
Evolutionary Algorithms for Definition Extraction

Claudia Borg
Dept. of I.C.S.

University of Malta
claudia.borg@um.edu.mt

Mike Rosner
Dept. of I.C.S.

University of Malta
mike.rosner@um.edu.mt

Gordon Pace
Dept. of Computer Science

University of Malta
gordon.pace@um.edu.mt

Abstract
Books and other text-based learning material
contain implicit information which can aid the
learner but which usually can only be accessed
through a semantic analysis of the text. Defini-
tions of new concepts appearing in the text are
one such instance. If extracted and presented
to the learner in form of a glossary, they can
provide an excellent reference for the study of
the main text. One way of extracting defini-
tions is by reading through the text and annotat-
ing definitions manually — a tedious and boring
job. In this paper, we explore the use of ma-
chine learning to extract definitions from non-
technical texts, reducing human expert input to
a minimum. We report on experiments we have
conducted on the use of genetic programming to
learn the typical linguistic forms of definitions
and a genetic algorithm to learn the relative im-
portance of these forms. Results are very posi-
tive, showing the feasibility of exploring further
the use of these techniques in definition extrac-
tion. The genetic program is able to learn similar
rules derived by a human linguistic expert, and
the genetic algorithm is able to rank candidate
definitions in an order of confidence.

Keywords

Definition Extraction, Genetic Algorithms, Genetic Program-

ming.

1 Introduction

Definitions provide the meaning of terms, giving in-
formation which could be useful in several scenarios.
In an eLearning context, definitions could be used by
a student to assimilate knowledge, and if collected in
a glossary, they enable the student to rapidly refer to
definitions of keywords and the context in which they
can be found. Unfortunately, identifying definitions
manually in a large text is a long and tedious job,
and should ideally be automated. In texts with strong
structuring (stylistic or otherwise), such as technical
or medical texts, the automatic identification of def-
initions is possible through the use of the structure
and possibly cue words. For instance, in most math-
ematical textbooks, definitions are explicitly marked
in the text, and usually follow a regular form. In less
structured texts, such as programming tutorials, iden-
tifying the sentences which are definitions can be much
more challenging, since they are typically expressed in
a linguistically freer form. In such cases, humans have

to comb through the whole text manually to tag defi-
nitional sentences.

One way of automating definition extraction is to
consult human linguistic experts to identify linguis-
tic forms definitions conform to, usually using either
lexical patterns or through specific keywords or cue-
phrases contained in the sentence. Once such rules
are identified, automatic tools can be applied to find
the sentences matching one or more of these forms.
This approach has been shown to work with varying
results. Technical texts fare better than non-technical
ones, where results are usually not of a satisfactory
level. Two issues which limit the success of these re-
sults are (i) the relative importance of the different
linguistic forms is difficult to assess by human experts,
and is thus usually ignored; and (ii) coming up with
effective linguistic forms which tread the fine line be-
tween accepting most of the actual definitions, but
not accepting non-definitions, requires time and ex-
pertise and can be extremely difficult. Since there
typically is a numeric imbalance between definitions
and non-definitions in a text, having a slightly over-
liberal rule can result in tens or hundreds of wrong pos-
itives (non-definitions proposed as definitions), which
is clearly undesirable. In the approach we propose, we
give a degree of importance (weight) to each linguistic
form. Through this technique, one could go further
than simple human-engineered linguistic forms — by
being able to rank the sentences by how probable the
system thinks they are actual definitions. The more a
sentence matches against the more important forms,
the higher the degree of confidence in its classification
as a definition.

In this paper, we explore the use of machine learning
techniques, in particular evolutionary algorithms, to
enable the learning of sentence classifiers, separating
definitions from non-definitions. We have used two
separate algorithms for two distinct tasks:

• Relative importance of linguistic forms: Given a
number of predetermined linguistic forms which
definitions may (or usually) conform to, we have
used a genetic algorithm to learn their relative
importance. Through this technique we enable a
more fine-grained filter to select definitions, tak-
ing into account multiple rules, but at the same
time assigning them different weights before per-
forming the final judgement. We thus benefit
from having a ranking mechanism which would
indicate a level of confidence in the classification
of the definitions. In a semi-automated scenario,
it would make the system more usable since a hu-
man expert would be presented with the best re-

sults first, and results are grouped by ‘quality’ of
the definition.

• Learning the linguistic forms: The previous tech-
nique assumes that we start off with linguistic
forms which are able to match definitions — a
task which would typically require human ex-
pert input. We incorporated genetic program-
ming techniques to learn such forms automatically
by generating different rules in the classification
task. Within such a setup it is possible to ex-
plore new linguistic structures and test their wor-
thiness automatically against the training data.
Rule which are found to be useful in classifying
definitions are kept and improved upon to evolve
to a better solution.

These two separate techniques are then combined to
provide us with a fully automated definition extraction
system by first identifying a number of linguistic forms
through the use of genetic programming, and then us-
ing the genetic algorithm to assign to each rule a de-
gree of importance. The resulting features and their
associated weights can then be used by a definition
extraction tool which will not only extract candidate
definitional sentences, but also rank them according to
a level of confidence. The results achieved when com-
bining these two techniques are very promising, and
encourage further investigation of these techniques in
the task of automatic definition extraction.

In section 2 we give a short overview of definition
extraction and the setup of our experiments. In sec-
tion 3 we describe the results of the genetic algorithm
experiment, while in section 4 we present the genetic
programming experiments and results achieved. In
section 5 we discuss how these two components can
be merged into one complete definition extractor, and
compare the results to other related work in this area
in section 6. We then conclude and discuss future di-
rections in section 7.

2 Definition Extraction

Rule-based approaches to definition extraction tend
to use a combination of linguistic information and cue
phrases to identify definitions. For instance, in [12, 14]
the corpora used are technical texts, where definitions
are more likely to be well-structured, and thus easier
to identify definitions. Other work attempts defini-
tion extraction from eLearning texts [17, 13] and the
Internet [6]. Non-technical texts tend to contain defi-
nitions which are ambiguous, uncertain or incomplete
compared to technical texts.

In our work, we focus on definition extraction from
non-technical eLearning English texts in the field of
ICT. The corpus consists of a collection of learning ob-
jects gathered as part of the LT4eL project [11] which
were collected from several tutors in different formats,
and standardised in XML format. It is generally recog-
nised that part-of-speech information, which can be
extracted automatically from natural language texts
is crucial to enable effective discrimination, and the
corpus is thus annotated with linguistic information,
using the Stanford part-of-speech tagger [15].

The corpus was manually annotated with defini-
tions, to be used as a training set for the definition
extraction task. Manually crafted grammars were cre-
ated in the project to extract definitions, however the
results were not satisfactory [1]. From observation it
was noted that the structure of definitions does not
always follow a regular genus et differentia model and
different styles of writing and definitions pose a ma-
jor challenge for the identification of definitions. The
solution adopted was to categorise the definitions into
different classes, and engineer definition recognisers for
each of the classes separately. This reduces the com-
plexity, by attempting to identify a grammar focusing
for each type of definition. The types of definitions
observed in the LT4eL texts were classified as follows:

1. Is-a: Definitions containing the verb ‘to be’ as a
connector. E.g.: ‘A joystick is a small lever used
mostly in computer games.’

2. Verb: Definitions containing other verbs as con-
nectors such as ‘means’, ‘is defined’ or ‘is referred
to as’. E.g.: ‘the ability to copy any text fragment
and to move it as a solid object anywhere within
a text, or to another text, usually referred to as
cut-and-paste.’

3. Punctuation: Definitions containing punctuation
features separating the term being defined and
the definition itself. E.g.: ‘hardware (the term
applied to computers and all the connecting de-
vices like scanners, telephones, and satellites that
are tools for information processing and commu-
nicating across the globe).’

Three further categories have been identified and
used in the LT4eL project, but were not considered
for our experiments due to the difficulty of applying
machine learning in those instances.

3 Definition Extracting using
Genetic Algorithms

Definition extraction is usually based on a set of
rules which would have been crafted by a human lin-
guistic expert. The rules would usually contain the
discriminating features between definitions and non-
definitions, and can be generic (in the form of Noun
Phrase · verb to be · Noun Phrase) or very spe-
cific part-of-speech sequences. Experts usually iden-
tify different rules, some of which may be overlapping
(that is, a sentence may match more than one rule).
Combining such rules can enable more effective defi-
nition extraction. At its simplest level, one can adopt
the policy which gives preference to sentences which
match more of the rules: a sentence matching five rules
would be preferred than a sentence matching two rules.
However not all rules are equally effective in identify-
ing definitions. Ideally one would want to assign a
weight to each rule indicating its relative importance.
The setting of these weights can be performed using
machine learning techniques.

3.1 Genetic Algorithms

A Genetic Algorithm (GA) [5, 4] is a search tech-
nique which emulates natural evolution, attempting
to search for an optimal solution to a problem by
mimicking natural selection. By simulating a popu-
lation of individuals (potential solutions) represented
as strings, GAs try to evolve better solutions by se-
lecting the best performing individuals (through the
use of a fitness function), allowing only the best in-
dividuals to survive into the next generation through
reproduction. This is done using two operations called
crossover and mutation. Crossover takes two individ-
uals (parents), splits them at a random point, and
switches them over, thus creating two new individuals
(children, offspring). Mutation takes a single individ-
ual and modifies it, usually in a random manner. The
fitness function measures the performance of each in-
dividual1, which is used by the GA to decide which
individuals should be selected for crossover and muta-
tion, and which individuals should be eliminated from
the population. This process mimics survival of the
fittest, with the better performing individuals being
given higher chances of reproduction than poorly per-
forming ones, and thus their winning characteristics
are passed on to future generations.

In our work, we have explored the use of a GA to
learn the weights to a predetermined set of linguistic
rules. These weights will represent the relative im-
portance of the respective rule in its effectiveness at
classifying definitions.

3.2 Combining Features

A feature is considered to be a test which, given a sen-
tence s, returns a boolean value stating whether a par-
ticular structure, word or linguistic object is present in
the sentence — essentially, characteristics that may be
present in sentences. These could range from render-
ing information (bold, italic), to the presence of key-
words, or part-of-speech sequences that could identify
the linguistic structure of a definition. So, if we take
the presence of a bold word to be a feature for defi-
nitional sentences, then a sentence containing a bold
word is more likely to be a definition than a sentence
which does not.

Given a vector of n basic features, f = 〈f1, . . . fn〉,
and numeric constants, α = 〈α1, . . . αn〉, one can de-
fine a compound feature combining them in a linear
manner:

F fα (s) =
n∑
i=1

αi × fi(s)

Given a sentence, a vector of features and their re-
spective weights, we can thus calculate a numeric value
of the sentence by combining the features accordingly.
One would also have to identify a threshold value τ
such that only sentences scoring higher than this value
would be tagged as definitions i.e. s is tagged as a def-
inition if and only if F fα (s) ≥ τ .

1 The fitness of an individual is the measure of how good this
candidate solution is at solving the problem being tackled.

3.3 Learning Weights

We have used a GA to identify a good set of weights
and the threshold value for a given set of features.
Each individual in the population of the genetic algo-
rithm is represented as the vector of numeric weights.
Crossover between individuals simply consists of split-
ting the vector of the two parents at a random posi-
tion, and joining the parts, thereby creating two new
individuals for the next generation.

What the GA learns is determined by the fitness
function, which, given an individual, returns a score of
how ‘good’ the individual is. We have used a corpus of
definitions and non-definitions to evaluate the perfor-
mance of each individual. The fitness function takes
an individual (vector of weights) and runs through the
whole corpus using the combined feature function and
calculates how many definitions are correctly classi-
fied, and how many are incorrectly tagged as non-
definitions. Similarly, we compute the values for the
non-definitional sentences. Through these figures we
are then able to extract precision, recall and f-measure.
We have run the GA using these different measures as
the fitness function.

The choice of threshold is obviously crucial to the
value returned by the fitness function. One option
was to set the threshold to a fixed value for the whole
population (say, at zero). However, it was noted that
given an individual one can actually compute an opti-
mal value for the threshold with respect to the corpus
using an efficient (linear) algorithm. Another option
was to include the threshold as part of the individual’s
chromosome. However, this would have serious impli-
cations on the effectiveness of the learning unless the
crossover function is defined in a more careful man-
ner, since during crossover one would mix-and-match
weights of individuals with different thresholds. Com-
bining two good individuals would typically result in
a non-effective one in this manner. We opted not to
explore this option.

Two experiments were run, one with a fixed thresh-
old value of zero, and another using optimal (individ-
ual specific) thresholds, with the latter achieving far
better results.

3.4 Experimental Results

The GA experiments focused on the ‘is-a’ cate-
gory, where we had 111 definitions and 21,122 non-
definitional sentences. Several experiments were car-
ried out, using different techniques within the algo-
rithm mechanics. The best selection algorithm was
SUS with sigma scaling [10]. Here we present a sum-
mary of the best and most interesting results of this
work.

During the set up of the GA, we used a simple set
of ten features which were hand-coded and inputted
into the GA for it to learn their relative importance.
Following is the set of features used:

1. contains the verb “to be”

2. has sequence “IS A” (“to be” followed by a deter-
miner)

3. has sequence “FW IS” (FW is a tag indicating
a foreign word - in the example “The process of
bringing up the operating system is called boot-
ing”, booting is tagged as an FW.)

4. has possessive pronoun (I, we, you, they, my, your,
it)

5. has punctuation mark in the middle of the sen-
tence (such as a hyphen or colon)

6. has a marked term (keyword)

7. has rendering (italic, bold)

8. has a chunk marked as an organisation

9. has a chunk marked as a person

10. has a chunk marked as a location

These features were purposely simplistic when com-
pared to the manually crafted rules in the LT4eL
project for definition extraction. This enabled us to
analyse the relative weights assigned and to be able
to allow more focus on the algorithmic aspects of the
GA. These features were used throughout all the ex-
periments discussed in this section.

Table 1: Results for best experiments

Method F-measure Precision Recall
Experiment 1 0.57 0.62 0.52
Experiment 1a 0.62 0.70 0.42
Experiment 1b 0.54 0.46 0.56
Experiment 2 0.57 0.64 0.50
Experiment 3 0.54 0.59 0.50

Table 1 presents the results achieved by the best per-
forming runs, indicating the f-measure, precision and
recall achieved by assigning the weights learnt to the
set of features. The best runs achieved an f-measure of
57%, with the runner-up achieving 54%. Since we used
f-measure as the basis of measuring the weights’ effec-
tiveness in classifying definitions, we were also able
to influence f-measure to favour precision or recall ac-
cording to the setting of the alpha value. Experiments
1a and 1b show the results for favouring precision and
recall respectively.

Using a small set of simple features, the GA
has managed to obtain positive results, especially
when comparing to the manually crafted grammars in
LT4eL. We have increased precision from 17% to 62%,
whilst maintain recall over 50%. Further improvement
would probably be achieved had we to include more
rules from the manually crafted grammar as part of
our set of features.

The possibility of influencing the learning of weights
to favour precision or recall is considered a positive fa-
cility in this experiment, since the end use of the def-
inition extraction tool could require different settings.
In a fully automatic system, precision might be given
more importance, whilst in a semi-automatic system,
recall is more important since a human expert will ver-
ify the correctness of the candidate sentences.

feature ::= simplefeature
| simplefeature & feature

simplefeature ::= lobj
| emptystring
| any
| simplefeature ?
| simplefeature *
| simplefeature . simplefeature
| simplefeature + simplefeature

Fig. 1: Specification of the representation of individ-
uals

4 Feature Extraction using Ge-
netic Programming

The main bottleneck of using the GA as discussed in
the previous section is that the linguistic rules have to
be identified by a human expert. From the LT4eL
experience it was clear that linguistic experts were
needed to identify complex rules which non-experts
would not have identified. The rules identified by ex-
perts are typically expressed as complex grammars or
regular expressions ranging over parts-of-speech. In
this section we present another experimental setup we
have used to explore the use of machine learning tech-
niques for the automated identification of linguistic
rules.

4.1 Linguistic Rules

Recall that linguistic rules are objects which given
a sentence, return a boolean value, depending on
whether or not the sentence matched the rule. One
way of expressing such rules is through the use of reg-
ular expressions, e.g. noun·is·a·noun. These regular
expressions would range over the grammar shown in
figure 4.1.

Note that the basic elements of the regular expres-
sion are simple linguistic objects (with no structure).
Note also that to enable more complex rules, we al-
low not only the usual regular expression operators
(optional inclusion, repetition, catenation and choice),
but also allow the conjunction of regular expressions at
the top most level (thus controlling the computational
complexity of matching the regular expression).

The framing of basic features as instances of this lan-
guage of regular expressions, enables us to formulate
the task of the learning algorithm as that of learning
an instance of this language (of regular expressions)
which is effective when used for definition extraction.

For the choice of linguistic objects, we chose to ei-
ther use specific part-of-speech tags such as NN (noun,
common, singular or mass) or to generalise these tags
into one class and refer to them as nouns.

4.2 Genetic Programming

Genetic programs (GP) are another form of evolution-
ary algorithms introduced by [8] whose aim is that of

automatically learning instances of a language, typ-
ically computer programs, automatically. The algo-
rithm is very similar to GAs in structure — it is a
search optimisation technique, exploring different pos-
sible solutions to a problem. Similarly to a GA, this
technique uses crossover and mutation to evolve new
individuals, and a fitness function to test the strength
of the individual. One of the main differences between
the two techniques is that unlike GAs, a GP uses tree
representation to represent the individual.

Several of the definition extraction tasks tend to
use rules made of part-of-speech information, which
is generally arrived to through linguistic expertise or
through observation of definitional sentences and their
linguistic structure. In the process of creating such
rules it is usually not very clear as how to best tweak
a rule for better performance. Thus, an experimental
setup which would create rules automatically and test
them upon an annotated corpus is desirable. When a
rule created is able to match correctly a sentence, it
is kept as a potentially good rule to use in a defini-
tion extraction tool. A GP is an ideal experiment for
this task as it facilitates the process of rule discovery
and tests their effectiveness through the evolutionary
process.

Since the evolutionary process is based on matching
sentences against the rules created, we have also used
f-measure as the fitness metric to determine whether a
rule (an individual) is a good possibility or not. Those
rules which have a higher f-measure will be kept by
the GP so as to explore similar possibilities.

4.3 Experimental Results

Experiments using the GP delved into the three cate-
gories identified in section 2, that is the is-a, verb and
punctuation categories. For each category, several ex-
periments were run, each of which resulting in different
rules (albeit at times quite similar). Experiments also
tested the inclusion of different linguistic objects by ei-
ther focusing on specific POS tags, or by generalising
the particular category, say to include all nouns. In
the case of the verb category, some of the experiments
focused on the POS tags, while others included cer-
tain words such as ‘known’, ‘define’ and similar words
typically found in definitions in this category.

Table 2 shows a summary of the best results
achieved in the different categories where the GP was
applied. The experiments were run with different pop-
ulation size ranging from 200 to 1,000 individuals.
Most of the experiments converged within 100 gen-
erations, and at times as early as 30 generations. The
selection of the individuals to survive to the next gen-
eration used elitism (which copies the best individuals
of the population into the next generation as is), and
selecting the remaining individuals for crossover using
the stochastic universal sampling algorithm [10]. Fur-
ther details about the experimental setup can be found
in [2].

The GP was able to learn at times rather simple
rules such as noun·is·a·noun. The rules learnt for
each category by the different experiments were usu-
ally similar in structure and content. However in cer-
tain runs the rules represented by the individuals gave
better results. In the is-a category, the average f-

Table 2: Summary of results
Category F-measure Precision Recall
Is-a 0.28 0.22 0.39
Verb 0.20 0.14 0.33
Punctuation 0.30 0.25 0.36

measure obtained was around 25%, with one run man-
aging to produce a slightly different rule achieving 28%
f-measure. In the verb category it was noticed using
part-of-speech categories was not sufficient, and that
the use of keywords, such as ‘know’, ‘define’, and ‘call’,
was necessary to achieve good results. In the punctu-
ation category we observed that results were achieved
easily primarily due to a smaller search space when
compared to the other categories.

5 Combining the Experiments

The two experiments described above were so far iso-
lated, each one with a particular purpose. The chal-
lenge towards which we worked is to have a fully auto-
mated definition extraction tool which is easily adapt-
able to different domains and which ranks candidate
definitions according to some level of confidence. In
this section we describe how these two separate exper-
iments were combined together towards a fully auto-
mated definition extraction tool. In figure 3 we see
the different phases of the definition extraction pro-
cess. Phase one is the creation of an annotated train-
ing set and is not dealt with in this work. Given an
annotated corpus with definitions, one can then move
onto phase two where the GP is applied to learn useful
simple features which can be used to distinguish defi-
nitions from non-definitions. In phase three the GA is
then used to learn weights for the rules learnt by the
GP. Using the rules and weights, one can incorporate
all this in a definition classification tool in phase four.
In this section we present the results achieved from
combining phase two and three together.

For the purpose of combining the two phases, we
used the best rules learnt by ten different GP exper-
iments in the is-a category. These individuals were
used by the GA to learn their respective weights. The
set up is shown in figure 2 where the final result is
a set of rules in the is-a category together with their
allocated weights indicating the level of effectiveness
each weight has. As shown in the previous section,
the rules the GP learnt without the application of the
weights resulted at best in f-measure being 28%. Once
weights were learnt and applied to the definition ex-
traction tool, this increased to 68% f-measure. This
improvement shows that learning weights is useful to
the classification task since it does matter which rule
is actually carrying out the classification of sentences.

Further analysis show that the f-measure is resulting
from a 100% precision and a 51% recall. This means
that by combining the rules learnt and their associ-
ated weights, we succeeded in classifying just over half
of the annotated definitions, without classifying any
incorrect definitions. There are several factors behind
these results:

Fig. 2: Combining the two experiments

1. This experiment was carried out on only one cor-
pus, so the rules learnt together with their re-
spective weights, were specific to the corpus used.
Achieving such a good result is only indicative
that as in any machine learning process, the two
algorithms were able to learn rules and weights
specific to our corpus.

2. The recall of 51% represents definitions for which
the genetic program did not learn rules for. Since
these algorithms are searching for solutions in an
automatic manner without expert feedback, it is
the case that not all possible rules are explored.
This can be tackled by including rules from more
experiments or by having direct feedback from a
linguistic expert (say, injection of good humanly
crafted rules into the population).

Notwithstanding the conditions under which they
were achieved, the results are very promising.

6 Discussion and Related Work

Although the results achieved so far are promising and
encourage further investigation of these techniques, it
is difficult to provide a fair and just comparison to
other techniques. One of the main reasons is that an
evaluation using an unseen corpus is required to have a
more realistic view of the results achieved using these
techniques. To our knowledge there is no other work
in definition extraction using evolutionary algorithms
to which our results can be directly compared to.

However, there are various attempts at definition ex-
traction using different techniques. DEFINDER [12]
is a rule-based system which extracts definitions from
technical medical texts so that these can later be used
in a dictionary. The rules are primarily based on cue-
phrases such as “is called a”, with the initial set of can-
didate sentences being filtered out through the use of
POS rules and noun phrase chunking. They manage to
obtain a precision of 87% and a recall of 74%. Defini-
tion extraction is also considered to extract the seman-
tic relations present in definitions. In [9], they apply
lexico-syntactic patterns in addition to cue phrases,
focusing on hypernym and synonym relations in sen-
tences. They obtain 66% precision and 36% recall.

Work carried out in [14], applies valency frames to
capture definitional sentences achieving an average of
34% precision and 70% recall across the rules created.
A German corpus consisting of legal decisions is used

Learning Objects
Phase 1Phase 1

Phase 2Phase 2Linguistic
Features

Phase 3Phase 3

Definitional
Tagging

Annotated Training Set

Linguistic
Analysis

Genetic Program

Manually
Crafted Rules

Phase 4Phase 4

Final Glossary

Learning Objects

Genetic Algorithm

Definition
Checking

Definition Classifier

GP-discovered
rules/features

Weights and
Features

Fig. 3: Phases of definition extraction

in [16] to extract definitions. They analyse the struc-
ture of definitions in this domain, and observe that
the German word dann can be used as a signal word
indicating that a sentence is a definition. There is no
equivalent term in English. The rules are crafted man-
ually through observation, and achieve an average of
46% precision. When only the most effective rules are
used, precision increases to over 70%, however recall
is not discussed since the corpus is not annotated with
definitions. Extraction of definitions from eLearning
texts is attempted for the Slavic group of languages in
[13], using noun phrase chunking and phrase structure
as the potential identifying features in definitions. The
best results are achieved for the Czech language with
precision at 22% and recall at 46%.

Research in general seems to point out to the need
of going beyond rule-based techniques, and trying
out machine learning to improve definition extraction.
Definitions extracted from the Dutch Wikipedia from

medical articles in [3] first use a rule-based approach
using cue-phrases, but further improve their extraction
process by using Naive Bayes, maximum entropy and
SVNs. As part of their feature set they include sen-
tence positioning, a feature which cannot be applied
to other types of corpora. The best result is from
applying maximum entropy, achieving 92% accuracy.
Similar experiments by [17] on an eLearning corpus
obtain 88% accuracy, with the difference in result be-
ing due to the type and structure of the corpus used.
Similarly [7] obtain an accuracy of 85% using a Bal-
anced Random Forest on an eLearning corpus. These
techniques all share the similarity in having improved
considerably the results of manually crafted grammars
when applying machine learning techniques.

7 Future Directions

In this paper, we have presented a methodology for the
use of evolutionary algorithms to create sentence dis-
criminators for definition extraction. We have shown
how GPs can be used to learn effective linguistic rules,
which can then be combined together using weights
learnt through the use of a GA. The overall system
can, with very little human input, automatically iden-
tify definitions in non-technical texts in a very effec-
tive manner. Using our approach we have managed to
learn rules similar to the manually crafted ones by the
human expert in the LT4eL project, and further asso-
ciate them with weights to identify the definitions in
non-technical texts — all performed in an automated
fashion. One of the major strong points of the ap-
proach is that the (expensive) learning phases is per-
formed once, and the resulting definition discrimina-
tor is very efficient, making it viable to be included in
other applications.

The final experiment of using both techniques for
definition extraction gave surprising results, managing
to identify only definitions, achieving a 100% precision,
albeit having identified rules to capture only half of the
definitional set of sentences. This result is certainly
encouraging when considering that the process is fully
automated.

There are various directions we plan to explore in
the future. Our experiments would need to be evalu-
ated further, experimenting with other corpora in dif-
ferent domains. For instance, medical texts contain
several terms which a part-of-speech tagger might not
recognise and would tag as ‘foreign word’. Thus the
rules learnt for our eLearning corpus might not neces-
sarily apply for a medical corpus.

We also intend to evaluate the definition extraction
tool over an unseen corpus. Such an evaluation might
show that the rules learnt by the GP are not generic
enough to cover unseen definitions, a result which is
common in such machine learning techniques. It would
be ideal to have some form of feedback loop from an ex-
pert to the learning algorithm to integrate new knowl-
edge gained over unseen corpora.

We plan to explore and assess the use of weights
to go beyond a crisp discriminator, and interpret the
results as a fuzzy discriminator, associating a degree
of confidence with each sentence, thus enabling us to
rank definitions according to how sure the system is

that it is a definition. This is crucial if the definitions
discovered are to be vetted by a human operator.

Finally, we plan to extend the use of GP to learn
rules in an iterative manner. After each iteration of
the experiment, the sentences for which it learnt rules
are removed from the training corpus, and the experi-
ment repeated. In this way we would be reducing the
search space, and forcing the GP to learn new rules. It
might be the case that the GP does not learn certain
rules as they would classify to many non-definitions to
simply capture few definitions. However, by carrying
out such an experiment we might be able to learn rules
which cover the search space better, and at the same
time identify those definitions for which it is difficult
to define rules which provide acceptable results.

References
[1] C. Borg. Discovering grammar rules for Automatic Extraction

of Definitions. In Doctoral Consortium at the Eurolan Sum-
mer School 2007, Iasi, Romania., pages 61–68, 2007.

[2] C. Borg. Automatic Definition Extraction Using Evolutionary
Algorithms. Master’s thesis, University of Malta, 2009.

[3] I. Fahmi and G. Bouma. Learning to Identify Definitions us-
ing Syntactic Features. In Workshop of Learning Structured
Information in Natural Language Applications, EACL, Italy,
2006.

[4] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, Reading, MA, 1989.

[5] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[6] J. L. Klavans, S. Popper, and R. Passonneau. Tackling the
internet glossary glut: Automatic extraction and evaluation
of genus phrases. In SIGIR’03 Workshop on Semantic Web,
2003.

[7] L. Kobyliński and A. Przepiórkowski. Definition Extraction
with Balanced Random Forests. In proceedings of GoTAL,
2008.

[8] J. R. Koza. Genetic Programming: On the Programming of
Computers by means of Natural Selection. MIT Press, Cam-
bridge, MA, 1992.

[9] V. Malaisé, P. Zweigenbaum, and B. Bachimont. Detecting
semantic relations between terms in definitions. In COLING
CompuTerm 2004: 3rd International Workshop on Compu-
tational Terminology, pages 55–62, 2004.

[10] M. Mitchell. An Introduction to Genetic Algorithms. MIT
Press, 1998.

[11] P. Monachesi, L. Lemnitzer, and K. Simov. Language Technol-
ogy for eLearning. In First European Conference on Technol-
ogy Enhanced Learning, 2007.

[12] S. Muresan and J. L. Klavans. A method for automatically
building and evaluating dictionary resources. In Proceedings
of the Language Resources and Evaluation Conference, 2002.

[13] A. Przepiórkowski, L. Degórski, M. Spousta, K. Simov,
P. Osenova, L. Lemnitzer, V. Kubon, and B. Wójtowicz. To-
wards the automatic extraction of definitions in Slavic. In Pro-
ceedings of the BSNLP workshop at ACL, 2007.

[14] A. Storrer and S. Wellinghoff. Automated detection and anno-
tation of term definitions in german text corpora. In Language
Resources and Evaluation Conference, 2006.

[15] K. Toutanova and C. D. Manning. Enriching the Knowl-
edge Sources Used in a Maximum Entropy Part-of-Speech Tag-
ger. In Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large Corpora
(EMNLP/VLC-2000), Hong Kong, 2000.

[16] S. Walter and M. Pinkal. Automatic Extraction of Definitions
from German Court Decisions. In Workshop on Information
Extraction Beyond The Document, pages 20–28, 2006.

[17] E. Westerhout and P. Monachesi. Extracting of Dutch Defini-
tory Contexts for elearning purposes. In CLIN, 2007.

