
TECHNICAL REPORT

Report No. CS2017-01
Date: April 2017

Control-Flow Residual Analysis for
Symbolic Automata

Shaun Azzopardi
Christian Colombo
Gordon J. Pace

University of Malta

Department of Computer Science
University of Malta
Msida MSD 06
MALTA

Tel: +356-2340 2519
Fax: +356-2132 0539
http://www.cs.um.edu.mt

Control-Flow Residual Analysis for Symbolic
Automata

Shaun Azzopardi
University of Malta, Malta

shaun.azzopardi.10@um.edu.mt

Christian Colombo
University of Malta, Malta

christian.colombo@um.edu.mt

Gordon J. Pace
University of Malta, Malta

gordon.pace@um.edu.mt

Abstract: Where full static analysis of systems fails to scale up due to
system size, dynamic monitoring has been increasingly used to ensure
system correctness. The downside is, however, runtime overheads which
are induced by the additional monitoring code instrumented. To address
this issue, various approaches have been proposed in the literature to
use static analysis in order to reduce monitoring overhead. In this paper
we generalise existing work which uses control-flow static analysis to
optimise properties specified as automata, and prove how similar analysis
can be applied to more expressive symbolic automata - enabling reduction
of monitoring instrumentation in the system, and also monitoring logic.
We also present empirical evidence of the effectiveness of this approach
through an analysis of the effect of monitoring overheads in a financial
transaction system.

Control-Flow Residual Analysis for Symbolic
Automata∗

Shaun Azzopardi
University of Malta, Malta

shaun.azzopardi.10@um.edu.mt

Christian Colombo
University of Malta, Malta

christian.colombo@um.edu.mt

Gordon J. Pace
University of Malta, Malta

gordon.pace@um.edu.mt

Abstract: Where full static analysis of systems fails to scale up due to
system size, dynamic monitoring has been increasingly used to ensure
system correctness. The downside is, however, runtime overheads which
are induced by the additional monitoring code instrumented. To address
this issue, various approaches have been proposed in the literature to
use static analysis in order to reduce monitoring overhead. In this paper
we generalise existing work which uses control-flow static analysis to
optimise properties specified as automata, and prove how similar analysis
can be applied to more expressive symbolic automata - enabling reduction
of monitoring instrumentation in the system, and also monitoring logic.
We also present empirical evidence of the effectiveness of this approach
through an analysis of the effect of monitoring overheads in a financial
transaction system.

1 Introduction

The need for verification of a system to be able to make some guarantees about execution
paths, and going beyond sampling of such paths (as done in testing), is required for critical
or sensitive software (e.g. financial software [ACPV16]). The literature can be largely split
into two main approaches: (i) full a priori verification of all possible execution paths through
model checking, static analysis and similar techniques, and (ii) on the fly verification of
execution paths to ensure that any potential violation can be immediately truncated as in
runtime verification.

∗This research has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant number 666363.

1

The former approaches, tend not to scale to more complex and large software, which is
typically addressed by abstraction techniques e.g. verifying the property against an over-
approximation of the program (if the over-approximation cannot violate the property, then
the program cannot either), due to which the analysis is no longer complete. The latter
approaches readily scale up to handle larger systems, and have the additional advantage that
they can also deal with constraints on the environment which can only be verified fully at
runtime (e.g. two methods of an API are never called in sequence by an unknown client
application). The downside is, however, that the additional checks introduced typically
add significant runtime overheads [PDE12]. Traditionally, these two approaches have been
generally seen as alternatives to each other, although their possible complementarity has
started to be explored in recent years [APS12, BLH12, DP07].

Approaches exist that use static analysis to prove parts of a property with respect to a
program, such that either the whole property is proved statically or it is pruned such that
there is less to monitor at runtime, or vice-versa such that certain parts of the program
are proved safe to not monitor. In particular, Clara [BLH12] is one such approach, acting
on specifications or properties defined as automata with transitions triggered by method
invocations in Java programs. Through an analysis of the source code, Clara can be used
to determine whether a property transition can never be taken by the program and whether
parts of a program can be safely unmonitored. Removing such transitions from a property
creates a residual property that is smaller than, or equivalent to, the original property and
since some parts of the program will not activate the monitor any longer, then there will be
less overheads at runtime due to monitoring. The approach uses three analysis steps, each
equivalent to a comparison of the property automaton with a finer over-approximation of the
control-flow of a program. However, in practice, one frequently desires properties which are
more expressive than these simple automata.

DATEs (Dynamic Automata with Events and Timers) [CPS09] are symbolic automata that
can be seen as an extension of Clara’s properties such that transitions’ triggering depends
on either a method invocation or some timer event, along with a condition on variables
specific to the monitor or the program. Moreover, if triggered, a transition can also perform
an action (e.g. increase some internal counter), introducing the notion of a transition having
side-effect, which needs to be taken into account when producing a residual. DATEs are
used within the LARVA (Logical Automata for Runtime Verification and Analysis) tool to
specify the security properties for a Java system.

Our contribution in this paper is two-fold: (i) extending Clara’s first two analyses to produce
both a residual DATE and a residual instrumentation of the program, and (ii) a new analysis
that uses the control-flow graph of a program to determine if any transitions in a DATE can
(or not) be reached by the program.

In Section 2 we briefly introduce some formal notation and informally discuss Clara, while

2

we present our generalisation of it for DATEs in Section 3. In Section 4, a case study
involving a financial transaction system is considered along with some properties as a
backdrop against which we discuss the utility of the presented analysis. We present related
work in Section 5, and conclude proposing future work in Section 6.

2 Programs’ Runtime Traces and Abstractions

In this section we look at control-flow properties written in the form of automata, with
transitions being triggered by method invocation events.

Definition 1 (Property automata). A property automaton π is a tuple 〈Q,Σ, q0,B, δ〉, where
Q is a finite set of states, Σ is a set of events, q0 is the initial state (q0 ∈ Q), B is the set of
bad states (B ⊆ Q), and δ is the transition relation (δ ⊆ Q×Σ×Q), which is deterministic
and total with respect to Q× Σ.

We write q e−→π q′ for (q, e, q′) ∈ δ, q es
=⇒π q′ for the transitive closure of δ (with es ∈ Σ∗),

and q ↪→π q′ to denote that q′ is reachable from q (i.e. ∃es · q0
es
=⇒π q′). We will leave out π

whenever it is clear from the context.

Finally, we define the restriction of a property’s alphabet to a certain alphabet:

δ � Σ′
def
= {q e−→ q′ | e ∈ Σ′}

We will write π � Σ′ and π � δ′ to denote the property automaton identical to π except with
the transition relation δ � Σ′ and δ′ respectively.

The problem of verification, given a control-flow automaton property and a program, is to
ensure that all traces in the program never transition into a bad property state [LS09]. We
call an event trace t ∈ Σ∗ a ground trace, while we denote the set of events appearing in t
by Σ(t)

def
= {e | ∃i ∈ N · t(i) = e}, overloaded to sets of ground traces T ⊆ Σ∗.

Definition 2 (Property satisfaction). A ground trace t ∈ Σ∗ is said to satisfy property
automaton π if no prefix of t takes the property automaton from the initial state to a bad one:
t ` π def

= ∀t′ ∈ prefixes(t) · @qB ∈ B · q0
t′
=⇒ qB. We overload this notation to sets of ground

traces T ` π to indicate that all traces in T satisfy π.

Consider as an example the property automaton shown in Figure 1, which specifies that the
write method cannot be called before open is called, and that the read method is called in
pairs. Bad states are marked in red, while an asterisk (*) on a transition is syntactic sugar
used to denote that if at that state an event happens for which no other transition matches,
then the asterisk transition is taken.

3

q1start q2

q3

q4

q5

*

open()
close()

write() open()

*

*

read()
read()

*

lookAhead(),
open()

*

Figure 1: Property disallowing writing on a closed stream, and writing or closing while in the middle
of an odd number of reads.

In practice, one would want to instantiate a property automaton for every instance of the
object being verified. For example, the property automaton shown in Figure 1 should ideally
be monitoring for every stream in use. To enable such replication of property automata, we
extend them to parametric properties [JMGR11]. To generalise property automata to handle
parametrisation, we start by extending traces to parametrised traces in which each event is
associated with an identifier of the object1 to which the event pertains. Note that we allow
an alphabet to be parametrised by a set of identifiers α by: �α

def
= α× Σ. Traces over such

alphabets will be referred to as parametrised traces. At runtime it is also possible to consider
when two identifiers refer to the same object, which we simulate through an equivalence
relation between identifiers. Thus, at runtime, if open and write are called in succession we
cannot immediately conclude non-violation of the property, since they may have been called
on different objects (Java objects or with respect to some data).

Satisfaction of property automata can be lifted over parametrised traces by checking for the
satisfaction of each possible projection. In such cases our property automata are effectively
typestate property automata [BLH12].

Definition 3 (Parametrised traces). The projection of a parametrised trace rt ∈ �∗α with
respect to an identifier x ∈ α and an equivalence relation between objects ≡ ∈ α ↔ α,
written rt ↓ x, is defined to be the sequence of items in rt equivalent to x. 2:

〈〉 ↓ x def
= 〈〉

((x′, p) : rt) ↓ x def
=

{
(x′, p) : (rt ↓ x) if x ≡ x′
rt ↓ x otherwise

A parametrised trace rt ∈ �∗ is said to satisfy a property automaton π, written rt π, if for
each identifier x ∈ α, the projection of rt onto x satisfies the property:

1Although we will be using the term ‘object’ in this paper, events can be parametrised with respect to an
identity other than the object on which the method is invoked.

2We use the standard notation x : xs to denote the list with head x and tail xs.

4

rt π
def
= ∀x ∈ α · rt ↓ x ` π

We overload this notation over sets of parametrised traces, RT ⊆ �∗α.

RT ↓ x def
= {rt ↓ x | rt ∈ RT}

RT π
def
= ∀rt ∈ RT · rt π

At runtime, we have perfect knowledge of the equivalence relation between parametrised
events. However, when using static analysis, this is not always possible. Alias analysis
[BLH08] can give partial information whether two method calls in the code always cor-
respond to the same object. In such cases, we have three possible outcomes: (i) the two
event generators always refer to the same object; (ii) the two event generators always refer
to different objects; and (iii) neither of the previous two cases can be concluded. In the
literature, this information is typically encapsulated in two relations — a must relation ≡,
which relates two event generators if their objects always (must) match, and a may relation
≡may, which relates two event generators if their objects may match, with the former relation
being a subset of the latter.

Definition 4 (Statically Parametrised Traces). A statically parametrised trace is a parametrised
st ∈ �∗α, with two relations over α: (i) a must-alias equivalence relation ≡ ∈ α↔ α, and
(ii) a may-alias relation ≡may ∈ α↔ α, such that ≡ ⊆ ≡may. We define the projection3 of a
statically parametrised trace st with respect to parameter x, written st ⇓ x, as follows:

〈〉 ⇓ x def
= {〈〉}

((x′, e) : ps) ⇓ x def
=

{e : es′ | es′ ∈ ps ⇓ x} if x ≡ x′
ps ⇓ x if x 6≡may x

′

ps ⇓ x ∪ {e : es′ | es′ ∈ ps ⇓ x} otherwise

Trace st is said to satisfy property automaton π , written st � π, if for each identifier x ∈ α
the projection of st onto x satisfies the property:

st � π
def
= ∀x ∈ α · st ⇓ x ` π

We overload this notation over sets of statically parametrised traces ST ⊆ �∗α:

ST ⇓ x def
= {t | st ∈ ST · t ∈ st ⇓ x}

ST � π
def
= ∀st ∈ ST · st � π

3This corresponds to the notion of program slicing, by slicing the instrumented program statements
according to whether they can associated with the same object or not.

5

It is worth noting that although we are only considering parametrisation over a single object,
a typestate property over multiple objects can be reduced to a single identifier by looking at
them as a tuple of identifiers with point-wise must and may-alias relations.

We now turn our view from individual traces to the programs which generate them.

Definition 5 (Programs). For a program P over an alphabet Σ with a set of objects Obj
and object identifiers ObjId, (i) we will write PR

Σ to denote the set of parametrised traces
over Obj i.e. PR

Σ ⊆ �∗Obj with equivalence ≡ over Obj; (ii) we will write P S
Σ to denote the

set of statically parametrised traces over ObjId i.e. P S
Σ ⊆ �∗ObjId with relations ≡ and ≡may.

Object identifiers in ObjId are assumed to contain information about the instrumentation
points in the code which triggers the associated event: I ∈ ObjId→ InstrPnt. The set of
shadows of a static approximation trace st, written shadows(st), is defined to be the set of
instrumentation points which appears somewhere along the trace. Given this, we can define
what it means to silence part of a trace.

Definition 6. Given a static approximation trace, st, and a set of instrumentation points
ips ⊆ InstrPnt, the silencing of ips in st, written silence(st, ips), is defined to be the original
trace st except for elements mapped by I to an instrumentation point in ips:

silence(〈〉, ips) def
= 〈〉

silence((oid, e) : ps, ips) def
=

{
silence(ps, ips) if I(oid) ∈ ips
(oid, e) : silence(ps, ips) otherwise

We overload the silencing operator to sets of static approximation traces, and static approxi-
mations of programs.

Given the definition of property satisfaction of static traces, we can immediately show that
satisfaction of runtime and static programs can be expressed in terms of ground traces
satisfaction.

Proposition 1. The runtime parametrised traces of a program P satisfy a typestate property
if and only if the ground traces satisfy it:

PR
Σ � π ⇐⇒ PR

Σ ↓ Obj ` π

Proof. Follows immediately from Definitions 5, and 3. �

Proposition 2. The static parametrised traces of a program P satisfy a typestate property if
and only if the ground traces satisfy it:

P S
Σ � π ⇐⇒ P S

Σ ⇓ ObjId ` π

6

Proof. Follows immediately from Definitions 5, and 9. �

In what follows, we make the assumption that the statically parametrised trace generator is
correct, i.e. a statically parametrised program actually generates the ground traces generated
by the program at runtime.

Assumption 1. PR
Σ ↓ Obj ⊆ P S

Σ ⇓ ObjId

This allows us to show that satisfaction of the static program implies that of the runtime
program.

Proposition 3. Given program P and property π, if its static over-approximation of a
program, P S

Σ satisfies property π, then the runtime behaviour of the program, PR
Σ also

satisfies the property:

P S
Σ � π =⇒ PR

Σ π

Proof.

P S
Σ � π

(by Proposition 2)

=⇒ P S
Σ ⇓ ObjId ` π

(by assumption that PR
Σ ↓ Obj ⊆ P S

Σ ⇓ ObjId)

=⇒ PR
Σ ↓ Obj ` π

(by Proposition 1)

=⇒ PR
Σ π

�

In general, a statically parametrised program can be acquired by considering a control-flow
graph of a program.

Definition 7. A control-flow graph (CFG) C over event alphabet Σ and object identifiers
ObjId is a tuple: 〈Q, �ObjId, q0, F, δ, ≡, ≡may, I〉, Q is a finite set of states, �ObjId is
the alphabet, q0 is the initial state (q0 ∈ Q), F is the set of final states (F ⊆ Q) and δ is a
transition function allowing for τ -transitions (δ ⊆ Q× (�ObjId ∪ {τ})×Q). In addition, the
CFG includes the must-alias relation (over ObjId) ≡, may-alias relation (also over ObjId)
≡may, and function I which associates object identifiers with the relevant instruction pointer
(I ∈ ObjId→ InstrPnt).

As we did with property automata, we will write q
p−→C q′ to denote (q, p, q′) ∈ δ, q

ps
=⇒C q′

for the transitive closure of δ (with ps ∈ �∗ObjId). We will also omit C whenever it is clear
from the context.

7

Note that CFGs allow for τ -transitions, corresponding to internal steps in the program which
do not trigger visible events (and will thus not activate a property transition). Also, a CFG
can be transformed into a set of static traces corresponding to all strings taken along paths in
the CFG structure and ignoring τ transitions, based on which we can define what it means
for a CFG to satisfy a parametrised property.

P S
Σ (CΣ)

def
= {ps | ∃qF ∈ F · q0

ps
=⇒ qF ∧ @q′F ∈ F, ps′, ps′′ · ps = ps′; ps′′ ∧ q0

ps′
=⇒ q′F}

CFGs can be constructed directly from concrete programs using techniques as used, for
instance, in [BLH12], in which the CFGs of individual methods are constructed, and
extended by flattening behaviour outside the method itself. We have also extended Bodden’s
approach to create these over-approximate CFGs in [ACP17].

The approaches we will explore in this paper involve property-specific transformations of
program monitoring in order to reduce overheads in such a manner that will not affect the
verdict with respect to that particular property. Next, we define notions of trace and program
equivalence with respect to a property or program.

Definition 8 (Equivalence between properties). Two properties π and π′ are said to be
equivalent with respect to a set of ground traces T , written π ∼=T π

′, if every trace in T is
judged the same by either property:

π ∼=T π
′ def
= ∀t ∈ T · t ` π ⇐⇒ t ` π′

This notion is lifted to parametrised and statically parametrised traces, and sets thereof,
requiring equivalence up to object identifiers.

π ∼=RT π
′ def
= ∀o ∈ Obj · π ∼=RT↓o π

′

π ∼=ST π
′ def
= ∀oid ∈ ObjId · π ∼=ST⇓oid π

′

It is straightforward to prove that equivalence up to traces is an equivalence relation.

Proposition 4. ∼=π, ∼=T ,∼=RT, and ∼=ST are all equivalence relations.

Proof. This follows from the definition over ground traces using ⇐⇒ . �

Equivalence of traces is then preserved when reducing the set of traces.

Proposition 5. ∀T ′ ⊆ T · π ∼=T π
′ =⇒ π ∼=T ′ π′

Proof. This follows from the definition of ∼=T and `. �

8

Given this, we can conclude the following proposition.

Proposition 6. If π ∼=T π
′ and π′ ∼=T ′ π′′, then π ∼=T∩T ′ π′′.

We can also show that equivalence with respect to an approximation of a program can be
expressed in terms of its projection onto ground traces, following from Proposition 2.

Proposition 7. π ∼=PS
Σ
π′ ⇐⇒ π ∼=PS

Σ⇓ObjId π
′.

Equivalence between programs statically is more complex. We shall be using the silencing
operator on a static trace, which will reduce the concrete traces generated from it, and
thus we want to ensure correspondence between the original concrete generated traces and
the reduced traces (ensuring that a trace is given by the same verdict as its corresponding
silenced trace). To verify this correspondence at the low-level of concrete traces, we will
require knowledge about the identifier originally associated with each event. To represent
this we shall define a projection operator that instead of generating concrete traces, generates
another set of statically parametrized traces, with each having a one-to-one correspondence
with the concrete traces generated by the concrete projection operator. This in effect is a
maximal representative set of static traces needed to represent the concrete traces generated
by the original static trace.

Definition 9 (Generating a maximal representative set of static traces). We generate the
maximal representative set of static traces to represent a static trace st as follows:

maxRep(〈〉, x) def
= {〈〉}

maxRep((x′, e) : ps, x) def
=

{(x′, e) : ps′ | ps′ ∈ maxRep((x′, e) : ps, x)} if x ≡ x′
maxRep(ps, x) if x 6≡may x

′

maxRep(ps, x)
∪{(x′, e) : ps′ | ps′ ∈ maxRep(ps, x)} otherwise

The must relation is different for each of these static traces, where it relates every identifier
used in the trace with every other, given such a static trace st, x ≡st

eq y
def
= ∃n,m · st(n) =

(x, e) ∧ st(m) = (y, e′) (we will write ≡eq when st is clear from the context), and the may
relation is equal to the must relation.

Note how this definition mirrors exactly the concrete projection operator’s definition, with
the addition that each event is tagged with the original identifier. Using the equivalence
relation as defined in Definition. ?? also ensures that each trace in the maximal representative
set generates only one concrete trace, and that the set of concrete traces generated by the
original trace is equal to that generated by each of the static traces in maxRep.

Proposition 8. Given a static trace, each static trace in its maximal set generates only one
static trace.

∀st′ ∈ maxRep(st, x) · |st′ ⇓≡eq x|= 1

9

Proof.

By structural induction over st′:
Base Case: st′ = 〈〉

Proof: st′ ⇓≡eq x

(by definition of ⇓)

={〈〉}

Inductive Hypothesis: |st′ ⇓≡eq x|= 1

Inductive Case: |((x′, e) : st′) ⇓≡eq x|= 1

Proof: ((x′, e) : st′) ⇓≡eq x

(by definition of ⇓ and ≡eq)

={e : es′ | es′ ∈ st′ ⇓ x}
(by inductive hypothesis)

=⇒ |((x′, e) : st′) ⇓≡eq x|= 1

�

Proposition 9. The projection of a static trace over a parameter generates the same set
of concrete traces as the union of the concrete trace generated by each static traces in the
maximal set of the original trace.

st ⇓≡ x =
⋃

st′∈maxRep(st,x)

st′ ⇓≡eq x

Proof.

By structural induction over st:
Base Case: st = 〈〉

Proof: 〈〉 ⇓≡ x
(by definition of ⇓)

={〈〉}

⋃
st′∈maxRep(〈〉,x)

st′ ⇓≡eq x

(by definition of maxRep)

=
⋃

st′∈{〈〉}

st′ ⇓≡eq x

10

(by definition of union)

=〈〉 ⇓≡eq x

(by definition of ⇓)

={〈〉}

Inductive Hypothesis: st ⇓≡ x =
⋃

st′∈maxRep(st,x)

st′ ⇓≡eq x

Inductive Case: ((x′, e) : st) ⇓≡ x =
⋃

st′∈maxRep(((x′,e) : st),x)

st′ ⇓≡eq x

Proof:
Case 1: x ≡ x′ ⋃

st′∈maxRep(((x′,e) : st),x)

st′ ⇓≡eq x

(by definition of maxRep)

=
⋃

st′∈{((x′,e) : st′′)|st′′∈maxRep(st,x)}

st′ ⇓≡eq x

(simplifying the expression)

=
⋃

st′′∈maxRep(st,x)

((x′, e) : st′′) ⇓≡eq x

(by definition of ⇓)

=
⋃

st′′∈maxRep(st,x)

{e : es | es ∈ st′′ ⇓≡eq x}

(pushing in the union)

={e : es | es ∈
⋃

st′′∈maxRep(st,x)

st′′ ⇓≡eq x}

(by the inductive hypothesis)
={e : es | es ∈ st ⇓≡ x}

(by definition of ⇓)

((x′, e) : st) ⇓≡ x

Case 2: x 6≡may x
′

((x′, e) : st) ⇓≡ x
(by definition of ⇓)

11

=st ⇓≡ x

(by the inductive hypothesis)

=
⋃

st′∈maxRep(st,x)

st′ ⇓≡eq x

(by definition of maxRep)

=
⋃

st′∈maxRep(((x′,e) : st),x)

st′ ⇓≡eq x

Case 3: x≡mayx
′

((x′, e) : st) ⇓≡ x
(by definition of ⇓)

=st ⇓≡ x ∪ {e : es | es ∈ st ⇓≡ x}
(by induction hypothesis)

=st ⇓≡ x ∪ {e : es | es ∈
⋃

st′′∈maxRep(st,x)

st′′ ⇓≡eq x}

(pushing out the union)

=st ⇓≡ x ∪
⋃

st′′∈maxRep(st,x)

{e : es | es ∈ st′′ ⇓≡eq x}

(inductive hypothesis and definition of ⇓)

=
⋃

st′∈maxRep(st,x)}

st′ ⇓≡eq x ∪
⋃

st′′∈maxRep(st,x)

((x′, e) : st′′) ⇓≡eq x

(joining unions)

=
⋃

st′∈maxRep(st,x)∪{(x′,e) : st′′|st′′∈maxRep(st,x)}

st′ ⇓≡eq x

(by definition of maxRep)

=
⋃

st′∈maxRep(((x′,e) : st),x)

st′ ⇓≡eq x

�

Considering a transformation between static traces, α : �∗ObjId → �
∗
ObjId (note that silencing

some instrumentation points is an example of this), we can define what it means for it to be
isomorphic with respect to a set of traces, enabling a one-to-one correspondence between
the original representative set and the transformed one.

12

Definition 10. A transformation is said to be isomorphic with respect to the maximal repre-
sentative set of a static trace, or representative isomorphic, if the maximal representative set
of the transformed trace is made up of the application of the transformation on each of the
original representatives: maxRep(α(st), x) = {α(st′) | st′ ∈ maxRep(st, x)}

We use these maximal representatives to define equivalence of a static trace with a representa-
tive isomorphic transformation. We use this notion of isomorphism to ensure correspondence
between each possible concrete trace generated, which will allow us to conclude equivalence
between a program at runtime before and after such a transformation.

Definition 11 (Equivalence between static approximations of programs). Given a static
trace st, and a representative isomorphic transformation function α : �∗ObjId → �

∗
ObjId,

then st is said to be equivalent to its transformation with respect to a property π, if the
transformation preserves the verdict of each representative.

st ∼=π α(st) def
= ∀st′ ∈ maxRep(st, x) · st′ �≡ π ⇐⇒ α(st′) �≡eq π

This notion is lifted to parametrised and statically parametrised traces, and sets thereof, by
lifting a representative isomorphic transformation function α to sets: A(ST)

def
= {α(st) | st ∈

ST}.

ST ∼=π A(ST)
def
= ∀st ∈ ST · st ∼=π α(st)

This definition ensures that the program monitored with the original instrumentation is
equivalent to that monitored after the transformation. To show this we shall first characterize
more finely the program at runtime as corresponding to a subset of the statically parametrized
program.

Theorem 1. The behaviour of each object at runtime is modelled statically by at least one
static trace, moreover by at least one of the trace’s maximal representatives.

∀rt ∈ PR
Σ , o ∈ Obj · ∃st ∈ P S

Σ , x ∈ ObjId, st′ ∈ maxRep(st, x) · st′ ⇓≡eq x = {rt ↓ o}

Proof.

Given rt ∈ PR
Σ and o ∈ Obj

(by Assumption. 1)

=⇒ rt ↓ o ∈ P S
Σ ⇓ ObjId

(by definition of ⇓)

=⇒ ∃x ∈ ObjId, st ∈ P S
Σ · rt ↓ o ∈ st ⇓ x

13

(by Proposition. ??)

=⇒ ∃st ∈ P S
Σ , x ∈ ObjId, st′ ∈ maxRep(st, x) · rt ↓ o ∈ st′ ⇓ x

(by Proposition. 8)

=⇒ ∃st ∈ P S
Σ , x ∈ ObjId, st′ ∈ maxRep(st, x) · st′ ⇓≡eq x = {rt ↓ o}

�

Therefore, given a runtime trace and an object, it’s behaviour is represented statically by
some static trace, specifically by at least one static trace in the maximal set of another. We
denote a mapping from runtime traces to such a static trace representing it by staticRep :
(RT × Obj) → ST. Therefore, there is a set of productive maximal representatives of
static traces that produce the program at runtime, namely the range of staticRep. It follows
easily that satisfaction of each object’s behaviour with respect to a trace is equivalent to the
correspondent representative static trace, with respect to a property.

Proposition 10. An object’s behaviour at runtime satisfies a property if and only if it’s static
representative satisfies the property statically.

rt ↓ o π ⇐⇒ staticRep(rt, o) ⇓≡eq x π

Proof.

rt ↓ o π

(by Theorem. ??)

⇐⇒ ∃st ∈ P S
Σ , x ∈ ObjId, st′ ∈ maxRep(st, x) · st′ ⇓≡eq x � π

(by definition of staticRep)

⇐⇒ staticRep(rt, o) ⇓≡eq x � π

�

Considering transformations of a static program, we now characterize their effects on the
concrete program. Given that we have already identified a set of maximal representatives
that together produce the program at runtime, then after a transformation (that does not
change the semantics of a program, but only possibly that of monitoring) the new productive
set is the old productive set with the transformation applied to each of its members. We
denote the new program at runtime by A(PR

Σ). We can characterize it by the transformation
of only all the productive maximal representatives of a static program.

Definition 12. A representative isomorphic transformation is said to be isomorphic at
runtime if each maximal representative of the transformed program at runtime corresponds
to a transformation of an original maximal representative.

∀rt ∈ A(PR
Σ) · ∀o ∈ Obj · ∃rt′ ∈ PR

Σ · staticRep(rt, o) = α(staticRep(rt′, o))

14

Given this, we can show that equivalence with respect to a property between a statically
parametrized program and its transformation implies equivalence with respect to a property
of the original program at runtime and the program generated after the transformation.

Theorem 2. Given a representative isomorphic transformation that is also isomorphic at
runtime, if it preserves the verdict of the original statically parametrized program then it
also preserves the verdict with respect to the program at runtime.

P S
Σ
∼=π A(P S

Σ) =⇒ PR
Σ π ⇐⇒ A(PR

Σ) π

Proof.

P S
Σ
∼=π A(P S

Σ)

=⇒ ∀st ∈ P S
Σ · st ∼=π α(st)

=⇒ ∀st′ ∈ maxRep(st, x) · st �≡ π ⇐⇒ α(st) �≡eq π

PR
Σ π

(by definition of)

⇐⇒ ∀rt ∈ PR
Σ · ∀o ∈ Obj · rt ↓ o π

(by Prop. ??)

⇐⇒ ∀rt ∈ PR
Σ · ∀o ∈ Obj · staticRep(rt, o) ⇓ x � π

(by premise)

=⇒ ∀rt ∈ PR
Σ · ∀o ∈ Obj · α(staticRep(rt, o)) ⇓ x � π

(by Definition. ??)

=⇒ ∀rt′ ∈ A(PR
Σ) · ∀o ∈ Obj · staticRep(rt′, o) ⇓ x � π

(by Prop. ??)

=⇒ ∀rt′ ∈ A(PR
Σ) · ∀o ∈ Obj · rt′ ↓ o π

(by definition of)

=⇒ A(PR
Σ) π

�

Based on the notions presented in the previous sections, we can now discuss the analysis
techniques used in Clara [BLH12], where each of its analyses reduces the points in a program
that activate the monitor at runtime. The basic thesis of Clara is then that appropriate
silencing of certain events, does not affect satisfiability of the program with respect to the
property but reduces the length of the traces to be analysed: Given a static approximation of

15

a program P = P S
Σ and property π, the reduced program approximation obtained through

Clara, P ′ = Clara(P S
Σ , π), is sound with respect to π: P ∼=π P

′.

Clara uses three analysis techniques to reduce the program approximation [BLH12]:

Quick Check. Some events specified by the property may not correspond to any method
invocations by the program, e.g. consider that given Figure 1, a program may only open
streams and write to them, but never read from them. Also, some events may only appear
on loops in the same state, and therefore never cause a change in state (e.g. lookAhead).
Clara’s first analysis can be used to remove these kinds of events from the property, and the
corresponding transitions. This may lead to some states becoming unreachable from the
initial state, or states that cannot reach a bad state, and thus these can be removed. If a bad
state cannot be reached from an initial state then the property is satisfied.

Orphan Shadows Analysis. The first analysis ignores the fact that events are parametrised.
Consider a program, where only open and lookAhead are ever called on one object, then
by looking at the property we can automatically note that this object can never violate it
(by performing the first analysis on this object, instead of on the whole program), therefore
both method calls can be silenced. This can be done for every object, producing a set of
statements that can be disabled without affecting satisfaction of the property.

Flow-Sensitive Nop-Shadows Analysis. The first two analyses do not take into account
any of the control-flow of the program, but they just consider which methods are invoked
or not. This can be taken into account by considering the control-flow graph (CFG) of a
program, which is a superset of its behaviour, and silence any statements that, if present or
not, do not affect violation. Therefore, Bodden et. al. consider an over-approximation of
a whole-program CFG and perform a synchronous composition of a property with such a
CFG for each method (and considering the possible aliasing between objects), one can then
determine which statements in the program (transitions in a CFG) never have an effect on
violation (which Bodden et. al. call Nop shadows), meaning they can be silenced, reducing
the amount of times the monitor is triggered at runtime.

As an example, consider the synchronous composition of the property and approximated
CFG in Figure 2, and assume that all the object identifiers (si) associated with an event
may-alias with each other. One can then note that after q1, the synchronous composition is
either in qa or qc; then taking q1

s3.open−−−−→ q2 will lead to qb, and then q2
s4.close−−−−→ q3

s5.open−−−−→ q4

will necessarily lead to qb. Since, then, these two transitions do not affect the control-flow,
they can be disabled such that they do not activate the monitor at runtime. Note the loops at
state q4 represent the flattened behaviour of a method called at that state, while those at q1

and q5, the behaviour outside the method.

16

q1startstart q2 q3 q4 q5

s1.write,
s2.open

s1.write,
s2.open

s1.write,
s2.open

ε

s3.open s4.close s5.open s8.close

Figure 2: Example method CFG generalized to whole-method CFG.

3 Residual Control-Flow Analysis of DATEs

The properties considered by Clara are simple automata, however these can be extended
to allow for more expressive properties. One such extension of automata is used in Larva
[CPS09], which uses DATEs (Dynamic Automata with Timed Events). DATEs extend
finite-state machine by enriching the transitions which trigger on events, with conditional
guards, and side-effect actions which can affect monitoring state (e.g. by changing some
variable local to the DATE). Note that in proper DATEs conditions can depend not just on the
monitoring variables’ state but also on the program state, however in this paper we limit the
analysis to conditions on the monitoring state which is interesting by itself, since unfolding
a DATE with such conditions can result in an infinite automaton (e.g. the non-regular
language anbn can be represented with a finite DATE, but not with a finite-state machine).
DATEs also include other extensions which we do not deal with in this paper, namely:
(i) timers, in the same spirit as timed automata [AD94], but extended with stop-watches
(e.g. event c@5 triggers when timer c reaches 5 seconds); and (ii) communication channels
for communication between DATEs — with the actions taken when following a transition
possibly involving sending of messages, and starting, stopping, or resetting of a timer. For
full semantics of DATEs, refer to [CPS09, ACPS17]. Even without these extended features,
properties in DATEs with conditions and actions on transitions are not, in general, amenable
to the shadow effect analysis of Clara, since a sequence of Clara-detected NOP shadows
that loop in the property can still have an effect on the monitoring state due to transitions’
actions.

Consider the DATE shown in Figure 3. Transitions are labelled by a triple e | c 7→ a —
when event e occurs and if condition c holds, the transition is taken, executing action a4.
For instance, the top transition between states q0 and q1 triggers when a user is whitelisted
and the monitoring variable transferCount is at least 3, and if taken resets this variable.
Applying Clara to this property by ignoring the conditions and actions would result, for
instance with the first analysis removing the transfer transition in state q1 since upon a
transfer the monitor would never change states. Clearly, taking this transition could have an

4We leave out the bar and arrow when the condition is true or the action is skip (the identity action).

17

Initial Variable State: transferCount = 0;

q0For Each: User u q1 q3

q4q5q2

greyList(u)

whiteList(u) 7→ transferCount = 0

transfer(u)
7→ transferCount ++whiteList(u) | transferCount ≥ 3

7→ transferCount = 0; whiteList(u)
| transferCount < 3;

permanentlyDisabled(u)permanentlyDisabled(u)

∗∗

Figure 3: Example DATE specifying that once a user is greylisted they can only be whitelisted after
performing three or more transfers.

effect on which future transitions are activated. For similar reasons, Clara’s third analysis
may disable transitions unsoundly.

3.1 Preliminaries

We start by identifying what we mean by a DATE in this paper, and continue exploring some
notions and results we will need to present and prove our residual analysis correct.

Definition 13. A DATE D is a tuple 〈Q,Σ,Θ, q0, θ0,B, δ〉, where Q is the set of states, Σ
is an alphabet of events, Θ is the type of monitoring variable states, q0 ∈ Q is the initial
state, θ0 : Θ is the initial monitoring variable state, B ⊆ Q is a set of bad states, and
δ ⊆ Q×Σ×C ×A×Q is a transition relation with conditions (C = Θ→ B) and actions

(A = Θ→ Θ). We write q
e|c 7→a−−−→ q′ for (q, e, c, a, q′) ∈ δ, skip for the identity action, and

D for the type of DATEs.

Property automata as defined in Section 2 can be seen as instances of DATEs with a transition

q e−→ q′ being translated into q
e|true 7→ skip−−−−−−→ q′.

Determinism of the transition relation of a DATE is typically desirable from a monitoring
perspective for efficiency reasons. However, in the presence of actions, determinism is
crucial since otherwise it would not be impossible to decide which actions to perform. To
ensure determinism, events and conditions on transitions from a state must be mutually
exclusive.

Assumption 2. Given a DATE D, the transition relation is deterministic over events and
conditions:

q
e|c 7→a−−−→ q′ ∧ q

e|c′ 7→a′−−−−→ q′′ ∧ (∃θ · c(θ) ∧ c′(θ)) =⇒ c = c′ ∧ a = a′ ∧ q′ = q′′

18

Thanks to this assumption, we can use the transition function in an applicative manner.

Definition 14. The concrete transition function of a DATE δ ∈ (Q×Θ)× Σ→ Q×Θ is
defined over the DATE and monitoring variable state:

δ((q, θ), e)
def
=

{
(q′, a(θ)) if q

e|c 7→a−−−→ q′ ∧ c(θ)
(q, θ) otherwise

We will write δ∗ ∈ (Q×Θ)× Σ∗ → Q×Θ to denote the transitive closure of δ.

Note how this definition makes the DATEs semantics implicitly total with regards to events
and conditions, since if there is no transition for a certain event (or for a certain event where
a condition is never true) we remain at the same state. We do not make DATEs explicitly
total for conciseness.

Statically we assume that we cannot know the resolution actions applied to a certain state.
Therefore to reason about transitioning statically we define an over-approximation static
transition function for DATEs, which takes into account conditions which are syntactically
equivalent to true or false, but all others are taken to act completely non-deterministically.

Definition 15. Given states q, q′ ∈ Q and event e ∈ Σ, we say that q potentially goes to q′

with event e, written q e−→approx q
′, if such a transition might be possible:

q
e−→approx q

′ def
= (q

e|c 7→a−−−→ q′ ∧ c 6= false)∨
(q = q′∧ 6 ∃q′′ · q′′ 6= q ∧ q e|true7→a−−−−−→ q′′)

Given a DATE, the static transition function ∆D ∈ 2Q×Σ→ 2Q is defined to be the function
which, given a set of states and an event returns the set of states potentially reachable
from any of the input states: ∆D(S, e)

def
= {q′ | ∃q ∈ S · q e−→approx q

′}. We will write
∆∗D ∈ 2Q × Σ∗ → 2Q to denote its transitive closure, also writing Q t

=⇒D Q′ to denote that
∆∗D(Q, t) = Q′. Finally, we will write q ↪→D q

′ to denote that q′ is reachable from q with the
over-approximated transition relation: q ↪→D q

′ def
= ∃t · q′ ∈ ∆∗D({q}, t).

We prove that ∆ is really an over-approximation of δ.

Theorem 3. The approximate transition function is an over-approximation of the concrete
transition function:

∀θ : Θ, t : Σ∗, q ∈ Q · ∃θ′ : Θ · δ((q, θ′), t) = (q′, θ) =⇒ q′ ∈ ∆({q}, t).

Proof.

Case: ∃(q, e, c, a, q′) ∈ δ · c(θ)

19

δ((q, θ), e)

(by defn. of δ)
= (q′, a(θ))

∆({q}, e)
(since case premise implies c 6= false, which means q e−→approx q

′,
and then by defn. of ∆)

3 q′

As needed.

Case: @(q, e, c, a, q′) ∈ δ · c(θ) ∧ q 6= q′

δ((q, θ), e)

(by defn. of δ)
= (q, θ)

∆({q}, e)
(by case premise q →approx q, and by defn. of ∆∗)

= {q}

As needed.

�

Corollary 1. The transitive closure of the approximate transition function is an over-
approximation of the transitive closure of the concrete transition function:

∀θ : Θ, t : Σ∗, q ∈ Q · ∃θ′ : Θ · δ∗((q, θ′), t) = (q′, θ) =⇒ q′ ∈ ∆∗({q}, t).

Proof. Follows by induction on t, using Thm. 3. �

As we did for property automata, we define what it means for a DATE to satisfy the different
kinds of traces using this static approximation of transitioning at runtime, and relate it to the
static transition function.

Definition 16. A ground trace t ∈ Σ∗ is said to satisfy a DATE D (with Σ ⊆ ΣD), if none of
its prefixes applied to the transitive closure of D, starting from the initial state of D and the

20

initial monitoring variable state, lead to a bad state of D.

t ` D def
= ∀t′ ∈ prefixes(t) · δ∗((q0, θ0), t′) = (q, θ) ∧ q 6∈ BD

We define the satisfaction of a runtime parametrized trace and a statically parametrized
trace as before with respect to to a DATE and over this ground trace satisfaction operator.
Similarly we define the equivalence relations between DATEs and programs using this
satisfaction with respect to a DATE.

Theorem 4. If the static transition function applied to any prefix of t from the start state of
D does not contain a bad state then t satisfies D.

∀t ∈ Σ∗ · ∀t′ ∈ prefixes(t) ·∆({q0}, t) ∩ BD 6= ∅ =⇒ t ` D

Proof. This follows by considering, for contradiction, that t 6` D, and using Cor. 1. �

Looking at Figure 3 we can see that not all states are useful. Specifically consider how being
at q2, q45 and q5 implies that a trace will not violate, but however note that transitioning
between q2 and q5 (and between q4 and q5) is useless, and thus q5 is not useful since it is
only reachable from states from which we can already conclude satisfaction. Thus note how
we can reduce a property by keeping only states that are reachable from the initial state, and
that can reach a bad state or that are a transition away from such states.

Definition 17. A state q in DATE D is said to possibly lead to a violation in D, written
badAfter(q), if it is reachable from the initial state and a bad state is reachable from it.

badAfter(q) def
= q0 ↪→ q ∧ ∃q′ ∈ B · q ↪→ q′

A state q in DATE D is said to be immediately satisfying in D, written goodEntryPoint(q), if
it cannot possibly lead to a violation and is one transition away from such a state that can
possibly lead to a violation.

goodEntryPoint(q) def
= ¬badAfter(q) ∧ ∃q′ · q′ e|c 7→a−−−→ q ∧ badAfter(q′)

A state q in DATE D is said to be useful in D, written useful(q), if it can possibly lead to a
violation or is satisfying in D.

useful(q) def
= badAfter(q) ∨ goodEntryPoint(q)

Given a DATE D, its states and transitions can be reduced to the reachable useful ones to
obtainR(D) which contains only states in D which are useful, and all the transitions between
states that satisfy badAfter and their transitions to states that satisfy goodEntryPoint(q).

21

We can then show that DATE reduced for reachability is equivalent to the original DATE
with respect to an approximation of a program, by using the theorems and propositions
presented in the previous sections, which we claim also apply to DATEs by simply using the
DATE satisfaction operators. We prove these in Section A.

Lemma 1. The concrete transition function for a DATE and that for its reachability-
reduction are equivalent from states both reachable from the initial state and that can
reach a bad state.

badAfter(q) =⇒ ∀e : Σ, θ : Θ · δD((q, θ), e) = δR(D)((q, θ), e)

Proof. This follows directly from the definition of R(D), since it keeps all transitions
outgoing from badAfter states. �

Lemma 2. The concrete transition function for a DATE applied to a state that is immediately
satisfying leads to a state that is not itself satisfying.

¬badAfter(q) =⇒ ∀e : Σ, θ : Θ · δD((q′, θ), e) = (q′, θ′) ∧ q′ 6∈ B
∧∀e : Σ, θ : Θ · δR(D)((q

′, θ), e) = (q′′, θ′′) ∧ q′′ 6∈ B

Proof. Note how ¬badAfter(q) implies that q′ 6∈ B since if q′ ∈ B, given that q ↪→ q′, it
would satisfy badAfter(q). SinceR(D) has less transitions than D the result holds. �

Theorem 5. A DATE D is equivalent with respect to its reachability-reductionR(D) (with
alphabet Σ), with respect to any set of traces.

∀T ⊆ Σ∗ · D ∼=T R(D)

Proof.

To Prove : ∀T ⊆ Σ∗ · ∀t : T · t ` D ⇐⇒ t ` R(D)

By induction on t :

Base Case : t = 〈〉
〈〉 ` D
(by defn. of `)

⇐⇒ q0 6∈ BD

(by defn. ofR(D) and since either useful(q0) or q 6∈ QR(Q))

⇐⇒ q0 6∈ BR(D)

(by defn. of `)

〈〉 ` R(D)

22

Inductive Hypothesis: Given t ∈ T · t ` D ⇐⇒ t ` R(D)

Inductive Case: For t′ = t++ 〈e〉
(=⇒)

t++ 〈e〉 ` D
(by defn. of `)

⇐⇒ t ` D ∧ δ∗D((q0, θ0), t++ 〈e〉) = (q, θ) ∧ q 6∈ BD

(by the ind. hyp and the defn. of δ∗)
⇐⇒ t ` R(D) ∧ δD(δ∗D((q0, θ0), t), e) = (q, θ) ∧ q 6∈ BD

(setting δ∗D((q0, θ0), t) = (q′, θ′))

⇐⇒ t ` R(D) ∧ δD((q′, θ′), e) = (q, θ) ∧ q 6∈ BD

Case 1: badAfter(q′)
(by Lemma. 1)

=⇒ δD((q′, θ′), e) = δR(D)((q
′, θ′), e)

As needed.

Case 2: ¬badAfter(q′)
(by Lemma. 2)

=⇒ δR(D)((q
′, θ′), e) = (q′′, θ′′) ∧ q′′ 6∈ BR(D)

As needed.

(⇐=)

The same argument can be applied by replacingR(D) by D and vice-versa.

�

3.2 Residual Analysis

We are concerned with producing residuals of a DATE, where a residual, in general, repre-
sents a subset of the possible violating behaviour of a property with respect to a program.
Residuals can thus be reductions of a property that remain equivalent to the original property
with respect to some behaviour.

In this section we start by presenting some results which we shall use when presenting our
extension of Clara, results which allow us to reason about when the reduction of DATEs

23

with respect to some alphabet is equivalent to the original DATE, in the context of some
program’s behaviour. We also introduce the notion of union between two reductions of a
DATE, to allow the behaviour of multiple objects to be reasoned about individually but
unified for the monitor at runtime.

First we discuss when an alphabet-reduction of DATE is equivalent to the original DATE,
since we shall be using this operator in our analyses.

Lemma 3. Given a DATE and some alphabet Σ, with Σ ⊆ ΣD, then for any state and
event e ∈ Σ the application of the concrete transition function of the DATE is equal to the
application with the concrete transition function of the DATE reduced by the alphabet Σ.

∀e ∈ Σ, θ : Θ, q ∈ QD�Σ · δD�Σ((q, θ), e) = δD((q, θ), e)

Proof. This follows from the definition of alphabet-reduction, since any state in D � Σ has
the same outgoing Σ-transitions in both D � Σ and D. �

We can extend this to the transitive closure of both concrete functions and all traces using
the alphabet the DATE is reduced by.

Lemma 4. Given a DATE, and a set of traces over its alphabet, then given such a trace the
application with the concrete transition function of the DATE is equal to the application with
the concrete transition function of the DATE reduced by the alphabet of the set of traces.

∀T ⊆ Σ∗D, t ∈ T · δ∗D�Σ(T)((q0, θ0), t) = δ∗D((q0, θ0), t)

Proof. This follows by Lemma. 3 and induction on t. �

Theorem 6. A DATE D with alphabet Σ and its alphabet-reduction by some alphabet
Σ′ ⊆ Σ are equivalent with respect to a set of ground traces T ⊆ Σ∗.

D � Σ(T) ∼=T D

Proof. This follows directly from Lemma. 4. �

Different objects in a program activate different monitors, as we discussed. These objects
may have different behaviour, and specifically they may use different subsets of the DATE
alphabet. We will thus consider the residuals of a DATE, with respect to different parts of a
program. We want to then combine these residuals into a single DATE that we can monitor
the program with soundly and completely. We define this union between DATEs that are
component-wise subsets of another DATE, otherwise it cannot be assured that the union
produces a DATE.

24

Definition 18. Given two DATES that are component-wise subsets of another DATE, then
their component-wise union is defined as the property with both of their transitions, states
and bad states, and starting from the same initial state.

D t D′ def
= {QD ∪ QD′ ,ΣD ∪ ΣD′ , q0, θ0,BD ∪ BD′ , δD ∪ δD′}

We shall be producing residuals of a DATE by using the alphabet-reduction, then the
reachability-reduction, and then performing the union on all these residuals. The next
theorem shows that this union preserves the behaviour of the single reduced DATEs.

Proposition 11. Given two sets of traces T0, T1 ⊆ Σ∗, and a DATE D then the union of D’s
alphabet-reduction with respect to each of the sets of traces is equivalent to D with respect
to the union of the sets of traces.

R(D � Σ(T0)) tR(D � Σ(T1)) ∼=T0∪T1 D

Proof.

Given D′ = R(D � Σ(T0)) tR(D � Σ(T1))

To Prove: ∀t : T0 t T1 · t ` D′ ⇐⇒ t ` D
By induction on t:

Base Case: 〈〉 ` D′ ⇐⇒ 〈〉 ` D
〈〉 ` D′

(by defn. of union and δ∗)
= (q0, θ0)

(by defn. of δ∗ and
since q0 is the initial state of D)

〈〉 ` D

Inductive Hypothesis: t ` D′ ⇐⇒ t ` D
Inductive Case: For t′ = t++ 〈e〉 and w.l.g. assume t′ ∈ T0

Proof: t++ 〈e〉 ` D
(by Thm. 6, Thm. 5, and defn. of `)

⇐⇒ t++ 〈e〉 ` R(D � Σ(T0)) ∧ t ` D
∧ δD(δ∗D((q0, θ0), t), e) = (q, θ) ∧ q 6∈ B
(by ind. hyp.)

⇐⇒ t++ 〈e〉 ` R(D � Σ(T0)) ∧ t ` D′

25

∧ δD(δ∗D((q0, θ0), t), e) = (q, θ) ∧ q 6∈ B

Suppose, for contradiction, that: δD′(δ∗D′((q0, θ0), t), e) = (q′, θ′) ∧ q′ ∈ B

(since we know t ` D′)
δ∗D′((q0, θ0), t) = (q′′, θ′′) ∧ q′′ 6∈ B
(by defn. of δ)

=⇒ ∃q′′ e|c 7→a−−−→ q′ · q′ ∈ B
(since one violates and the other does not,
and by definition of union)

=⇒ δ∗D′((q0, θ0), t) 6= δ∗D((q0, θ0), t)

(since D′ and D start from the same state)

=⇒ ∃t′ ++ 〈e′〉 ∈ prefixes(t)·
δ∗D((q0, θ0), t′) = δ∗D′((q0, θ0), t′ = (q′′′, θ′′′)

∧ δD((q′′′, θ′′′), e′) 6= δD′((q′′′, θ′′′), e′)

(by defn. of δ
and since D′ is a component-wise subset of D)

=⇒ ∃d = (q′′′, e′, c, a, q′′′′) ∈ δD ∧ d 6∈ δD′

(by defn. of union)

=⇒ d 6∈ δR(D�Σ(T0)) ∧ d 6∈ δR(D�Σ(T1))

(by defn. of the reachability reduction)

=⇒ ¬badAfterR(D�Σ(T0))(q
′′′)

∧ ¬badAfterR(D�Σ(T1))(q
′′′)

(by defn. of badAfter)
=⇒ @qb ∈ B · q′′′ ↪→R(D�Σ(T0)) qB

∧ @qb ∈ B · q′′′ ↪→R(D�Σ(T1)) qB

(by defn. of union)

=⇒ @qb ∈ B · q′′′ ↪→D′ qB

××××

�

Given these properties of DATEs we can now move on to presenting our constructions of
residuals given a program.

26

3.3 Residual Constructions

As opposed to Clara, where the analyses are plugged in after instrumentation and function to
turn off certain instrumentation points, we want our analysis to be more general. Thus here
we formally describe analyses which both prune the property by removing transitions and
states that are irrelevant for the program’s violation, and silence statements that the analysis
concludes will not affect violation.

We present three residuals, one without the events used by the program, another taking into
account whether events can occur on the same object, and the last one removing from the
DATE transitions that can never be used by a trace in the program. Theoretically, using the
last analysis is enough, since each analysis is finer than the other, however practically one
may want to use the other analyses since they are cheaper to compute. We prove that each
of these is equivalent to the original DATE with respect to the given program. The last two
analyses also present us with the opportunity to identify statements in the program that can
be silenced safely, as we shall see.

3.3.1 Pruning non-occurring events

Recall that Clara’s first analysis computed the set of symbols that need to be monitored,
which did not include: (i) events that appeared only on transitions looping in the same state,
(ii) symbols that do not appear in the program, and (iii) symbols only outgoing from states
from which a bad state is not reachable in the property reduced by the previous types of
symbols. We now consider these in the case of DATEs.

We cannot remove transitions such as in (i) since such idempotent transitions may perform
actions which effect the triggering of other transitions (consider the looping transition on
state q3 in Figure 3). Those of type (ii) can be removed safely, since if a certain symbol does
not appear in the program then clearly transitions tagged by such symbols in the property
will never be taken and can be removed. While our reachability-reduction takes care of
events of type (iii)5.

We thus define residual0 over a property D, with respect to a program P S
Σ .

residualP0 (D)
def
= R(D � Σ(P S

Σ))

We can then show easily that this is equivalent to the original DATE with respect to the used
program.

5Note that this would not be always safe if we were considering multiple DATEs executing at the same
time

27

Theorem 7. The residual0 of a DATE D is equivalent to D, with respect to program approx-
imation P S

Σ (with Σ ⊆ Σresidual0(D)).

residualP0 (D) ∼=PS
Σ

D

Proof. This clearly follow from Thm. 5, Thm. 6, and Prop. 7. �

3.3.2 Pruning transitions never usable on the same object

Like Clara, we can generalise the first analysis to consider events occurring on objects.
Given an object, if the traces corresponding to it do not use the full alphabet of the DATE,
then we can create a residual for the object’s traces, which is enough to monitor that object
soundly and completely. Consider Figure 3, if we have an object that we know is never
greylisted but performs transfers then we can keep only the transitions triggered upon a
transfer.

residualP1 (D, oid)
def
= R(D � Σ(P S

Σ ⇓ oid))

Proposition 12. The residual1 with respect to an object identifier oid is equivalent to the
original property D with respect to the possible traces of oid in the program P S

Σ .

residualP1 (D, oid) ∼=PS
Σ⇓oid D

Proof. By Thm. 5 and Thm. 6. �

For runtime monitoring we now have two choices: (1) create a different monitor for
each object identifier, corresponding to the associated residual, such that the monitor only
instruments the statements associated with the identifier; (2) perform the union on all the
residual DATEs and instrument the program as usual (i.e. by simply matching the DATE
events with statements). The former would require new instrumentation techniques that
employ static aliasing knowledge, while with the latter one could use existing techniques.
We show that given the second choice, the resulting DATE is still equivalent to the original
one, with respect to the program.

Theorem 8. The union of each residual of a DATE D, associated with each object identifier,
is equivalent to D with respect to the static approximation P S

Σ .⊔
oid∈ObjId

residualP1 (D, oid) ∼=PS
Σ

D (1)

Proof. By Prop. 13 and Prop. 12 clearly the DATEs are equivalent with respect to the
ground traces generated by the static approximation of the program, and using Prop. 7 the
theorem follows. �

28

Moreover, consider again an object that only performs transfers, with respect to it Figure 3
would be reduced to only the initial state, and thus we can say statically that the object
satisfies the property. In this manner we no longer need to monitor this particular object
when it performs a transfer, and thus any transfers associated solely with it can be silenced.
We identify such instrumentation points with no effect on the monitor verdict, when given
a set of statically parametrized traces ST : �∗ObjId, and an instrumentation point function
I ∈ ObjId→ InstrPnt, by identifying the instrumentation points associated with an object
identifier whose associated event does not occur in the identifier’s residual.

noEffect(ST, I,D)
def
= {I(oid) | ∀st ∈ ST · (∃n : N · st(n) = (oid, e))

=⇒ @(q, e, c, a, q′) ∈ δresidualP1 (D,oid)}

Theorem 9. In general, given a statically parametrized program, and its reduction through
silencing instrumentation points in noEffect are equivalent with respect to the second
residual.

silence(P S
Σ , noEffect(P S

Σ , I,D)) ≡⊔
oid∈ObjId residualP1 (D,oid) P

S
Σ

Proof. Given that statically parametrized events are only disabled if they never trigger any
transition in their respective residual (see definition of noEffect), removing them does not
affect the control-flow with respect to the DATE.
We shall consider only one static trace, and one instruction pointer being silenced, such that
only one (oid, e) pair is removed, the result follows by considering every other pair being
silenced, and by generalising it for sets of static traces.

Consider st ∈ �∗ObjId which contains (oid, e) at some index, and I(oid) ∈ noEffect(ST, I, D).
And consider st ⇓ oid and recall that the ≡ relation is reflexive, such that oid ≡ oid, which
implies:

∀t ∈ st ⇓ oid,∃t′, t′′ · t = t′ ++ 〈eoid〉++ t′′

with the event eoid being created by the projection when considering (oid, e) in the trace.
If we silence this from st, resulting in st′, by definition of silencing the generated traces
correspond to the previous ones without the generated e:

∀t ∈ st′ ⇓ oid′,∃t′, t′′ · t = t′ ++ t′′ ∧ t′ ++ 〈eoid〉++ t′′ ∈ st ⇓ oid

We will write D′ for
⊔

oid∈ObjId residualP1 (D, oid). We shall consider transitioning over D′ to
show the result.

To Prove: t′ ++ 〈eoid〉++ t′′ ` D′ ⇐⇒ t′ ++ t′′ ` D′

Proof: Consider δ∗D′((q0, θ0), t′) = (q, θ)

Now consider δD′((q, θ), eoid) = (q′, θ′)

29

Case 1: @(q, eoid, c, a, q
′) ∈ δD′ =⇒ q = q′

From which the result follows.

Case 2: ∃d = (q, eoid, c, a, q
′) ∈ δD′

By theorems 6 and 12 we can use interchangeably D � (Σ(P S
Σ ⇓ oid)) or D′

∃d = (q, eoid, c, a, q
′) ∈ δD′

(by definition of eoid: d 6∈ δresidualP1 (D,oid))

⇐⇒ ¬badAfterD�(Σ(PS
Σ⇓oid))(q

′)

(by definition of badAfter and reachability-reduction)

=⇒ @qb ∈ B · q′ ↪→ qb

(since after reaching q, t′ ++ 〈eoid〉t′′ can no longer violate)

=⇒ t 6` D′ ⇐⇒ t′ 6` D′

(Taking the contrapositive.)
=⇒ t ` D′ ⇐⇒ t′ ` D

From which the result follows.

�

Consider also st ⇓ oid′, where oid ≡may oid′ (note if they are not related by any of the two
relations the result follows immediately), of which we can characterise its generated ground
traces as follows:

∀t ∈ st ⇓ oid′,∃t′, t′′· t = t′ ++ 〈eoid〉++ t′′ ∧ t′ ++ t′′ ∈ st ⇓ oid′

⊕ t 6= t′ ++ 〈eoid〉++ t′′

Given the definition of silencing then we can come up with a correspondence between
ground traces generated by st and st′:

∀t ∈ st′ ⇓ oid′,∃t′, t′′· t ∈ st ⇓ oid′

⊕ t = t′ ++ t′′ ∧ t′ ++ 〈eoid〉++ t′′ ∈ st ⇓ oid′

The result clearly follows from this, since the ground traces generated by st′ are a subset of
those generated by st′, by the two previous statements. �

3.3.3 Removing unusable transitions

For the previous two analyses we have assumed a static approximation of the program,
but just considered the used alphabet, ignoring the way flow of the events, which makes

30

these analyses relatively cheap to compute. This third analysis, however, makes use of the
control-flow of the program, by considering the possible traces of a program.

Consider Figure 3, and the trace whitelist; greylist; transfern. Given the previous two analy-
ses, only the transitions between states q0, q1 and q3 would remain. However, clearly the
whitelist transitions from q1 can never be activated, since the trace only performs whitelist
before the user is greylisted. Thus we can remove these whitelist transitions.

In general, given a trace, this does not always trigger all the transitions in a DATE, in fact
we can prune away the unused transitions and the residual DATE will remain equivalent to
the original one with respect to that trace. We can generalize this notion by, when given a
set of traces, removing transitions that cannot be used by any of the traces. We use the static
transition function to simulate the concrete one, since statically we do not have access to the
monitoring variable state.

residualP2 (D, P S
Σ)

def
= R(D � {q e|c7→a−−−→ q′ |∃t : P S

Σ ⇓ ObjId, t′ ++ 〈e′〉 ∈ prefixes(t)
· q ∈ ∆∗D({q0}, t′) ∧ e′ = e})

Theorem 10.

residualP2 (D, P S
Σ) ∼=PS

Σ
D

Proof.

To Prove: ∀t ∈ P S
Σ ⇓ ObjId · t ` R ⇐⇒ t ` D

(with R = residualP2 (D, P S
Σ))

By induction on t:
Base Case: t = 〈〉

Follows immediately since both DATEs start
from the same initial state

Inductive Hypothesis: t ∈ P S
Σ ⇓ ObjId · t ` residualP2 (D, P S

Σ) ⇐⇒ t ` D
Inductive Case: t′ = t++ 〈e〉

Proof: t++ 〈e〉
(by defn. of `)

⇐⇒ t ` D ∧ δD(δ∗D((q0, θ0, t), e) = (q, θ) ∧ q 6∈ B
(by ind. hyp)

⇐⇒ t ` R ∧ δD(δ∗D((q0, θ0, t), e) = (q, θ) ∧ q 6∈ B

31

Suppose, for contradiction, that: δR(δ∗R((q0, θ0, t), e) = (q′, θ′) ∧ q′ ∈ B

(since R and D start from the same initial state)

∃t′ ++ 〈e′〉 ∈ prefixes(t)
· δ∗D((q0, θ0, t) = δ∗R((q0, θ0, t) = (q′′, θ′′)

∧ δ∗D((q0, θ0, t) 6= δ∗R((q0, θ0, t)

(since R is a component-wise subset of D)

=⇒ ∃d = (q′′, e′, c, a, q′′′) ∈ D ∧ d 6∈ R
(by defn. of R)

=⇒ ¬badAfter(q′′)

∨ @t′′ ∈ P S
Σ ⇓ ObjId, t′′′ ++ 〈e′〉 ∈ prefixes(t)

· q′′ ∈ ∆∗D({q0}, t′′) ∧ e′′ = e

××××
since ¬badAfter(q′′) implies that q′′ cannot lead
to a bad state, while t′ ++ 〈e〉 would be
a candidate for the latter statement

�

Previously we discussed informally that multiple CFGs that approximate the program’s
behaviour can be created, meaning we may have multiple static over-approximations of a
program, we thus can apply the residual2 on each of these successively, creating a possibly
finer residual than we can with one over-approximation.

residualP2 (D, 〈〉) def
= D

residualP2 (D, P S
Σ : Ps) def

= residualP2 (residualP2 (D, P S
Σ),Ps)

Theorem 11. Given a set of static program over-approximations, then applying the third
residual construction on these, consecutively, returns a DATE that is equivalent to the
original DATE, with respect to the intersection of projection into ground traces of each
approximation.

residualP2 (D,Ps) ∼=⋂
0<i<length(Ps) Ps(i)⇓ObjIdi D

Proof. This follows from Thm. 10, Prop. 7, and Prop. 6. �

Note how Thm. 11 implies that the residual and DATE are equivalent to the program’s
behaviour at runtime, since by Assump. 1 each over-approximation’s projection contains
the runtime program..

32

Clara’s third analysis silenced statements in the program that together do not have any effect
on the flow with respect to the property, however given conditions on transitions in DATEs
we do not necessarily know if a transition will be activated or not, hence why the static
transition of a DATE ranges over a set of states, so as to consider the possibility that a
transition is both triggered and not. Using the same principle, we can apply Clara’s third
analysis to method invocations that only trigger DATE transitions without conditions (or
rather with the true condition), and that do not have actions with side-effects. However we
do not detail this here given space constraints.

4 Case Study

Our optimisation techniques have been applied to a simple financial transaction system
with users connecting to a proxy in order to enable communication with a transaction
server inspired by the industrial systems we have previously used runtime verification on
[ACPV16]. The proxy and the transaction server can be two different services (the client
and provider), possibly provided by different providers, with the property specifying the
behaviour that the transaction server expects out of the proxy.

In order to see how our approach scales with increased system load and monitoring overhead,
the system was evaluated with different numbers of users behaving in a controlled random
manner, thus allowing for repeatability of the experiment.

The system was verified with respect to a specification constraining payment patterns based
on the status of the user, e.g. a blacklisted user can only perform a payment if it has not
exceeded a certain risk threshold. The risk level of a user is calculated by the monitor by
checking that the companies the users deal with in general have transacted with users in
good standing (i.e. that are not currently blacklisted or greylisted), with the number of such
users in bad standing having an effect on the risk level of the user in question6. This part of
the specification is shown in Figure 4.

The memory used and execution time of the unmonitored program was compared to that of
the monitored one, and that of the system with monitoring optimised with the three analyses
applied cumulatively. The experiment was run for different numbers of users, with three
sample executions used to normalize differences between measurements.

Given that the monitors used in the experiment do not have state to keep track of, no
measurable memory overheads were to be found in any of the experiment runs. However,
as expected, monitoring induced substantial processing overheads, and the results can be
seen in Figure 5. The results show that our optimisation techniques had a substantial impact,

6Note that caching such a calculation does not aid the monitor performance since the risk level changes
with each transaction — also those not involving the user in question.

33

q0For each: UserInfo u q1

q2

q3

q4 q5

q6 q7

createdUser(u)
activate(u,success)

| success

pay(u)

blacklist(u)
| risk(u) > 0.5

blacklist(u)
| risk(u) ≤ 0.5

pay(u)

transfer(u)

whitelist(u)

whitelist(u)

pay(u,dest)
| ¬dest.whitelisted

transfer(u)

blacklist(u)
| risk(u) > 0.5

blacklist(u)
| risk(u) ≤ 0.5

Figure 4: Property, with dashed transitions removed by the first analysis, and dotted by the second.

reducing overheads from an average of 97% to just 4%.

The first analysis took roughly the same time as the monitored time, mostly due to the
fact that it only removed transitions that would never have been taken, resulting in the
monitoring engine only bypassing a single conditional check for the never-activated event.
The second analysis did not reduce the property itself, but turned off monitoring for all the
statements in the program associated only with bronze users (which would have resulted in
monitors being created at runtime for these users, but never change state). The third analysis
used the program with instrumentation reduced by the second analysis and identified that
blacklisted users are never allowed to affect a payment by the application (i.e. the program
never makes it to q5 and q7 in Figure 4) and thus simply made sure that non-activated users
do not affect payments (i.e. once a user was created, the monitor transitioned to q1 and
checked every incoming event against the only remaining outgoing transitions to q2 and q3).
This resulted in an insignificant level of overheads, given the monitoring engine only had to
check against two transitions (while in state q2), without any expensive conditions to check
and no tight-looping.

Similar to the results from [BLH12], the gains shown in the use case arise primarily since
the system does not necessarily use all the events appearing in the property, and some of
the correctness logic is encoded directly in the control-flow (as opposed to the data-flow)
of the system. In our case, with a client-provider scenario we have: (i) the client does not
make use of all the functions the provider allows (at least not for every possible user object
in question); and (ii) the client program is coded in such a way that allows reasoning about
its control-flow and not directly through data-flow e.g. blacklisting a user directly by setting
a flag in the user’s object. In practice, we envisage that this approach is applicable, for
instance, when encoding properties over APIs or constraining server-access, allowing for
monitoring overhead reduction in systems using the API or clients accessing the server.

34

No. of
Users Unmonitored Monitored After

1st
After
2nd

After
3rd

1000s 206s 371s 369s 295s 225s
1050s 231s 456s 445s 342s 235s
1100s 24s 450s 452s 314s 251s
1150s 254s 542s 544 400s 260s
1200s 268s 570s 562s 380s 280s
1250s 309s 576s 556s 413s 316s
1300s 316s 642s 657s 440s 330s

Average
Overheads 0% 97.08% 95.94% 41.96% 4.13%

1,000 1,050 1,100 1,150 1,200 1,250 1,300
200

300

400

500

600

700

900

Number of users

E
xe

cu
tio

n
tim

e
/s

Unmonitored
Monitored

First analysis
Second analysis
Third analysis

Figure 5: Table and plot of the experiment results.

5 Related Work

Our work builds directly on the results of Bodden et. al. [BLH12], but there are many other
instances of the use of static analysis in order to optimise dynamic analysis. In [ACP16], we
previously presented a theory of residuals, and model-based approach to combining static
and dynamic analysis, under which this work falls except that here the model used (the
CFG) is assumed to be a sound representation of the program.

Dwyer et. al. [DP07] take a different approach from ours or Clara’s, wherein they identify
safe regions in a program, i.e. sequences of statements that cannot violate a property, and if
they are deterministic with respect to a property (if the monitor enters the region at a state q
then it always exists at the same state q′). The effect of the region on the monitor is then
replaced by a new unique event e, and the property augmented by a transition from q to q′

with e. Note, that this summarises the effect of some instrumentation into one, wherein we
simply remove instrumentation that does not effect violation.

Jin et. al. [JMGR11] also investigate parametric properties, and investigate optimisations
which can be made to the implementation of monitoring logics at runtime, namely more
efficient garbage collection of monitors associated with an object that has been garbage
collected. It is worth noting how our second analysis may prevent some of this behaviour by
detecting statically that an object may never violate and instead prevent the creation of its
monitor.

35

6 Conclusions and Future Work

Through this work, we have extended static optimisation for the monitoring of parametric
properties, in order to deal with automata which include a symbolic state in the form of
DATEs. Thus, we can reduce both the property by using information about the system, and
the program instrumentation by using information about the property. This static analysis
depends purely on the control-flow of the program, and an aliasing relationship between
relevant objects of the program, which we illustrated through an appropriate case study
emulating a payment transaction system. These residual analyses have been implemented
in a tool which we are currently preparing to make publicly available. We are also in the
process of combining these results with those of StaRVOOrS [APS12], where in contrast
to our approach, StaRVOOrS, static analysis is used to reduce the data-flow aspect of the
specification (in the form of pre- and post-conditions), leaving the control-flow aspect (in
the form of DATEs) for dynamic analysis. Our work is complementary to this approach,
and in fact we are currently investigating how to optimise properties using both control and
data flow static analysis.

References

[ACP16] Shaun Azzopardi, Christian Colombo, and Gordon Pace. A Model-Based
Approach to Combining Static and Dynamic Verification Techniques, pages
416–430. Springer International Publishing, Cham, 2016.

[ACP17] Shaun Azzopardi, Christian Colombo, and Gordon Pace. Clarva - residual
control-flow static analysis for finite-state properties with conditions and
actions. In The Computer Science Annual Workshop, CSAW’16, 2017.

[ACPS15] Wolfgang Ahrendt, Jes¡C3¿¡BA¿s Mauricio Chimento, Gordon J. Pace, and
Gerardo Schneider. A specification language for static and runtime verification
of data and control properties. In FM’15, volume 9109. 2015.

[ACPS17] Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace, and Gerardo
Schneider. Verifying data- and control-oriented properties combining static
and runtime verification: theory and tools. Formal Methods in System Design,
pages 1–66, 2017.

[ACPV16] Shaun Azzopardi, Christian Colombo, Gordon J. Pace, and Brian Vella. Com-
pliance Checking in the Open Payments Ecosystem, pages 337–343. Springer
International Publishing, Cham, 2016.

36

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

[APS12] Wolfgang Ahrendt, Gordon Pace, and Gerardo Schneider. A Unified Ap-
proach for Static and Runtime Verification: Framework and Applications. In
ISOLA’12, LNCS 7609. 2012.

[AY01] Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchical state
machines. ACM Trans. Program. Lang. Syst., 23(3):273–303, May 2001.

[BLH08] Eric Bodden, Patrick Lam, and Laurie Hendren. Object representatives: A
uniform abstraction for pointer information. In Proceedings of the 2008
International Conference on Visions of Computer Science: BCS International
Academic Conference, VoCS’08, pages 391–405, Swindon, UK, 2008. BCS
Learning & Development Ltd.

[BLH12] Eric Bodden, Patrick Lam, and Laurie Hendren. Partially evaluating finite-
state runtime monitors ahead of time. ACM Trans. Program. Lang. Syst.,
34(2):7:1–7:52, June 2012.

[CPS09] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic Event-
Based Runtime Monitoring of Real-Time and Contextual Properties, pages
135–149. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[DP07] Matthew B. Dwyer and Rahul Purandare. Residual dynamic typestate analysis
exploiting static analysis: Results to reformulate and reduce the cost of dy-
namic analysis. In Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ASE ’07, pages 124–133,
New York, NY, USA, 2007. ACM.

[JMGR11] Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and Grigore Rosu.
Garbage collection for monitoring parametric properties. SIGPLAN Not.,
46(6):415–424, June 2011.

[LKRT07] Akash Lal, Nicholas Kidd, Thomas Reps, and Tayssir Touili. Abstract Error
Projection, pages 200–217. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime verifi-
cation. The Journal of Logic and Algebraic Programming, 78(5):293 – 303,
2009.

37

[PDE12] Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. Monitoring
Finite State Properties: Algorithmic Approaches and Their Relative Strengths,
pages 381–395. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[VRCG+10] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vijay Sundaresan. Soot: A java bytecode optimization framework. In
CASCON First Decade High Impact Papers, CASCON ’10, pages 214–224,
Riverton, NJ, USA, 2010. IBM Corp.

38

A DATE Propositions

In this appendix we rehash pertinent parts of Section 2 for DATEs.

Definition 19. A ground trace t ∈ Σ∗ is said to satisfy a DATE D (with Σ ⊆ ΣD), if none of
its prefixes applied to the transitive closure of D, starting from the initial state of D and the
initial monitoring variable state, lead to a bad state of D.

t ` D def
= ∀t′ ∈ prefixes(t) · δ∗((q0, θ0), t′) = (q, θ) ∧ q 6∈ BD

We define the satisfaction of a runtime parametrized trace and a statically parametrized
trace as before with respect to to a DATE and over this ground trace satisfaction operator.

rt ` D def
= ∀o ∈ Obj, t ∈ rt ⇓ o, t′ ∈ prefixes(t) · t ` D

st � D def
= ∀oid ∈ ObjId, t ∈ st ⇓ oid, t′ ∈ prefixes(t) · t ` D

And for sets of these.

RT ` D def
= ∀rt ∈ RT · rt D

ST � D def
= ∀st ∈ ST · st � D

Using these definitions we can start proving the propositions we need for DATEs.

Proposition 13. The runtime parametrised traces of a program P satisfy a typestate property
if and only if the ground traces satisfy it:

PR
Σ � D ⇐⇒ PR

Σ ↓ ObjId ` D

Proof. Follows immediately from Definitions 17, and 3. �

Proposition 14. The static parametrised traces of a program P satisfy a typestate property
if and only if the ground traces satisfy it:

P S
Σ � D ⇐⇒ P S

Σ ⇓ ObjId ` D

Proof. Follows immediately from Definitions 17, and 9. �

Recall the assumption about correctness of statically parametrised programs: PR
Σ ↓ Obj ⊆

P S
Σ ⇓ ObjId.

This allows us to show that satisfaction of the static program implies that of the runtime
program

39

Proposition 15. Given program P and DATE D, if its static over-approximation of a
program, P S

Σ satisfies DATE D, then the runtime behaviour of the program, PR
Σ also satisfies

the property:

P S
Σ � D =⇒ PR

Σ D

Proof.

P S
Σ � D

(by Proposition 15)

=⇒ P S
Σ ⇓ ObjId ` D

(by assumption that PR
Σ ↓ Obj ⊆ P S

Σ ⇓ ObjId)

=⇒ PR
Σ ↓ Obj ` D

(by Proposition 14)

=⇒ PR
Σ D

�

We now overload the equivalence relations between programs and properties for DATEs.

Similarly we define the equivalence relations between DATEs and programs using this
satisfaction with respect to a DATE.

Definition 20 (Equivalence). Two sets of ground traces, T, T ′ ⊆ Σ∗ are said to be equivalent
with respect to a DATE D, written T ∼=D T ′, if the verdict given with respect to one set of
traces matches that of the other:

T ∼=D T ′
def
= T ` D ⇐⇒ T ′ ` D

This notion is lifted to parametrised and statically parametrised traces, and sets thereof,
requiring equivalence up to object identifiers.

RT ∼=D RT′ def
= ∀o ∈ Obj · RT ↓ o ∼=D RT′ ↓ o

ST ∼=D ST′ def
= ∀oid ∈ ObjId · ST ⇓ oid ∼=D ST′ ⇓ oid

Two DATEs D and D′ are said to be equivalent with respect to a set of ground traces T ,
written D ∼=T D

′, if every trace in T is judged the same by either property:

D ∼=T D
′ def
= ∀t ∈ T · t ` D ⇐⇒ t ` D′

40

This notion is lifted to parametrised and statically parametrised traces, and sets thereof,
requiring equivalence up to object identifiers.

D ∼=RT D
′ def
= ∀o ∈ Obj ·D ∼=RT↓o D

′

D ∼=ST D
′ def
= ∀oid ∈ ObjId ·D ∼=ST⇓oid D

′

It is straightforward to prove that equivalence up to traces is an equivalence relation.

Proposition 16. ∼=D, ∼=T ,∼=RT, and ∼=ST are all equivalence relations.

Proof. This follows from the definition over ground traces using ⇐⇒ , Definition 18. �

Equivalence of traces is then preserved when reducing the set of traces.

Proposition 17. ∀T ′ ⊆ T ·D ∼=T D
′ =⇒ D ∼=T ′ D′

Proof. This follows from the definition of ∼=T and `, definitions 17 and 18. �

Given this, we can easily conclude the following proposition.

Proposition 18. If D ∼=T D
′ and D′ ∼=T ′ D′′, then D ∼=T∩T ′ D′′.

We can also show that equivalence with respect to an approximation of a program can be
expressed in terms of its projection onto ground traces.

Proposition 19. D ∼=PS
Σ
D′ ⇐⇒ D ∼=PS

Σ⇓ObjId D
′.

Proof. This follows directly from Proposition 15. �

41

	Introduction
	Programs' Runtime Traces and Abstractions
	Residual Control-Flow Analysis of DATEs
	Preliminaries
	Residual Analysis
	Residual Constructions
	Pruning non-occurring events
	Pruning transitions never usable on the same object
	Removing unusable transitions

	Case Study
	Related Work
	Conclusions and Future Work
	DATE Propositions

