
Compiler

System
Monitored

Larva

Generates

Timer/Channel
System

Reaction

DATE event

Events
Action

Instrument and Compile

Runtime
AspectJ

dLarva Script

Property Classes

Generates

dLarva
Properties

EventsReaction

Figure 3: A detailed illustration of the dLarva

architecture

3.1 On-the-fly state generation
The current Larva implementation requires a priori knowl-

edge of all the states and the possible transitions by requiring
their complete enumeration before it compiles the DATE
into a monitor. An alternative approach is to allow the user
to specify states symbolically by using a transition function
that, given the current system’s configuration and an event,
is able to produce the next automaton’s state. As such,
using our on-the-fly approach, dLarva extends Larva in
order to eliminate the need for an explicit enumeration of
the automaton’s states and transitions. Using this transition
function, it is possible to encode all the operations performed
within a typical DATE specification, mainly checking for
event occurrences and performing any actions associated
with that event including transitioning to a newly created
state. In fact, the only thing that cannot be performed
within such a function is the property initialisation. As
such, a dLarva property can be defined to be a function pair
consisting of the initialisation and state transition functions.

Consider, for example, a routing system where the net-
work usage (packets sent and received per second per user)
is monitored in order to prohibit users from hogging the
network. If we were to take the packet status combina-
tions as different states, the property would require a large
state space, making it impractical to capture such a prop-
erty. However, without having to resort to another state
encoding, one can generate the states dynamically (by the
transition function) as they occur, keeping only the latest
one in memory. Since DATEs provide variable definitions,
an alternative solution would be to monitor the packets by
using counters thus reducing the näıve automaton’s size.
However, with on-the-fly state generation, the property can

be encoded in a more intuitive and explicit manner while also
providing the possibility to define infinite state automata.

3.2 Property definition language
In order to define such a property function pair, a struc-

tured language with which the user can program the required
behaviour is required. However since the user should already
be familiar with Java (as the monitored system must be
in Java) and such a structured language would inevitably
provide capabilities comparable to the Java programming
language itself, we opt to use Java itself as the function
definition language.

3.3 dLarva specification format
Although Java is a rather logical choice for dLarva prop-

erty specification, the full Larva specification provides var-
ious abstractions which can be used to automatically gener-
ate various code segments related to generic monitor oper-
ations. As such, dLarva accepts a Larva-like specification
language where properties are specified using the aforemen-
tioned property function pair as shown below:

property {
i n i t (){ /∗ i n i t i a l i s a t i o n ∗/ }
next (){ /∗ t r a n s i t i o n func t i on ∗/ }
{/∗ property−r e l a t e d he lpe r d e f i n i t i o n s ∗/}

}

3.4 Access to dLarva functionality
In order to adequately complement the chosen specifica-

tion language, access to the dLarva functionality is pro-
vided via Java classes and interfaces. More specifically,
the required property methods are mandated by a property
interface while basic state functionality is provided as a
generic Java class. Thus, creating a new bad state with
a String identifier can be done using

new dLarva<Str ing >(”bad ” , StateType .BAD)

Access to the available events is provided as part of an
automatically generated event interface which all properties
inherit from (according to the context they are defined in).
Moreover, dLarva also provides state history functionality
which can be used to recall an arbitrary number of pre-
viously traversed states. This can be used to avoid un-
necessary state generation by re-using previously generated
states.

3.5 Integration with Larva

For the scope of our implementation, dLarva integrates
with Larva by converting all dLarva specifications into Larva
specifications (the full architecture including the Larva sub-
set is shown in Figure 3). This is done by placing each
property in a separate class, which is placed within the
dLarva directory hierarchy in such a way that Larva will be
oblivious to the dLarva properties when running them. This
is achieved by letting Larva operate the property classes
using the automaton described in Figure 4. Moreover, for
logging purposes, access to the current dLarva state is pro-
vided via aspect injection into the relevant Larva logging
segments. This automaton uses two main helper functions,
the performInit function which performs property initial-
isation, and the performNext function which controls state
transitioning. Conceptually, if the performNext function

normal bad

*/performNext ∧ isNormal */performNext ∧ isBad
*/isNormal

*/isBad

good

*//performNext

/isGood/isGood

start

*/isBad

*
/
isG

o
o
d

*/Action1

Action1 = (performNext ∨ true) ∧ isNormal

{performInit}

Figure 4: The DATE used to run dLarva on Larva

returns true and Larva is in the correct state type, then a
transition onto the current state itself is made. Otherwise,
if the state changes after calling the performNext function,
the remaining transitions move Larva into the correct state.
The transition function defined by the user is used by the
performNext function to identify whether a new state was
generated. If the user-defined transition function returns the
special value null, then no transition is made.

4. CASE STUDY

4.1 Regular Expressions as Properties
A regular expression (RE) can be informally defined as a

string that is used to match a given input string. In our
case, we will be using regular expressions where the basic
element is an event, and hence all input strings are event
strings. An empty event string is a string that contains no
events, and can thus be matched instantly to a given input
string without consuming any part of it. Regular expressions
are defines as having three operations: concatenation (·)
which allows to specify event sequentiality (their match-
ing order), alternation (+) which provides the possibility
to match either one of two different event sequences, and
Kleene-closure (∗) which allows to match zero or more
occurrences of a particular event. For example, matching
the regular expression (a · b) + c, which is interpreted as
“either wait for an a then for a b, or wait only for a c”, with
the input string ab will be successful but it will fail for the
input string bca.

In our implementation, regular expression properties utilise
the following syntax:

r,s ::= #{k} empty event string
| ![c]{k} error state
| e[c]{k} e is an event
| r ; s sequentiality
| r + s alternation
| r* Kleene-closure

where c is any valid Java boolean expression that must be
satisfied when an event occurs for the RE event to match
and k is any valid Java code that will be executed after a
valid RE event match. Note that both c and k are optional.
Regular expression matching is performed using the deriva-

tives approach [3] which can be informally described as being
the residual of partially matching an RE to a single event.
Thus, for example, the derivative of a;b with respect to a
single event input a is b while the derivative for the same
RE with respect to b would be ∅ which denotes the empty
set.
Regular expression matching is extended to reflect the tri-

state implementation provided by DATEs. All RE proper-
ties start in a normal state. When an expression is reduced
to a single #, then the property is moved into a good state.
On the other hand, if while evaluating the property, a ! is
encountered, the property is moved into a bad state.
Consider for example the following rule prohibiting mul-

tiple simultaneous downloads from a file server:

(s t a r tD l ; (s t a r tD l ; ! + endDl))∗

This can be loosely read as “trigger a bad state transition if
after a startDl (start download) event, an endDl (end down-
load) event is not received before getting another startDl

event”.

4.2 Intrusion Detection for an FTP server
As a practical application for the previously defined RE-

based monitor, we have implemented a simple intrusion de-
tection system (IDS) for the AnomicFTPD FTP server. The
provided IDS caters, among other issues, for command se-
quentiality, brute force login attacks, and illegal file system
reads and writes. Using regular expressions proved to be
quite useful in defining the required rules. For example, in
an FTP server, file renaming mandates calling RNTO (rename
to) after issuing the RNFR (rename from) command which can
be expressed using the property below.

regex {
((r n f r ; rnto) + (rnto ; ! {warnUser () ; }) ∗

}

Slightly more complex rules can be achieved by defining
Java helper methods that perform the required checks. For
example, in the listing below, we specify that if an operation
that can modify a system’s file (such as uploading a file onto
the server) is performed outside the users home path or in
an inaccessible path, the session is forcefully terminated:

l i s t e n t o = { f i l eModi fyOp }
regex {(
f i l eModi fyOp [i s I nva l i dPutD i r (path)

| | notInRoot (path)]
; ! { endSess ion () ; }

)∗}

Note that we utilise a listen_to statement which instructs
the monitor to discard events that are not fileModifyOps.
This allows properties to be defined in isolation of other
system events.

5. CONCLUSIONS
Computer systems are increasing becoming larger and more

sophisticated forcing software developers to turn onto run-
time verification due to the inherent lack of coverage in-
volved with testing. However, such systems tend to in-
volve large specification properties which pose considerable
overheads if the property’s state space and the transitions
between them are completely enumerated. For this reason,
in this paper we have presented dLarva — an extension
of the runtime verification tool Larva — which allows to
define properties in a symbolical manner by using a tran-
sition function to generate the automata states on-the-fly.
Since the states are generated on-the-fly, it makes it possible
to traverse infinite state properties (automata). Moreover,
dynamically generating the states brings about numerous
advantages such as always having a concise representation
of a property and its state while also reducing the overheads
for complete enumeration down to a single state, since only
the current state needs to be kept in memory. Further-
more, dLarva provides a more natural setting for defining
properties that have natural dynamic definitions as was the
case with our regular expression case study, where state
evaluation is provided via derivatives.

6. REFERENCES
[1] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen,

Martin Leucker, and Alexander Pretschner.
Model-Based Testing of Reactive Systems: Advanced
Lectures (Lecture Notes in Computer Science).
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

[2] Christian Colombo. Practical runtime monitoring with
impact guarantees of java programs with real-time
constraints. Master’s thesis, University of Malta, 2008.

[3] Scott Owens, John Reppy, and Aaron Turon.
Regular-expression derivatives re-examined. J. Funct.
Program., 19(2):173–190, 2009.

	1 Introduction
	2 Background
	2.1 Runtime Verification
	2.2 Larva
	2.3 Dynamic Automata with Timers and Events
	2.4 Example
	2.5 Larva Monitoring Architecture

	3 dLarva
	3.1 On-the-fly state generation
	3.2 Property definition language
	3.3 dLarva specification format
	3.4 Access to dLarva functionality
	3.5 Integration with Larva

	4 Case Study
	4.1 Regular Expressions as Properties
	4.2 Intrusion Detection for an FTP server

	5 Conclusions
	6 References

