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1 Introduction

Over the past years, the number of transistors on a single chip has been growing
dramatically, influencing the increase in complexity of integrated circuits. This has
lead hardware engineers to turn to high-level abstractions in order to describe and
design digital hardware, and handle the vast detailed information of modern micro-
electronic circuits. High-level abstractions enable hardware descriptions to be defined
in a modular fashion, making these more accessible and manageable. Innovative
designs can be tested, debugged and verified at various abstract levels, prior to the
actual manufacturing of the hardware. This approach highly facilitates the difficult
and tedious task of designing circuits manually through the use of block diagrams or
schematic diagrams. Abstraction techniques have been used in a number of areas to
handle complex systems. An abstract model of a system is regarded as a simplified



version of the same system showing only the most important components and hiding
the irrelevant details. In hardware design, abstraction techniques avoid having to
reason about the low-level implementation details, whilst allowing hardware designers
to concentrate on alternative high-level designs. This does not only aid the work
of hardware engineers, but it also reduces the development time of a system and
decreases the overall expenditure costs.

Before considering using high-level abstraction techniques, hardware systems used
to be designed by means of block diagrams. A block diagram gives a visual sketch
or picture of the system, indicating what components are used, how these are place
within a specific area, and how all the connections are laid out. Such diagrams provide
all the necessary details for a system, however these are not very modular, and tend
to be difficult and tedious to use, especially for larger complex circuits. Nowadays,
hardware systems are normally represented by textual descriptions, offering more
modularity than block diagrams. Textual descriptions are more manageable and
maintainable, and higher-level abstractions can be applied more easily.

Textual descriptions can describe a digital system in different ways or perspectives. In
standard hardware description languages such as VHDL or Verilog [LMS86, Ope93],
two different description types are usually possible — behavioural and structural. A
behavioural description gives the functional properties of the system, and it considers
the whole circuit as a black box, focusing on the relationship between inputs and
outputs, and ignoring implementation detail. On the other hand, a structural de-
scription specifies precisely what components are used and how these are connected
to each other to compose the internal implementation of the circuit. Although the
behavioural way of describing hardware is more abstract than the structural way,
it does not provide access to the actual implementation details, limiting its use to
hardware specification rather than the actual circuit design. In this report we mostly
deal with the structural perspective of hardware, and focus on the different software
abstractions that can be applied to structural descriptions.

Modular abstractions enable hardware designers to define the most commonly used
circuits as reusable modules that could later be instantiated whenever required. Fur-
thermore, it is desirable to have circuit models that can be reviewed, simulated, tested
and modified when required. Circuit representations should provide the possibility
to reason about the hardware that is being described, and apply appropriate manip-
ulations or transformations, based on the outcome of such reasoning. By means of
the software abstractions that are provided to hardware models, these operations are
more manageable at higher levels of abstraction. Complex hardware designs can be
handled more efficiently, and more innovative designs, development issues and bugs,
can be explored without the need to manufacture the real circuit. After simulation,
testing and verification, the hardware model can be translated into a low-level repre-



sentation (hardware synthesis). At this stage only the final minor changes are applied,
avoiding to work with the unnecessary details of the low abstract levels throughout
the development process.

Researchers both in industry and academia have been struggling to develop better
hardware description languages (HDLs) and other mechanisms to enable such oper-
ations beyond the traditional languages like VHDL or Verilog. Functional languages
in particular, have shown to provide an excellent means to develop experimental
HDLs [She05], capable to describe how the functional operations of circuits are struc-
tured together. Reasoning about the circuits and manipulation is also possible at
higher levels of abstraction. Model checking and hardware verification are more re-
cent research areas, where the circuit representations are formally clarified for their
correctness. The functional paradigm offers numerous advantages by allowing design-
ers to describe circuit generators rather than the actual circuits, thus providing access
to the circuit models. However, one area that remains questioned is the inclusion of
non-functional aspects of the hardware, such as floor-planning, power consumption
and speed. By using software abstractions to hide away unnecessary information, the
resulting circuit descriptions focused mostly on the functional aspects of the circuits,
thus ignoring the non-functional aspects. As more improvements are made the han-
dling of non-functional properties of the circuits is becoming more of an unresolved
issue. Some techniques regarding this area have been proposed, in particular the use
of meta-languages that provides access to the circuit generators themselves and not
just the circuit representations. Manipulating and reasoning about the circuit gen-
erators should provide an opportunity to induce non-functional properties about the
circuits prior or during the generation of the circuits.

In this paper we illustrate the different techniques that have been used to describe
hardware, and how different HDLs have developed over the past years, materialising
into today’s modern research languages. In section 2 we give an overview of the tradi-
tional HDLs that are used by the industry. The concept of parameterised descriptions
and regular-shaped circuits is introduced in this section, and followed up in section
3, where we illustrate experimental HDLs that focus on this issue. We also start
considering how certain non-functional properties like placement can be addressed.
In section 4 we outline the more modern technique of embedding that is used to de-
velop domain-specific languages. We focus on HDLs that are embedded within the
pure functional language Haskell, and discuss the advantages of parameterised func-
tions and higher-order functions. The more modern approach of meta-programming
is outlined in section 5, and we illustrate how hardware design can benefit from the
features present in meta-languages.



2 VHDL and Verilog

VHDL [LMS86] was standardised by IEEE in 1987, offering a means to describe,
model and simulate application-specific integrated circuits. Verilog HDL [Ope93] has
very similar functionalities and capabilities to VHDL, and was standardised by IEEE
in 1995. VHDL and Verilog have dominated the hardware development market for
a considerable number of years, and are still widely in use today. When introduced,
VHDL and Verilog addressed a number of problems, and managed to provide hard-
ware designers a means to develop electronic components more rapidly for a wide
range of systems. These HDLs provided the necessary software abstractions that im-
proved the capabilities of hardware engineers, and managed to control the exploding
development costs of large complex systems, by enabling the industry to cope with
the rapidly increasing demand of the market. Although the syntax of the languages
is different, the capabilities of VHDL and Verilog are closely related. The most signif-
icant similarity we consider lies in the conceptual levels and the available constructs
that can be used to describe circuits. The examples in this section are given in VHDL,
yet we do not distinguish between the two languages.

Both VHDL and Verilog provide high-level abstractions above the physical imple-
mentation details of the circuit. Different levels of abstraction are possible, including
the gate-level, the register-transfer-level and the behavioural-level.

The gate-level lies just above the physical details of the hardware. It is a detailed
netlist describing the physical connectivity of low-level components, as a network of
logic gates and registers. These descriptions depict the structural specification of the
circuit using component details, which are usually instanced from a technology library
containing specific details such as propagation delay information. This abstract level
is closely related to boolean expressions describing the relation between the inputs
and the outputs. Designing large complex circuits at this low-level of abstraction can
be impractical.

The register-transfer-level (RTL) is a higher conceptual level for structural circuit
descriptions. The building blocks at this abstract level are modules constructed from
simple logic gates. These modules are considered to be more like functional units.
These modules normally include the basic logic functions, adders, multiplexers and
storage components. The main feature that distinguishes the register-transfer-level
from the gate-level is the use of a common clock that is explicitly included within the
logical functions that describe the hardware. This level of abstraction also provides
the capability to abstract signal representations, by grouping together wires and in-
terpreting them more as data rather than just signals. Listing 1 illustrates an RTL
description of a half-adder component. This textual description clearly defines the
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Listing 1: A structural description of a half-adder

entity HALFADDER is
port( A, B : in bit;
SUM, CARRY : out bit );
end HALFADDER;

architecture RTL of HALFADDER is
begin

SUM <= A xor B;

CARRY <= A and B;
end RTL;

input wires and the output wires of the component, and how these are related to each
other by means of other modules, in this case the basic logic functions xor and and.

The highest level of abstraction is the behavioural-level, where a hardware system
is described in terms of an algorithm, including computational steps, processes and
communication. As we have already mentioned, behavioural descriptions are beyond
the scope of this paper and we shall not be discussing them any further.

Modular descriptions in VHDL are defined as components which can later be reused
to describe larger systems. These modules could be instantiated within other de-
scriptions, thus providing a means to define larger circuits more rapidly. Apart from
allowing a form of reusability, the modular descriptions enable hardware designers to
describe the hierarchical architecture of a hardware system. This is particularly use-
ful to observe the architecture of the designed circuit and clearly visualise how large
circuit blocks are constructed from smaller ones. The module framework is in par-
ticular useful to describe regular-shaped circuits, such as an n-bit ripple-carry adder,
which is constructed as a chain of full-adders. Listing 2 illustrates the definition of
a four-bit-adder given in terms of the full-adder component. The component section
of the code acts as a declaration for the full-adder and its interface. The declared
component can be either an existing part defined earlier, or a hypothetical part which
still needs to be defined or instanced from a technology library. Each of the required
full-adder components are instanced separately, and the port map construct is used
to declare how the interfaces and the wires are connected. Notice how the full-adder
component is regarded as a black box, and the internal structural details are not
included as part of the adder description. This simplifies the manner in which digital
hardware is described. If one had to ignore the concept of components, the equivalent
adder circuit would have been described in terms of primitive gates making the task



Listing 2: A four-bit adder defined in terms of full-adder components
architecture STRUCTURE of 4bit_adder is

component full_adder
port( a, b, cin : in STD_LOGIC;
sum, cout : out STD_LOGIC );
end component;

signal c1, c2, c3: STD_LOGIC;

begin
b0_adder : full_adder
port map (a => a(0), b => b(0), cin => '0’, sum => sum(0), cout => cl);
bl_adder : full_adder
port map (a => a(1), b => b(1), cin => cl, sum => sum(1), cout => c2);
b2_adder : full_adder
port map (a => a(2), b => b(2), cin => ¢2, sum => sum(2), cout => c3);
b3_adder : full_adder
port map (a => a(3), b => b(3), cin => ¢3, sum => sum(3), cout => cout);
end STRUCTURE;

more difficult. The concept of components or blocks adds a layer of abstraction to the
hardware descriptions, making these much more manageable and comprehendible.

Subsequently, consider having to describe an n-bit adder for a larger number of bits,
such as 32-bits or 128-bits. The initial version of VHDL (VHDL’87) did not pro-
vide well suited constructs to describe regular-shaped structures in terms of a natural
repetitive style. In the case of an n-bit ripple-carry adder, the designer would have
to specify all of the required full-adders and their connections manually, similar to
the description given for the four-bit adder. Using this method to define large cir-
cuits is a tedious and error-prone process. In VHDL’93, generate constructs were
introduced to support modular descriptions of such circuits. By means of the for-
generate statement, an n-bit ripple-carry adder can be described iteratively in a
loop-like fashion, during which full-adder components are instanced. An example of
a ripple-carry-adder description for an arbitrary bit size is given in Listing 3. The
generate construct introduced a two-level style of programming within VHDL, where
the first level is describing the actual hardware in terms of the more traditional com-
ponents, while at a higher level regular-shaped structures are defined iteratively by
means of the generate constructs.



Listing 3: Generate constructs used to define an n-bit ripple-carry adder

word_adder : for i in 0 to adder_size — 1 generate
Isb : if i = 0 generate
Isb_adder : half_adder
port map (a => addend(0), b => augend(0), s => sum(0), ¢ => carry(0));
end generate Isb;

other_bits : if i /= 0 generate
other_adder : full_adder
port map (a => addend(i), b => augend(i), c.in => carry(i—1), s => sum(i),
c_out => carry(i));
end generate other _bits;
end generate word_adder;

One problem with VHDL and Verilog is the syntactic overhead present in the de-
scriptions. This might obstruct hardware designers when defining circuits, and as the
complexity of micro-electronic circuits increases, a more abstract way for describing
hardware is required. The generate construct helps designers to define regular-shaped
circuits in an iterative fashion. Nevertheless, more elaborate structures like tree-
shaped circuits, butterfly circuits and others can still be awkward to define by means
of the generate construct. Higher abstract levels, are capable to provide parame-
terised hardware descriptions, thus obtaining more flexible and compact descriptions
especially for large regular-shaped circuits.

3 Languages for Parametrised Hardware Design

One option that has been explored is that of having a two-level language approach,
similar to what the generate construct provides for VHDL. Having a two-level lan-
guage gives the possibility of having parameterised hardware descriptions, meaning
that circuit structures can be described as generic components for an arbitrary size
that can be instantiated by parameterised values. To investigate this approach fur-
ther we look at two distinct languages; Pollux which is actually the interpretation of
the Lustre programming language as circuits, and Pebble which is a completely new
language.



3.1 Pollux: A Lustre Environment for Circuits

Pollux [RH91] is a design environment within the programming language Lustre
[CPHPS87], intended to target the design of high-level hardware. Pollux can be re-
garded as an extension to the synchronous language Lustre, providing a suite of
tools to generate synchronous circuit representations and the corresponding simula-
tion programs. The Lustre syntax is not complicated and hardware specifications can
be elegantly described, whilst providing a clear hierarchical arrangement of the defi-
nitions of sub-components. The initial idea behind Lustre was that of describing real
time applications, therefore these characteristics can be easily applied for hardware
design.

A Lustre program is constructed as a network of other Lustre sub-programs. This
network is controlled by a global synchronous clock, thus each of the operators ex-
ecute concurrently and should conceptually take up no time. Another important
feature of Lustre is that nodes operate over time on streams of values, hence, even
sequential circuits with delay components can be modelled. Small synchronous cir-
cuits can be represented and simulated using just basic Lustre operators, however for
larger circuits a number of extensions are desirable. Pollux provides such extensions,
and are mainly intended to be used for regular circuit descriptions constructed from
iterative or recursive structures. Pollux handles the description of such structures by
means of parameterised nodes. These parameterised nodes are to be distinguished
from parameterised connection descriptions, since these nodes are unable to han-
dle electronic components as arguments to compose generic structures, but rather
this parameterised argument (usually of numeric value) is used to set the size of a
regular-shaped circuit. Other abstract mechanisms are also available, aimed to han-
dle structured types, recursive types, and even component placement.

The Pollux design environment creates a conceptual framework for a two-level lan-
guage approach, where the Pollux constructs act as simple meta-constructs over the
Lustre sub-programs. This is closely related to how the generate construct works in
VHDL. Pollux provides a higher level of abstraction for the interpretation of circuit
descriptions. This is done by defining a general node representing a hardware com-
ponent for an arbitrary width of bits. Subsequently, when this component is required
for a larger system, this is instantiated to a fixed size by a second node using a con-
stant value. For instance Listing 4 gives the Pollux definition of a generic n-bit adder.
The n-bit adder node is defined to iterate the one-bit adder node (full-adder) over an
arbitrary number of bits. In order for this parameterised node to be used correctly it
has to be instantiated by a constant n, which can be evaluated at compile time. A
second node, given in Listing 5, is required to flatten out the structural description



Listing 4: A Pollux parametrised node defining an n-bit adder

node Add (const n:int; A,B:bool”n; ci:bool) returns (S:bool”n; c0:bool);
var C:bool”(n+1);

let
C[0] = ci;
(S, C[L..n]) = Add1(A, B, C[0..n—1]);
co = Cln];

tel;

Listing 5: A Pollux node used to instantiate a 32-bit adder
node AddN32 (A,B:bool"32; ci:bool) returns (S:bool”32; c0:bool);
let
(S, co) = Add(32, A, B, ci);
tel;

of the n-bit adder to a finite number of bits, in this case 32 bits.

Pollux extends the use of parameterised nodes, and manages to provide a means to
define recursive structures, which is impossible to achieve when using only basic Lus-
tre programming features. This is achieved by making use of parameterised nodes
together with the static conditional operator “with-then-else”. In Lustre, given the
expression “with b then ey else ey”, the boolean expression b is evaluated at compile
time and if this is satisfied, the whole expression is replaced by e;, otherwise it is
replaced by e;. By making use of this construct it is possible to generate networks
that are shaped with recursive structures.

Pollux provides a two-level programming style. The conditional compilation operator
“with-then-else” acts as the top-level language in constructing iterative or recursive
structures, over the lower-level language which describes the individual components.
[terative and recursive structures are extremely common in circuit design, therefore
higher-level abstractions such as a two-level language and parameterised descriptions
help in providing more flexibility over modular hardware descriptions. Nonetheless,
Pollux lacks the ability reason about the descriptions themselves in order to describe
generic connection patterns for components. Connection patterns are defined at even
higher-levels of abstraction, where the circuit descriptions themselves are be handled
as parameters. In Pollux the two-level language approach, enables only a second
language to reason about the first language, whereas at higher-levels of abstraction
several additional levels can be conceptually introduced by simply using the same



language over the descriptions. This would enable the circuit descriptions to be more
accessible, and perform other operations such as the generation of a netlist, circuit
modifications and optimisations.

3.2 Pebble

Unlike Pollux, where the circuit descriptions are Lustre programs interpreted as cir-
cuits, Pebble [LM98] is a new HDL. Pebble is described as a parameterised block
language, and is intended to construct hardware systems as a hierarchical structure
of parameterised blocks. These blocks are highly modular and reusable, and can be
easily parametrised to allow a customisable design size. Pebble is closely related to
VHDL, in fact it is regarded as a simplified variant to VHDL.

A Pebble program is considered to be a block, which could either act as an autonomous
system, or else it can be used to build more complex block-structured systems. It
is worth mentioning that the Pebble architecture can be used to model any block-
structured system and not just hardware and circuits. The primitive building blocks
of a system are defined as empty blocks, without any implementation details, hence
when a Pebble program in compiled or translated into another format, these primitive
blocks are mapped to the corresponding components in the targeted format, which
are instantiated from some kind of library or repository. A similarity between Pebble
blocks and VHDL components can be perceived. The functionality of Pebble is to
describe the structural layout of these basic components and how these are connected
together to build larger systems.

The Pebble approach is similar to Pollux, since it provides a two-level language ap-
proach for the description of circuits. Hardware descriptions in Pebble can be specified
by means of parameterised blocks. Compile time constructs similar to the generate
statement in VHDL and Verilog are available in the Pebble language. These pro-
vide the possibility to reason about the hardware descriptions at compile time. The
GENERATE-IF statement allows conditional compilation, where the boolean con-
dition can contain parameterised values, whilst the GENERATE-FOR statement is
used to describe regular-shaped circuits which can also make use of a parameterised
value. The generate constructs of Pebble are closely related to those present in VHDL.
Listing 6 illustrates the use of these constructs to define of an n-bit adder. Other net-
worked structures such as tree-shaped circuits, butterfly-shaped circuits and other
regular-shaped circuits, can be easily described by making use of these constructs.

An interesting functionality of Pebble is how the hardware descriptions can be anno-
tated with additional information, such as placement details. This added information
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Listing 6: The description of a parametrised n-bit adder in Pebble

BLOCK adder (n:GENERIC) [a,b:VECTOR(n—1..0) OF WIRE, c_in:WIRE]
[s:VECTOR(n—1..0) OF WIRE, c_out:WIRE]

VAR i
BEGIN
GENERATE FOR i = 0..(n—1) DO
GENERATEIFi=0
full_adder [a(0), b(0), c_in] [s(0), c_out]

GENERATE IFi /=0

full_adder [a(i), b(i), c_out] [s(i), c_out]

END:;

is then interpreted by the Pebble tools without interfering with the functional be-
haviour of the circuit. For instance, placement constructs are available and these
could be used independently of the other functional constructs. Placement informa-
tion can be explicitly included as co-ordinates, or else relational constructs, such as
ABOVE or BESIDE can be used to declare how a block should be placed in rela-
tion to another, such as on top or to the side of another block. Pebble makes this
possible by providing an additional higher abstraction over the blocks themselves.
The placement constructs are actually block definitions capable of handling other
blocks as parameters. By allowing a two-level language approach and managing to
handle parameterised descriptions, some form of reasoning and manipulation about
the blocks is achieved.

4 Embedded Languages

An alternative way to build an HDL (or any domain specific language), is to embed
the new language into an existing general purpose programming language. Developing
any domain specific language from scratch is a time consuming and tedious task. One
has to face the burden of designing the language grammar and its syntax, provide
mechanisms for typing, variable scoping and module management, as well as the
developing of a parser and a compiler. Subsequently, users have to be thought the
new language and provided with adequate development tools.

On the other hand, using the embedding approach to construct a new domain specific
language, involves only the development of a library containing specific constructs
that will handle the new language as a data object within the chosen programming
language. In this setting, the embedded language will automatically inherit all of
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the underlying features and infrastructure of the host language. A programmer can
start using the domain specific language by simply referencing the library constructs,
thus making use of the existing syntax, type handling features and development
tools. This greatly reduces the development time of a language, which is ideal during
experimentation and prototyping stages. However, despite a number of advantages,
the downside of this approach is a loss in performance. Programs written by means
of the embedded language cannot be highly optimised due to the overhead created
by the host language, yet in certain circumstances, it is worthwhile to sacrifice some
performance for time. The choice of the host language is extremely important. The
embedded language will inherit all of the features of the host language, hence these
features must fit the needs of the embedded language as precisely as possible.

In the context we are dealing with we consider our domain specific language to
be a hardware description language. Numerous HDLs have been developed using
the embedding approach using a wide range of programming paradigms, including
object-oriented languages like C++, C# and Java (SharpHDL [Vel], JHDL [BH98]).
However, general purpose functional languages have dominated the field of embedded
languages, especially for HDLs [She05, CP07] . Functional languages like Haskell, are
considered to be ideal host languages for a number of reasons, but mainly because of
characteristics like strong typing, pattern matching, lazy evaluation and higher-order
programming. Haskell in particular offers features like polymorphism, overloading
and type classes, allowing multiple interpretations of the same description.

4.1 A Functional Representation for Circuits

Lava [Cla01] is a well known structural HDL embedded in the functional language
Haskell. Hydra [O’D06] and Hawk [LLC99] are other examples of HDLs embedded
in Haskell and are very similar to Lava. The usual trend of an HDL embedded in
a functional language is to represent circuits as functions. This is how Lava, Hydra
and Hawk describe circuits, meaning that a single-directional relationship is defined
between the set of inputs and the set of outputs. The idea of using a functional
language to describe hardware components is not a recent one, and as Mary Sheeran
[She05] explains, the two fields (i.e. functional languages and hardware design), have
been closely associated with each other in past research.

A simple HDL would represent basic circuit components as functions, while other
larger circuits would be described in terms of these simple functions. For instance,
Listing 7 gives the first-order functions and2 and xor2, as implemented in Haskell,
representing a two-bit and-gate and a two-bit exclusive-or-gate respectively. In this
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Listing 7: Shallow embedding of primitive gates

and2 :: (Bool, Bool) —> Bool
and2 (a,b) = a & & b

xor2 :: (Bool, Bool) —> Bool
xor2 (a,b) =a /=b

Listing 8: A half-adder component described in terms of primitive functions

halfAdd :: (Bool, Bool) — (Bool, Bool)
halfAdd (a, b) = (sum, carry)
where
sum = xor2 (a,b)
carry = and2 (a,b)

case the boolean type represents a signal value of either low (False) or high (True).
Following these kind of descriptions, larger circuits can be functionally described using
the previously defined functions. Listing 8 illustrates how this can be achieved for
the description of a half-adder component.

At a higher level of abstraction, parameterised functions are used to describe reg-
ular circuits for a specific component by means of recursion and pattern matching.
A bit-adder is a circuit which adds one bit to a binary number, and is constructed
as a chain of half-adder components connected together in a regular pattern. The
function illustrated in Listing 9 is a typical example where recursion is applied over
a previously defined function (halfAdd) to generate the required pattern of connec-
tions. Unlike Pebble or Pollux, the size of the circuit is not parameterised, but rather
this is implicitly included as the length of the input list of booleans.

Listing 9: A Haskell function representing a bit-adder component
bitAdder :: (Bool, [Bool]) — ([Bool], Bool)

bitAdder (carryln, []) = ([], carryln)
bitAdder (carryln, a:as) = (b:bs, carryOut)
where

(b, carry) = halfAdd (carryln, a)
(bs, carryOut) = bitAdder (carry, as)

13



Listing 10: Deep embedding of primitive gates by means of data types

data Signal = Bool Bool
| Var String
| Inv Signal
| And (Signal, Signal)

inv :: Signal —> Signal
inv a = Inv a

and2 :: (Signal, Signal) —> Signal
and2 (a, b) = And (a, b)

Embedding an HDL in a functional language is quite straightforward, and the na-
ture of function definitions fit perfectly the requirements of circuit descriptions. The
functional paradigm offers numerous features that correspond to the needs of HDLs.
However, using only functions to represent circuits is not very practical, since the
only operation that can be performed on these hardware models is simulation. This
method of embedding a language is known as shallow embedding. In such an em-
bedding, the circuit descriptions represent the semantics, and not the actual syntax,
thus the hardware representation is not accessible for manipulation or interpretation,
limiting the possibility to perform any other operation apart from evaluating the re-
sulting output. In order to maintain the structure of the defined hardware, languages
like Lava, Hydra and Hawk, make use of data types to represent the circuits’ struc-
ture, while functions are used to construct the data type. These functions would not
represent the circuit descriptions directly, but rather these act as the circuit gener-
ators. This approach is known as deep embedding. In this kind of environment, the
hardware descriptions are first class data objects that have a full Turing-complete lan-
guage (the host language) sitting above, thus the host language is capable to inspect
and manipulate these objects at higher levels of abstraction. Listing 10 illustrates a
simplified version of how such an embedding can be achieved. The functions inv and
and?2 are used to construct the recursive data type representing the basic components
of an inverter and an and-gate respectively.

Lava, Hydra and Hawk implement this approach in the functional language Haskell.
All of the languages have unique implementation details, and each embedding pro-
vides different building blocks. However, these details are beyond the scope of this
paper. We classify these implementations together and focus on the main characteris-
tics. Accessibility to the circuits’ structure enables previously impossible operations,
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such reasoning about the representation, transformations and information gathering.
For example in Lava, type classes are used to provide different interpretations of the
generated circuits. Simulation is achieved by applying the actual values as inputs,
where as if symbolic values (or variables) are used, a finite symbolic representation
of the circuit is generated. This symbolic representation could be optionally pro-
cessed and translated into other formats, such as a netlist description of the circuit,
or a standard structural description in VHDL or Verilog. A layer of abstraction is
achieved where instead of having netlist descriptors, we now have netlist generators.
This two-staged process is separating the language used to describe the circuits from
the actual semantics of the circuits, because the HDL is not describing the circuits
directly but describing how the circuits are to be composed.

One of the major advantages of having an HDL deeply embedded in a functional
programming language like Haskell, is the ability to inspect and reason about the
circuits as data objects. Earlier we have examined the textual descriptions of circuits
in VHDL or Verilog, and noted that these are not easily accessible. In Pebble and
Pollux the use of parameterised descriptions (blocks or nodes), facilitate the designing
of regular circuits for an arbitrary size. An n-bit-adder can be defined parametrically
for any size, however a generic description of an array-like structure cannot be de-
fined in Pollux, while Pebble offers only limited capabilities for these higher abstract
descriptions. Lava, Hydra and Hawk handle these abstractions by means of higher-
order functions. Higher-order functions are functions that handle other functions as
arguments. This feature is a key benefit in having an HDL embedded in a pure
functional language. Higher-order functions enable the manipulation and reasoning
on the previously defined first-order functions. In Lava, higher-order functions are
used to define connection patterns for generic sub-components (first-order functions)
having the same function type. For example, the regular pattern that is used to com-
pose a bit-adder is a common component arrangement know as a row that is widely
used in hardware design (see Figure 1). A possible description for the row connection
pattern is given in Listing 11, defined in terms of a higher-order function which can
accept a range of circuit descriptions as a parameter. This definition is not bound
to the specific types of the inputs, but rather it is defined for generic types. This
connection pattern can be applied to any component having the function type (c,
a) -> (b, c), such as a half-adder or a full-adder. The given example shows how
the higher-order function row is used to construct a bit-adder by passing the whole
half-adder definition as the parameter.

Higher-order functions can be used in various kinds of connection patterns and struc-
tural arrangements of circuits. Other commonly used patterns are the column-shaped
arrangement, which is similar to row but it is portrayed in a vertical position, and
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Figure 1: The row connection pattern

Listing 11: Definition of the row connection pattern and its application
row :: ((c, a) = (b, ¢)) = (c, [a]) — ([b].c)

row circuit (carryln, []) = ([], carryln)
row circuit (carryln, a:as) = (b:bs, carryOut)
where
(b, carry) = circuit (carryln, a)
(bs, carryOut) = row circuit (carry, as)

bitAdder :: (Bool, [Bool]) — ([Bool], Bool)
bitAdder = row halfAdd

the grid-shaped structure which is a combination of the row and column connection
patterns. Tree-shaped structures and butterfly circuits can also be defined for generic
components by means for higher-order functions [BCSS98]. Higher-order functions
adds credit to the software abstraction that is used to describe hardware, by pro-
viding more flexible constructs that enable hardware designers to describe large and
complex circuits much more efficiently.

We have seen how HDLs benefit from functional languages to address the func-
tional aspects of the circuits. However, challenges still exist, especially to handle
the non-functional properties of circuits, such as placement or power consumption.
Researchers have been questioned about how to introduce non-functional aspects of
circuits without weakening the levels of abstraction that have already been estab-
lished, thus maintaining the advantages brought by functional languages especially
the ability to write abstract functions for generic descriptions. In Lava and other sim-
ilar HDLs, higher-order functions are used to describe how circuits are connected to
each other in a regular-shaped pattern. However, despite the fact that this approach
enables the definition of correct structural descriptions, these software abstractions
are actually discarding some level of detail rather than just hiding away information
which can be retrieved later. The result of a higher-order function describing a con-
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nection pattern is yet another function, which generates the data object representing
the whole circuit. This means that we still end up with a single function describing
a one-way relation between the inputs and the outputs, and no information is being
stored to guide the inspection of individual components that constructed these pat-
terns. The resulting data type representing the circuit describes how the primitive
components are connected to each other to form the whole circuit. As an example,
consider again the definition for the n-bit-adder. The resulting representation would
provide information about how the circuit is constructed, but the boundary of each of
the half-adders that are used is lost since each of these instances are defined in terms
of primitive gates. By representing circuits as functions, hardware systems can be
defined in a hierarchical manner, however the details of the hierarchy of components
cannot be maintained. Non-functional information like the nesting of the compo-
nents and how these are connected to each at different abstract levels is extremely
important to perform operations such as floor-planning.

4.2 Combinators

An alternative approach that has been proposed for the description of structural
hardware is to use a combinator calculus. Initially the idea was introduced in Ruby
[SJ90]. A combinator calculus defines a number of mathematical constructs and
properties about how functional elements or components can be combined together
to construct larger elements, by placing circuit elements next to each other. The
functional behaviour of the hardware is never really described, but rather this is
defined indirectly as a result of how the circuit components are structurally placed in
relation to one another.

The most trivial combinator presented by Ruby is composition (Figure 2(i)), where
an element is placed next to another element, as long as the connecting sides have a
common interface. Repeated composition is also allowed, enabling the same compo-
nent to be placed alongside a copy of itself iteratively for a number of times. Another
basic combinator is parallel composition (Figure 2(ii)), which describes how two com-
ponents are placed besides each other such that these would operate independently,
yet concurrently with each other. The idea of combinators as presented in Ruby is to
build the functionality of a hardware system by describing the structure in terms of
these basic combinators, subsequently, it is possible to analyse the placement details
of sub-components over a two-dimensional plane. These kind of combinators are to
be distinguished from the functional combinators (connection patterns) that where
mentioned earlier. Functional combinators are defined by means of higher-order func-
tions, which offer a different kind of abstraction for the structural descriptions. These
kind of connection patterns join together the functionality of the given functions, re-
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Figure 2: (i) Composition, and (ii) Parallel composition

sulting in a single function, having a one directional relation from the input to the
outputs. Functional compositions do not offer any geometrical or topological infor-
mation about the hardware components. On the other hand, Ruby combinators offer
the geometrical relation of the components and how these are combined, which can
be interpreted as a bi-directional relation.

In Lava it is possible to achieve similar capabilities to the combinators found in
Ruby. We have already emphasised that functional composition is different from
combinators, since the two operate differently. However, in a certain way this is not
completely true, because functional composition can be optionally interpreted as com-
binators given some restrictions. Only a single directional relation can be described
by means of functional composition, and all of the hardware representation has to
be described in terms of functional composition from the lowest-levels of abstraction.
If at some stage the structure of the circuit is not given in terms of these functional
compositions, but instead it is defined as the functional description, then the final
representation would have insufficient and inconsistent information about how the
components are combined together. If this restriction is met then it is possible to
achieve a hardware model which implicitly includes the relation between the different
components, enabling to perform operations such as reasoning about placement, area
management and power consumption. Listing 12 gives the definition of the serial
connection pattern in Lava. This function composition is similar to the composition
combinator of Ruby, but a single direction relation is defined. The output of the first
function is directed as the input of the second function.

Wired [ACS05] is a more recent HDL implementation that follows the combinator ap-
proach. The ideas presented in Wired are based directly on the approach proposed in
Ruby. Wired is embedded in the functional language Haskell, thus offering numerous
advantages over the initial implementations of Ruby. In Wired, hardware descrip-
tions define how components are tiled over a two-dimensional area. Functions are not
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Listing 12: Serial functional composition in Lava

(—>-) :: (a—=>Db) —> (b—>1¢c) —>a—>c
(circl —> circ2) inp = out
where
mid = circl inp

out = circ2 mid

used to represent the functionality of the hardware, therefore unlike Lava, Hydra and
Hawk, the Haskell interpreter is not used to interpret the hardware representations
directly. Instead, additional interpreting functions are needed, which are also imple-
mented in Haskell, enabling to have both functional and geometrical interpretations
of the hardware design.

Components in Wired can be either primitive functional elements (which can be
instanced from Lava descriptions), or a group of components combined together by
a combinator. A primitive element is described in terms of a surface and surface
relation, where these provide information regarding the size (length and width) of
the component, and the interface of each of the sides. Based on this kind of data,
different components are either allowed or not allowed to be placed besides each other,
and if two or more components are combined, then these are grouped together and
regarded as a single component. The data type that is used by Wired to represent
the combination of components is given in Listing 13. Wires are also treated as
first class objects like components, and a number of wire configurations are available.
Combinator constructs are similar to Ruby. The besides combinator (x||*), places
the one component to the side of another, while the below combinator (x=x), places
one component below the other. Other forms and variants of these combinators
are available to the user. Typical hardware descriptions in Wired are defined at
low levels of abstraction, however at higher levels, larger designs are managed by
parameterised connection patterns. For example, Listing 14 gives the definition of
the row connection pattern in terms of the Wired combinator ||~ which is a variant
to the besides combinator. This is a simple version of the row connection pattern,
which takes the length parameter n explicitly. The features of Wired enable hardware
designers to describe and analyse circuits, both in terms of the structural aspect and
the functional relation of components, since combinators enable hardware descriptions
to mix functional aspects with non-functional properties.
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Listing 13: The data type used by Wired to represent hardware descriptions

data Description = Primitive Surface Relation
| Combined Combinator Description Description

Listing 14: A simple row connection pattern in Wired

rowN 0 _ = thinEmptyY
rowN nd =d x[|” rowN (n-1) d

4.3 Representing Components

We have seen how the functional paradigm is particularly useful to define abstract
descriptions for circuits, enabling hardware designers to rapidly develop larger and
more complex systems. In research the most commonly used approach is to represent
circuits as functions, similar to the approach taken by Lava, Hydra and Hawk. When
using this approach the relations of the function composition are not clearly defined,
and information about how sub-circuits are connected together to form larger circuit is
not accessible, thus the hierarchical view of the components is lost. On the other hand,
the relational language Wired makes use of combinators to enable an alternative way
to compose circuit elements, giving a mathematical perspective about how different
sub-components are connected to each other in order to compose larger components.
This approach is quite successful in providing information for floor-planning, as well
as to calculate non-functional properties such as area and wire length. A less popular
alternative is to represent the circuits as autonomous components. This means that
the components are described such that each of these can be clearly distinguished
from each another, and optionally used when required explicitly. Such components
can be instantiated to different formats for a wide range of operations. For example,
if a functional simulation is needed then the components would be instantiated for
functional analysis, where as if another operation is required, such as relational anal-
ysis, hierarchical analysis, or transformation procedures, then the components would
be instantiated for the appropriate need. Dual-Eval [BWAH97] and HeDLa [Pac07]
are such HDL examples that follow the component-based approach.

Dual-Eval is embedded within the programming language Lisp. The Lisp interpreter
can only recognise list structures, and each list is interpreted by capturing the first
element as the operator while the succeeding elements are regarded as arguments
to this operator. Using this framework Dual-Eval represents a component as a list
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Listing 15: A half-adder component as defined in Dual-Eval

(HALF—ADDERx) =
'( HALF—ADDER (A B)
(SUM CARRY)

(

( GO(SUM)  B-XOR (A B) )
( GL(CARRY) B-AND (A B) )
)
NIL )

of sub-circuits, and the component boundary is maintained by means of the Lisp
quotation. The quotation construct instructs the Lisp interpreter not to evaluate
the upcoming list, but rather treat it as a literal structure. Circuit components are
defined by a preceding quote, hence, these are not evaluated but are captured as
components. Subsequently, when larger systems are composed from other compo-
nents the hierarchical view of the system is well defined, and is made available for
interpretation or reasoning. Listing 15 gives the definition of a half-adder component
in Dual-Eval.

HeDLa is another HDL, embedded in the functional language Haskell. In HeDLa the
structural description of a circuit is not given directly as a Haskell function, but rather
the structural description is wrapped within a record. This kind of representation
cannot be directly evaluated, but has to be instantiated before it can be processed
any further. Additional information can also be annotated to the record, such as
string values for the component name, the input wires and the output wires. The
connections between components are not regarded as arguments to Haskell functions,
but these are handled by the HeDLa implementation which maps together the string
representation of each connection. To make use of sub-components the special use
construct is required to explicitly indicate how the components are to be connected.
The use construct also maintains structural information about how the component
has been composed. A typical definition in HeDLa of a half-adder component is given
in Listing 16.

Clearly, the major disadvantage of these HDLs is the syntactical overhead that is
present. The syntax that is required to describe circuits as components is not as clean
as when the same circuits are described as functions. However, it is hard to abstract
away details about the structure of the components, whilst indirectly maintain the
equivalent necessary information. A similarity to VHDL can be perceived in these
kind of circuit descriptions, especially HeDLa. The circuit details are given implicitly
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Listing 16: A component definition of a half-adder as given in HeDLa
halfAdder = Circuit

{ name = "halfAdder”
inputs = (”a”, b)
, outputs = ("s c")
description = use xor2 ("a", "b")
& use and2 ("a", "b") "c”

Listing 17: A simple combinator description in HeDLa

cl —>— c2 =
let (leftl, upl) = inputs cl
(left2 , up2) = inputs c2

(rightl, downl) = outputs cl
(right2, down2) = outputs c2
in Circuit

{ name = name cl ++ " —>— " 4+ name c2
, inputs = (leftl, (upl, up2))
, outputs = (right2, (downl, down2))
description = use cl (inputs cl) (outputs cl)

& use wire rightl left2
& use c2 (inputs c2) (outputs c2)

and clearly indicating the type of description as structural, and which connections
are the inputs and the outputs. The advantage of having a component perspective
as offered by HeDLa is that it allows access over the hierarchical architecture of a
hardware system. One advantage in having a component-based HDL is to analyse and
manage effectively the non-functional aspects of the circuits. For instance, HeDLa
targets the placement of the defined components by means of constructs that combine
circuits together. One such constructor is a sequential composition combinator, which
combines two circuit components by placing one after the other. Listing 17 gives the
implementation details of this operator. As can be seen, the input and output details
of the two components are being integrated together to form a new set of input and
output tuples, that would describe the interface of the new component. This new
description is specifying how the first component is to be connected to the second
component.
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5 Meta-Languages

In the previous sections we have seen how the functional aspects of circuits can be
represented by means of an HDL embedded in a functional language such as Haskell.
Non-functional properties of circuits however, present a particular challenge. It is true
that in languages like Wired, Dual-Eval and HeDLa, some non-functional aspects are
handled, in particular component placement, but the approach ignores the perfect
embedding that can be achieved in a functional language, since these HDLs do not
represent the circuit descriptions as functions. On the other hand, HDLs like Lava,
Hydra and Hawk, use functions to represent circuits, and are in general easier to use
and understand. The problem with these languages is that certain non-functional
aspects of hardware design cannot be handled through the modular abstraction that
is present. Researchers have been looking into meta-programming techniques for a
possible solution. Meta-programming will also serve as an alternative way, in which
hardware can be described.

Meta-programming can be defined as the ability to write programs that are able to
create and modify other programs as data-objects. New embedding solutions in meta-
languages are being proposed, where both the functional and non-functional aspects
of the hardware can be managed. Hardware representations can be regarded as an
object-program within a meta-language, hence, the hardware model can be inspected,
reasoned about, or translated into other formats by means of the meta-language itself.
Additionally meta-languages are capable to create other object-programs, which could
represent components, and later used to produce other complex programs represent-
ing larger circuits. In such a setting, both functional and non-functional properties
can be handled, since the meta-language does not only provide access to the circuit
representations, but it even provides control over the circuit generators. Furthermore,
in meta-programming a circuit generator represents a whole family of circuits, hence,
all the enhancements and optimisations performed on the circuit generators will be
reflected within the resulting circuits.

5.1 Template Haskell

With the introduction of C++ templates, programmers were allowed to set-up a
macro-like process that operates on a C++ program that is executed at compile
time. Such a feature allows the development of a program that can be reconfigured
and optimised during the compilation process. This results in the generation of a
program that is dynamically modified to fit a number of criteria or constraints. More
recently, similar extensions have been introduced into functional languages. Template
Haskell [SP02] is a library that provides support for compile-time meta-programming
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Listing 18: The toggle circuit definition

toggle = inv (delay toggle)

toggle = inv (delay (inv (delay toggle)))
toggle = inv (delay (inv (delay (inv (delay toggle)))))
toggle =

in the function language Haskell. Template Haskell uses a quasi-quotation mecha-
nism for the Haskell language, and it represents the quoted code as an abstract data
type. A programmer is therefore able to compute programs, or parts of a program,
rather than actually write them. It is possible to write programs that would process
and generate Haskell code, and hence producing other programs as output. Template
Haskell provides access to the structure of the quoted code by means of the built-in
case analysis of Haskell, and is capable to perform transformations and modifications
to the code of other programs.

A variant of the Hydra [O'D04] HDL has been embedded in Template Haskell. This
implementation of Hydra is based on program manipulation and it proposes a so-
lution for the handling of non-functional properties of circuits. The main problem
that is targeted in Hydra is that of sharing. This problem is clearly visible when
feedback loops are present within sequential circuits, such as a toggle circuit. The
first line of code in Listing 18, gives a definition example of the toggle circuit. Due
to the referential transparency of a pure functional language, the left hand side of an
equation can be replaced by the right hand side. The interpreter of the functional
language tries to resolve all the function calls, and since a feedback loop is usually
defined in terms of a function that refers to itself, this would supposedly result in an
infinite number of calls. In Haskell, such infinite function calls would be handled by
means of lazy evaluation, however this does not provide the correct non-functional
properties of the circuits’ structure. As Listing 18 illustrates, the resulting circuit is
not the same as the one that has been described, since the number of inverter and
delay components is not clear for the interpreter.

In previous versions of Hydra and other HDLs, sharing is solved by the use of monads,
or a manual implementation for labelling, where the inputs and outputs are either
implicitly or explicitly tagged, indicating exactly how the connections within the rep-
resentation of the circuit are to be structured. In latest version of Lava this problem
is solved by a technique known as observable sharing. The Hydra implementation in
Template Haskell, solves this problem by applying compile-time meta-programming
techniques to automatically transform circuit descriptions into a manageable for-

24



Listing 19: The toggle circuit definition in the Template Haskell

circ_defs_toggle = [d]
toggle = inv (delay toggle)

]

$(transform_module circ_defs_toggle)

mat where sharing can be identified. By quoting the original definition, Template
Haskell stores the syntax tree of the defined function as a data type. Hence, a special
transformation module is used to insert labelling information within the circuit de-
scription automatically. This module handles the problem of referential transparency
and sharing, while at the same time it reduces the syntactical overhead that would
have otherwise been present, if the user had to insert labelling information explicitly.
In Listing 19, the toggle circuit is described as a quoted function. The transforma-
tion module is a function which inspects and transforms the given quoted function,
while the meta-construct ‘$” evaluates the returned function which is annotated with
labelling information.

Template Haskell is an extension to Haskell, and it does provide access to all of the
other features of Haskell. An HDL such as this version of Hydra, is still able to provide
features like parameterised descriptions and higher-order functions. Template Haskell
adds an additional or alternative abstract perspective, where the quotations and other
meta-constructs provide a two-level language. This means that a second language (the
meta-language) is used to inspect and reason about the original language, in this case,
the Haskell language itself.

5.2 Meta-ML

The work accomplished on meta-programming and hardware design by means of
Meta-ML and MetaOCam [Tah06, KT04, KST04], spreads over a wide range of
methodologies and techniques. When designing hardware systems, the resources can
be fixed, in particular the space or area in which the system will have to be im-
plemented. This is noted especially when considering reconfigurable hardware, such
as Field-Programmable-Gate-Arrays (FPGAs). For this reason, the development of
HDLs should aim at the limited resource usage and performance issues, but unfor-
tunately abstractions tend to cover up these details. This is complementary to the
inclusion of non-functional properties of the circuit in the hardware descriptions.
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Listing 20: The power funcion defined in terms of staging constructs

let rec power n x = if n=20
then .<1>.
else .< ."x x .7 (power (n—1) x)>.

// This function generates .<fun x —> x * x % x % 1>.
let power3 = .<fun x —> .7 (power 3 .<x>.).>.

Apart from solving these kind of problems directly, the work done on Meta-ML of-
fers an alternative approach to hardware design. The proposed solution is Program
Generation, where a two-level language setting is used to generate descriptions for
hardware systems. In a two-level language approach, the object-program that is be-
ing generated can be control be the meta-language, hence, optimisation issues can be
handled during the generation stages. Furthermore, these program generators would
represent a whole family of circuits and not just a single specific design. This kind of
abstraction presents a high level of flexibility and reusability, which can easily be ap-
plied for the description of large circuits having regular-shaped structures. Program
generation would also enhance the current verification techniques and model check-
ing, since analysis and reasoning can be applied on the generator (a whole family of
circuits) rather than on individual circuits. A generator that is formally verified for
correctness should supposedly generate correct circuits.

The meta-constructs that are used are quotations (<>) and splicing (7) constructs.
Quotations stops the interpreter from evaluating the contents, thus maintaining the
code as an object-program, while a splice joins object-programs together. Listing 20
gives an example of how these constructs can be used. The illustration gives the recur-
sive definition of the power function with added meta-constructs, which actually acts
as a parameterised generator for the power function. This kind of descriptions can be
used to describe hardware systems, thus describing generators for a whole family of
circuits. Abstract interpretation is another technique that is presented in [KST04],
where certain aspects of the object-program are interpreted during its generation,
thus performing a number of optimisations. Unlike Hydra in Template Haskell, the
required transformations and modifications are handled during the generation pro-
cess. This eliminates completely the presence of intermediate object-programs, that
require further processing, and therefore improves the overall efficiency.

The recent development of this work is a prototype language called Uccello [ETO07].
Uccello formalises a graphical description language that includes staging constructs,
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which can also be used to describe hardware graphically. In the introduction we
argued that graphical diagrams are difficult to handle large complex circuits, and
that is why we use abstractions over textual descriptions. The Uccello language
tries to overcome this situation by formalising transformation techniques from textual
descriptions to graphical descriptions and vice versa. Hence, the advancements that
have been made on software languages can be conceptually imported to graphical
descriptions, whilst the clarity of graphical diagrams can aid the textual descriptions.
For instance, sharing is clearer in a graphical representation of a circuit, than in
a textual description. This kind of interpretation between textual and graphical
representations should provide an in-site to placement and wire routing problems.

5.3 reFIect

reFIect [GMOO6] is a strongly typed functional language with built-in meta-programming
features. The language was developed by Intel, and it is based on the functional lan-
guage FL, but with extended reflection features. reFIfCt is the main programming
language used with the Forte tool [SJO105]; a hardware verification system used
by Intel. Both reFIf¢t and Forte were purposely developed for the development of
applications in hardware design and verification, and are mostly applied for model
checking, decision making algorithms and theorem provers for hardware analysis.

The reFIfCt language uses quotation and anti-quotation constructs to compose or de-
compose expressions (object-programs) written in the reFIf¢t language itself. This
provides a form of reflection within a typed functional paradigm setting. The meta-
language features in reFIfCt enable the programmer to access the underlying data
structure that is normally used to represent the abstract syntax tree of the lan-
guage. This gives the possibility to create, manipulate and inspect programs written
in reFIfCt, whilst using the reFIfCt language itself. A pattern matching mechanism
is available, and this can even be applied directly on the object-programs, allowing
unevaluated expressions to be inspected and analysed. This provides the possibility
for the developer to modify or transform object-programs at runtime.

reFI£Ct has been used to developed a simple HDL similar to Lava, which we refer to
as reFIect HDL [MOO6]. Listing 21 gives an extract of how a simple basic component
can be defined. The built-in AND operator is being used to represent the and-gate di-
rectly, and boolean values would represent signal values. A separate function (ANDT)
is defined to handle the quoted expression for the AND operator. This function and
the AND operator are hence overloaded, such that, if boolean values are supplied as
inputs, then the evaluation would result in a simulation of the component, while if
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Listing 21: The and-gate and multiplexer definitions in reFIf¢t HDL

// Forward declare a netlist—building AND gate

forward_declare {ANDT :: term —> term —> term};

// Overloaded combinational, and netlist—building AND gate

overload AND AND ANDT;

// Define the term—building AND gate in terms of the overloaded function
let ANDT t1 t2 = {| {AND :: xa —> xa —> *a} 'tl 't2 |};

// Multiplexer defined in terms of the basic gates
let mux (s, (a, b)) = OR (AND s b) (AND (NOT s) a);

object-programs are given, then the evaluation would splice these sub-components
together with the AND operator, resulting in the object-program of the component.
A typical circuit description of a one-bit multiplexer is also given to illustrate that
hardware descriptions at higher levels of abstraction would follow the functional style
of representation. The difference between reFI[£¢t HDL and languages like Lava, is
the way the deep embedding is handled, where instead of having data types to repre-
sent the circuits, in reFIt HDL hardware descriptions are represented by functions
similar to the shallow embedding approach. The meta-constructs are what provides
access to these functions as abstract data types.

A functional meta-language like reFIfCt offers numerous benefits. Research and ex-
perimental work indicate that the meta-programming characteristics of reFI£¢t could
provide enhancements for the way hardware is currently being designed. Simple
circuits could be easily embedded within reFIfCt similar to how Lava is embedded
in Haskell. More complex circuits, in particular regular-shaped circuits, could be
described by applying transformation techniques and manipulations over the object-
programs that represent the smaller sub-components. Connection patterns can be
applied over the object-programs rather than over the functions. This provides a
setting in which object-programs can be annotated with non-functional information.
Sharing and the referential transparency problem can also be handled by means of
meta-constructs, similar to the Hydra implementation in Template Haskell.

6 Conclusions

The primary objective behind hardware description languages is to provide features
that allow hardware designers to describe and compose circuit descriptions. Circuit
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descriptions in languages like, VHDL and Verilog [LMS86, Ope93], can then be rea-
soned about through the use of external tools. Conditional and iterative generation
constructs, added a higher form of abstract description enabling circuit descriptions
to be composed during compilation time following a set of parameters. By adopting
the embedding approach, the hardware descriptions are regarded as circuit generators
rather than circuit descriptions. Hardware description languages such as Lava, Hydra
and Hawk [Cla01, O’D06, LL.C99], enable designers to reason about the circuits, since
these are generated as data objects within a full-blown Turing language. As we have
discussed throughout the previous sections, various levels of abstraction have been
explored over hardware description languages; from modular circuit descriptions, to
parameterised circuit descriptions (two-level languages), to circuit generators (em-
bedded languages). Fach abstract level provides hardware designers more flexibility
and efficiency in describing circuits.

The introduction of meta-constructs within the functional setting exposed other areas,
including abstraction techniques, which are currently being researched and explored
for further enhancements in hardware design. The primary aim in having a multi-
staged hardware description language is to provide access not only to the generated
circuits but also to the generators themselves. Having access to the circuit gener-
ators as data objects within a programming language, should provide features and
capabilities that researchers can take advantage of. The starting issue when adopting
meta-functional programming is to enable the analysis, reasoning and manipulation
of the circuits’ structure. The use of a meta-functional language provides the possi-
bility to perform these operations, while maintaining the capability to describe hard-
ware designs in terms of different abstractions, like parameterised descriptions and
higher-order functions. Problems like sharing can also be handled by means of the
two-level language approach that is achieved through the use of the meta-constructs.
Additionally, by accessing the circuit generators and reasoning about the generators
themselves, certain non-functional properties could be induced before the actual gen-
eration of the circuit. For instance, by examining the generator, one should be able
to extract the generation procedure that is used to create the circuit, thus obtaining
information about, which parts of the circuit have been generated by the generator,
and in what order. This kind of information can be interpreted and used to aid
during the physical placement or floorplanning of the circuit, especially if language
constructs such as combinators are added.

Another area which could benefit from multi-staging techniques is that of hardware
compilation. Embedded HDLs have been used to describe hardware compilers [CP02],
however, the lack of information has lead to non-optimised circuit descriptions. By
adopting a meta-functional language within such areas, should provide the possibility
to introduce post-compilation optimisations or abstract interpretations that would
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reflect changes in the generated circuits. Hence a meta-language should provide a
means to maintain information that would have otherwise been unhandled, and make
use of it to optimise the hardware compilation process.
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