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1 Introduction

In recent years, advances in molecular biology like large-scale sequencing and the
human genome project, have yielded an unprecedented amount of new protein se-
quences. The resulting sequences describe a protein in terms of the amino acids that
constitute it and no structural or functional protein information is available at this
stage. To a degree, this information can be inferred by finding a relationship (or
homology) between new sequences and proteins for which structural properties are
already known. This technique is known as protein homology detection. Traditional
laboratory methods of protein homology detection rely on lengthy and expensive
procedures like x-ray crystallography and nuclear magnetic resonance (NMR). Since
using these procedures is unpractical for the amount of data available, researchers are
increasingly relying on computational techniques to automate the process.

Over the past quarter of a century, an array of successively more powerful com-
putational methods for detecting protein homologies have been developed. Early
attempts involved comparing a new protein to a set of diverse proteins whose struc-
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tural and functional details are already known — one at a time [NW70, SW81, Pea85,
AGM+90]. This results in a set of similarity scores for each pair made up of the new
protein and a known protein. Such a pairwise score indicates the amount by which a
pair is related. This method gives good results for proteins that are closely related,
however, remote homologies are not detected.

In the early 1990s a threefold accuracy improvement was achieved by collecting the
information inherent in a number of related proteins [PKB+98]. This information is
synthesised into a single model, to which new protein sequences are compared [GLE90,
BCHM94, KBS+94]. This technique is more sensitive to faint protein similarities and
consequently, gives better results. Furthermore, even better accuracy was obtained
in the late 1990s by supplementing these models with information present in large
protein databases [AMS+97, KBH98]. This process is done iteratively and makes a
model increasingly accurate.

In 1999, Tommi Jaakkola, Mark Diekhans and David Haussler introduced a new
remote protein homology detection technique known as SVM-Fisher [JDH99, JDH00].
This technique couples a previous statistical protein homology detection method,
known as a profile hidden Markov model (HMM), with a discriminator (or classifier)
from the area of machine learning, known as a support vector machine (SVM). In
empirical tests this technique significantly outperforms previous (non-discriminative)
methods for protein homology detection. SVM-Fisher initiated a new stage in the
development of computational techniques for protein homology detection since it was
the first time discriminators were used in the area. Consequently, Jaakkola et al.
received the “Best Paper” award at the annual Intelligent Systems for Molecular
Biology conference.

In this paper we propose two new methods for protein homology detection. As is done
in the SVM-Fisher method, our methods build on an existing technique in the area
of protein sequence analysis, known as a position specific scoring matrix or profile,
and use a support vector machine as a discriminator.

2 Technical Background

Since our methods rely on profiles and support vector machines we will now give an
outline of these core technologies. The interested reader is encouraged to check the
provided references for more details.
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Pos: 1 2 3 4 5
s1 A A C B C
s2 A – C B B
s3 C A – B B
s4 – A C C B

Pos: 1 2 3 4 5
A 0.50 0.75 0 0 0
B 0 0 0 0.75 0.75
C 0.25 0 0.75 0.25 0.25
– 0.25 0.25 0.25 0 0

Figure 1: A multiple alignment (left) and its corresponding profile (using an alphabet
consisting of A, B, C and –).

2.1 Profiles

Profiles, or position specific scoring matrices (PSSMs) [GLE90], were introduced in
bioinformatics by Gribskov et al. in 1990. Given a multiple sequence alignment,
a profile specifies, for every column, the frequency that each amino acid appears
in that column [Gus97]. As an example, consider the multiple alignment and its
corresponding profile in Figure 1. Once a profile is available, a new sequence can be
aligned to it to see how well it fits the profile. This is similar to asking how much a
sequence is similar to the proteins from which the profile was derived.

In practice, the construction of a profile is somewhat more involved than what is
shown in Figure 1. For instance, sequences in the multiple alignment are given a
weight which describes their informational value. Consider the case where there is a
large set of closely related sequences. This set carries more or less the same amount of
information as a single sequence, however, its size may allow it to ‘outweigh’ a small
number of more divergent sequences. In addition, when calculating the character
position probabilities, a method is usually used that gives probabilities to unobserved
characters based on their presumed association with the observed characters. This is
especially useful when the multiple alignment contains only a few sequences or the
proteins to be classified are remotely related.

As an optional last step, it is common practice to convert profile probabilities to
log-odds ratios to increase the selectivity of the model. This involves taking the
logarithm (base is not important) of the ratio between the available probabilities and
the probability of the particular amino acid being found in nature (also called the
background probability).

2.2 Support Vector Machines

Although the study of support vector machines (SVMs) was started in the late 1970s
by Vladimir Vapnik [Vap79], it was not until the late 1990s that this work came to
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fruition and SVMs started to receive increasing attention [Vap95]. To date, SVMs
and related techniques have been greatly developed and applied to many areas, in-
cluding bioinformatics. In most cases, the performance of SVMs either matches or is
significantly better than that of competing methods.

In essence, support vector machines are supervised learning machines based on sta-
tistical learning theory. SVMs take a vector of real numbers as input and, based
on previous experience, return its classification1 [CS00]. Support vector machines are
based on linear learning machines and learn the hyperplane that separates two classes
with the maximum margin of separation. This optimal hyperplane has been proven
to guarantee the best generalisation performance [Vap95]. Finding this hyperplane
translates to a convex quadratic optimisation problem, which is formulated in such a
way that all vectors appear inside a dot product.

Many times, the input data is not linearly separable in input space. SVMs handle this
situation by substituting the said dot product with a function known as a kernel. A
kernel takes two vectors and returns their dot product in some feature space. In this
manner, SVMs find the optimal hyperplane in (a usually high dimensional) feature
space. A commonly used kernel is the radial basis function (RBF) kernel:

kr(x, z) = exp

(
−‖x− z‖2

2σ2

)
(1)

RBF kernels map the input space onto the surface of an infinite dimensional unit
hypersphere, because by construction ‖φ(x)‖ =

√
kr(x,x) = 1 for all x ∈ X [Her02].

The parameter σ ∈ R+ (the radius) controls the amount of smoothing of the decision
surface in input space. Big values of σ lead to a very flat and smooth decision surface
and conversely, small values lead to a very convoluted decision surface that fits tightly
around the training points.

In real-world data it is not uncommon that some erroneous elements (noise) are
present. An extension of the basic SVM algorithm is the soft margin classifier which
allows some training examples to be misclassified, effectively making a trade-off be-
tween training accuracy and generalisation performance.

3 Problem and Related Work

In this section we introduce the problem and standard datasets used in the area.
We then proceed to present the general method used and two prominent SVM-based
computational methods for remote protein homology detection.

1Other uses of support vector machines apart from classification exist, including regression, where
a real-valued function has to be learnt. However, this is beyond the scope of this report.
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Figure 2: Illustration of a sample experiment from the SCOP dataset showing how
sequences are chosen for training and testing. In this experiment, the task is to
recognise the protein sequences from family 1.1.1.6 as being part of superfamily 1.1.1.
The positive training set comprises the sequences from families 1.1.1.2, 1.1.1.3, 1.1.1.4
and 1.1.1.5. Negative examples are taken from different folds.

3.1 The Problem

Researchers simulate the problem of remote protein homology detection by with-
holding all members of a SCOP2 (target) family and training with the remaining
members of the SCOP superfamily. In addition to these (positive) training and test-
ing sequences, negative examples are taken from folds that are different from the one
that the target family belongs to. Figure 2 shows such a sample experiment, where
the target family is 1.1.1.6. It is important to note that the SCOP database is con-
stantly being updated and a number is assigned to every subsequent version. This
means that there may be inconsistencies between one version and another, including
unmatched family IDs.

The first such dataset was introduced in 1999 by Jaakkola et al.3 [JDH99, JDH00] and
is based on SCOP 1.37. This dataset contains 33 experiments and adds a number
of homologous protein sequences retrieved from a database to the positive train-

2The Structural Classification of Proteins database [MBHC95]. http://scop.mrc-lmb.cam.ac.
uk/scop/

3http://www.cse.ucsc.edu/research/compbio/discriminative/
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ing set. In 2002 Liao and Noble introduced a new dataset4 [LS02, LS03] based on
SCOP 1.53, containing 54 experiments. This dataset is similar in principle to the one
by Jaakkola et al., however the positive training set does not include added homo-
logues. As such, this makes the recognition tasks to perform more difficult.

3.2 Methods

Protein sequences, which are variable-length character strings, must be converted to
fixed-length numerical vectors for input to an SVM. Therefore, all proposed solutions
follow a simple method:

1. Vectorise the training and testing sequences.

2. Train the SVM on the training vectors using a standard kernel (usually the
RBF kernel).

3. Test the performance of the SVM on a dataset.

The first (vectorisation) step is the crucial part in this method. In particular, note
that it is actually part of the kernel, since it is an explicit mapping from input space
to some feature space. By the closure of kernels, a function that maps its input to
feature space coupled with a standard kernel gives a valid kernel.

As would be expected, the main difference between methods is the vectorisation step.
Most methods aim to exploit prior knowledge of the protein homology detection
domain to design a good mapping from input space to feature space. This, coupled
with a standard kernel, gives a similarity measure between pairs of inputs in feature
space that is then used by the SVM for discrimination.

3.2.1 The SVM-Fisher Method

The SVM-Fisher method [JDH99, JDH00] was introduced in 1999 by Jaakkola et al.
This method couples iterative profile hidden Markov models (HMMs) with an SVM
in such a way as to define a kernel. Initially, a number of HMMs are trained on
different subsets of the positive training set using a standard training algorithm. In
general, these subsets contain related proteins and other homologues pulled from a
large protein database. After the HMM training, a vector known as the Fisher score

4http://www1.cs.columbia.edu/compbio/svm-pairwise/
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is computed for any sequence with respect to each HMM. The Fisher score for a
training sequence s with respect to the HMM Hi is the vector

usi =
δ log Pr(s|Hi(θ))

δθ

That is, the gradient of the log-likelihood of the sequence s with respect to the
parameters (θ) of the HMM Hi. These gradients can be computed for every HMM
parameter, however, the SVM-Fisher method uses only those that correspond to
emission probabilities in the match states.

The vectors for sequence s corresponding to each model (which are of the same length)
are subsequently combined into one vector (denoted us) by taking their average.
Effectively, a (combined) vector for sequence s summarises how different s is from a
typical member of the superfamily the HMMs where trained on.

The last step in the SVM-Fisher method is to train an SVM using an RBF kernel.
The resulting combined kernel is the dot product in feature space that is the image
of the composition of two feature maps:

s 7−→ us 7−→ φ(us)

where φ is the feature map associated with the RBF kernel.

SVM-Fisher yields results that significantly outperform previous (non-discriminative)
state-of-the-art protein homology detection systems.

3.2.2 The SVM-pairwise Method

In 2002, Liao and Noble introduced a simple but effective remote protein homol-
ogy detection method, named SVM-pairwise [LS02, LS03]. This method generates a
kernel from scores produced by a pairwise sequence comparison algorithm (like the
Smith-Waterman pairwise alignment algorithm [SW81]).

Let m be the number of training examples and n be the number of all (training and
testing) examples. SVM-pairwise builds an n × m matrix of pairwise scores with
element j of row i corresponding to the pairwise score of protein i when compared to
protein j from the training set. Therefore, in the SVM-pairwise method, row i is a
vector representation of protein i. Note that in this vectorisation step, all (negative
and positive) protein sequences in the training set are used. As is done in other
methods, these vectors are then combined with a standard RBF kernel and an SVM
is trained (see Figure 3).

SVM-pairwise differs considerably from the SVM-Fisher method — in particular, both
positive and negative examples are used in the vectorisation step. On the dataset
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Figure 3: Illustration of the SVM-pairwise method.

by Liao and Noble, this method performs significantly better than the SVM-Fisher
method. Running SVM-pairwise on the Jaakkola et al. dataset is not practical due
to its computational complexity.

4 Solutions Proposed

Our aim is to vectorise protein sequences in such a way as to be accepted for input to
an SVM. The vectors should incorporate prior knowledge from the area so that the
discrimination of related and non-related proteins be made easier. For this purpose,
we have developed two main methods: ProfGram and ProfBlock, which are described
below.

4.1 Approach Overview

The following is a high level description of the steps involved in our vectorisation
method (also illustrated in Figure 4):

1. Compute a multiple alignment of the positive training set using ClustalW, a
popular multiple alignment program by Thompson et al. [THG94]. This is done
so that conserved parts (which are typical of a superfamily) are emphasised.

2. Build a profile from the multiple alignment using the Henikoff and Henikoff
position-based method. Effectively, this results in a model that encapsulates
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Figure 4: Overview of our protein sequence vectorisation technique.

what makes a protein part of the target superfamily5.

3. Vectorise each sequence in the (positive and negative) training and testing sets
by comparing it with the profile, using one of our methods: ProfGram or Prof-
Block. This results in a vector that measures how similar the sequence is to the
profile.

The construction of a profile from a multiple alignment (step 2) is a two step pro-
cess. First, we use a modified version of the position-based sequence weights method
by Henikoff and Henikoff [HH94]. In this method, sequence weights are based on
the diversity observed at each position in the multiple alignment. Then the charac-
ter position specific probabilities are calculated using the pseudo-count method by
Henikoff and Henikoff [HH96], which has been shown to outperform similar methods
in extensive empirical tests. For the vectorisation of a protein sequence (step 3) we
propose two new methods, ProfGram and ProfBlock, which are described in detail in
Section 4.2 and Section 4.3 respectively.

4.2 ProfGram

The ProfGram vectorisation method maps protein sequences to the feature space
indexed by all possible (contiguous) profile subparts of length k, which we shall call
profile k-grams (k is chosen empirically). For this method, the profile is converted to
log-odds scores.

Each of these profile k-grams is slid across the sequence to be vectorised, taking
the score of aligning each part of the sequence with the k-gram. All the scores for a
particular k-gram are added together, representing how much the sequence as a whole
matches the k-gram. The score for each k-gram is stored as an element of the feature
vector. This process is presented more formally below and is illustrated in Figure 5.

5Recall that the positive training set is from the same superfamily as the positive testing set.
Consequently, our problem is equivalent to discovering a new family of a known superfamily.
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Figure 5: Illustration of the ProfGram vectorisation process for k = 3.

Let s be a sequence of length m and let the character in position j of s be denoted
by sj. Let n be the length of the profile and k ≤ min(m,n) be the predefined length
of the profile grams. Let w(i, sj) be the score for character sj appearing in position i
of the profile and v be the feature vector of length n − k + 1. For a sequence s, an
element of v (denoted vh) is calculated as follows:

vh
df
=

m−k+1∑
i=1

k−1∑
j=0

w(h + j, si+j) (2)

Equation 2 is thus used to fill every position in v (for each profile k-gram)6. An
empirical test was carried out to determine a good value for k. It seems that for some
experiments a small width is better and for others a wider profile gram gives better
results. We finally opted to choose k = 4 which gives a performance that is consistent
throughout, although not always optimal.

4.3 ProfBlock

ProfBlock is a more sophisticated vectorisation method that uses the expected match-
ing length of a sequence to every part of the profile. For this method the profile is
not converted to log-odds scores, but is left at the stage where it contains raw prob-
abilities.

6It is important to keep in mind that adding log-odds scores is equivalent to multiplying the
underlying probability ratios, otherwise Equation 2 would not make mathematical sense.
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4.3.1 The Expected Matching Length

Central to the ProfBlock method is a technique known as the expected matching
length, defined below.

Definition 4.1 (Expected Matching Length). Given a profile p of length n,
containing position-specific character probabilities and a sequence s of length m, the
expected matching length of s to p starting at profile position i ≤ n and sequence
position j ≤ m, is denoted by eij. Let p(i, c) be the profile probability of character c
in position i, sj be the character in position j of s and l be the maximum possible
matching length, l = min(n − i + 1, m − j + 1). eij is defined to be the expected
matching length as per standard probability theory:

eij
df
=

l∑
k=1

k

(
k−1∏
h=0

p(i + h, sj+h)

)
(1− p(i + k, sj+k)) (3)

That is, a summation of the probabilities of matching exactly k positions, multiplied
by k. As an example, consider the sequence CAD and its expected matching length
with profile p of length n ≥ 3, starting at the first position of both the sequence and
profile (hence l = 3):

e11 = 1× p(1, C)× (1− p(2, A))

+ 2× p(1, C)× p(2, A)× (1− p(3, D))

+ 3× p(1, C)× p(2, A)× p(3, D)× (1− 0)

4.3.2 Approximation of the Expected Matching Length

The expected matching length is a powerful way of finding the amount by which
a part of a sequence matches a part of the profile, however it has the drawback of
being very computational expensive. To alleviate this problem, we use a technique
that enables us to compute only a small number of the iterations (summations) of
Equation 3 while giving approximately the same result.

For notational clarity we will subsequently be ignoring the different profile and se-
quence positions and denote a profile probability as simply pi, meaning the probability
of the match of the ith sequence and profile positions pair. Once again, let l be the
maximum possible matching length and let k < l. Equation 3 can be opened up by
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splitting the summation into two parts (for the first profile and sequence positions):

e11 =
k∑

i=1

i

(
i∏

j=1

pj

)
(1− pi+1) (4)

+
l∑

i=k+1

i

(
i∏

j=1

pj

)
(1− pi+1)

Since the probabilities product (
∏i

j=1 pj) approaches zero as i increases, the second

term of Equation 4 becomes progressively less significant as i increases. If ek
ij is

the summation of the first k terms (the first term in Equation 4), we would like to
determine a value of k such that eij lies within the interval [ek

ij, e
k
ij + ε] where ε is

a nonnegative real number. This would allow us to approximate eij by calculating
only the first k terms. Moreover, we would like to determine when to stop based on
information from the first k terms. Lemma 4.1 relates the values of the first k terms
to the magnitude of the remaining terms:

Lemma 4.1.

l(l − k)
k∏

j=1

pj ≥
l∑

i=k+1

i

(
i∏

j=1

pj

)
(1− pi+1)

Proof

l(l − k)
k∏

j=1

pj = l

(
l∑

i=k+1

1

)
k∏

j=1

pj

{since 0 ≥ pi ≥ 1 then 1 ≥ (
∏

i pi) (1− pj), therefore}

≥ l

(
l∑

i=k+1

(
i∏

j=k+1

pj

)
(1− pi+1)

)
k∏

j=1

pj

{since l ≥ i then}

≥

(
l∑

i=k+1

i

(
i∏

j=k+1

pj

)
(1− pi+1)

)
k∏

j=1

pj

=
l∑

i=k+1

i

(
i∏

j=1

pj

)
(1− pi+1)

Therefore, if the calculation of the expected matching length is stopped when

l(l − k)
k∏

j=1

pj ≤ ε (5)
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ε Time (%) Average Precision Loss
1 8% 4.8× 10−3

0.1 10% 1.2× 10−3

0.01 12% 1.1× 10−4

0.001 14% 1.2× 10−5

0.0001 15% 1.2× 10−6

0 (no approximation) 100% 0

Table 1: Performance of the ProfBlock method for different settings of ε.

Lemma 4.1 guarantees that the summation of all the other terms in the series is bound
from above by ε and hence, eij cannot increase by more than ε. This reduces the
computation required to calculate (an approximation of) eij considerably. Empirical
analysis indicated that taking ε to be 0.001 gives a good time to precision loss trade-off
(see Table 1).

4.3.3 Computing the Feature Vector

The expected matching length of a sequence of length m to a profile of length n,
starting at profile position i and sequence position j, is denoted by eij. Scoring a
whole sequence with a part of the profile starting at position i, results in the vector

ti = (ei1, ei2, . . . , eim)′

The vector ti represents how much the different positions of a sequence match the
profile starting at position i. A function g : Rm → R is needed that takes a vector
ti as its argument and combines its elements to return a single real number. This
number represents how much the sequence as a whole matches the profile starting at
position i. The feature vector generated for a sequence is thus:

v = (g(t1), g(t2), . . . , g(tn))′

That is, a vector with elements representing how much a sequence matches the dif-
ferent positions of a profile. This process is illustrated in Figure 6.

The ProfBlock scoring function was chosen after an empirical analysis of several can-
didate functions. It turns out that positive examples have longer expected matching
lengths. The scoring function that was found to give the best performance is the sum
of squares since it strengthens larger values present in the expected matching length
vectors ti:

g(ti) =

∑m
j=1 e2

ij

m
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Figure 6: Illustration of the ProfBlock vectorisation method.

Note that the sum of squares is divided by the length of the sequence, m, as a means
to normalise the values between sequences of different lengths. If this is not done,
long sequences would have values which are bigger than shorter ones simply due to
their length.

4.4 Time Complexity Analysis

In analysing the time complexity of our vectorisation methods, we will be taking the
profile as given7. Let n be the length of the longest profile and m be the length of
the longest sequence. ProfGram compares each part of a sequence with each part
of a profile, for up to k positions each time (k is the width of the profile k-grams).
Therefore, the time complexity for ProfGram is O(kmn). If k is chosen to be equal
to the maximum length possible, then the time required will increase, but in practice
k is usually a small number.

On the other hand, ProfBlock compares each position of a sequence (m possibilities)
with each position of a profile (n possibilities), for up to the length of the sequence or
profile (min(m,n) possibilities). The time complexity for the ProfBlock vectorisation
method is therefore O(min(m,n)mn), making ProfBlock more complex than Prof-
Gram by a factor of min(m, n). However, through our ProfBlock expected matching
length approximation technique, we rarely compare a sequence and profile position
for up to the maximum length possible. In fact, the length compared is usually just
a small fraction of the full length. Empirical evidence indicates that this reduces the
min(m,n) factor considerably (see Table 1).

7The calculation of a profile from a multiple alignment is a preprocessing step that is done just
once for the dataset, unlike ProfGram and ProfBlock that have to be performed for each sequence.
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5 Experiments and Results

Our remote protein homology detection method involves vectorising protein sequences
using ProfGram or ProfBlock and then training and testing an SVM on the resulting
vectors. In this section, we describe how the data is scaled and the SVM model
selection prior to the actual SVM learning. Note that more detailed results can be
found in [Bus04].

5.1 Scaling

Scaling vectors before applying the SVM algorithm is very important. This is mainly
done to avoid vector elements in greater numeric ranges dominating those in smaller
numeric ranges and to avoid numerical difficulties during the kernel calculations.
Testing and training data must obviously be scaled using the same method.

For our experiments, we normalise each vector to Euclidean length 1 (the unit vec-
tor). Under this normalisation scheme, the normalised version of the 2-dimensional
vector v = (v1, v2)

′, denoted v̂, is generated as follows

v̂ =

(
v1

‖v‖
,

v2

‖v‖

)′

where ‖v‖ is the norm of v.

5.2 Scoring SVM Results

To evaluate the predictions produced by an SVM, we employ two different methods
that are commonly used in the machine learning community: the median rate of
false positives and the receiver operating characteristic (ROC). At this stage, it is
important to note that in practice, the output of an SVM is a real number in the
range [−1, +1].

5.2.1 Median Rate of False Positives

The median rate of false positives (median RFP) is the fraction of negative examples
that score as high or better than the median-scoring positive example. The median
RFP is bounded by 0 and 1. The smaller the value, the better the performance.
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5.2.2 Receiver Operating Characteristic

The receiver operating characteristic (ROC) [GR96] is a sophisticated technique that
is used to evaluate the results of a prediction. A ROC curve is a graphical plot of
the number of true positives as a function of the number of false positives for varying
classification thresholds. The area under the ROC curve is called the ROC score
and is commonly used as a summary statistic. The area under the curve is usually
approximated by taking the area of the rectangles between data points, and clearly,
is bounded by 0 and 1 (inclusive). A higher ROC score indicates better performance.

5.3 Model Selection

Through an empirical analysis it was found that our methods perform best when
coupled with an RBF kernel (see Equation 1). Using this setup, two SVM param-
eters have to be chosen prior to training: σ, the RBF kernel smoothing parameter,
and C the (soft margin) SVM training error to generalisation performance trade-off
parameter. This is known as model selection.

The goal of model selection is to identify a good C and σ pair such that the classifier
accurately predicts unknown data (testing data). Choosing a small value for C and a
large value for σ results in a simple decision surface and vice-versa. Even if the data
can be separated without error (and this is always possible with the RBF kernel),
better results may be obtained with a simple decision surface since this can avoid
overfitting.

A common technique used in the machine learning community for model selection is
cross-validation. In k-fold cross-validation, the training set is split into k subsets (or
folds) of equal size. For a particular configuration (in our case the C and σ parameters
pair), one subset is tested using the classifier trained on the remaining (k−1) subsets
and scored. This is repeated for every subset and the average of the scores is taken.
This average score is an approximation of the performance of the classifier on testing
data for a particular configuration.

To find the best pair of C and σ over some ranges, a grid search using cross-validation
is employed. This involves scoring each pair using cross-validation and the pair with
the best score is chosen (see Table 2). In our experiments, the grid search performed
is very coarse. Ideally, when good values for a parameter pair is found, a finer grid
search is made in their vicinity. This, however, was not possible due to the size of
the datasets and the amount of time required.
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C1 C2 . . . Cn

σ1 Cross-validation score
using parameters C1

and σ1 — s(C1, σ1).

s(C2, σ1) . . . s(Cn, σ1)

σ2 s(C1, σ2) s(C2, σ2) . . . s(Cn, σ2)
...

...
...

. . .
...

σm s(C1, σm) s(C2, σm) . . . s(Cn, σm)

Table 2: The cross-validation grid search.

5.4 Results

For our experiments, we use Joachims’ implementation of a support vector machine,
SVMlight8 [Joa99]. This implementation allows us to specify cost models for different
classes of the classification task. Moreover, it can handle training sets containing many
thousands of examples. The results obtained on the Liao and Noble dataset and the
Jaakkola et al. dataset are presented in this section. Comparisons of our work to other
methods are also included. We will be referring to our methods as SVM-ProfGram
and SVM-ProfBlock to highlight the fact that we are running an SVM on sequences
vectorised by a certain technique.

5.4.1 Liao and Noble Dataset

Our methods for remote protein homology detection were designed for the Liao and
Noble dataset. The SVM parameters grid search was iterated over the following
values: C = {2−3, 2−2, . . . , 25} and σ = {2−3, 2−2, . . . , 27}. For this dataset, the
SVM was trained with different cost models for the two classes being classified since
negative examples greatly outnumber positive examples in the training set. Positive
training examples were given a misclassification cost factor of N−

N+
where N− and N+

are the number of negative and positive training examples respectively. The cost
factor for misclassifying negative examples was left to the default of 1. The ROC
results obtained by our methods and other competing methods on this dataset are
presented in Table 3 and summarised in Figure 79.

8http://svmlight.joachims.org/
9The results of competing methods were taken from http://www.cs.columbia.edu/compbio/

svm-pairwise.
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Liao and Noble Dataset — ROC Scores
No. Family PG PB PW FS SM BL No. Family PG PB PW FS SM BL

1 1.27.1.1 0.977 0.951 0.971 0.511 0.530 0.545 28 2.9.1.4 0.957 0.979 0.918 0.431 0.485 0.365
2 1.27.1.2 0.963 0.969 0.918 0.629 0.433 0.388 29 3.1.8.1 0.958 0.972 0.963 0.323 0.426 0.580
3 1.36.1.2 0.960 0.898 0.935 0.845 0.879 0.434 30 3.1.8.3 0.919 0.950 0.931 0.445 0.799 0.514
4 1.36.1.5 0.905 0.709 0.976 0.641 0.294 0.443 31 3.2.1.2 0.867 0.850 0.838 0.371 0.348 0.532
5 1.4.1.1 0.997 0.988 0.968 0.708 0.490 0.453 32 3.2.1.3 0.834 0.821 0.898 0.611 0.530 0.460
6 1.4.1.2 0.926 0.959 0.814 0.795 0.744 0.315 33 3.2.1.4 0.908 0.891 0.964 0.847 0.686 0.821
7 1.4.1.3 0.971 0.961 0.944 0.635 0.754 0.588 34 3.2.1.5 0.897 0.968 0.932 0.597 0.594 0.506
8 1.41.1.2 0.962 0.957 0.999 0.956 0.992 0.867 35 3.2.1.6 0.838 0.849 0.912 0.624 0.797 0.769
9 1.41.1.5 0.976 0.900 0.998 0.935 0.893 0.925 36 3.2.1.7 0.905 0.920 0.909 0.536 0.366 0.773

10 1.45.1.2 0.315 0.672 0.971 0.547 0.522 0.481 37 3.3.1.2 0.859 0.867 0.937 0.733 0.722 0.736
11 2.1.1.1 0.754 0.839 0.978 0.840 0.878 0.491 38 3.3.1.5 0.848 0.915 0.917 0.448 0.568 0.806
12 2.1.1.2 0.958 0.958 0.994 0.756 0.875 0.575 39 3.32.1.1 0.876 0.900 0.946 0.777 0.852 0.817
13 2.1.1.3 0.890 0.967 0.985 0.844 0.755 0.531 40 3.32.1.11 0.916 0.965 0.880 0.899 0.969 0.667
14 2.1.1.4 0.864 0.886 0.974 0.876 0.976 0.561 41 3.32.1.13 0.752 0.821 0.836 0.727 0.760 0.278
15 2.1.1.5 0.785 0.732 0.832 0.647 0.602 0.488 42 3.32.1.8 0.857 0.918 0.901 0.759 0.867 0.688
16 2.28.1.1 0.764 0.658 0.815 0.490 0.392 0.639 43 3.42.1.1 0.836 0.861 0.886 0.687 0.790 0.784
17 2.28.1.3 0.733 0.829 0.829 0.596 0.375 0.476 44 3.42.1.5 0.721 0.784 0.811 0.586 0.523 0.562
18 2.38.4.1 0.789 0.752 0.697 0.501 0.282 0.423 45 3.42.1.8 0.885 0.916 0.760 0.425 0.463 0.396
19 2.38.4.3 0.746 0.816 0.707 0.419 0.385 0.436 46 7.3.10.1 0.950 0.981 0.986 0.898 0.507 0.604
20 2.38.4.5 0.866 0.874 0.877 0.539 0.417 0.573 47 7.3.5.2 0.944 0.992 0.996 0.850 0.698 0.886
21 2.44.1.2 0.219 0.444 0.146 0.533 0.444 0.525 48 7.3.6.1 0.979 0.975 0.998 0.985 0.999 1.000
22 2.5.1.1 0.896 0.894 0.925 0.680 0.752 0.696 49 7.3.6.2 0.968 0.978 0.994 0.955 0.826 0.837
23 2.5.1.3 0.878 0.907 0.896 0.669 0.803 0.764 50 7.3.6.4 0.992 0.989 0.992 0.864 0.935 0.838
24 2.52.1.2 0.694 0.716 0.643 0.472 0.541 0.232 51 7.39.1.2 0.978 0.988 0.928 0.713 0.378 0.621
25 2.56.1.2 0.823 0.851 0.844 0.612 0.492 0.511 52 7.39.1.3 0.783 0.871 0.990 0.820 0.902 0.406
26 2.9.1.2 0.940 0.944 0.874 0.485 0.582 0.554 53 7.41.5.1 0.913 0.844 0.791 0.798 0.649 0.471
27 2.9.1.3 0.998 0.995 0.970 0.655 0.745 0.311 54 7.41.5.2 0.422 0.686 0.943 0.979 0.863 0.488

Table 3: ROC scores obtained on the Liao and Noble dataset by various methods.
PG = our ProfGram vectorisation method with an SVM; PB = our ProfBlock vec-
torisation method with an SVM; PW = Liao and Noble’s SVM-pairwise [LS02, LS03];
FS = Jaakkola et al.’s SVM-Fisher method [JDH99, JDH00]; SM = Karplus et al.’s
profile HMM-based SAM [KBH98]; BL = Altschul et al.’s PSI-BLAST [AMS+97].
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Figure 7: Comparison of several methods (left) and a family-by-family comparison of
SVM-ProfBlock with SVM-pairwise on the Liao and Noble dataset.

5.4.2 Jaakkola et al. Dataset

ProfGram and ProfBlock were not designed for the Jaakkola et al. dataset. This is
because the positive training set contains a lot of proteins that are related to par-
ticular superfamily protein sequences. These protein sequences may be too distantly
related between themselves to generate a good profile. We believe that with some
minor modifications to handle this situation, the performance of our methods can be
improved. Unfortunately, it was not possible to run our methods on the Immunoglob-
ulin (2.1.1.x) families (5 experiments) because the size of the positive training sets
prevented us from producing the corresponding multiple alignments using ClustalW.
Consequently, we will be ignoring these families for the comparisons.

For this dataset, the two SVM parameters were iterated over the following values:
C = {21, 22, . . . , 25} and σ = {26, 27, . . . , 212}. There was no need to train the SVM
with different cost models since the positive and negative training sets are roughly
balanced. The median RFP results obtained by our methods and other competing
methods on this dataset are presented in Table 4 and summarised in Figure 810.

5.5 Analysis of Results

Our ProfGram and ProfBlock vectorisation methods are designed take advantage of
the fact that related proteins share some common conserved areas. The profile itself
emphasises these important features of a collection of related proteins. In essence,

10The results of competing methods were taken from [JDH00].
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Jaakkola et al. Dataset — Median RFP
No. Family PG PB FS SM BL No. Family PG PB FS SM BL

1 1.1.1.2 0.562 0.262 0.364 0.450 0.342 18 2.5.1.3 0.180 0.125 0.002 0.003 0.116
2 1.25.1.1 0.016 0.002 0.035 0.446 0.397 19 2.8.1.2 0.064 0.079 0.133 0.088 0.391
3 1.25.1.2 0.002 0.009 0.002 0.109 0.114 20 2.8.1.4 0.025 0.019 0.066 0.204 0.630
4 1.25.1.3 0.026 0.049 0.004 0.289 0.440 21 3.1.1.1 0.052 0.020 0.000 0.007 0.851
5 1.34.1.4 0.002 0.002 0.000 0.000 0.000 22 3.1.1.3 0.144 0.055 0.008 0.009 0.338
6 1.34.1.5 0.001 0.000 0.000 0.000 0.000 23 3.1.1.5 0.024 0.024 0.031 0.110 0.426
7 2.1.1.1 – – 0.000 0.000 0.000 24 3.19.1.1 0.055 0.066 0.008 0.019 0.004
8 2.1.1.2 – – 0.000 0.000 0.000 25 3.19.1.3 0.080 0.154 0.002 0.009 0.102
9 2.1.1.3 – – 0.000 0.000 0.006 26 3.19.1.4 0.229 0.064 0.002 0.001 0.049

10 2.1.1.4 – – 0.000 0.000 0.004 27 3.19.1.5 0.119 0.026 0.002 0.024 0.330
11 2.1.1.5 – – 0.073 0.178 0.329 28 3.25.1.1 0.142 0.110 0.005 0.015 0.299
12 2.19.1.1 0.740 0.211 0.083 0.278 0.298 29 3.25.1.3 0.092 0.174 0.000 0.007 0.330
13 2.31.1.1 0.111 0.137 0.000 0.000 0.002 30 3.33.1.1 0.018 0.002 0.000 0.000 0.000
14 2.31.1.2 0.157 0.152 0.000 0.000 0.000 31 3.33.1.5 0.212 0.270 0.238 0.273 0.201
15 2.34.1.1 0.773 0.103 0.003 0.012 0.108 32 3.50.1.7 0.087 0.086 0.000 0.000 0.053
16 2.41.1.1 0.618 0.032 0.051 0.165 0.293 33 3.73.1.2 0.644 0.072 0.026 0.007 0.433
17 2.5.1.1 0.278 0.095 0.013 0.039 0.049

Table 4: Median RFP results obtained on the Jaakkola et al. dataset by various
methods. PG = our ProfGram vectorisation method with an SVM; PB = our
ProfBlock vectorisation method with an SVM; FS = Jaakkola et al.’s SVM-Fisher
method [JDH99, JDH00]; SM = Karplus et al.’s profile HMM-based SAM [KBH98];
BL = Altschul et al.’s BLAST [AGM+90].
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Figure 8: Comparison of several methods (left) and a family-by-family comparison of
SVM-ProfBlock with SVM-Fisher (right) on the Jaakkola et al. dataset.
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a profile can be seen as describing a typical protein in the superfamily from which
the proteins were taken. Both our methods compare a sequence with each part of a
profile. If a sequence has a high similarity with part i of the profile, it receives a high
score for element i of the feature vector. ProfGram uses a simple scoring mechanism,
where the profile contains log-odd scores. On the other hand, ProfBlock uses a more
sophisticated technique based on the expected matching length of a sequence with a
part of the profile. In this case, the profile contains the probabilities derived from
the multiple alignment of related proteins. A vector created with one of our methods
should therefore represent how much a sequence matches a profile as a whole.

The support vector machine has to determine (through training) which features make
a vector belong to the positive class and vice-versa. As described in Section 2.2, SVMs
are particularly good at choosing the hyperplane that best separates these two classes.
Moreover, the RBF kernel maps the vectors to a space where the important features
are emphasised, making the resulting feature vectors linearly separable (possibly with
some error).

As expected, SVM-ProfBlock performs better than SVM-ProfGram in all of the ex-
periments, even though the difference is not very pronounced. Moreover, the per-
formance of our methods is always better than traditional, non-SVM methods and
comparable to the state-of-the art SVM methods. What follows in this section is an
analysis of the results achieved with our methods on the Liao and Noble dataset and
the Jaakkola et al. dataset. It is important to keep in mind that our methods were
designed for the Liao and Noble dataset. In fact, our methods’ performance on this
dataset is very satisfactory. On the other hand, our methods could not be run on
five experiments of the Jaakkola et al. dataset, due to the huge amount of protein
sequences in their positive training sets.

5.5.1 Performance on the Liao and Noble Dataset

Of particular interest is the performance of the SVM-ProfBlock method on the Liao
and Noble Dataset. For almost half of the families in the dataset our method out-
performs SVM-pairwise, which is the best performing method on this dataset (recall
that the dataset was created by the authors of this method). In general, however,
SVM-pairwise performs slightly better than SVM-ProfBlock.

The time complexity of the vectorisation step of SVM-pairwise for a single sequence
is O(m2l) where m is the length of the sequence and l is the amount of sequences
in the training set. Recall that the time complexity of ProfBlock for the vectorisa-
tion of a sequence is O(min(m, n)mn), where n is the length of the profile. Typi-
cally, l � max(m, n), which makes our method more efficient. Moreover, through our
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expected matching length approximation technique the time required in practice is
reduced further (see Table 1 for an empirical result).

Our methods are similar in spirit to SVM-Fisher since both build a model (a profile
and an HMM respectively) from the positive training set and then vectorise a sequence
in relation to this model. On this dataset, both SVM-ProfBlock and SVM-ProfGram
significantly outperform the SVM-Fisher method. This may be because the HMMs
used in the SVM-Fisher method are undertrained due to limited training examples.
The fact that our methods perform so well on limited positive training examples is
commendable.

5.5.2 Performance on the Jaakkola et al. Dataset

The performance of SVM-ProfGram and SVM-ProfBlock is also satisfactory on the
Jaakkola et al. dataset, although not as good as on the Liao and Noble dataset.
However, it is important to keep in mind that five families (2.1.1.x) of the dataset were
left out from these benchmarks, therefore the results here are somewhat incomplete.

Once again, in this dataset, SVM-ProfBlock achieves better classification on almost
half of the experiments that were performed than the state-of-the-art method, SVM-
Fisher. However, the difference between our method and SVM-Fisher is much more
pronounced than that with SVM-pairwise on the Liao and Noble dataset (recall that
this dataset was created by the authors of SVM-Fisher).

The time complexity of the vectorisation step of SVM-Fisher for a single sequence
is O(mp) where m is the length of the sequence and p is the number of HMM pa-
rameters. SVM-Fisher also includes the training of profile HMMs as a preprocessing
step, however, this will be ignored since it is done only once prior to the actual
vectorisations (this is similar to our profile creation step). Recall that the time com-
plexities of ProfGram and ProfBlock for the vectorisation of a sequence are O(kmn)
and O(min(m, n)mn) respectively, where n is the length of the profile. Since n ≈ p,
the ProfGram vectorisation method takes approximately the same amount of time
as the SVM-Fisher vecorisation. On the other hand, ProfBlock takes approximately
min(m,n) times as long as the SVM-Fisher method (although through our expected
matching length approximation technique the time required is much less). However,
it is important to note that for this dataset, the SVM-Fisher vectorisation of a se-
quence is usually done relative to several HMMs to produce feature vectors which are
subsequently combined.

The performance of our methods on this dataset is satisfactory but does not match
that of SVM-Fisher. We suspect that this is due to the excessive amount of positive
training examples from which a profile is built. Some of these examples may be too
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distantly related, resulting in a profile that is too general. Unfortunately, it was not
possible to verify this hypothesis due to time constraints.

6 Conclusion

In general, the results obtained with our methods significantly outperform previous
non-discriminative methods of protein homology detection and are comparable to the
state-of-the-art SVM-based methods. In addition, it is interesting to note that our
techniques perform well even when only a few positive training examples are available
(as in the Liao and Noble dataset).

On the other hand, the performance of our methods on the Jaakkola et al. dataset
suffers, presumably because the generated profile is too general. To handle this sit-
uation, Jaakkola et al. in the original SVM-Fisher experiments, created a number of
models (in the form of HMMs) for different sets of homologous proteins. We suspect
that if we create a similar setup, where the HMMs are replaced by our profiles, better
results would be obtained. In this setup, our vectorisation methods would have to
combine the scores from the different profiles. The combination of scores is an object
of research, but preliminary functions could be the mean or the maximum of all the
scores.
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