
Runtime Monitoring of Distributed Systems∗

Adrian Francalanza
CS, ICT

University of Malta
adrian.francalanza@um.edu.mt

Andrew Gauci
CS, ICT

University of Malta
agau0006@um.edu.mt

Gordon J. Pace
CS, ICT

University of Malta
gordon.pace@um.edu.mt

ABSTRACT
Distributed and component-based architectures are becom-
ing more prevalent computer systems. The increased com-
plexities introduced by the distribution hampers dependabil-
ity, emphasising the need for verification techniques tailored
for a distributed setting. Runtime verification has proven to
be a viable approach for verifying correctness, by focussing
on the adherence of the runtime-generated trace to the de-
sired properties. We presents a broad taxonomy of cur-
rent techniques to distributed monitoring, culminating in
the proposal of a novel migrating monitor approach. We ar-
gue for certain situations where this approach presents clear
advantages over current techniques.

1. INTRODUCTION
As systems become more complex, monolithic architec-

tures are becoming less common, and distributed and component-
based systems are becoming more mainstream. Distributed
architectures introduce additional complexities such as com-
putation/memory distribution, concerns for information con-
fidentiality and architecture dynamicity. Such issues ham-
per system dependability and robustness, emphasising the
need for techniques guaranteeing correctness tailored for dis-
tributed systems.

Software verification techniques traditionally include test-
ing, model checking and runtime verification. Although test-
ing is partly attractive due to its scalability, it is insufficient
due to (i) its lack of program coverage, whereby testing can
only find the presence and not prove the absence of bugs
[8], (ii) the difficulty of effective test case generation, which
when combined, offer ‘reasonable’ coverage of possible sys-
tem behaviour. Model checking provides the highest guaran-
tees but the state space explosion required by the modeling
of even moderately-sized systems makes this approach im-
practical in most cases. This issue is further compounded
by the asynchrony and concurrency inherent in distributed
architectures [13].

Runtime verification [4, 11] is concerned with formally ver-
ifying the system trace generated at runtime. This process
is carried out through an executable monitor verifying the
generated trace against a set of desirable properties, with
the system guaranteed to never go beyond a bad state un-
detected. Advantages with runtime verification include (i)

∗The research work disclosed in this publication is partially
funded by the Strategic Educational Pathways Scholarship
Scheme (Malta). The scholarship is part financed by the
European Union European Social Fund.

the fact thatit ensures that the system may be stopped the
moment issues are identified in a tractable manner, (ii) trace
generation is left to the system, (iii) verification continues
beyond system deployment.

The following paper investigates the application of run-
time verification to a distributed setting, while proposing
a novel migrating monitor approach we believe is advan-
tageous for monitoring certain scenarios of distributed sys-
tems. Section 2 presents distributed system characteristics
pertinent to the design of a prospective monitoring frame-
work, while also introducing a motivating example. These
act as our basis for comparing the various monitoring ap-
proaches in Section 3, where we also outline situations where
each approach is best suited. Finally, section 4 concludes the
paper with directions for future work.

2. SYSTEM CHARACTERISTICS
We consider distributed systems with a set of autonomous,

concurrently executing sub-systems communicating through
message passing. Each sub-system has (i) its own execution
thread, (ii) local memory, and (iii) confidential local infor-
mation. Most internet-based and service-oriented systems
readily fit in the above architecture, as do systems adhering
to the Enterprise Service Bus architectures [6]. Character-
istics pertinent to this form of architecture affect the design
of a prospective monitoring framework, and are discussed
below:

Computation and memory distribution: Distributed sys-
tem architectures entail computation that is distributed
across its various computational entities, as well as the
partitioning of the system’s global state amongst a set
of remote partitions. Crucially, the system’s global
state is not readily available and global state projec-
tion is often impractical, due to the voluminous infor-
mation transfer involved and the restrictions on the
communication medium (see next point).

The communication medium: Communication between
physically distributed subsystems is considerably slower
than local communication, limited by finite bandwidth
restrictions. Hence, an efficient distributed system should
focus on minimising remote communication. More-
over, some communication media may not preserve
message order during communication. Other charac-
teristics that one should consider include communica-
tion synchrony (synchronous vs asynchronous commu-
nication), as well as the potential for non-lossy com-
munication.



Information locality: Distributed systems may be com-
posed of subsystems each containing confidential local
information. This is especially true in heterogenous
environments, where issues of trust are prevalent. It is
the responsibility of any prospective monitoring frame-
work to respect information locality, since failure to
do leads to so additional data exposure. Data expo-
sure can take the form of (i) exposure through remote
communication across unsafe mediums, (ii) exposure of
confidential information between non-privileged sub-
systems.

System topology: This relates to the system’s configura-
tion dynamicity i.e., whether the system admits an
architecture which ‘evolves’ during execution. System
architecture may evolve in one of two ways; (i) the
number of contributing computational entities changes
during execution, (ii) the communication pattern be-
tween sub-systems changes. Systems which admit dy-
namic configurations include peer-to-peer systems, as
well as service oriented architectures using brokers for
service lookup.

2.1 A Motivating Example

Figure 1: The travel agent.

Figure 1 depicts a typical distributed system whereby
a travel agent is responsible for booking holidays on the
client’s behalf. Given a set of client requests and financial
limitations, the agent’s task is to search for deals across mul-
tiple hotel and airline booking agencies, booking the best
deal (through the client’s online bank) given the specified
restrictions.

We shall be looking at two variants of the above scenario.
In the first (simpler) scenario, the travel agent is to com-
municate with a pre-determined set of online banks, as well
as hotel and airline booking agencies. The second scenario
involves the agent acting as a broker, dynamically searching
(based on parameters such as destination country, budgets
etc) for hotel and airline booking agencies according to the
client’s requests, as well as communicating with the appro-
priate bank responsible for the client’s account. Clearly, the
second scenario is more flexible and could potentially return
better results (due to dynamic lookup). However, additional
capabilities come at the cost of complexity; whereas all con-
tributing entities (i.e. banks and booking agencies) in the
first scenario are known a priori, entities involved in the sec-
ond scenario can only be discovered at runtime. We shall
later see how both scenarios affect the applicability of dis-
tributed monitoring approaches.

The protocol adhered to by the travel agent while catering
for a client request is as follows:

1. The client provides the travel agent with (i) bank ac-
count details (for future transactions), and (ii) a set of
parameters regarding the desired holiday (destination
country, cost etc).

2. Based on this information, the travel agent interacts
with (i) the client’s online bank, (ii) candidate flight
and hotel booking agencies.

3. Agencies are chosen based on some optimal selection
policy (possibly effected dynamically based on some
service lookup), and queried for a quotation of desired
bookings.

4. With the quotations in hand, the travel agent subse-
quently queries the bank if the client’s bank account
can afford the provided package. If so, the travel agent
returns to the client for confirmation.

5. If confirmed, transactions are triggered on the client’s
behalf, else the process restarts by choosing different
flight and airline booking agencies.

The travel agent example exhibits the characteristics dis-
cussed above. Clearly, the system is distributed, since both
the computational entities (agencies, bank, travel agent) and
the system’s memory space is partitioned into a set of dis-
tributed sub-systems. Moreover, the notion of information
confidentiality is of considerable importance. Both the on-
line bank (private acccount details, transactions), as well
booking agencies (booking information) admit local infor-
mation whose preservation of locality is paramount. Data
exposure can take both forms i.e. exposure of confidential in-
formation (such as bank account information) across unreli-
able mediums (in this case, the internet), as well as exposure
across entities (for example, rival booking agencies). Given
that inter-system communication happens online, this im-
plies that the global system operates within restricted band-
width limitations. Finally, whereas the first travel agent sce-
nario admits a static topology (all entities are known prior to
computation), the second scenario involving service lookup
admits a dynamic topology, since participating entities de-
pend on the client’s requests and details.

System correctness in the example above is of critical im-
portance. One property expected to hold is that of progress
i.e., each client request submitted to the travel agent is even-
tually countered by an offer from hotel and flight booking
agencies within a certain time frame. Another correctness
property involves ensuring that the cost of proposed book-
ings does not exceed the client’s bank balance. Although
both properties specify a form of event sequentiality, they
vary on one subtle point; whereas the former refers to gener-
ally non-confidential information (booking offers are usually
publicly available online), the latter requires the handling of
confidential information (bank details).

3. DISTRIBUTED MONITORING
Monitoring correctness w.r.t the two properties outline

in Section 2.1 is heavily influenced by both the underly-
ing distributed architecture as well as the property’s na-
ture. Computation/memory distribution forces monitoring



be carried out across unsafe mediums. Moreover, the mon-
itoring framework no longer has ready access to the sys-
tem’s global state, meaning that evaluating properties over
the partitioned state is challenging. The communication
medium may also potentially introduce new problems. It is
the responsibility of all prospective monitoring frameworks
to minimise bandwidth overhead induced by the framework
- failure to do so could interfere with the system’s integra-
tion effort, possibly altering the system’s behaviour. More-
over, lack of communication order preservation could induce
monitors remotely observing system behaviour into incor-
rectly validating broken properties, or vice versa (see [13]).
The monitoring framework is also responsible for preserv-
ing information locality in the presence of confidential lo-
cal information. Finally, the issue of system configuration
dynamicity presents an additional complexity, since this re-
quires the monitoring framework to ‘keep up’ with the often
unpredictable runtime changes the system undergoes during
execution.

Presently, there exist a number of architectures and tools
for ditributed runtime verification and monitoring. These
are best undserstood we categorised according to the follow-
ing two criteria.

Choreography vs orchestration: Current approaches to
distributed monitoring can be broadly classified as or-
chestration or choreography-based. In orchestration-
based approaches, verification responsibility lies firmly
with a central monitor overhearing all information per-
tinent to the system’s global correctness, as seen in
figure 2. Although this approach works seamlessly on
monolithic systems, its application is not as straight-
forward in a distributed environment. In the case
where the monitored property concerns only public
communication between subsystems, this approach works
well by constructing a monitor overhearing all such
communication, modifying its state accordingly. How-
ever, when the system property involves local sub-
system information, this approach is less than ideal.
Firstly, communication of local confidential informa-
tion across remote locations leads to data exposure.
Moreover, the volume of information required for cen-
tralised monitoring is substantial, often resulting in
unreasonable bandwidth overhead. Finally, orchestrated
approaches pose a security risk by presenting a central
point of attack, in the form of the monitor, through
which sensitive information can be tapped.

Figure 2: An orchestration-based approach.

Choreography-based monitoring takes a more dataflow
dependent approach, whereby (sub)system events drive
the execution control flow of the monitoring process,

often leading to a distribution of monitoring function-
ality across the distributed system. In general, choreography-
based monitoring can mitigate shortcomings posed by
orchestrated approaches. A choreography-based ap-
proach can be optimised to push verification to occur
locally, minimising data exposure. Also, monitoring
localisation eliminates the requirement of subsystem
information transfer back to a central monitor. This
does not stop localised monitors from communicating
over the communication medium, however the volume
of information for monitor synchronisation is usually
substantially less than that required by a central moni-
tor, implying that a choreography based approach po-
tentially reduced bandwidth overhead in certain sit-
uations. Finally, removing the central monitor erad-
icates the security risk of providing a central attack
point. Nevertheless, although choreography-based ap-
proaches boast advantages over orchestrated counter-
parts, applying choreography is often more complex
especially since the nodes in which monitoring is to
be set up must somehow enable the instrumentation
of monitoring code, and should hence be used only in
scenarios where it is advantageous to do so.

Static vs dynamic properties: Static properties include
properties whose specification is entirely known at com-
pile time, and remains unchanged during system exe-
cution. On the other hand, dynamic properties in-
volve system properties (i) whose characterisation is
not entirely known (or changes) at runtime, or (ii)
may be learnt entirely during execution — thus mak-
ing the monitor parametrised by properties which may
only available at runtime. One finds dynamic proper-
ties, for instance, in security-related intrusion detec-
tion scenarios [7], where suspicious user behaviour can
only be learnt at runtime after observating the sys-
tem to learn what typical behaviour looks like. Dy-
namic properties can also be contextual i.e. proper-
ties which evolve according to collected information.
Taking the travel agent scenario, it is conceivable that
different banks would require the verification of differ-
ent security policies, or that the security policy to be
verified depends on the amount of money involved in
the transaction (hence, a dynamic property which de-
pends on its context — the bank and the amount of
money involved). In such cases, the property can be
seen as either a complex conditional static property
or a number of simpler properties, only one of which
is triggered dynamically at runtime. Although the is-
sue of static vs dynamic properties is not bound to
distributed monitoring frameworks, dynamic proper-
ties have a particular affinity to distributed systems
due to the possibility of dynamic configurations —
distributed systems whose configuration evolves dur-
ing execution may require properties which change ac-
cordingly so as to monitor the dynamically changing
architecture. Clearly, although dynamic properties are
more expressive than their static counterparts, they
also represent a class of considerably more complex
properties to monitor, and should only be considered
when necessary.

These criteria lead to the possibility of four categories for
distributed monitoring, namely static orchestration, static



choreography, dynamic orchestration and dynamic choreog-
raphy. The choice of approach often depends on necessity,
depending on both underlying system characteristics and the
property under consideration.

3.1 Static Orchestration
Conceptually the simplest approach, static orchestration

involves employing a central monitor overhearing informa-
tion over the communication medium, and verifying a set
of pre-determined properties. This approach is evidenced in
[3], where web service compositions implemented in BPEL
[2] are monitored in orchestrated fashion. Advantages with
this approach include (i) its simplistic nature, both in con-
cept and usually in application, and (ii) its applicability
when monitoring properties dealing with public information
over the communication medium. However, static orchestra-
tion admits prevalent issues discussed above. Namely, static
orchestration may lead to data exposure, poses a security
risk, could also potentially result in unreasonable bandwidth
overhead and is also incapable of handling dynamic proper-
ties (hence, no dynamic configurations).

Nevertheless, a static orchestration-based approach is ap-
plicable in certain scenarios. One could, for example, mon-
itor the travel agent (assuming the first scenario involving
a static topology) for the progress property, by installing a
central monitor which overhears public client requests and
offers made by the booking agencies, and verifying that each
request is met with a response. However, verifying the sec-
ond travel agent scenario (admitting a dynamic topology)
is unattainable, since static property specifications are inca-
pable of expressing properties over dynamic architectures.

3.2 Static Choreography
Static choreography involves converting system properties

at compile time into a set of distributed monitors encom-
passing the global monitoring framework, as seen in figure
3. These monitors observe system behaviour locally, and
synchronise remotely to achieve global verification of the
system. Current static choreography based approaches in-
clude [13, 12, 9, 10, 14].

Figure 3: A static choreography-based approach.

Advantages with static choreography include those dis-
cussed for choreography in general, i.e. (i) the preservation
of locality, (ii) possible reduction of bandwidth overhead,
and (iii) the removal security risks related to central attack
points.

If we had to monitor the first travel agent scenario for the
property stating that bookings do not exceed the client’s
financial limitations, one could employ local monitors (one

at each booking agency and online bank), with monitors at
the booking agencies notifying the monitor located at the
client’s particular bank of proposed bookings, which can
then verify locally that cost does not exceed limitations.
Notice how using this approach no confidential client in-
formation leaves the bank’s location, as opposed to a static
orchestrated approach which would require transfer of client
information remotely to the central monitor. The volume
of information transfer for monitoring purposes is also de-
creased, since monitor synchronisation upon booking gener-
ation involves less information than the transfer of relevant
bank, hotel and flight booking information to a central mon-
itor.

Given that monitor distribution occurs once a priori to
system execution, a static choreography approach is inca-
pable of handling evolving system properties, or properties
learnt at runtime. Handling dynamic properties through
a static choreography based approach would require (i) re-
compilation, and (ii) re-distribution of the monitoring frame-
work upon each update the the monitored properties, which
is generally unfeasible. A direct implication of this state-
ment is that static choreography is incapable of handling
dynamic topologies, since one would require dynamic prop-
erties capable of quantifying over evolving system architec-
tures. This implies that monitoring the second travel agent
scenario is unattainable using static choreography.

Finally, note how the handling of the progress property
discussed for static orchestration is also attainable using
static choreography, by matching a client request at the
travel agent with booking responses at hotel and flight book-
ing agencies. However, no apparent advantage is gained by
applying static choreography over static orchestration in this
scenario (information locality is a non issue when dealing
with public communication over the bus), making the appli-
cation of choreography an unnecessary complication.

3.3 Dynamic Orchestration
Dynamic orchestration-based approaches involve the adop-

tion of a central monitor remotely observing sub-system be-
haviour, which however allows for the monitoring of dynamic
properties. An instance of dynamic orchestration is seen
in [1], involving the centralised monitoring of web services
through the specification of BPMN work flows [5]. Moreover,
this approach allows for the deployment of the verification
of contracts (representing system properties) on-the-fly, al-
lowing for the verification of dynamic properties.

The main advantage of dynamic orchestration over its
static counterpart is the capability to handle dynamic prop-
erties. A dynamic orchestrated approach may for example
monitor the second travel agent scenario for both previously
discussed properties, with the central monitor listening to in-
formation from new agencies discovered by the travel agent
accordingly. Nevertheless, dynamic orchestration still suffers
from data exposure, is potentially inefficient due to unrea-
sonable bandwidth overhead, and still represents a security
risk by presenting a privileged entity, in the form of the
monitor, through which information can be tapped.

Although possible, a dynamic orchestrated approach for
monitoring the second travel agent scenario is hence unsuit-
able, since using such an approach would still require remote
transfer of sensitive client bank details to the central mon-
itor. A dynamic orchestrated approach appears to fit best
when only public information needs to be monitored over the



communication medium w.r.t. some dynamic properties.

3.4 Dynamic Choreography
Similarly to static choreography, dynamic choreography

entails the distribution of monitoring functionality across
the distributed system. However, with dynamic choreog-
raphy distribution occurs during execution, hence allowing
for the re-distribution of the monitoring framework allow-
ing for the monitoring of dynamic properties. To the best
of our knowledge, presently no existing monitoring architec-
ture falls in this category.

To this effect, we propose the study of dynamic choreog-
raphy through the use of migrating monitors i.e. monitors
running locally to sub-systems, and physically migrating to
other locations when requiring to monitor local behaviour
pertinent to the global correctness of the system , as de-
picted in Figure 4.

Figure 4: A migrating monitor approach.

Migrating monitors take a property agnostic approach,
such that each sub-system is instrumented to expose an al-
phabet of information available to the monitors exclusively
at a local level. Monitors are subsequently allowed to mi-
grate to sub-system locations, locally reading information
pertinent to the property under consideration. This ap-
proach allows for the monitoring of properties learnt at run-
time, since new properties can be converted to corresponding
migrating monitors, and are subsequently executed on-the-
fly without the need for system restart. Dynamic chore-
ography is achieved through a conceptually simple opera-
tor triggering monitor migration. This operator allows for
the runtime framework redistribution, since monitors can be
specified to migrate to alternate locations during execution,
possibly even locations not known at the start of compu-
tation. Migrating monitors are hence capable of handling
dynamic configurations, by migrating to new locations once
integrated with the global architecture. This, in turn, is
a weakness of dynamic choreography approach, since the
nodes need to be willing to install monitors known only at
runtime. This leads to a question of trust, since the monitor
may originate from an untrustworthy party — on the other
hand, one can require monitors to be signed by trustworthy
partners, or even apply static analysis techniques or require
the monitor to appear as proof-carrying code to make the
approach practical.

A migrating monitor technique is advantageous in three
respects

1. it admits advantages pertaining to choreography based
approaches — see Section 3.2. Being a choreogra-
phy based approach, migrating monitors allow for the

preservation of locality while also potentially reducing
bandwidth overhead in certain situations.

2. it increases flexibility, i.e., the capability of the moni-
toring framework to adapt to unforeseeable (at compile
time) changes during system execution, at little addi-
tional complexity. This is achieved by adding the mi-
gration primitive. As discussed, changes during system
execution can take the form of dynamic system config-
urations, as well dynamic properties (including prop-
erties learnt at runtime and properties which evolve
during execution).

3. it achieves elevated encapsulation. Migrating moni-
tors operate at a higher level of abstraction, achieving
choreography while binding together computational en-
tities and information (monitor state) whose purpose
is that of achieving one common goal (monitoring of
a property). Conceptually, this is a sharp distinc-
tion from static choreography-based approaches, since
monitor computation and state operating to verify a
particular property are often distributed throughout
the system. Note that this does not stop the migrating
monitor approach from employing multiple concurrent
monitors. Elevated encapsulation also points to mi-
grating monitors being potentially more amenable to
fault tolerance techniques, since migrating monitors are
intuitively reconfigurable on-the-fly. This is a desirable
property in the presence of partial failure inherent in
distributed systems. Hence, one could for example al-
ter a monitor’s migratory patterns at runtime once a
contributing system entity is deemed to be unavail-
able. Another by-product of elevated encapsulation is
potentially easier maintenance (as opposed to main-
taining a static choreography based approach), since
updating a framework employing migrating monitors
would only require update of the migrating monitors,
which is usually far less in number than the amount
of updates involved when updating a static choreogra-
phy based framework (since one monitor is assigned to
each entity).

Let us consider the monitoring of the second travel agent
scenario for the second property that the cost of bookings
does not exceed the client’s bank balance, using a migrat-
ing monitor approach. One could define a migrating moni-
tor, whose state entails (i) the client’s online bank informa-
tion, (ii) hotel and flight booking agency information under
consideration, (iii) a counter recording the cost of proposed
bookings. Execution of the migrating monitor would start
at the travel agent location, collecting information regard-
ing contributing entities during service of the client’s re-
quest (bank, booking agencies). Using this information, the
migrating monitor can then dynamically set location infor-
mation where the monitor is to migrate to, starting with
migrating to contributing booking agencies. At each book-
ing agency, the monitor collects the cost of the particular
agency’s suggested booking (cost is accumulatively stored
using the monitor’s counter). Once all booking costs are col-
lected, the monitor finally migrates to the online bank, and
using the client’s online bank information checks whether
the client can afford the suggested bookings.

Note how information locality is preserved while proba-
bly resulting in bandwidth overhead reductions (as opposed



to orchestrated approaches), since globally monitoring the
property has been reduced to local monitoring interspersed
with a few monitor migrations. Verification of dynamic
properties have also been trivialized through the use of the
migration operator in conjunction with a property agnostic
approach. New booking agencies (discovered by the travel
agent through service lookup) are immediately monitored
by allowing for the monitor to migrate at the new locations.

A migrating monitor approach also admits disadvantages
which make its application a sub-optimal choice in certain
situations. Firstly, the approach is best suited when the
property under consideration admits a migrating monitor
characterisation based on substantial local monitoring and
few remote migrations. Conversely, properties requiring mi-
grating monitors based on an unreasonable amount of mi-
gration may result in substantial bandwidth overhead. The
migrating monitor approach is also based on the inherent
assumption that multiple (often heterogenous) subsystems
trust code entities to migrate and run locally, while having
access to sensitive local information. Clearly, this may not
always be the case, since system administrators may disap-
prove of external executable entities having privileged access
to their systems. Finally, although the property agnostic ap-
proach is conceptually advantageous for reasons discussed
above, it is a more complex instrumentation approach than
that applied in more traditional runtime verification tech-
niques (such as in [11, 4, 13]), which could result in higher
probability of failure.

For instance, although verification of both travel agent
scenarios for adherence to the first property is also possible
using migrating monitor approach, it is not advantageous to
do so. Given that the first travel agent scenario admits a
static topology it would be wasteful to apply an approach
focused on handling dynamic properties, implying that an
approach handling static properties would suffice. More-
over, the first property involves public information trans-
ferred over the communication medium, implying that in-
formation locality is a non issue. Hence, an orchestrated
approach would suffice.

In conclusion, migrating monitors offer an alternate ap-
proach to distributed monitoring, whose applicability is best
when facing strict information confidentiality restrictions in
a highly dynamic environment (either in terms of the prop-
erty being verified, or the underlying system admitting dy-
namic configurations).

4. CONCLUSIONS AND FUTURE WORK
Runtime monitoring of distributed systems is consider-

ably more complex as opposed to monolithic local system.
In this paper, we show how this is heavily influenced by char-
acteristics intrinsic to distributed system. We also propose
what we believe to be a novel migrating monitor approach,
advocating the use of location-aware monitors listening to
events exclusively at a local level, before migrating to other
locations when their behaviour becomes pertinent to the sys-
tem’s overall correctness. We argue that this approach re-
spects information locality and handles dynamic properties
(including systems admitting dynamic architectures).

We are currently investigating formal properties of this
technique such as (i) monitoring does not effect computa-
tion, (ii) local monitoring preserves locality, (ii) local mon-
itoring is equivalent to global monitoring, ignoring loca-
tion information. Proof of these three framework properties

should serve as sanity checks to ascertain applicability of the
approach. We are also looking into the extension of Larva
[11] to handle migrating monitors so as to be applied to case
studies using Enterprise Service Bus middleware [6].

5. REFERENCES
[1] Charlie Abela, Aaron Calafato, and Gordon J. Pace.

Extending wise with contract management. In WICT
2010, 2010.

[2] Alexandre Alves, Assaf Arkin, Sid Askary, Ben Bloch,
Francisco Curbera, Yaron Goland, Neelakantan
Kartha, Sterling, Dieter König, Vinkesh Mehta, Satish
Thatte, Danny van der Rijn, Prasad Yendluri, and
Alex Yiu. Web services business process execution
language version 2.0. OASIS Committee Draft, May
2006.

[3] Fabio Barbon, Paolo Traverso, Marco Pistore, and
Michele Trainotti. Run-time monitoring of instances
and classes of web service compositions. In ICWS ’06:
Proceedings of the IEEE International Conference on
Web Services, pages 63–71, Washington, DC, USA,
2006. IEEE Computer Society.

[4] Howard Barringer, Allen Goldberg, Klaus Havelund,
and Koushik Sen. Rule-based runtime verification.
pages 44–57. Springer, 2004.

[5] Marco Brambilla, Stefano Ceri, Piero Fraternali, and
Ioana Manolescu. Process modeling in web
applications. ACM Transactions on Software
Engineering and Methodology (TOSEM, 15:360–409,
2006.

[6] David Chappell. Enterprise Service Bus. O’Reilly
Media, June 2004.

[7] Dorothy E. Denning. An intrusion-detection model.
IEEE Transactions on Software Engineering,
13:222–232, 1987.

[8] Edsger W. Dijkstra. Notes on Structured
Programming. April 1970.

[9] Ingolf H. Krüger, Michael Meisinger, and
Massimiliano Menarini. Interaction-based runtime
verification for systems of systems integration.
Computer Science and Engineering Department,
University of California, San Diego USA, July 2008.

[10] Masoud Mansouri-Samani and Morris Sloman. Gem: a
generalized event monitoring language for distributed
systems. Distributed Systems Engineering,
4(2):96–108, 1997.

[11] Gordon Pace, Christian Colombo, and Gerardo
Schneider. Dynamic event-based runtime monitoring
of real-time and contextual properties. In 13th
International Workshop on Formal Methods for
Industrial Critical Systems (FMICS’08), LNCS 4916.
Springer-Verlag, 2008.

[12] Thomas S.Cook, Doron Drusinksy, and Man-Tak
Shing. Specification, validation and run-time
moniroting of soa based system-of systems temporal
behaviors. In In System of Systems Engineering
(SoSE). IEEE Computer Society, 2007.

[13] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore
Roşu. Efficient decentralized monitoring of safety in
distributed systems. Software Engineering,
International Conference on, 0:418–427, 2004.



[14] Wenchao Zhou, Oleg Sokolsky, Boon Thau Loo, and
Insup Lee. Dmac: Distributed monitoring and
checking. In Saddek Bensalem and Doron Peled,
editors, RV, volume 5779 of Lecture Notes in
Computer Science, pages 184–201. Springer, 2009.


