
WICT PROCEEDINGS, DECEMBER 2008 1

Conflict Analysis of Deontic Contracts

Stephen Fenech
Dept. of Computer Science

University of Malta
sfen002@um.edu.mt

Gordon J. Pace
Dept. of Computer Science

University of Malta
gordon.pace@um.edu.mt

Gerardo Schneider
Dept. of Informatics

University of Oslo, Norway
gerardo@ifi.uio.no

Abstract

Industry is currently pushing towards Service Oriented
Architecture where code execution is not limited to
the organisational borders but may extend outside of
the organisation to which the sources are typically
not accessible. In order to protect the interests of the
organisation contracts are used which can be seen as
a list of obligations, permissions and prohibitions. The
composition of different services with different con-
tracts, and the combination of service contracts with
local contracts can give rise to conflicts, exposing the
need for automatic techniques for contract analysis. In
this paper we investigate how conflict analysis can be
performed automatically for contracts specified in the
contract languageCL.

Index Terms

Contracts, Deontic Logic, Conflict Analysis

1. Introduction

Today’s trend towards service oriented architectures,
in which different decoupled services distributed not
only on different machines within a single organisation
but also outside of it, provides new challenges for
reliability and trust. Since an organisation is executing
code which it has no access to, it requires mechanisms
to protect itself and to secure its trust in the external
organisation’s service.
Deontic logic allows us to reason about normative
behaviour, such as obligations, permissions and pro-
hibitions. Unfortunately, deontic logic is plagued with
many paradoxes making it very challenging to develop
a system which is highly expressive, and free from
paradoxes. One approach to solve this problem is
by restricting the application domain, and develop

a restricted deontic logic expressive enough for that
particular domain but also paradox free. In [7]CL
(Contract Language) was introduced to specify elec-
tronic contracts in a formal manner. Thus it is possible
to formally analyse these contracts to ensure that they
have certain desirable properties.
Since services are frequently composed of different
sub-services, each with its own contracts, an important
property one has to ensure is that a contract is conflict-
free — meaning that the contract will never lead to
conflicting or contradictory deontic directives. If the
contract is not conflict free, during the enacting of the
contract, one might end up in a state in which there
is no possible way of satisfying the contract which is
clearly not a desired situation.
Since the semantics ofCL are written formally, they
can be interpreted by machines where now we can
have multiple machines automatically negotiating these
electronic contracts. For example, if an organisation is
exposing a web service, it could also expose a contract
to which all clients must abide. Similarly, a client could
also have a contract to which the service provider must
abide to and thus in this case both contracts should
be merged and proved to be contradiction-free. On
the other hand, in a non-dynamic environment legal
personnel may manually analyse the contracts, in this
case we would like to have an automated method to
search for conflicts in the contract in order to aid the
personel drafting the contracts.
In this paper, we extend the trace semantics ofCL
to support conflict analysis, and present an automatic
technique for conflict detection ofCL contracts.

2. Deontic Logic andCL

Deontic logic enables reasoning about normative and
non-normative behaviour [4] such as obligations, pro-
hibitions and permissions — a logic making a distinc-
tion between ideal behaviour and actual behaviour [3].

2 WICT PROCEEDINGS, DECEMBER 2008

The normative notions of deontic logic have been
investigated as far back as the time of Aristotle, but
were first analysed in a formal manner by von Wright
in [9]1.
Deontic logic tends to give rise to numerous paradoxes
making it difficult to have an expressive system which
does not allow the expression of awkward situations
(some authors even described certain paradoxes as em-
barrassing). Furthermore, it is not trivial to solve these
paradoxes since, all too frequently, solving paradoxes
ends up in introducing new ones [4].
Instead of trying to solve the problem of having a com-
plete paradox-free dontic logic, the designers ofCL
restricted the application domain of deontic contracts
to electronic contracts. In this way the expressivity of
the logic is reduced, resulting in a language which is
claimed to be free from most classical paradoxes [7],
[8], but still retains the required flexibility and expres-
sivity for practical use.
CL defines contracts on actions rather than state-of-
affairs — an ought-to-do as opposed to an ought-to-be
approach. This has been argued that it solves a num-
ber of paradoxes [4]. Furthermore, deontic properties
written in the ought-to-be approach can be defined
using the ought-to-do approach and vice versa so no
expressivity is lost. Since the contracts are defined on
actions,CL can be seen as the merging of deontic
logic and dynamic logic. Another important feature is
the handling of exceptional behaviour with Contrary-
to-Duty (CTDs) and Contrary-to-Prohibition (CTPs)
clauses2 These allow direct descriptions of exceptional
behaviour which most other logics fail to capture.
Definition 2.1: The syntax ofCL

C := CO|CP |CF |C ∧ C|[β]C|⊤|⊥

CO := OC(α)|CO ⊕ CO

CP := P (α)|CP ⊕ CP

CF := FC(δ)|CF ∨ [α]CF

α := 0|1|a|α&α|α · α|α + α

β := 0|1|a|β&β|β · β|β + β|β∗

Looking at the syntax ofCL (Definition 2.1) we
have the deontic logic operators of CTDs, CTPs and
permissions whereas from dynamic logic we have
the compound actions and the ‘[]’ operators which

1. Some authors credit Mally as the first who has attempted to
formalise deontic logic, however his system was found out tobe a
fragment of alethic propositional logic and thus not reallya deontic
logic.

2. In [2] the authors prefer to define CTDs and CTPs as basic
operators as opposed to previous papers [7], [5] in which CTDs and
CTPs where constructed from the other basic operators.

semantically get the same meaning as in propositional
dynamic logic.

A contract clauseC can be either an obligation (CO),
permission (CP) or prohibition (CF) clause, a conjunc-
tion of two clauses or a clause preceded by the dynamic
logic square brackets.OC(α) is interpreted as the
obligation to performα in which case, if violated, then
the reparation contractC must be executed.FC(α)
is interpreted as forbidden to performα and if α is
performed then the reparationC must be executed.
The interpretation of[β]C is if action β is performed
then the contractC must be executed — ifβ is not
performed, the contract is trivially satisfied. Compound
actions can be constructed from basic ones using the
operators&, ·, + and∗ where& stands for the actions
occuring concurrently,· stands for the actions to occur
in sequence,+ stands for a choice between actions
and ∗ is the Kleene star. It can be shown that every
action expression can be transformed into an equivalent
representation where& appears only at the innermost
level. This representation is refarred to as the canonical
form:

Theorem 2.1:For any compound action defined in
terms of +, & and· there exists an equivalent action
called the canonical form of the form:+i∈Iα

i
& · αi,

where eachαi
& ∈ A&

B and αi is another action in
canonical form.

In the rest of this paper we assume that action expres-
sions have been reduced to this form. One should also
note that1 is an action expression matching any action,
while 0 is the impossible action. Consider the follow-
ing clause from an airline company contract: ‘When
checking in, the traveller is obliged to have a luggage
within the weight limit — if exceeded the traveller is
obliged to pay extra.’ This would be represented as
[checkIn]OO(pay)(withinWeightLimit)

2.1. Semantics

In the first paper aboutCL [7] the authors defined
the semantics of the language using an extension of
µ-calculus. However, in our case we do not need
this branching semantics but use the simpler trace
semantics given in [2].

Given a setA of basic actions, a states and a transition
t labeled with a set of basic actions (l(t) ⊆ A). An
infinite trace in such a system is an infinite sequence
of transition labels. Given a contractC, and an infinite
traceσ, one can defineσ �∞ C (σ satisfies contract
C) as follows [2]:

DEONTIC CONFLICT ANALYSIS 3

Definition 2.2: Trace semantics as specified in [2]:

σ �∞ C1 ∧ C2 if σ �∞ C1 andσ �∞ C2

σ �∞ C1 ∨ C2 if σ �∞ C1 or σ �∞ C2

σ �∞ C1 ⊕ C2 if (σ �∞ C1 andσ 2 C2) or

(σ 2 C1 andσ �∞ C2)

σ �∞ [α&]C if α& ⊆ σ(0) andσ(1..) �∞ C, or

α& * σ(0)

σ �∞ [β; β′]C if σ �∞ [β][β′]C

σ �∞ [β + β′]C if σ �∞ [β]C andσ �∞ [β′]C

σ �∞ [β∗]C if σ �∞ C andσ �∞ [β][β∗]C

σ �∞ OC(α&) if α& ⊆ σ(0), or if σ(1..) �∞ C

σ �∞ OC(α; α′) if σ �∞ OC(α) andσ �∞ [α]OC(α′)

σ �∞ OC(α + α′) if σ �∞ O⊥ or σ �∞ O⊥(α′) or

σ �∞ [α + α′]C

σ �∞ FC(α&) if α& * σ(0), or if α& ⊆ σ(0) and

σ(1..) �∞ C

σ �∞ FC(α; α′) if σ �∞ F⊥(α) or σ �∞ [α]FC(α′)

σ �∞ FC(α + α′) if σ �∞ FC(α) andσ �∞ FC(α′)

σ �∞ [α&]C if α& * σ(0) andσ(1..) �∞ C or

if α& ⊆ σ(0)

σ �∞ [α; α′]C if σ �∞ [α]C andσ �∞ [α][α′]C]

σ �∞ [α + α′]C if σ �∞ [α]C or σ �∞ [α′]C

We will use lower case letters (a, b . . .) to represent
atomic actions, Greek letters (α, β . . .) for compound
actions, and Greek letters with a subscript& (α&, β&,
. . .) for compound concurrent actions built from atomic
actions and the concurrency operator&. The set of all
such concurrent actions will be writtenA&. Certain
basic actions are mutually exclusive (for example,
opening the check-in desk and closing the check-in
desk), which we will write asα#α′.
In order for a sequenceσ to satisfy an obligation,
OC(α&), α& must be a subset or equal toσ(0) or the
rest of the trace satisfies the reparationC, thus for the
obligation to be satisfied all the atomic actions inα&

must be present in the first set of the sequence. For a
prohibition to be satisfied, the converse is required, that
is, not all the actions ofα& are executed in the first step
of the sequence. One should note that permission is not
defined in this semantics since a trace cannot violate a
permission clause3. An important observation is that
the negation of an action is defined as performing
any other action except the negated action. A detailed

3. In the full semantics, permission is defined as the exis-
tence/possibility of performing the action, however, whenlooking
at a trace we cannot determine if this possibility exists or not.

description of the algebra of actions used inCL can
be found in [6].
This trace semantics enables checking whether or not a
trace satisfies a contract. However, deontic information
is not preserved in the trace making it inadequate for
conflict analysis. Thus this semantics cannot be used
to identify the conflicts in a contract . Using only this
trace semantics we can only check if the contract is
satisfiable but not that it is conflict free4.
In order to enable conflict analysis, we start by adding
deontic information in an additional trace, giving two
parallel traces — a trace of actions (σ) and a trace
of deontic notions (σd). Similar toσ, σd is defined as
a sequence of sets whose elements are from the set
Da which is defined as{Oa | a ∈ A} ∪ {Fa | a ∈
A}∪{Pa | a ∈ A} whereOa stands for the obligation
to do a, Fa stands for the prohibition to doa andPa

for permission to doa.
Furthermore, since conflicts may result in sequences of
finite behaviour which cannot be extended (due to the
conflict), we reinterpret the semantics over finite traces.
As described earlier, a conflict may result in reaching
a state where we have only the option of violating
the contract, thus any infinite trace which leads to this
conflicting state will result not being accepted by the
semantics. We need to be able to check that a finite
trace has not yet violated the contract and then check
if the following state is conflicting.
We will use ”;” to denote catenation of two sequences,
and len to return the length of a finite sequence. Two
traces are pointwise (synchronously) joined using the
combine operator where we will use the∪ symbol and
defined as:(σ ∪ σ′)(n) = σ(n) ∪ σ′(n). Furthermore,
if α is a set of atomic actions then we will useOα to
denote the set{Oa | a ∈ α}.
The trace semantics is defined in Definition 2.3, where
σ, σd �f C can be interpreted as ‘the finite action
sequenceσ and deontic sequenceσd do not violate
contractC ’:
Definition 2.3: Finite trace semantics with deontic in-
formation

σ, σd 2f C if len(σ) 6= len(σd)

σ, σd �f ⊤ if len(σ) = 0 or ∀iσd(i) = ∅

σ, σd 2f ⊥

σ, σd �f C1 ∧ C2 if σ, σ′
d �f C1 andσ, σ′′

d �f C2

andσd = σ′
d ∪ σ′′

d

4. A contract is not satisfiable if any sequence of actions will
lead to a conflict thus there will be no possible trace that satisfies
the contract, however a satisfiable contract may still have conflicts
where certain traces will lead to a conflict but not all.

4 WICT PROCEEDINGS, DECEMBER 2008

σ, σd �f C1 ⊕ C2 if σ, σd �f C1 or σ, σd �f C2

σ, σd �f [α&]C if len(σ) = 0 or σd(0) = ∅ and

(α& ⊆ σ(0) andσ(1..), σd(1..) �f C, or

α& * σ(0)))

σ, σd �f [β; β′]C if σ, σd �f [β][β′]C

σ, σd �f [β + β′]C if σ, σd �f [β]C ∧ [β′]C

σ, σd �f [β∗]C if σ, σd �f C ∧ [β][β∗]C

σ, σd �f [C1?]C2 if σ, σd 2f C1, or σ, σd �f C1 ∧ C2

σ, σd �f OC(α&) if len(σ) = 0 or σd(0) = Oα and

((α& ⊆ σ(0) andσ(1..), σd(1..) �f ⊤) or

σ(1..), σd(1..) �f C)

σ, σd �f OC(α; α′) if σ, σd �f OC(α) ∧ [α]OC(α′)

σ, σd �f OC(α + α′) if σ, σd �f O⊥(α) or

σ, σd �f O⊥(α′) or (σd(0) = (Oα or Oα′)

andσ, ∅; σd(1..) �f [α + α′]C)

σ, σd �f FC(α&) if len(σ) = 0 or σd(0) = Fα and

((α& * σ(0) andσ(1..), σd(1..) �f ⊤) or

(α& ⊆ σ(0) andσ(1..), σd(1..) �f C))

σ, σd �f FC(α; α′) if σd(0) = Fα and

(σ, σd �f F⊥(α) or σ, σd �f [α]FC(α′))

σ, σd �f FC(α + α′) if σ, σd �f FC(α) ∧ FC(α′)

σ, σd �f [α&]C if σd(0) = ∅ and ((α& * σ(0) and

σ(1..), σd(1..) �f C) or α& ⊆ σ(0))

σ, σd �f [α; α′]C if σ, σd �f [α]C ∧ [α][α′]C]

σ, σd �f [α + α′]C if σd(0) = ∅ and

(σσd �f [α]C or σ, σd �f [α′]C)

σ, σd �f P (α) if len(σ) = 0 or σd(0) = Pα and

σ(1..), σd(1..) �f ⊤

σ, σd �f P (α; α′) if σ, σd �f P (α) ∧ [α]P (α′)

σ, σd �f P (α + α′) if σ, σd �f P (α) ∧ P (α′)

The main difference between the finite and infinite
trace semantics are: the definition of[·], Obligation and
Prohibition where we have to ensure that the trace is
not empty (otherwise it cannot violate the contract)
and the restrictions onσd. One should also note that
if both sequences are not of equal length then they
cannot satisfy this relation. in this semantics we do
consider permission but the conditions for a trace not
to violate the contract are defined onσd rather than the
trace of actions so for anyσ there exists aσd which
will not violate a permission clause. Another point to
note is that when there are no deontic notions in effect
the corresponding element inσd is the empty set. It is
because of this that we have to define the conjunction

operator using the combine operator.
It can be proved that the infinite and finite trace
semantics are sound and complete with respect to each
other.

3. Conflict Analysis

A contract is said to contain aconflict in the following
situations:

1) Oα ∈ σd(i) andFα ∈ σd(i)
2) Pα ∈ σd(i) andFα ∈ σd(i)
3) Oα ∈ σd(i) andO′

α ∈ σd(i) andα#α′

4) Oα ∈ rσ(i) andP ′
α ∈ σd(i) andα#α′

The first two conflicts are quite straightforward where
we are obliged and forbidden to perform the same
action or we are permitted and forbidden to perform
the same action. In the first conflict we would end
up in a state where whatever action is performed we
will violate the contract. The second conflict situation
would not result in having a trace that violates the
contract since in the trace semantics permissions can-
not be broken, however, since we are augmenting the
original trace semantics with the deontic notions we
can still identify these situations. The remaining two
classes correspond to obligations (and permissions and
obligations) of mutually exclusive actions. Freedom
from conflict can be defined formally as follows:
Definition 3.1: A contractC is said to be conflict free
if for all tracesσf and σd satisfyingσf , σd �f C,
there is no conflict inσd, meaning that it is not the
case that any of the following are true:

1) ∃i · Oa ∈ σd(i) andFa ∈ σd(i)
2) ∃i · Pa ∈ σd(i) andFa ∈ σd(i)
3) ∃i · Oa ∈ σd(i) andOb ∈ σd(i) anda#b

4) ∃i · Oa ∈ σd(i) andPb ∈ σd(i) anda#b

3.1. Automated Conflict Analysis

By unwinding aCL formula according to the finite
trace semantics, one can create an automaton which
accepts all non violating traces and with any trace
resulting in a violation ending up in the violating
state V . Furthermore, by labelling the states with
deontic information provided inσd one can ensure
that a contract is conflict free through the analysis of
the resulting reachable states (non-violating states) for
conflict freedom.
The states will contain a set of formulae still to
be satisfied. For each operator inCL rules given
for the generation of the automaton will be applied
(Table 3.1). Each transition is labelled with the set of
actions that are to be performed in order to move along

DEONTIC CONFLICT ANALYSIS 5

C1 ∧ C2 Add C1 andC2 to N

[α]C for every transitiont where αi.now ⊆ t.α& add
C to t.n.N if αi.next is empty, otherwise add
[αi.next]C to t.n.N

[β∗]C Add C and [β][β∗]C to N

OC(α) for every transition t, if αi.now ⊆ t.α& and
αi.next is not empty, addOC(αi.next) to t.n.N ,
otherwise, ifαi.now * t.α& addC to t.n.N

FC(α) for every transition t, if αi.now ⊆ t.α& and
αi.next is empty, addC to t.n.N , otherwise, if
αi.next is not empty addFC(αi.next) to t.n.N

P (α) for every transition t, if αi.now ⊆ t.α& and
αi.next is not empty, addP (αi.next) to t.n.N

[α]C for every transitiont where αi.now * t.α& add
C to t.n.N if αi.next is empty, otherwise add
[αi.next]C to t.n.N

Table 1. Sub-formulae processing

the transition. From the canonical form(Theorem 2.1)
we can look at an action as a disjunction of actions
that must occur now and for each of these a compound
action that needs to occur in the next step. This view
is very helpful when processing the actions since
a compound actionα can be seen as an array of
possibilities αi where for each entry we have the
atomic actions which need to hold now (αi.now) and
the possibly compound or empty actions that need to
follow next (αi.next).
Once the automaton is generated we can go through
all the states and check for the four types of conflicts.
One should also note that if there is a conflict of type
one or three, then all transitions out of the state go to
the violation state.
In order to apply the rules of Table 3.1 we need
to generate all possible transitions before processing
the sub-formulae, thus for every state we have a
fixed number of transitions, depending on the action
alphabet. Most of the time this results in having more
transitions than actually required because in most states
there will be actions which will not affect the outcome
of the transition. We could thus improve the algorithm
in such a way that we create all and only those required
transitions; however this will make the algorithm more
complex.
Consider processing the formula[a]Ob ∧ [b]Oc, if
we generate all the transitions the result would be
the automaton in Figure 1. One should note that out
of each state we have all possible transitions (we
grouped transitions as otherwise in order to make the
automaton more readable). Consider processing the
initial node whereP = [a]Ob, [b]Oc. We start without
any transitions and add new transitions as required
while processing the sub-formula. When processing the
first sub formula we add a transition witha and place
Ob in the new node. However when we process the

[a]Ob,[b]Oc

Oc

Ob

V

Oc,Ob

a

a&c

b
b&c

a&b&c
a&b

a&b
b&c

b

a&b&c

otherwise

c&b
a&b&c

otherwise

a b
a&b

otherwise c

Figure 1. Automaton generated for [a]Ob ∧ [b]Oc

with all the transitions are created.

[a]Ob,[b]Oc

Oc

Ob

V

Oc,Ob

a

b

b

otherwise

c&b
otherwise

otherwise

c

otherwise
a&b

Figure 2. By creating only the necessary transi-
tions the corresponding automaton for [a]Ob∧[b]Oc

is much smaller.

second sub formula we cannot simply add a transition
with action b and addOc to the new node. We will
have to go through all the transitions already created
and create a transition which is a combination of both
actions. In this case we will need to create a transition
a&b and add bothOb and Oc to the new node. The
result can be seen in Figure 2.

Conflict analysis can also be done on-the-fly without
the need to create the complete automaton. One can
process the states without storing the transitions and
store only satisfied subformulas (for termination). In
this manner memory issues are reduced since only a
part of the automaton is stored in memory.

6 WICT PROCEEDINGS, DECEMBER 2008

4. Example of Conflict Analysis

The following is part of a contract that the ground crew
working at a check-in desk agrees to:

1) Once the desk is open, the check-in clerk is
obliged to check in travellers.

2) Once the desk is closed, the check-in clerk is
forbidden from checking in travellers.

3) If the traveller has not presented any acceptible
form of identification the check-in clerk is for-
bidden from checking the traveller in.

This contract would represented inCL as the
conjunction of the following three clauses: (1)
[1∗][open]O(checkIn); (2) [1∗][close]F (checkIn);
and (3)[1∗][presentID]F (checkIn).
Analysis shows that when both theopen and close

actions occur we end up in a conflict. Adding mutual
exclusivity of the open and close actions (open#close)
is still not enough since if the client did not present
his ID then the desk personnel cannot check him in
but the first clause does not have a provision for this.
Adding that the client must also have presented the ID,
results in a conflict-free contract.

[1∗][open&presentID]O(checkIn)
[1∗][close]F (checkIn)
[1∗][presentID]F (checkIn)
open#close

Clause one of the original contract would need to be
changed to‘Once the desk is open, he/she is obliged to
check in travellers if a valid identification is provided.’

5. Conclusions

In this paper, we have presented a finite trace seman-
tics for CL augmented with deontic information, and
showed how it can be used for automatic analysis of
contracts for conflict discovery. We see this as a first
step towards automatic contract negotiation since it
is an essential property for a meaningful contract to
have — any automatically created contract would be
required to satisfy it. We also see this as a step towards
a complete model checking ofCL using the automaton
approach which we use.
Once the automaton is created we can perform other
analysis not just conflict analysis. One application
we are currently looking at is runtime monitoring of
contract and we have already implemented a translation
from the automaton created fromCL to the runtime
verification tool LARVA [1]. Furthermore, we can also
analyse the contract looking for unreachable clauses
since, most of the time, either the clause can be

removed or there is a mistake in the contract. For in-
stance, the second clause in the contractF (a)∧[a]O(b)
is superfluous since it is not reachable without violating
the contract.
The next step is to move from the linear trace se-
mantics ofCL to the full, branching semantics and
provide means to model check contracts and also use
contracts as properties to model check. This would
be very desirable since there currently is no model
checker for a deontic logic as expressive asCL.

References

[1] C. Colombo, G. J. Pace, and G. Schneider. Dynamic
event-based runtime monitoring of real-time and con-
textual properties. In13th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS
2008). To be published by Springer Verlag in Lecture
Notes in Computer Science, 2008.

[2] M. Kyas, C. Prisacariu, and G. Schneider. Run-time
monitoring of electronic contracts. InATVA’08, LNCS,
Seoul, South Korea, October 2008. Springer-Verlag. To
appear.

[3] J.-J. C. Meyer, F. Dignum, and R. Wieringa. The
paradoxes of deontic logic revisited: A computer science
perspective (or: Should computer scientists be bothered
by the concerns of philosophers?). Technical Report UU-
CS-1994-38, Department of Information and Computing
Sciences, Utrecht University, 1994.

[4] J.-J. C. Meyer and R. J. Wieringa, editors.Deontic logic
in computer science: normative system specification.
John Wiley & Sons, Inc., New York, NY, USA, 1994.

[5] G. Pace, C. Prisacariu, and G. Schneider. Model Check-
ing Contracts –a case study. In5th International Sym-
posium on Automated Technology for Verification and
Analysis (ATVA’07), volume 4762 ofLecture Notes in
Computer Science, pages 82–97, Tokyo, Japan, October
2007. Springer.

[6] C. Prisacariu and G. Schneider. An Algebraic Structure
for the Action-Based Contract Language CL - theoretical
results. Technical Report 361, Department of Informat-
ics, University of Oslo, Oslo, Norway, July 2007.

[7] C. Prisacariu and G. Schneider. A Formal Language
for Electronic Contracts. In M. Bonsangue and E. B.
Johnsen, editors,9th IFIP International Conference on
Formal Methods for Open Object-Based Distributed Sys-
tems (FMOODS’07), volume 4468 ofLecture Notes in
Computer Science, pages 174–189, Paphos, Cyprus, June
2007. Springer.

[8] C. Prisacariu and G. Schneider. Towards a Formal
Definition of Electronic Contracts. Technical Report 348,
Department of Informatics, University of Oslo, Oslo,
Norway, January 2007.

[9] G. von Wright. Deontic logic.Mind, (60):1–15, 1951.

