
TECHNICAL REPORT

Report No. CS2017-02
Date: September 2017

A Timed Contract-Calculus

Marı́a Emilia Cambronero
Luis Llana
Gordon J. Pace

University of Malta

Department of Computer Science
University of Malta
Msida MSD 06
MALTA

Tel: +356-2340 2519
Fax: +356-2132 0539
http://www.cs.um.edu.mt

A Timed Contract-Calculus

Marı́a Emilia Cambronero
University of Castilla-La Mancha, Spain.
MEmilia.Cambronero@uclm.es

Luis Llana
Universidad Complutense de Madrid, Spain.

llana@sip.ucm.es

Gordon J. Pace
University of Malta, Malta

gordon.pace@um.edu.mt

Abstract: Over these past years, formal reasoning about contracts be-
tween parties participating in a transaction has been increasingly ex-
plored in the literature. There has been a shift of view from that viewing
contracts simply as properties to be satisfied by the parties to contracts
as first class syntactic objects which can be reasoned about indepen-
dently of the parties’ behaviour. In this paper, we present a contract cal-
culus to reason about contracts abstracting the parties’ behaviour in a
simulation relation. We study the contracts evolution in time by associat-
ing time constraints with deontic clauses, which allows to associate time
limit with permissions, obligations and prohibitions. Then, we show how
the calculus can be used to support the runtime monitoring of contracts
and apply it to a plane boarding system case study.

A Timed Contract-Calculus∗

Marı́a Emilia Cambronero
University of Castilla-La Mancha, Spain.
MEmilia.Cambronero@uclm.es

Luis Llana
Universidad Complutense de Madrid, Spain.

llana@sip.ucm.es

Gordon J. Pace
University of Malta, Malta

gordon.pace@um.edu.mt

Abstract: Over these past years, formal reasoning about contracts be-
tween parties participating in a transaction has been increasingly ex-
plored in the literature. There has been a shift of view from that viewing
contracts simply as properties to be satisfied by the parties to contracts
as first class syntactic objects which can be reasoned about indepen-
dently of the parties’ behaviour. In this paper, we present a contract cal-
culus to reason about contracts abstracting the parties’ behaviour in a
simulation relation. We study the contracts evolution in time by associat-
ing time constraints with deontic clauses, which allows to associate time
limit with permissions, obligations and prohibitions. Then, we show how
the calculus can be used to support the runtime monitoring of contracts
and apply it to a plane boarding system case study.

1 Introduction

The need for formal techniques for reasoning about contracts is becoming increasingly
important as software systems interact more frequently with other software and with our
everyday life. Although for many applications a property-based approach suffices — spec-
ifying pre-/post-conditions, invariants, temporal properties, etc. — other applications re-
quire a first class notion of contracts which such approaches do not address sufficiently
well. Deontic logics have been developed precisely to deal with such a need to talk about
ideal behavior of a system, possibly also including exceptional situations when the system
deviates from such behavior. For instance, consider a contract which specifies that a party
is to perform a particular action, but if they fail to do so, will incur an additional charge

∗This work received financial support from the Spanish Government (cofinanced by FEDER funds)
through the TIN2012-36812-C02-02 and TIN2015-65845-c03-02 Projects.

1

(which they are obliged to pay) and prohibited from taking certain actions until they do so.
Such contracts, typically using a deontic logic, have been referred to as total contracts and
have been argued to be more informative (with the right abstractions) than simple proper-
ties [FPO+09]. By looking at contracts as first-class entities which can be reasoned about,
manipulated, etc. one can perform contract analysis independent of the systems the contract
will regulate, e.g., one can analyze contracts for potential conflicts, or to evaluate which is
the stricter one.

Different approaches to contract analysis have been reported in the literature, with most
approaches focusing on the violation semantics of contracts, thus enabling the character-
ization of agreements between parties or agents regulating their behavior. In interacting
systems, contracts play an even more important role, since an agent’s behavior (or non-
behavior) directly impacts other agents. Surprisingly, most contract logics reason about
deontic modalities such as obligations and permissions per agent, and there is limited work
on reasoning about directed deontic modalities [GM05, PS12], in which, for instance, a
permission is parametrized by (i) the agent which is to be permitted to perform an action
or be in a particular state; and (ii) the agent which is bound to provide that permission.

Interaction has long been studied in computer science using calculi to reason about commu-
nicating transition systems enabling the classification of systems into correct and incorrect
ones with respect to a property or contract. Over these past couple of decades, however,
there has been a shift of view, distinguishing properties from contracts — moving from
a view of e-contracts simply as properties to be satisfied by the agents involved in the
contract, to contracts as first class syntactic objects which can be reasoned about indepen-
dently of the agents’ behavior. In much of the literature, however, contract comparison
is still defined by quantifying over all possible behavior of the systems, making reason-
ing about contracts still depends directly on contract satisfaction and violation predicates
parametrised by the behavior they are regulating.

In a previous version [CLP17] a calculus to reason about contracts independent of the sys-
tems was presented, however time was not considering. In this paper, we present a timed
calculus to reason about contracts abstracting away the agents’ behavior in the simulation
relation and considering deontic modalities and conditions with time constraints. Then, we
give an operational view of contracts, using notions from process calculi to model the no-
tion of contracts, and enabling their analysis and comparison using bisimulation techniques
on their operational behavior. The approach also enables us to reason about nondetermin-
ism in contracts. We complete this formalism by adding time in order to predict the contract
accomplishments according to time.

The paper is organised as follows. In section 3, we present the notation we will use to
formalize our notions. We then present our timed contract calculus in section 4 and for-
malise the notion of refinement of contracts in section 5. Furthermore, we show how we

2

can transform contracts written in our calculus into runtime monitors which report viola-
tion in section 6. We show how the calculus can be applied to a standard case study of a
Plane Boarding System contract between a passenger and the airline company in section 7.
We compare our approach to related work in section 2 and conclude in section 8.

2 Related Work

There is a long history of contract formalisation in terms of deontic logics. The timed
calculus we present in this paper is based on an untimed contract calculus we presented in
[CLP17]. Putting aside the timed aspect of the calculus, our approach has three important
features: (i) deontic modalities are explicitly tagged by the party involved; (ii) the use of
operational semantics allows us to compare contracts beyond the trace level, using standard
notions of simulation; and (iii) interaction between parties is an important aspect of the
calculus, since we need to take into account whether the parties allow each other to satisfy
the contract. A detailed comparison between the untimed part of the calculus and other
approaches in the literature can be found in [CLP17]. In this paper we will focus solely
on related work from the literature formalising time in contracts. The way we augment the
calculus with time shares much how real-time is typically augmented in process calculi e.g.
timed CSP [DS95] and timed CCS [Yi91] — we enrich the operational semantics to allow
for time taking transitions. In this manner, we can compare contracts also with respect to
their behaviour over time.

Although time plays an important role in contracts, there is surprisingly little work for-
malising the notions behind explicitly timed contracts. Even when allowing for temporal
modalities, many deontic logics and contract languages (e.g. [PS09, Wyn06, APSS16])
limit their notion of time to one of temporal ordering of events e.g. the obligation to pay
immediately after using a service (i.e. a trace which contains the subtrace 〈useService,
somethingElse〉 will result in a violation), or prohibition from borrowing a fourth book
from a library without returning any of the ones already in your possession (i.e. any trace
containing a subtrace which has four instances of borrowBook without intermediate return-
Book). In literature some proposals considering explicit time in contracts can be found.
Among them some remarkable works are [DCMS14, BDDM04, CDMR01].

In citeTSE14 a graphical representation of contracts is presented. In this work the authors
define diagrams to represent the deontic clauses of different signatories and the absolute
and relative timing constraints associated to them. Semantics based on timed automata
extended with information regarding the satisfaction and violation of clauses in order to
represent different deontic modalities is shown, but the operational semantics of this for-
malism is not presented and they consider the parties independently.

3

J. Broersen et al. [BDDM04] study a dyadic modal operator, which covers the notion of be-
ing obliged to obey a condition before another condition occurs. For this purpose, they use
logic CTL and try to extend it with a set of violation constants. By considering deadlines
as explicit events, they deal with time using only a notion of ordering, and thus cannot deal
with relative deadlines without additional logical overheads (explicitly introducing rules
such as the ordering of two sequential one second deadlines with respect to a three second
interval). Therefore, they define a simple semantics for deadline obligations in terms of
branching time models. This work is mainly focused on time associated with obligations,
and it does not consider time for the other deontic operators.

In [CDMR01] J. Cole et al. present a case study of a conference programme to illustrate
how policies (also covering obligations, prohibitions and permissions) might be formulated
and refined alongside the refinement of the system specification. They model timed action
and events, but they do not give a formal semantics for this purpose.

One of the richest real-time deontic logics was developed by Marjanovic et al. [MM01].
The logic presented covers various ways in which temporal constraints can be added within
contracts. Although they present some ideas of how such constraints can be verified for the
conjunction of different clauses, the logic lacks notions such as contract sequentiality and
reparation which are able to handle in our logic.

3 Notation

Contracts regulate the behavior of a number of agents, or parties running in parallel. In this
section we present the notation we will use to describe these agents and their behavior in
order to be able to formalise the notion of contracts in the following sections.

We will assume that the underlying system consists of a number of indexed agents running
in parallel: ||ni=1Ai, where each Ai is an agent indexed by i ∈ I with I being the index
set. We will use variables A, A′ and indexed versions for individual agent behavior. We
also use A, A′, etc. to denote the system as a whole. The system will be assumed to
perform actions over alphabet Act. We will write A a−−→ A′ to indicate that agent A can
perform action a ∈ Act to become A′ and A

a−−6→ to mean that A cannot perform action a:
¬∃A′ · A a−−→ A′.

We can now define A a,s−−→ A′ to denote that system A can perform action a ∈ Act to
become system A′ with s denoting the set of parties involved in the transition. This is
formally defined as follows:

Definition 1 Transitions Notation.

4

• A
a,only(l)
−−−−−→ A′ means that agent l can perform action a but no other agent can

synchronize with it. Formally, we define A
a,only(l)
−−−−−→ A′ as: (i) only agent l has

evolved: A = A1 ‖ · · · ‖ Al ‖ · · · ‖ An and A′ = A1 ‖ · · · ‖ A′l ‖ · · · ‖ An; (ii) Al has
evolved with action a: Al

a−−→ A′l; and (iii) no other agent could have synchronised
on action a: ∀k 6= l · Ak

a−−6→ .

• A
a,{l,k}
−−−−−→ A′ means that agents l and k synchronize on action a. Formally, we

define A
a,{l,k}
−−−−−→ A′ to mean that: (i) only agents k and l have evolved over action

a: A = A1‖· · ·‖Al‖· · ·‖Ak‖· · ·‖An, andA′ = A1‖· · ·‖A′l‖· · ·‖A′k‖· · ·‖An; and
(ii) both agents l and k have evolved over actions a: Al

a−−→ A′l and Ak
a−−→ A′k.

• A t
::; A′ means that the system A evolves to A′ when t time units pass.

We also write A a,l−−→ to denote that agent l is capable of performing action a: ∃A′ :

Ak
a−−→ A′, and A

a,l
−−−−6→ for its negation.

In order to formalise the notion of violation of contracts, we will use predicates over agent
behaviour.

Definition 2 Let k be an agent index and a ∈ Act. A predicate is defined as:

P ::= tt | ff | (a, k) | (a, k) | ¬(a, k) | P ∨Q | P ∧Q

The set of predicates is denoted by P .

Predicates tt and ff denote true and false respectively. The predicate (a, k) indicates that
agent k wants to perform the action a, but this action is not offered by any other agent for
synchronization. Predicate disjunction and conjunction is indicated by P ∨Q and P ∧Q.

Definition 3 Let A and A′ be two systems and P1 and P2 ∈ P . Formally, the semantics of
predicates are defined as:

A ` tt
df
= true

A ` ff
df
= false

A ` (a, k)
df
= ∃s, A′ · A a,s−−→ A′ ∧ k ∈ s

A ` (a, k)
df
= ∃A′ · A

a,only(k)
−−−−−−−→ A′

A ` ¬(a, k)
df
= 6 ∃s, A′ · A a,s−−→ A′ ∧ k ∈ s

A ` P1 ∨ P2
df
= A ` P1 or A ` P2

A ` P1 ∧ P2
df
= A ` P1 and A ` P2

5

We can now define the notion of stronger-than and that of equivalence between predicates.

Definition 4 Given predicates P,Q ∈ P , we say that P is stronger than Q, written P ` Q,
iff for any systemA for whichA ` P holds, A ` Q also holds. We say that P is equivalent
to Q, written P ∼ Q, iff P ` Q and Q ` P .

4 A Timed Contract Calculus

We can now define our contract calculus to allow for an operational view of contracts. We
start by defining the contract calculus syntax and an equivalence relation over the syntactic
forms. We then define the notion of contract violation conditions based on which we give
an operational semantics to the calculus. In this section, we will assume a time domain
ranging over the non-negative reals: T = R+.

4.1 Contract Syntax

Definition 5 Well formed formulae ϕ in our contract calculus follows this syntax:

ϕ ::= > | ⊥ | Pk(a)[d] | Ok(a)[d] | Fk(a)[d] | wait(d) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1;ϕ2 |
ϕ1 I ϕ2 | [a, k, d](ϕ1, ϕ2) | rec x.ϕ | x

where a ∈ Act, k ∈ I and d ∈ T ∪ {∞}.

The basic formulae > and ⊥ indicate, respectively, the contracts which are trivially satis-
fied and violated. The key modalities we use from deontic logic to specify contracts are
obligations, permissions and prohibitions. The formula Pk(a)[d] indicates the permission
of agent k to perform action a within d time units, whileOk(a)[d] is an obligation on agent
k to perform action a within d time units, and Fk(a)[d] is the prohibition on agent k to
perform action a within d time units. The action wait(d) represents a delay of d time units.
For instance, we can model the obligation of agent k of doing action a in 3 time units after
a delay of 2 time units: wait(2);Ok(a)[3].
Contract disjunction is written as ϕ1∨ϕ2, and contract conjunction as ϕ1∧ϕ2. The formula
ϕ1;ϕ2 indicates the sequential composition of two contracts — in order to satisfy the whole
contract one must first satisfy the first contract ϕ1 and then the second ϕ2.

The reparation operator, written ϕ1 I ϕ2, is the contract which starts off as ϕ1 but when
violated, triggers contract ϕ2, e.g., O1(a)[2] I P2(b)[5] is the contract which obliges agent
1 to perform action a in 2 time units, but if she does not, permits agent 2 to perform action
b in 5 time units.

6

The formula [a, k, d](ϕ1, ϕ2) is a conditional contract which behaves like ϕ1 if (a, k, d)
holds on the system (i.e., if party k can perform action a within d time units), and like ϕ2

otherwise. Note that we can generalise to more general conditions on the system, but we
limit it to ability of a party to perform an action for the scope of this paper.

Finally, rec x.ϕ and x handles recursive contracts, e.g., rec x.Op(a)[d];x is the contract
which obliges agent p to perform action a in d time units, repeatedly. For simplicity, we
will assume that (i) variables x will only occur under a recursive definition on that variable;
and (ii) recursive variables are preceded by a prefix. In the rest of the paper, the set of
contracts will be denoted by C.

4.2 Syntactical Equivalence

In order to simplify the presentation of the operational semantics, we will define a syntac-
tical equivalence relation ≡ between well-formed formulae in the contract calculus. This
equivalence relation must be applied on a well-formed formula and its subformulae before
the rules of the operational semantics. It is defined as the least equivalence relation that
includes:

1. ϕ ∧ > ≡ ϕ 2. > ∧ ϕ ≡ ϕ 3. ⊥ ∧ ϕ ≡ ⊥
4. ϕ ∧ ⊥ ≡ ⊥ 5. ϕ ∨ > ≡ > 6. > ∨ ϕ ≡ >
7. ϕ ∨ ⊥ ≡ ϕ 8. ⊥ ∨ ϕ ≡ ϕ 9. >;ϕ ≡ ϕ
10. ⊥;ϕ ≡ ⊥ 11. > I ϕ ≡ > 12. ⊥ I ϕ ≡ ϕ
13. Ok(a)[0] ≡ ⊥ 14. Fk(a)[0] ≡ > 15. Pk(a)[0] ≡ >
16. wait(0) ≡ > 17. [a, k, 0](ϕ,ψ) = ψ

The≡ relation can be seen as rewriting rules read from left to right. We will write ϕ ↪→ ϕ′ if
ϕ′ is the result of applying one of the equivalence rules from left to right on a subexpression
of ϕ. We can show that ↪→ is terminating and confluent.

Proposition 1 The syntactic equivalence relation applied from left to right is (i) terminat-
ing: there are no infinite sequences ϕ1, ϕ2 . . . , such that for all values of i, ϕi ↪→ ϕi+1; (ii)
local confluent: if ϕ ↪→ ϕ1 and ϕ ↪→ ϕ2 then there is a contract ϕ′ such that ϕ1 ↪→∗ ϕ′ and
ϕ2 ↪→∗ ϕ′. Proof. Since the right term is always syntactically smaller than the one on the
left, the relation ↪→ is a well-founded relation, and thus, termination is easily proved. To
prove local confluence, we perform case analysis on the different rules, which are applied
to the subformulae to show that the confluence result holds.

Based on these results, we can prove confluence using Newman’s Lemma [New42].

Corollary 1 The syntactic equivalence relation applied from left to right is confluent: if
ϕ ↪→∗ ϕ1 and ϕ ↪→∗ ϕ2 then there is a contract ϕ′ such that ϕ1 ↪→∗ ϕ′ and ϕ2 ↪→∗ ϕ′.

7

Given confluence and termination, we will write ϕ 7−→ ψ to mean than (i) ϕ can be syn-
tactically reduced to ψ in a number of steps: ϕ ↪→∗ ψ; and (ii) ψ cannot be reduced any
further: ψ 6↪→.

Definition 6 Let us consider the relationR ⊆ C × C defined as follows

R df
= ≡ ∪{(>,>), (⊥,⊥)}∪

{(Fk(a)[d],Fk(a)[d′]) | d, d′ > 0}∪
{(Pk(a)[d],Pk(a)[d′]) | d, d′ > 0}∪
{(Oa(k)[d],Oa(k)[d′]) | d, d′ > 0}∪
{(wait(d),wait(d′)) | d, d′ > 0}∪

{([a, k, d](ϕ1, ϕ2), [a, k, d
′](ϕ1, ϕ2)) | d, d′ > 0, ϕ1, ϕ2 ∈ C}

The structural equivalence congruence, denoted by ≡s is the smaller congruence that con-
tainsR.

4.3 Contract Violation

We can now formally define the notion of contract violation.

Definition 7 We say that a contract ϕ is in a violated state, written vio(ϕ) if the contract
has already been violated:

vio(>) df
= ff vio(⊥) df

= tt

vio(Pk(a)[d])
df
= (a, k) vio(Ok(a)[d])

df
= ¬(a, k)

vio(Fk(a)[d])
df
= (a, k) vio(ϕ ∧ ϕ′) df

= vio(ϕ) ∨ vio(ϕ′)

vio(ϕ ∨ ϕ′) df
= vio(ϕ) ∧ vio(ϕ′) vio(ϕ I ϕ′)

df
= vio(ϕ) ∧ vio(ϕ′)

vio([a, k, d](ϕ,ϕ′))
df
= ff vio(ϕ;ϕ′)

df
= vio(ϕ)

vio(wait(d))
df
= ff vio(rec x.ϕ)

df
= vio(ϕ)

The two first cases for the trivially satisfied and violated contracts are straightforward. In
the case of a permission being currently in force, we flag a violation if party holding the
permission wants to perform the action but is not offered a synchronizing action. In case
of an obligation and prohibition, violation can only occur after the next action, and is thus
not immediately violated. Immediate violations of conjunctions and disjunctions follow as
expected.

8

(O1) Ok(a)[d]
a,k−−→ >

(O2) Ok(a)[d]
b,l−−→ Ok(a)[d] , (a, k) 6= (b, l) , d > 0

(O3) Ok(a)[d]
(b,l)
−−−−→ Ok(a)[d] , d > 0

(O4) Ok(a)[d]
d′

::; Ok(a)[d− d′] , d′ ≤ d

Table 1: Obligation transition rules.

In the case of a reparation vio(ϕ I ϕ′), a violation can only occur, if ϕ, but also its repa-
ration, are violated. In the case of vio([a, k, d](ϕ, ϕ′)), whether the action a or any other
action is observed the violation is always false, since the conditional contract only defines
how the contract will behave (as ϕ or ϕ′). In the case of sequential composition vio(ϕ;ϕ′),
an immediate violation must occur on the first operand (since >;ϕ would have been re-
duced to ϕ), and it is thus defined as vio(ϕ). In the case of wait(d), the violation is always
false, since it depicts a time delay, then an immediate violation is false. Finally, the defini-
tion vio(rec x.ϕ) = vio(ϕ) is correct since the recursion is always guarded.

4.4 Operational Semantics

We can now define an operational semantics for our contract calculus. The semantics take

one of three forms: (i) ϕ
a,k−−→ ϕ′ to denote that contract ϕ can evolve (in one step) to ϕ′

when action a is performed, which involves party k; or (ii) ϕ
(a,k)
−−−−→ ϕ′ indicating that the

contract ϕ can evolve to ϕ′ when the action a is not offered by any party other than k; or iii)
ϕ

d
::; ϕ′ to represent that contract ϕ can evolve to contract ϕ′ when d time units pass.

In the following we will write ϕ α−−→ ϕ′ when α can be a tuple (a, k) or a tuple (a, k).

The core of any contract reasoning formalism are the rules defining the deontic modalities.
The semantics of these modalities in our calculus are defined as follows:

Rules O1, O2, O3 and O4 (Table 1) define the behavior ofOk(a)[d], i.e., the obligation on
agent k to perform action a within d time units. Rule O1 handles the case of the obligation
clause being satisfied when agent k does a within d time units, in this case, the contract
reduces to the trivially satisfied one >. Rule O2 considers the case when another actor l
performs an action b, leaving the obligation intact. Rule O3 refers the case when an action
b is not offered by any other part than l, then the obligation remains the same. Finally, O4

9

(F1) Fk(a)[d]
b,k−−→ Fk(a)[d] b 6= a, d > 0

(F2) Fk(a)[d]
a,k−−→ ⊥

(F3) Fk(a)[d]
(b,l)
−−−−→ Fk(a)[d]

(F4) Fk(a)[d]
d′

::; Fk(a)[d− d′], d′ ≤ d

Table 2: Prohibition transition rules.

(P1) Pk(a)[d]
a,k−−→ >

(P2) Pk(a)[d]
b,l−−→ Pk(a)[d], (a, k) 6= (b, l)

(P3) Pk(a)[d]
(a,k)
−−−−→ ⊥

(P4) Pk(a)[d]
d′

::; Pk(a)[d− d′] , d′ ≤ d

Table 3: Permission transition rules.

(wait1) wait(d)
d′

::; wait(d− d′) , d′ ≤ d

(wait2) wait(d)
α−−→ wait(d)

Table 4: Wait transition rule.

handles the case when d′ time units pass with d′ ≤ d, then the obligation remains, but the
obligation time decreases in d′ time units.

Rules F1, F2, F3 and F4 (Table 2) define the cases for prohibition similar to obligation.

Permission of agent k to perform action a within d time units (Pk(a)[d]) is defined through
Rules P1, P2, P3 and P4 (Table 3). Rule P1 considers the case when agent k consumes
her permission to perform action a by actually performing it, in this case, the contract re-
duces to the trivially satisfied one>. P2 handles the case when agent other than k perform
an action, leaving k’s permission intact, while P3 handles the case when the permission is

10

(C1) [a, k, d](ϕ, ψ)
a,k−−→ ϕ

(C2) [a, k, d](ϕ, ψ)
b,l−−→ ψ, b, l 6= a, k

(C3) [a, k, d](ϕ, ψ)
d′

::; [a, k, d− d′](ϕ, ψ) , d′ ≤ d

(C4) [a, k, d](ϕ, ψ)
(b,l)
−−−−→ [a, k, d](ϕ, ψ) , d > 0

Table 5: Condition transition rules (I).

violated because agent k intended to perform action a, but it was not offered a synchroniz-
ing action. Finally, P4 considers the case when d′ time units elapse, with d′ ≤ d, then the
permission remains, but the permission time decreases in d′ time units.

The wait rules are presented in Table 4, which define two possible cases: when d′ time units
pass with d′ ≤ d, then the time delay of the wait action decreases in d′ time units (rule
wait1), and when the time delay remains because another thing happens (rule wait2).

The rules for conditional contracts (Table 5) handle the cases when the condition holds
(C1), and when it does not (C2), resolving the contract to the appropriate branch. The
rule C3 considers the case when the time passes in d′ time units, with d′ ≤ d, in this case
the conditional time decreases in d′ time units. And finally, the rule C4 handle the case
when an action a is not offered by agent k, then the contract is not affected, and remains
the same.

The rules for conjunction and disjunction (Table 6) are structurally identical, since both
take the two contracts to evolve concurrently. The difference between the two operators is
only exhibited in the cases of one of the two operands reduces to> or⊥, in these cases, the
different equivalence rules reduce the formula in different ways (see subsection 4.2). The
first rule AO1 handles the case in which any actions are observed in both contracts, ϕ and
ψ, then they evolve to ϕ′ and ψ′, respectively, therefore the conjunction or disjunction of
them evolve in the same. The equivalence rules distinguish between the two operators, by
allowing different reductions when one of the two operands is violated or is satisfied. The
second rule AO2 considers the case in which d time units pass for both contracts. Rules
AO3 shows the case in which d time units pass for the first contract, ϕ, then it evolves
to > and d′ for the second one, ψ, then it evolves to ψ′, with d′ ≥ d, thus the contracts
conjunction evolves as the second one; AO4 handles the case in which d time units pass
for the first contract, ϕ, then it evolves to ϕ′ and d′ time units for the second one, ψ, then
it evolves to ⊥, with d ≥ d′, thus the contracts conjunction evolves as the first one. Rules
AO5 and AO6 consider the cases in which the first or second contract have been already

11

(AO1)
ϕ

α−−→ ϕ′, ψ
α−−→ ψ′

ϕ op ψ
α−−→ ϕ′ op ψ′

(AO2)
ϕ

d
::; ϕ′, ψ

d
::; ψ′

ϕ op ψ
d

::; ϕ′ op ψ′

(AO3)
ϕ

d
::; >, ψ d′

::; ψ′, d′ ≥ d

ϕ ∧ ψ d′
::; ψ′

(AO4)
ϕ

d
::; ϕ′, ψ

d′
::; >, d ≥ d′

ϕ ∧ ψ d
::; ϕ′

(AO5)
ϕ

d
::; ⊥, ψ d′

::; ψ′, d′ ≥ d

ϕ ∨ ψ d′
::; ψ′

(AO6)
ϕ

d
::; ϕ′, ψ

d′
::; ⊥, d ≥ d′

ϕ ∨ ψ d
::; ϕ′

Table 6: Transition rules for conjunction and disjunction (op ∈ {∨,∧})

violated and how the disjunction of both contracts evolve, in an analogous manner as the
conjunction.

The rules for reparation and sequential composition are presented in Table 7. The first two
rules V1 and V2 allow moving along the primary contract, when some actions are done
or the time passes. There is no need for rules dealing with the recovering from a violation,
since this is handled by the syntactic equivalence rules. The sequential composition rules
S1 and S2 behave in an analogous manner, allowing evolution along the first contract,
with no need for additional rules thanks to the syntactic equivalence rules. It is worth
noting that, similar to reparation which fires the second operand on the first (shortest trace)
violation, sequential composition fires the second operand on the shortest match of the first
operand. Rules V3 and S3 are necessary for time additivity with reparation and sequential
composition, respectively.

The final rules (Table 8) deal with recursion in a standard manner. Note that we are only
considering guarded variables.

We can prove the following proposition indicating that any contract reacts to any action of

12

(V1)
ϕ

α−−→ ϕ′

ϕ I ψ
α−−→ ϕ′ I ψ

(V2)
ϕ

d
::; ϕ′

ϕ I ψ
d

::; ϕ′ I ψ

(V3)
ϕ

d
::; ⊥, ψ d′

::; ψ′

ϕ I ψ
d+d′

::::; ψ′

(S1)
ϕ

α−−→ ϕ′

ϕ;ψ
α−−→ ϕ′;ψ

(S2)
ϕ

d
::; ϕ′

ϕ;ψ
d

::; ϕ′;ψ

(S3)
ϕ

d
::; >, ψ d′

::; ψ′

ϕ;ψ
d+d′

::::; ψ′

Table 7: Recover and sequential transitions rules

(REC1)
ϕ

α−−→ ϕ′

rec x.ϕ
α−−→ ϕ′

(REC2)
ϕ

d
::; ϕ′

rec x.ϕ
d

::; ϕ′

Table 8: Recursion transitions

a system, except for the > and ⊥ contracts.

Proposition 2 Given a contract ϕ ∈ C, one of the following has to hold:

(i) ϕ ≡ >; (ii) ϕ ≡ ⊥; or (iii) ∀a ∈ Act, k ∈ I · ϕ a,k−−→ .

13

Using these notions of basic contracts, we can define the notion of obligations and prohibi-
tions which persist until a condition holds. The obligation of agent k to perform an action
a within d timed units until a condition ([b, l]) holds (writtenOk(a)[d]U [b, l]) and the prohi-
bition of agent k from performing an action a within d timed units until a condition ([b, l])
holds (written Fk(a)[d]U [b, l]), where the condition [b, l] means that the action b made by
agent l is observed. Therefore, they are defined below:

Ok(a)[d]U [b, l]
df
= rec x.Ok(a)[d] ∧ [b, l](>, x)

Fk(a)[d]U [b, l]
df
= rec x.Fk(a)[d] ∧ [b, l](>, x)

In the rest of the paper, we will also use the notion of the longest time which may elapse
before a contract changes structurally, which we refer to as the timeout of a contract.

Definition 8 The timeout of a contract ϕ, written timeout(ϕ), gives the time which must
elapse without any action occurring before the contract changes structurally, and timeout(ϕ)

df
=

timeout′(ϕ′) where ϕ′ is the unique final contract such that ϕ ↪→∗ ϕ′, and timeout′ is in-
ductively defined as follows:

timeout′(>) df
= ∞ timeout′(⊥) df

= ∞
timeout′(Pk(a)[d])

df
= d timeout′(Ok(a)[d])

df
= d

timeout′(Fk(a)[d])
df
= d timeout′([a, k, d](ϕ1, ϕ2))

df
= d

timeout′(wait(d)) df
= d timeout′(rec x.ϕ | x) df

= timeout(ϕ)
timeout′(ϕ1 ∨ ϕ2)

df
= min{timeout(ϕ1), timeout(ϕ2)} timeout′(ϕ1;ϕ2)

df
= timeout(ϕ1)

timeout′(ϕ1 ∧ ϕ2)
df
= min{timeout(ϕ1), timeout(ϕ2)} timeout′(ϕ1 I ϕ2)

df
= timeout(ϕ1)

Any timed transition taking less than the timeout of a contract preserves the structure of a
contract.

Proposition 3 Given contract ϕ and time t < timeout(ϕ), advancing ϕ by t time preserves
the structure of the contract: if ϕ t

::; ϕ′, then ϕ ≡s ϕ′.

We can now define the closure of a contract ϕ as all formulae reachable from ϕ through
action transitions and timeout time transitions.

Definition 9 We define the closure of a contract formula ϕ, written closure(ϕ), to be the set
of all contract formulae reachable through a combination of visible action transitions and
timeout transitions. Formally, closure(ϕ) is the smallest set such that: (i) ϕ ∈ closure(ϕ);

(ii) if ϕ1 ∈ closure(ϕ), and ϕ1
a,k−−→ ϕ2, then ϕ2 ∈ closure(ϕ); and (iii) if ϕ1 ∈ closure(ϕ),

and ϕ1

timeout(ϕ1)
::::::; ϕ2, then ϕ2 ∈ closure(ϕ).

14

It is easy to prove, that for a contract ϕ whose time constraints are non-zero constants, the
closure of ϕ is finite. In the rest of the paper, we will use the following notation.

Definition 10 We write ψ P−−→ full ψ
′ if there exist ψ0 to ψn+1 and P0 to Pn such that (i)

ψ = ψ0
P0−−→ ψ1

P1−−→ . . .
Pn−−→ ψn+1 = ψ′; (ii) there exists no Pn+1 and ψ′′ such that

ψn+1

Pn+1−−−−→ ψ′′; and (iii) P ≡ P0∧P1∧ . . . Pn. Note that, if there is no outgoing predicate
transition from ψ, we get ψ tt−−→ full ψ.

4.5 Contracts and Systems

We can now define how contracts evolve alongside a system, and what it means for a system
to satisfy a contract.

Definition 11 Given a contract ϕ ∈ C with alphabet Act and a systemA, we define the se-
mantics of ϕ‖A— the combination of the system with the contract — through the following
three rules:

M1
ϕ

a,k−−→ ϕ′, A a,s−−→ A′

ϕ ‖ A=⇒ ϕ′ ‖ A′
k ∈ s M2

ϕ
vio(ϕ)
−−−−−→ ⊥, A ` vio(ϕ)

ϕ ‖ A=⇒ ⊥ ‖A

M3
A a,s−−→ A′

ϕ ‖ A=⇒ ϕ ‖ A′
a 6∈ Act

M4
A d

::; A′, ϕ d
::; ϕ′, ∀d′ < d : A d′

::; A′′, ϕ d′
::; ϕ′′ : A′′ 6` vio(ϕ′′)

ϕ ‖ A d
::; ϕ′ ‖ A′

M5
A ‖ ϕ d

::; A′ ‖ ϕ′, A′ ` vio(ϕ′), A′ ‖ ψ d′
::; A′′ ‖ ψ′

A ‖ ϕ I ψ
d+d′

::::; A′′ ‖ ψ′

Rule M1 handles synchronization between the contract and the system. If an action a
performed by the system is of interest to the contract, the contract evolves alongside the
system. Rule M2 considers contract internal actions which, to be taken, require the condi-
tion predicate to be satisfied by the system. Rule M3 handles actions on the system which
the contract is not interested in.

Rule M4 shows that time can pass unless there is a violation before. Finally, rule M5 con-
siders the case of the contract and system evolution when the system violates the contract,
but its reparation is defined.

Based on these rules, we can define what it means for a system to break a contract.

15

Definition 12 A system A is said to currently break contract ϕ ∈ C, written break0(A, ϕ),
if A ` vio(ϕ).

A system A is said to break contract ϕ ∈ C, written break(A, ϕ) if there exists a computa-
tion that breaks the contract: ∃ϕ′,A′ · ϕ ‖ A=⇒ ϕ′ ‖ A′ ∧ break0(A′, ϕ′).

5 Refinement

Definition 13 Let ϕ, ψ ∈ C and R ⊆ C × C, we say that R is a ⊥-simulation contract
relation iff whenever (ϕ, ψ) ∈ R the following conditions hold:

i. vio(ϕ) ` vio(ψ).

ii. If ϕ d
::; ϕ′ then one of the following conditions hold:

a. there is d′ ≤ d such that ψ d′
::; ⊥, or

b. there is ψ′ ∈ C and that ψ d
::; ψ′ and (ϕ′, ψ′) ∈ R

iii. If ϕ α−−→ ϕ′ then there is ψ′ ∈ C and that ψ α−−→ ψ′ and (ϕ′, ψ′) ∈ R

Definition 14 Let ϕ, ψ ∈ C and R ⊆ C × C, we say that R is a >-simulation contract
relation iff whenever (ϕ, ψ) ∈ R the following conditions hold:

i. If ϕ ≡ > then ψ ≡ >

ii. If ϕ d
::; ϕ′ then one of the following conditions hold:

a. there is d′ ≤ d such that ψ d′
::; >, or

b. there is ψ′ ∈ C and that ψ d
::; ψ′ and (ϕ′, ψ′) ∈ R

iii. If ϕ α−−→ ϕ′ then there is ψ′ ∈ C and that ψ α−−→ ψ′ and (ϕ′, ψ′) ∈ R

Definition 15

1. A contract ϕ is can be >-simulated by (respectively ⊥-simulated) the contract ψ
(written ϕ 4> ψ, respectively written ϕ 4⊥ ψ) iff there is a >-simulation contract
relation (respectively ⊥-simulation contract relation) R such that (ϕ, ψ) ∈ R.

2. Two contracts ψ, ϕ ∈ C are>-equivalent (respectively⊥-equivalent), written ϕv>ψ
(respectively ϕv⊥ ψ), iff ϕ4> ψ and ψ 4> ϕ (respectively ϕ4⊥ ψ and ψ 4⊥ ϕ).

16

Example 1

wait(3) 4⊥ Pk(a)[5] wait(3);⊥ 64⊥ Pk(a)[5];⊥
Pk(a)[3] 4> wait(3) Pk(a)[3] I Ol(b)[2] 64> wait(3) I Ol(b)[2]
wait(5) 4⊥ Ok(a)[6] wait(5) ∧ wait(7) 64⊥ Ok(a)[6] ∧ wait(7)

We now prove that contract simulation corresponds to contract strictness.

Theorem 1 Let A be system and ϕ, ψ ∈ C be contracts such that ϕ 4⊥ ψ. Then, if A
violates ϕ, it also violates ψ: break(A, ϕ) ⇒ break(A, ψ). Proof. Since ϕ 4⊥ ψ then
there is a simulation contractR such that (ϕ, ψ) ∈ R. On the other hand, since break(A, ϕ)
there is a sequence of transitions ϕ ‖ A w

==⇒ ψ′ ‖ A′ where break0(A′, ϕ′). This sequence
of transitions can be unfolded into a computation of the following form:

ϕ ‖ A = ϕ0 ‖ A0
α1−−→ ϕ1 ‖ A1

α2−−→ . . . ϕn ‖ An
αn−−→ ϕn ‖ An = ϕ′ ‖ A′

where n ≥ 0. We are going to prove that we can simulate that computation beginning with
the contract ψ0 such that (ϕk, ψk) ∈ R for any 0 ≤ k ≤ n by induction on n. If n = 0 the
proof is immediate, so let us consider the inductive case n > 0. Let us consider the first
transition. There are two cases:

Case 1: ϕ0
a,k−−→ ϕ1, A0

a,s−−→ A1 with k ∈ s. Since (ϕ0, ψ0) ∈ R then there is a contract

ψ1 such that ψ
a,k−−→ ψ1 and (ϕ1, ψ1) ∈ R. So we obtain that we have the computation

ψ0 ‖ A0 =⇒ ψ1 ‖ A1. Then we obtain the result by induction.

Case 2: ϕ0
P1−−→ ϕ‘ where A ` P . In this case A0 = A1. Since (ϕ0, ψ0) ∈ R we deduce

that either (ϕ1, ψ0) ∈ R or there is a predicate P1 and a contract ψ1 such that ψ0

P ′
1−−→ ψ1

and P1 ` P ′1. vio(ϕ) ` vio(ψ), so A ` vio(ψ). Therefore the transition ψ ‖ A=⇒ ψ′ ‖ A is
possible. And we obtain the result by induction.

Case 3: A0
a,s−−→ A1 with a 6∈ Act. In this case we obtain ϕ1 = ϕ0 and ψ0‖A0

a,s−−→ ψ0‖A1.
So again we obtain the result by induction.

Case 4: Timed transition.....

Now, since (ϕ′, ψ′) ∈ R then vio(ϕ′) ` vio(ψ′). But from break(A′, ϕ′) we can conclude
that (i) A′ ` vio(ϕ′). 2

Proposition 4 Let ϕ, ϕ′ ∈ C, then the following propositions hold:

1. ⊥4> ϕ4> >

2. >4⊥ ϕ4⊥ ⊥

3. ϕ ∨ ϕ′ 4⊥ ϕ

4. ϕ ∧ ϕ′ 4⊥ ϕ

17

Proposition 5 Let ϕ, ϕ′, ψ, ψ′ ∈ C, then the following propositions hold.

If ϕ4⊥ ψ′ and ϕ4⊥ ψ′:

⊥.1 ϕ I ψ 4⊥ ϕ I ψ

⊥.2 ϕ ∧ ψ 4⊥ ϕ ∧ ψ

⊥.3 ϕ ∨ ψ 4⊥ ϕ ∨ ψ

If ϕ4> ψ′ and ϕ4> ψ′:

>.1 ϕ;ψ 4⊥ ϕ;ψ

>.2 ϕ ∧ ψ 4⊥ ϕ ∧ ψ

>.3 ϕ ∨ ψ 4⊥ ϕ ∨ ψ

6 Runtime Verification of Timed Contracts

Although much work has been done on runtime verification [LS09] — dynamic analysis
technique which uses software monitors to identify potential flaws of a system, there is
limited work done on runtime verification of real-time properties [CPS09, BLS06, BNF13].
Runtime monitors have been used in the literature for a whole spectrum of applications —
from simply observing the system-under-scrutiny but also, beyond this, to verify, enforce
properties or even add functionality to the system. As we have previously done in [CLP17],
we will be showing how we can automatically generate a runtime monitor from a contract,
such that any violation of the contract is flagged.

The operational semantics we give to contracts provides us with a framework for contract
monitoring: to monitor contract ψ ∈ C, we start the monitor in state ψ and update the
state whenever the system performs an action according to the operational semantics. A
violation is reached once the violation predicate is satisfied by the system. In the rest of
this section we concretely show how our logic can be automatically monitored using a
derivative-based algorithm [Brz64].

The idea behind derivative-based or term rewriting-based monitoring is that the formula
still to be monitored is used as the state of the monitoring system. Whenever an event
e is received with the system being in state ψ, the state is updated to ψ′ such that any
trace of events es matches ψ′ if and only if e : es matches ψ. This is repeated and a
violation is reported when (and if) the monitoring state is reduced to a formula which
matches the empty trace. In our contract logic, the operational semantics provide precisely

this information, with ψ′ being chosen to be the (unique) formula such that ψ
a,k−−→ ; 7−→ ψ′

(where action a performed by party k is observed by the monitoring system), and vio(ψ)
indicates whether ψ matches the empty string (immediately violates the contract).

In timed logics, this approach has to be augmented with timeout events which, in the ab-
sence of a system event, still change the formula. For example, the contract xwait(t);ϕ
would evolve to ϕ upon t time units elapsing. Similarly, if t time units elapse (with no sys-
tem events received), we evolve the contract Ok(a)[t];ϕ to ⊥;ϕ which is equivalent to ⊥,

18

thus enabling us to flag the violation as soon as it happens. If we were to wait for a system
event, the violation may end up being identified too late. In our case, we use the timeout
function to enable setting of a timer to trigger the monitoring state update, evolving ϕ to the

unique formula ϕ′ according to the timed operational semantics1 ϕ
timeout(ϕ)

::::::; ; 7−→ ϕ′.
Also, system events carry a timestamp, through which the contract can be moved ahead in
time upon receiving the event.

The monitoring algorithm for our contract logic is shown in Algorithm 1. The state of the
monitor is stored in variable contract and variable systime keeps track of the last times-
tamp processed by the system. Initially, these variables are set to ψ and 0. The moni-
toring algorithm is effectively a loop (lines 2–17) which checks whether there was a vi-
olation upon every iteration. Upon entering the loop, any pending timer triggers are re-
placed (lines 3–5), enacting a process which creates a special timeout event (line 4) to be
launched (asynchronously) after the current contract times out. In the meantime, execution
is blocked until an event is received (line 6). If the event received is the timeout event,
the monitored formula updated accordingly using the timestep function which returns the
unique formula satisfying ψ t

::; timestep(ϕ, t) with the time advanced by timeout(ψ)
time units (lines 7–10). If, however, the event received is a system event e with times-
tamp t, the monitoring state is updated by first advancing time by (t− systime) time units,
and then stepping forward using the step function which returns the unique formula such
that ψ e−−→ step(ψ, e) (lines 11–14). Finally, the systime variable is updated accordingly

1We write r; s to indicate the forward composition of the two relations r and s.

19

(line 16).

1 contract = ϕ; systime = 0;
2 while ¬vio(contract) do
3 reset timer to timeout(contract))
4 createEvent(TIMEOUT);
5 end
6 switch getEvent() do
7 case TIMEOUT do
8 ∆t = timeout(contract);
9 contract = timestep(contract, ∆t);

10 end
11 case EVENT e WITH TIMESTAMP t do
12 ∆t = t− systime;
13 contract = step(timestep(contract, ∆t), e);
14 end
15 end
16 systime = systime + ∆t;
17 end
18 report(VIOLATION);

Algorithm 1: Algorithm to monitor timed contracts

7 Case Study

The case study presented in this section is inspired by an example described in [APS14]. It
consists of a Plane Boarding System (PBS) involving two different agents: the passenger
and the airline company. The following contract between the airline company and the
passenger regulates their interaction during check-in and on the flight considering time
constraints:

1. The passenger is permitted to use the check-in desk within two hours before the plane takes
off (t0).

2. At the check-in desk, the passenger is obliged to present her boarding pass in 5 minutes. If
she does not do so, she must return to the check-in desk in 15 minutes.

3. After presenting the boarding pass, the passenger must show her passport in 5 minutes.

4. Henceforth, the passenger is (i) prohibited from carrying liquids in her hand-luggage within
1 hour until boarding; and (ii) prohibited from carrying weapons during the whole trip until

20

the plane lands (t1). If she has liquids in her hand-luggage, she is obliged to dispose of them
within 10 minutes.

5. After presenting her passport, the passenger is permitted to board within 60 minutes and to
carry hand-luggage within 10 minutes. The airline company is obliged to allow the passenger
to board within 1 hour.

6. If the passenger is stopped from carrying luggage, the airline company is obliged to put the
passenger’s hand luggage in the hold within 20 minutes.

In Table 9 we show the PBS contract by a list of the obligations, permissions and prohibi-
tions that can be inferred from the description of the process.

Clause Agent Modality Action Reparation
Clause

Time
Restriction

0 Passenger Permission Go to the checkin desk (checkin) ∅ t0 − 120
1 Passenger Obligation Present boarding pass (PBP) 2 5
2 Passenger Obligation Go back to the checkin desk (GBCh) ∅ 15
3 Passenger Obligation Show her passport (ShP) ∅ 5
4 Passenger Permission Board (board) 9 & 10 60
5 Passenger Permission Board with hand luggage (hl) 9 & 10 10

6 Passenger Prohibition
Carry in her hand luggage weapons
(weapon) until landing (landing)

∅ 60

7 Passenger Prohibition
Carry in her hand luggage liquids
(liq) until boarding (board) 8 60

8 Passenger Obligation Dispose of liquids (dliq) ∅ 10

9 Airline Com-
pany

Obligation Put her hand luggage in the hold
(hlhold)

∅ 20

10 Airline Com-
pany

Obligation Allow passenger to board (board) ∅ 60

Table 9: Norms of the Boarding System contract

The contract described in natural language can be formalized using as follows:

ϕ0 ::= Pp(checkin)[t0 − 120]
ϕ1 ::= Op(PBP)[5] I Op(GBCh)[15]
ϕ2 ::= Op(ShP)[5]
ϕ3 ::= (Fp(weapon)[t1]U [landing, c]) ∧ ((Fp(liq)[60]U [boarding, p]) I Op(dliq)[10])
ϕ4 ::= (Pp(board)[60];Pp(hl)[10]) I (Oc(board)[60]; Oc(hlhold)[20])

PBS ::= ϕ0;ϕ1;ϕ2; (ϕ3 ∧ ϕ4)

Note that the clauses ϕ0 to ϕ4 are used to express different parts of the contract, and com-
bined together in the top-level contract expression PBS.

21

8 Conclusions

In this paper we have presented a timed contract calculus, enabling us to reason about
contracts, with time constraints, independent of the systems on which they are applied to.
We have introduced a notion of bisimilarity between contracts, which takes into account
predicates over system states. We have shown how the semantics can be used for the
runtime verification of contracts, by translating contracts into the specification language of
the LARVA runtime verification tool. Finally, we showed the utility of the timed calculus
by applying it to a airline check-in desk case study.

There are various research directions we intend to explore. From a practical perspective,
we will be looking into automated runtime verification of contracts, and looking at how this
scales up with more complex contracts. From a theoretical perspectives, there are various
questions we are yet to explore — from identifying conflicts in our contract language,
to looking at automated synthesis of the strongest contract satisfied by a given system
(analogous to the weakest-precondition) and synthesis of the weakest system satisfying a
given contract.

References

[APS14] Shaun Azzopardi, Gordon J. Pace, and Fernando Schapachnik. Contract
automata with reparations. In Legal Knowledge and Information Systems
- JURIX: The Twenty-Seventh Annual Conference, Jagiellonian University,
Krakow, Poland, 10-12 December, pages 49–54, 2014.

[APSS16] Shaun Azzopardi, Gordon J. Pace, Fernando Schapachnik, and Gerardo
Schneider. Contract automata - an operational view of contracts between in-
teractive parties. Artif. Intell. Law, 24(3):203–243, 2016.

[BDDM04] Jan M. Broersen, Frank Dignum, Virginia Dignum, and John-Jules Ch. Meyer.
Designing a deontic logic of deadlines. In Deontic Logic in Computer Science,
7th International Workshop on Deontic Logic in Computer Science, DEON
2004, Madeira, Portugal, May 26-28, 2004. Proceedings, pages 43–56, 2004.

[BLS06] Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring of real-
time properties. In FSTTCS 2006: Foundations of Software Technology and
Theoretical Computer Science, 26th International Conference, Kolkata, India,
December 13-15, 2006, Proceedings, pages 260–272, 2006.

22

[BNF13] Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister.
Time-triggered runtime verification. Formal Methods in System Design,
43(1):29–60, 2013.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–
494, October 1964.

[CDMR01] James B. Cole, John Derrick, Zoran Milosevic, and Kerry Raymond. Au-
thor obliged to submit paper before 4 july: Policies in an enterprise specifica-
tion. In Proceedings of the International Workshop on Policies for Distributed
Systems and Networks, POLICY ’01, pages 1–17, London, UK, UK, 2001.
Springer-Verlag.

[CLP17] Marı́a-Emilia Cambronero, Luis Llana, and Gordon J. Pace. A calculus sup-
porting contract reasoning and monitoring. IEEE Access, 5:6735–6745, 2017.

[CPS09] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Safe runtime
verification of real-time properties. In Formal Modeling and Analysis of Timed
Systems, 7th International Conference, FORMATS 2009, Budapest, Hungary,
September 14-16, 2009. Proceedings, pages 103–117, 2009.

[DCMS14] Gregorio Dı́az, M. Emilia Cambronero, Enrique Martı́nez, and Gerardo
Schneider. Specification and verification of normativetexts using C-O dia-
grams. IEEE Trans. Software Eng., 40(8):795–817, 2014.

[DS95] Jim Davies and Steve Schneider. A brief history of timed CSP. Theor. Comput.
Sci., 138(2):243–271, 1995.

[FPO+09] Stephen Fenech, Gordon J. Pace, Joseph C. Okika, Anders P. Ravn, and Ger-
ardo Schneider. On the specification of full contracts. Electr. Notes Theor.
Comput. Sci., 253(1):39–55, 2009.

[GM05] G. Governatori and Z. Milosevic. Dealing with contract violations: formalism
and domain specific language. In EDOC Enterprise Computing Conference,
Ninth IEEE International, pages 46–57. IEEE Computer Society, 2005.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime verifica-
tion. J. Log. Algebr. Program., 78(5):293–303, 2009.

[MM01] Olivera Marjanovic and Zoran Milosevic. Towards formal modeling of e-
contracts. In Proceedings of the 5th IEEE International Conference on Enter-
prise Distributed Object Computing, EDOC, pages 59–68, Washington, DC,
USA, 2001. IEEE Computer Society.

23

[New42] Maxwell Herman Alexander Newman. On theories with a combinatorial def-
inition of” equivalence”. Annals of mathematics, pages 223–243, 1942.

[PS09] Cristian Prisacariu and Gerardo Schneider. Cl: An action-based logic for rea-
soning about contracts. In Logic, Language, Information and Computation,
16th International Workshop, WoLLIC, Tokyo, Japan, June 21-24. Proceed-
ings, pages 335–349, 2009.

[PS12] Gordon J. Pace and Fernando Schapachnik. Contracts for Interacting Two-
Party Systems. In FLACOS’12, volume 94 of ENTCS, pages 21–30, 2012.

[Wyn06] Adam Zachary Wyner. Sequences, obligations, and the contrary-to-duty para-
dox. In Deontic Logic and Artificial Normative Systems, 8th International
Workshop on Deontic Logic in Computer Science, DEON 2006, Utrecht, The
Netherlands, July 12-14, 2006, Proceedings, pages 255–271, 2006.

[Yi91] Wang Yi. CCS + time = an interleaving model for real time systems.
In Automata, Languages and Programming, 18th International Colloquium,
ICALP91, Madrid, Spain, July 8-12, 1991, Proceedings, pages 217–228,
1991.

24

	Introduction
	Related Work
	Notation
	A Timed Contract Calculus
	Contract Syntax
	Syntactical Equivalence
	Contract Violation
	Operational Semantics
	Contracts and Systems

	Refinement
	Runtime Verification of Timed Contracts
	Case Study
	Conclusions

