
Runtime Verification of Ethereum Smart Contracts
Joshua Ellul∗, Gordon Pace†

∗†Centre for Distributed Ledger Technologies, University of Malta, Malta
Department of Computer Science, University of Malta, Malta

∗joshua.ellul@um.edu.mt, †gordon.pace@um.edu.mt

Abstract—The notion of smart contracts in distributed ledger
systems have been hailed as a safe way of enforcing contracts
between participating parties. However, unlike legal contracts,
which talk about ideal behaviour and consequences of not adher-
ing to such behaviour, smart contracts are by their very nature
executable code, giving explicit instructions on how to achieve
compliance. Executable specification languages, particularly Tur-
ing complete ones, are notoriously known for the difficulty of
ensuring correctness, and recent incidents which led to huge
financial losses due to bugs in smart contracts, have highlighted
this issue. In this paper we show how standard techniques from
runtime verification can be used in the domain of smart contracts,
including a novel stake-based instrumentation technique which
ensures that the violating party provides insurance for correct
behaviour. The techniques we describe have been partially
implemented in a proof-of-concept tool CONTRACTLARVA, which
we discuss in this paper.

Index Terms—Distributed ledger technology, Smart contracts,
Blockchain, Runtime verification.

I. INTRODUCTION

Blockchain technology is changing the way in which com-
puter systems can regulate the interaction between real-world
parties in a variety of ways. In particular the notion of
smart contracts, effectively executable transactions enforced
implicitly by certain blockchain architectures themselves, have
opened opportunities before impossible without the participa-
tion of trusted central authorities or resource managers. The
term contract has been overloaded, from legal contracts which
identify ideal modes of behaviour as agreed between parties
(but which may not be adhered to), to programming language
contracts which support or enforce specification of expected
behaviour of parts of a system (e.g. pre- post-conditions in
Eiffel [Mey98] and behavioural interfaces [HLL+12]). Smart
contracts have added yet another use of this term, to refer to
actual executable code which is agreed upon by the partici-
pating parties, and which can be executed. Effectively, smart
contracts are executable specifications of the way state will
change on the blockchain.

Whether specifications should be executable or not has long
been debated in computer science (see [Fuc92] vs. [HJ89]).
However, what there is agreement upon, is that an executable
specification requires, out of necessity, a description of how to
achieve a desired state as opposed to simply describing what
that state should look like — and explaining how to achieve
something is more complex, and leaves more room for error
than describing what the behaviour should look like.

Thus, a legal contract may specify that “The service
provider is prohibited from keeping records pertaining to the

1) The casino owner may deposit or withdraw money from the casino’s bank, with
the bank’s balance never falling below zero.

2) As long as no game is in progress, the owner of the casino may make available
a new game by tossing a coin and hiding its outcome. The owner must also set
a participation cost of their choice for the game.

3) Clauses 1 and 2 are constrained in that as long as a game is in progress, the
bank balance may never be less than the sum of the participation cost of the
game and its win-out.

4) The win-out for a game is set to be 80% of the participating cost.
5) If a game is available, any user may choose to pay the participation fee and

guess the outcome of a coin toss to join the game. The game will no longer be
available.

6) The owner of the casino is obliged to reveal the coin tossed upon creating the
game within half an hour of a player participating. If the coin matches the guess,
the player’s participation fee and the game win-out is to be paid to the player
from the casino’s bank. Either way, the game then terminates.

7) If the casino owner does not adhere to clause 6, the player has the right to
declare a default win and be paid the participation fee and the game win-out
from the casino’s bank. At this stage, the game also terminates.

8) No player should be allowed to play more than three games in succession.

Fig. 1. A legal contract regulating a coin-tossing casino

user’s behaviour for longer than 1 month,” but a system
designed to satisfy this contractual agreement may do so
in a number of possible ways e.g. deleting a user’s records
immediately, deleting all records on the first day of every
month, or deleting records only just before they are one month
old. For instance, consider the natural language agreement
explaining how a casino owner and players will interact shown
in Fig. 1, and the function signatures of a smart contract which
concretely implements such a casino, follows:

contract Casino {
private uint bankBalance = 0;

function Casino () public { . . . }

function depositToBank () public { . . . }
function withdrawFromBank(uint _amount) public { . . . }

function createGame(. . .) public { . . . }

function placeBet(. . .) public { . . . }
function resolveBet(. . .) public { . . . }
function timeoutBet(. . .) public { . . . }

}

Consider clause 3 of the legal contract: “as long as a game
is in progress, the bank balance may never be less than the
sum of the participation cost of the game and its win-out.”
The smart contract may implement this in a number of ways,
for instance by stopping the casino owner from withdrawing
too much money when a game is in progress, or by altogether
stopping the owner from withdrawing money as long as a game
is in progress. From the player’s perspective, the manner in
which this is achieved is not important as long as the code
really ensures that there will remain enough money to pay



out in case of a player win. Ideally, the correctness of smart
contracts is verified statically at compile time, but using auto-
mated static analysis techniques to prove general properties
of smart contracts has had limited success and until static
analysis techniques and tooling for smart contracts develops
to provide a means of resolving application specific potential
bugs at compile time, runtime verification can provide an
interim solution.

This brings to the front one important issue with smart
contracts: indeed, smart contracts do exactly what they say
they do, but that might not be what was thought the contract
would do. Especially as smart contracts grow in complexity,
this issue becomes more important. Whether a contract is
written by one of the parties participating in a transaction,
or by an outsider, participating parties may rightfully fear that
there might be obscure ways in which others can exploit the
contract to their benefit. There have been well-known instances
of such smart contracts, for instance, on Ethereum [ABC17].

The problem boils down to one of program verification.
In order to address such concerns, one would need a more
abstract, less exploitable way in which one specifies what the
smart contract will or will not do — effectively writing a
(non-executable) specification. For instance, one might want to
ensure that, halfway through a multi-step transfer of resources,
none of the parties may initiate another transfer from within
the same contract (thus causing the first one to fail). Another
example can be that of a smart contract which regulates a
gambling scenario: the party playing the casino’s role cannot
reduce the winning stakes after a player has placed a bet.
Against such a specification, one can use testing to try to
identify potential bugs (or workarounds) or use formal static
analysis techniques. The former approach suffers from the fact
that it lacks complete coverage (there may lie undiscovered
bugs in execution paths which were not explored) while the
latter typically fails to scale up as smart contracts increase in
size and complexity.

In this paper, we propose to use techniques from runtime
verification [LS09] to ensure that all execution paths followed
at runtime satisfy the required specification, embodied in a
prototype tool we have built, namely CONTRACTLARVA1.
One of the challenges lies in what to do if a violation
does occur. In our approach we support different ways to
react to violations. At a simplest level, one can block the
smart contract from executing further (other than emptying its
content as specified in the property). However, we also support
an approach based on a stake-placing strategy in which any
party that can potentially violate the contract, pays in a stake
before running the contract, which will be given to aggrieved
parties in case of a violation, but returned to the original owner
if the contract terminates without violations.

This proposed violation resolution procedure can be applied
in a variety of settings, from when the developer of the
contract is one of the parties, and thus the other parties may

1The name is inspired due to the automaton-based approach adopted as
used in Larva [CPS09], a runtime verification tool.

Fig. 2. Workflow using CONTRACTLARVA

request guarantees about their behaviour (possibly through a
negotiation phase), to when the developer may be a paid third
party, who may be asked to guarantee certain behaviour of the
contract.

II. A FRAMEWORK FOR SAFE SMART CONTRACTS

In the runtime verification framework we are adopting (see
Fig. 2), we enable the combination of a smart contract and
its specification. These are automatically transformed into a
safe contract which behaves just like the original one but,
in addition, can identify when the specification is violated
and trigger remedial behaviour. The framework allows for dis-
abling a smart contract upon the identification of a violation,
but it also takes advantage of the application domain, that of
smart contracts, to provide stake-based correctness guarantees,
in which a party is prepared to provide insurance that the
given contract satisfies a particular property. If the property is
violated, the violating party will pay the aggrieved party the
agreed upon insurance, ensured as part of the automatically
generated safe contract, all done in a decentralised manner.

The basic requirements of our framework are a decentralised
resource management system and smart contracts which can
be written in a language expressive enough to match a trace
to a given specification. A proof-of-concept version of the
framework has been implemented for Ethereum, transform-
ing smart contracts written in Solidity into safe ones. The
Turing completeness of Ethereum smart contracts allows the
implementation of a compliance engine which uses Ether for
guarantees.

A. Runtime Violation Reparation

Given that in runtime verification, violations of a property
are only discovered at runtime, what should be done (and
indeed what can be done) is debatable. Various strategies
have been proposed and adopted in the literature, ranging
from simply logging the violation or stopping the system
from advancing further, to more proactive approaches such
as enforcing behaviour [Fal10] or compensating for the unex-
pected behaviour. [CP14]. In general, however, most runtime
verification systems simply allow the specification engineer to
specify code which will be executed upon violation.

In the context of contracts, however, the particular domain
is more specific than that of general computer systems. Firstly,
we have the notion of parties participating in a contract. This
means that many properties can be associated with (i) a party
who can be held responsible for its violation; and (ii) a party
(or multiple ones) which can be identified as the aggrieved



party in case of a violation. In addition, contracts typically
identify reparatory behaviour which will be enforced in case
of non-compliance [PS09].

In the case of smart contracts, we lie somewhere in between
the two domains. We have both executable code and a contract
over behaviour which is enforced, but with no means of
enforcing external behaviour as can be done in legal contracts.
For this reason, in our approach we support violation handling
by allowing the parties to specify reparation actions written as
code as part of the specification given to CONTRACTLARVA.
However, we have further developed a contract design pattern
which can be automatically engineered to allow parties to
place stakes as a guarantee in the case of contract property
violation.

Using our approach, contracts can be extended to offer
monetary reparation in case of violation. By associating a
contract property with (i) the party taking responsibility in case
of a violation; (ii) the aggrieved party or parties in case of a
violation; and (iii) the amount placed as a guarantee against
violation, our tool automatically weaves code into the contract
to ensure for each property that (i) the responsible party must
initially pay the stake corresponding to the reparation; (ii) if
the property is violated, then the aggrieved party receives the
reparation stake; and (iii) if the contract will be destroyed
without having violated the property, then the responsible party
gets back his stake.

The approach can be used even when the specification
includes constraints which may not be enforced by the smart
contract, but ones which the parties guarantee to each other.
For instance, a smart contract may allow to increase a wager
any number of times, but one of the parties is willing to
guarantee that she will not change the wager from her end
more than three times, with a payment penalty in case she
does not stick to this constraint. Interestingly, this allows for
mutual guarantees over a single smart contract e.g. one party
promising to not to change the wager more than three times,
while the other guarantees not to wager more than a certain
amount. This is more akin to a legal contract in which the
parties may violate the constraints, but will have to pay a
penalty if they do so.

B. Contract Properties

In order to specify properties, we adopt an automaton-
based approach, effectively a subset of the DATE (Dynamic
Automata with Timers and Events) as used in the runtime
verification tool Larva [CPS09], but without timers.

Such specifications monitor for events2 over the contract and
enable the specification of event traces which are not desirable.
The choice of which events are monitorable greatly influences
the overheads induced (for example, capturing variable change
events can be costly if the variable is frequently updated), but
also affects the expressiveness of the specification language.
In CONTRACTLARVA, we capture two types of events: (i)

2The choice of the term event is unfortunately overloaded with the notion
of events in Solidity. In this paper, the use of the term is limited to the notion
of event triggers as used in DATEs unless explicitly otherwise noted.

Fig. 3. Contract specification examples (a) a betting table may not be closed
when there is a placed wager which has not been resolved; (b) generalisation
of the previous specification to allow for multiple simultaneous wages to be
placed on the table.

control-flow events corresponding to entry and exit points of
functions defined in contracts, written f↓ and f↑ to refer to the
entry and exit point of function f respectively; and (ii) data-
flow events corresponding to changes in values of variables,
written as v@e to denote the event when variable v is changed
and expression e (which can also refer to the previous value of
v as←−v ) holds e.g. winout@(winout <

←−−−−
winout) identifies points

in the execution of the contract when the win-out amount is
decreased.

At their most basic level, our specifications will be ex-
pressed as (deterministic) automata, listening to contract
events. States annotated with a cross denote that a violation
has occurred. For instance, consider a smart contract which
allows for its initiator to open the gambling table (openTable),
on which other users may place a wager (placeWager), and
then resolve it (resolveWager) any number of times. The table
creator may close down a table (closeTable) as long as it has no
unresolved wagers. The automaton shown in Fig. 3(a) ensures
that a violation is identified if the table is closed when a wager
has been placed but not resolved.

The automata used are, however, symbolic automata —
in that they may use and manipulate variables. Transitions
are annotated by a triple: e | c 7→ a, where e is the event
which will trigger the transition, c is a condition over the state
of the contract (and additional contract property variables)
determining whether the transition is to be taken, and finally
a is an executable action (code) which will be executed if the
transition is taken. Fig. 3(b) is a generalisation of the previous
property, to handle the case when multiple wagers may be
simultaneously placed and resolved on the same table. The
actions typically impact just a number of variables local to
the monitors (i.e. not the state of the system itself), although
in some cases, however, specifically in the case of a property
violation, one may choose to change the system state in order
to make up for violated invariants.

For the formal semantics of this notation, the interested
reader is referred to [CPS09].

C. Instrumenting the Monitors

One consideration in the development of a runtime verifi-
cation tool is that of how the monitors will be instrumented.



Although the consideration is internal in that it is invisible
to the user, the choice of instrumentation policy can have a
direct affect on performance. We have identified two main
approaches which can be used to instrument monitors in a
smart contract setting:

a) Monitoring as a separate contract: One way of in-
strumenting the monitor is to translate the specification into
a separate smart contract, which is sent the relevant DATE
event triggers from the monitored contract. The monitoring
smart contract provides all the functionality to keep track
of the state of the DATE and updating it upon receiving a
DATE event from the original contract. This approach allows
the monitoring of multiple smart contracts against a common
specification, with the monitor effectively acting as an or-
chestrator. The major challenge is that the separate monitor
does not necessarily have access to the state of the original
smart contract, and thus, information about the condition on
a transition has to be passed with the event trigger itself, and
actions may have to trigger functions in the original contract.

b) Inlined monitors: Another way of instrumenting the
monitor, is to instrument the code directly within the moni-
tored smart contract, adding functions implementing the logic
required to manage the configuration of the DATE within the
monitored smart contract itself. This ensures that the monitor
has full access to the local state, simplifying the logic imple-
menting the semantics of DATEs. An underlying assumption
with this approach is that the specification sees the smart
contract as a monolithic, stand-alone one, and specifications
do not span over the behaviour of different contracts.

In the current version of CONTRACTLARVA, we have
adopted the latter approach. Solidity source code of the smart
contract is parsed, to which monitoring logic is added. Code
is added to follow the logic of a DATE by implementing an
encoding of the configuration of the DATE, and providing
a function registerEvent to update the configuration upon
receiving a particular event. Solidity modifiers are used to
instrument actual invocations of this function in the main code
of the original smart contract. In order to deal with data flow
events, the contract is updated such that all variables which
appear in a v@e event are updated in order to enforce the
use of a setter function. Using this approach, v@e events
correspond to interception of calls to the setter function.

Upon reaching a violation or accepting state, action is
taken, depending on the violating-handling strategy adopted.
CONTRACTLARVA currently provides three violation-handling
strategies: (i) stop-upon-violation, which disables smart con-
tract behaviour once a violation is discovered; (ii) insurance-
against-violation, which adopts an escrow approach, initially
requires the responsible party to transfer into the contract
an amount specified within the specification, transferring it
back upon reaching an acceptance state but transferring it to
the aggrieved party if a violation is detected and blocking
all further behaviour; (iii) multiple-insurance-against-violation
acts just as in the previous case, but allows for the insurance
stake to be paid once again to re-enable the smart contract
after a violation. To ensure full flexibility, in all cases, we let

Fig. 4. Property which should be satisfied by the casino contract

payout from the contract upon violation to be managed via
events in the DATEs.

It is worth noting that the code generated is a direct imple-
mentation of the operational semantics of the subset of DATEs
used in the tool, thus ensuring that the verification algorithm
is correct. The lack of formal semantics for Solidity impede,
however, proving the correctness of the implementation of this
algorithm.

III. ILLUSTRATING THE FRAMEWORK

To illustrate the use of runtime verification on a smart
contract, we consider a smart contract for gambling on a coin
toss. The party setting up the contract takes the role of the
casino, and the smart contract allows them to manage their
reserves which will be used to pay out winners — allowing the
casino to add and withdraw payment from the pot. The casino
can also set up a game by sending an encrypted version of the
coin result (encoded by hashing an odd nonce to denote heads,
or an even one to denote tails) which a player may guess.

Once a game is set up, any other party may bet by depositing
an amount (which may not exceed the casino’s pot) and a
guess. The casino can then decide the outcome of the bet by
sending the original number to be verified against the guess.
The player may request a default win if the casino does not
deposit the original number within a specified time limit. The
casino may not initiate more than one game at a time, and only
one player can participate in a game. Throughout the process,
the casino may always deposit money into the pot, but may
only withdraw from it if there is no unresolved player bet.

Consider a specification which says that: As long as a casino
contract is active, the casino party may not withdraw from the
pot from the moment a player has placed a bet till when it is
resolved. This can be encoded as a DATE as shown in Fig. 4.

In order to show how monitoring can help, our imple-
mentation of depositing to the casino pot does not check
for potential overflow. Furthermore, the property is tagged to
use one-off stake-based violation handling, with the insurance
provider being the party representing the casino (who would
have invoked the constructor), and the aggrieved party in
case of a violation being the currently active player. Using
CONTRACTLARVA with the smart contract and the Casino
smart contract, we get an new SafeCasino smart contract with
the specification woven into the original code.

SafeCasino is almost identical to the original Casino except
that: (i) the SafeContract starts up the safe contract in a
state awaiting the insurance stake to be paid, until which all
functionality is disabled; (ii) a payStake function is added
to allow the owner (the creator of SafeContract) to pay the
required stake and enable the rest of the smart contract; (iii) the



current state of the property DATE is encoded in SafeCasino,
and functions are added to initialise the state, and to update
it when an event is received; (iv) functions to handle the
situation when the property is satisfied (when an acceptance
state is reached, and the stake is paid back to its owner),
or a violation is identified (when a bad state is reached, the
stake is paid out to the player and all functions in the smart
contract are disabled); (v) a setter for variable pot (since it is
the only variable changes over which may trigger the property
transitions) to ensure that any update to the variable can trigger
monitoring; (vi) modifiers are created for all functions to
ensure that (a) the stake has been paid before proceeding,
and (b) to trigger any transitions. For example, a modifier
for placeBet is created, requiring the monitoring mode to be
active and a call is made to follow transitions whenever the
function is called, and before it is executed. This modifier is
added as the first one to the placeBet function:

modifier larva_aux_modifier_placeBet() {
require (larva_mode == LarvaMode.ACTIVE);
larva_DATE_transition(0);
_;

}
function placeBet()
larva_aux_modifier_placeBet . . .

Although the function withdrawFromPot checks the state of
the smart contract and does not allow for withdrawal during
a bet, we injected a bug in depositToPot (which the casino
can use to pay into the pot, and which may be invoked at
any time) by not checking for potential overflow. This may
lead to a payment into the pot and resulting in an overflow,
which will inadvertently decrease the pot. SafeContract will
immediately identify this violation, pay the player the stake
as compensation, and disable the contract. Furthermore, we
can specify the violation state to return the original bet to the
player and the rest to the casino.

IV. EVALUATING THE FRAMEWORK

Evaluating the overheads of a runtime verification tool is
very domain dependent. In the case of smart contracts, the
major metric is that of increased gas consumption due to
the additional monitoring code — a function of code size,
memory and execution time. Objective evaluation of a tool’s
performance is furthermore challenging since these depend
on the events and properties being monitored. For instance,
low-level properties, typically about events happening with
high-density result in higher overheads than business-level
properties which work on sparse events. Similarly, properties
which have a simple state to keep track of (e.g. pure control-
flow properties such as ‘the contract cannot be initialised more
than once’) yield lower overheads than ones which require a
complex monitoring state (e.g. a property which may require
keeping track of the users of a smart contract).

We have performed initial experiments with a real-life
smart contract, measuring the impact of monitoring on gas
consumption. We have used the Parity Multisig Wallet smart
contract [Tec17], looking at version 1.5 of the contract, which

included a vulnerability which led to the loss of 30 million
US dollars. It is worth noting that the smart contract allows
for multiple wallet owners (up to a maximum number), with
a specific number of required agreements from the owners to
allow a transfer from the wallet.

We have added two types of properties: (i) simple state
properties which use only the explicit state of the DEAs
to keep track of the runtime behaviour (e.g. a wallet may
not be initialised more than once); and (ii) additional state
properties, which require additional monitoring data structures
and code to keep track of the monitoring state through the use
of the conditions and actions on DEA transitions (e.g. the
number of required agreements may never exceed the number
of owners of a wallet3). Based on these properties, we have
made a number of observations: (i) Initialisation is, by far,
where the major overhead appears — the increased size of the
smart contract and the initialisation costs result in a tenfold
execution cost (1100% gas consumption overhead4); (ii) Calls
to the smart contract which are not involved in the properties
yield minimal overhead (< 1% overhead); (iii) Calls which
affect only simple-state or stateless properties result in low
overheads (< 5% overhead); (iv) Calls which affect a complex
state obviously depend on the computation required, but can
be substantially higher — for instance, keeping track of the
owners of a wallet (i.e. duplicating part of the functionality of
the underlying smart contract) yielded 20% overhead. Though
performance penalties are introduced (much of which occur
at deployment time), we believe that the overall run-time
overheads justify the protection gained against potential losses
(as seen by infamous bugs can run into the millions).

The initial cost may seem over the top, but one has to keep
in mind that the contract we are monitoring is a relatively
small one (1k LOC, including comments), and thus, the code
and state added for monitoring can be proportionately high.
The high initial overheads result in the monitoring memory
requirements and increase in program size, and are partly
due to our choice to use DEAs as a specification language,
since much of the memory overheads are statically sized and
created upon initialisation. Since this is a one-off cost, and
dealt with by the creator of the contract (e.g. the person
offering a service), we believe that this is a reasonable choice
especially since it avoids extra overheads for others using the
contract, and is thus not necessarily a show-stopper. The low
overheads for simple-state properties indicates that runtime
verification of smart contracts can be viable in practice. On the
other hand, one has to be careful of additional symbolic state

3To check this property we keep track of the owners of a wallet, requiring
additional data and code. We could have also chosen to trust the underlying
contract which already keeps track of this, but (i) it is safer to have a monitor
with possibly similar logic (but simpler since it keeps track for the sole
purpose of verification); and (ii) for some properties, we may not have the
luxury of reusing the system state.

4Storage on the blockchain is accepted to be one of the most costly
operations. Given the relatively small size of the original contract, the
monitoring code and memory requirements is substantial, which explains
the large overheads for this use case. However, note that (i) this does not
grow proportionately as the smart contract grows; and (ii) this one-off cost is
amortized over the lifetime of the contract thus making it less of an issue.



which can increase overheads substantially. One advantage of
our notation, as borrowed from the runtime verification tool
Larva [CPS09], is that the dividing line between what can be
efficiently monitored and what can result in more substantial
overheads is explicit in the specification notation. We are
currently running additional use cases to evaluate the use of
CONTRACTLARVA in a more thorough manner.

V. RELATED WORK

Despite the extensive literature on runtime verification of
computer systems and the use of contract logics for monitoring
compliance, there are currently no tools to enable runtime ver-
ification of smart contracts. The closest work in the literature
uses runtime verification to generate smart contracts which
monitor behaviour. For instance, for there is recent work to
do this to support business process monitoring [GPDW17],
[WXR+16], [PSHW17], where the recurring theme being
that of introducing a decentralised monitoring of independent
parties by using blockchains to shift trust away from a single
central trusted participant orchestrating the monitoring. Both
[GPDW17] and [WXR+16] use smart contracts to encode the
monitoring of the business processes, while [PSHW17] use
the Bitcoin blockchain encoding the monitoring in terms of
resource flow instead, due to the lack of smart contracts. In
contrast to our work, these works use blockchain and smart
contracts as an enabling and support technology for monitor-
ing, rather than use monitoring to support smart contracts.
There is also some work [BDLF+16] using formal static
analysis (as opposed to dynamic analysis) to analyse contracts
written in a subset of the Solidity language, but the approach
fails to scale up to many contracts.

Much of the work that uses contracts (in the wider sense
of the word) for monitoring (e.g. [HKZ12], [KPS08], [GR10])
uses contracts as specifications. The inbuilt nature of compli-
ance within smart contracts, which can be seen as a way of
regulating behaviour, but in fact do so by enforcing behaviour,
simply pushes the question of compliance one step away. The
Turing completeness of smart contracts comes at a price —
their correctness is uncertain. The most similar to our approach
is work such as [FPS09] and [GMS10], in which contract
descriptions are verified against properties. In [FPS09], con-
tracts are checked for conflicts, while [GMS10] uses model
checking to ensure properties of the contracts. However, in
such work, contracts are not executable objects, but rather
themselves specifications of ideal behaviour thus making the
approaches more akin to specification sanity checking.

VI. CONCLUSIONS

In this paper we have presented a runtime verification
approach to support dependability and correctness of smart
contracts, including a proof-of-concept tool implementation
of CONTRACTLARVA for Ethereum smart contracts written
in Solidity. The approach could easily be used to ensure that
smart contracts adhere to a given specification. For instance,
in the recent, widely reported case of a bug in a smart contract
implementing wallets, and which led to huge financial losses,

a specification property which stated that a wallet cannot
be initialised more than once, or that the ownership of a
wallet never changes once initialised could have identified the
violation and stopped the financial losses from occurring5.

REFERENCES

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey
of attacks on ethereum smart contracts (sok). In POST, volume
10204 of LNCS, pages 164–186. Springer, 2017.

[BDLF+16] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-
Pinote, N. Swamy, and S. Zanella-Béguelin. Formal verification
of smart contracts. In The 11th Workshop on Programming
Languages and Analysis for Security (PLAS’16), 2016.

[CP14] C. Colombo and G. J. Pace. Comprehensive monitor-oriented
compensation programming. In Proceedings Formal Engineer-
ing approaches to Software Components and Architectures,
FESCA 2014, 2014.

[CPS09] C. Colombo, G. J. Pace, and G. Schneider. Safe runtime
verification of real-time properties. In Formal Modeling and
Analysis of Timed Systems FORMATS 2009, 2009.

[Fal10] Y. Falcone. You should better enforce than verify. In Runtime
Verification RV 2010, 2010.

[FPS09] S. Fenech, G. J. Pace, and G. Schneider. Automatic conflict
detection on contracts. In Theoretical Aspects of Computing
ICTAC 2009, 2009.

[Fuc92] N. E. Fuchs. Specifications are (preferably) executable. Software
Engineering Journal, 7(5):323–334, 1992.

[GMS10] D. Gorı́n, S. Mera, and F. Schapachnik. Model checking legal
documents. In Legal Knowledge and Information Systems -
JURIX 2010: The 23rd Annual Conference on Legal Knowledge
and Information Systems, pages 151–154, 2010.

[GPDW17] L. Garcı́a-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber.
Optimized execution of business processes on blockchain. In
Business Process Management BPM 2017, 2017.

[GR10] G. Governatori and A. Rotolo. Norm compliance in business
process modeling. In Semantic Web Rules - International
Symposium, RuleML 2010, pages 194–209, 2010.

[HJ89] I. Hayes and C. B. Jones. Specifications are not (necessarily)
executable. Softw. Eng. J., 4(6):330–338, November 1989.

[HKZ12] T. Hvitved, F. Klaedtke, and E. Zalinescu. A trace-based model
for multiparty contracts. J. Log. Algebr. Program., 81(2):72–98,
2012.

[HLL+12] J. Hatcliff, G. T. Leavens, K. Rustan M. Leino, P. Müller, and
M. J. Parkinson. Behavioral interface specification languages.
ACM Comput. Surv., 44(3):16:1–16:58, 2012.

[KPS08] M. Kyas, C. Prisacariu, and G. Schneider. Run-time monitoring
of electronic contracts. In Automated Technology for Verification
and Analysis ATVA 2008, 2008.

[LS09] M. Leucker and C. Schallhart. A brief account of runtime
verification. J. Log. Algebr. Program., 78(5):293–303, 2009.

[Mey98] B. Meyer. Design by contract: The eiffel method. In TOOLS
(26), page 446. IEEE Computer Society, 1998.

[PS09] G. J. Pace and G. Schneider. Challenges in the specification of
full contracts. In Integrated Formal Methods, 7th International
Conference, IFM 2009, pages 292–306, 2009.

[PSHW17] C. Prybila, S. Schulte, C. Hochreiner, and I. Weber. Run-
time verification for business processes utilizing the bitcoin
blockchain. CoRR, abs/1706.04404, 2017.

[Tec17] Parity Technologies. Parity wallet. https://github.com/paritytech/
parity, 2017.

[WXR+16] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev,
and J. Mendling. Untrusted business process monitoring and
execution using blockchain. In Business Process Management
BPM 2016, 2016.

5Needless to say, it is easy to identify properties post-factum.

https://github.com/paritytech/parity
https://github.com/paritytech/parity

	Introduction
	A Framework for Safe Smart Contracts
	Runtime Violation Reparation
	Contract Properties
	Instrumenting the Monitors

	Illustrating the Framework
	Evaluating the Framework
	Related Work
	Conclusions
	References

