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1 Introduction

As computer systems grow in size and complexity, so does the need for their verifi-
cation. Automated program analysis techniques are highly effective in this regard,
but the information they produce is not necessarily understandable at all levels of the
design chain. Whilst debugging and tracing tools such as scenario replaying yield sys-
tem diagnostics that are understandable to developers, it is largely opaque to system
designers and architects who typically require higher level, less technical explanations
of certain carefully identified classes of program behaviour.

This is particularly the case in situations in which domain (but not necessarily tech-
nical) experts are involved in scripting parts of the system, typically using domain-
specific languages [Hud96] or controlled-natural languages [Kuh14]. For instance,
consider a scenario in which a fraud expert is responsible for specifying suspicious
user behaviour in a financial transaction system. Users of the system violating the
rules set up by the expert would trigger alerts to be seen by the fraud-handling team
or by the fraud expert himself or herself. However, the user behaviour, if displayed
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“literally”, would typically contain information that is irrelevant or long-winded. To
be more effective, irrelevant information should be filtered out whilst long-winded
low-level traces should be summarised. Unlike developers, for whom a long list of
system events is acceptable (and arguably ideal) since it can be explored using de-
bugging tools, for these less-technical persons the user actions (and related system
reactions) would be more effectively visualised and cognitively absorbed if presented
in terms of a narrative of the relevant events.

In practice, system behaviour analysis tools, be they unit tests, runtime monitors,
model checkers or system and user classification tools, typically produce system di-
agnostics as traces of system and user events. The problem boils down to a natural
language generation challenge, starting from the trace (representing a history of the
system) and yielding a narrative of the behaviour at an effective level of abstraction.
The choice of an appropriate level of abstraction is particularly challenging since it
is very dependent on the specification being matched or verified. For instance, while
explaining a system trace which violated a property which states that ‘Dormant users
should not be allowed to perform transfers’, the behaviour of users other than the one
whose behaviour violated the property (or possibly the one with whom that user in-
teracted in his or her violating transaction) can be safely left out, as can that user’s
interaction with the advertising panel of the application. On the other hand, when
explaining a violation of a property which states that ‘The system should never de-
posit money from an advertising account unless a user activates related adverts’, the
users’ interaction with the advertising panel is crucial to understand why a particular
system history did not proceed as specified in the requirement. Similarly, the reason
behind the violation of each property would be different, depending on what went
wrong, why, whose fault it was, etc.

In [PR14], Pace and Rosner presented an approach in which they showed how a
finite-state system can be used to generate effective natural language descriptions
of behavioural traces. Starting from a particular property, they show how more
natural and abstract explanations can be extracted from a system trace violating
that property. However, the work described is highly manual and would not be very
feasible for someone like a quality assurance engineer to write. In this paper we show
how their approach can be generalised to be applicable to explain violations of general
specifications. Since, as we have argued, the explanation needs to be tailored for each
particular property, we develop a general system, fitting as part of a verification flow
as shown in Fig. 1. Typically, a quality assurance engineer would be responsible for
the top half of the diagram — giving a property specification which will be used by
an analysis tool (testing, runtime verification, static analysis, etc) to try to identify
violation traces. In addition, using our approach, another artefact would be produced,
the explanation specification, which embodies the domain-specific natural language
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Figure 1: The architecture for general system diagnostics

information for the property in question. From this, a generic natural language
generation tool will produce a specialised generation tool (embodying the domain-
specific information and general information implicit in the traces) which can produce
explanations for violations of the property in question. Our techniques have been
implemented in a generic natural language generation tool, for which we show that the
cost of adding user explanations for a property at an appropriate level of abstraction
whilst ensuring naturalness of the text, is very low especially when compared to the
cost of extending the system to identify such behaviours (e.g. developing test oracles
or expressing a property using a formal language).

Besides generalising the approach developed earlier, the present paper also further
substantiates the claim that there is a place for finite-state methods in natural lan-
guage generation.

The paper is organised as follows. Section 2 illustrates techniques that can be ap-
plied to yield progressively more natural styles of explanation. Section 3 details the
“generator-generator” architecture used to generalise the previous approach. Sec-
tion 4 explains the specification meta-language that we have implemented. Section
5 describes our evaluation and main results. Section 6 mentions some related work.
Finally, some conclusions are drawn in section 7.

2 Trace Explanation Styles

Natural language generation [RD00] is typically seen as a multi-stage process, starting
from document planning (defining content and structure), to microplanning (choosing
words and means of expressing content) and surface realisation (creating the final
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readable text). While one may choose to adopt the full English language as the target
for the natural language generation of explanations of violation traces, we chose to
adopt a controlled natural language [Kuh14] approach, in which have natural elements
are restricted in the areas of syntax, semantics and the lexicon used. The target
language for such specialised explanations typically consists of (i) domain-specific
terms and notions particular to the property being violated by the traces; and (ii)
terms specific to the notions inherent to traces — such as the notions of events (as
occurrences at points in time) and temporal sequentiality (the trace contains events
ordered as they occurred over time).

Following [PR14], we identify a sequence of progressively more sophisticated expla-
nations of a particular violation trace. To illustrate this, consider an elevator system
which upon receiving a request for the lift from a particular floor (<r1>–<r4>), ser-
vices that floor by moving up or down (<u>, <d>). Once the lift arrives at a particular
floor (<a1>–<a4>), the doors open (<o>). The doors can then either close (<c>) au-
tomatically, or after a floor request. Monitoring the property that the lift should
not move with an open door, we will illustrate explanations with different degrees of
sophistication of the violation trace: <a4,o,r4,a4,r2,c,d,a3,d,a2,o,r3,u>. We
think of this trace as the concrete language which expresses the content we would like
to express.

The simplest explanation, portraying the trace in the most basic way is achieved using
the simple controlled natural language CNL0, in which every symbol is transformed
into a separate sentence, with an additional sentence at the end giving the reason
why a violation occurred.

CNL0

The lift arrived at floor 4. The doors opened. A user requested to go
to floor 4. The lift arrived at floor 4. A user requested to go to floor
2. The doors closed. The lift moved down. The lift arrived at floor 3.
The lift moved down. The lift arrived at floor 2. The doors opened. A
user requested to go to floor 3. The lift moved up. However this last
action should not have been allowed because the lift cannot move with
open doors.

An improvement to CNL0 is to add structure to the output which serves to improve
the readability of the text. In CNL1, the text is split into paragraphs consisting of
sequences of sentence:
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CNL1

1. The lift arrived at floor 4.

2. The doors opened. A user requested to go to floor 4. The lift
arrived at floor 4.

3. A user requested to go to floor 2. The doors closed. The lift moved
down. The lift arrived at floor 3. The lift moved down. The lift
arrived at floor 2.

4. The doors opened. A user requested to go to floor 3. The lift moved
up. However this last action should not have been allowed because
the lift cannot move with open doors.

In CNL2, aggregation [Dal99] techniques are used to combine the single clause sen-
tences from the previous two realisations to build multi-clause sentences, thus elimi-
nating redundancy achieved through (i) the use of commas and words such as ‘and’,
‘then’, ‘but’ or ‘yet’, and (ii) the grouping of similar events, for example by stating
the number of occurrences (e.g. ‘moved down two floors’).

CNL2

1. The lift arrived at floor 4.

2. The doors opened and a user requested to go to floor 4, yet the lift
was already at floor 4.

3. A user requested to go to floor 2, then the doors closed. The lift
moved down two floors and arrived at floor 2.

4. The doors opened, a user requested to go to floor 3, and the lift
moved up. However this last action should not have been allowed
because the lift cannot move with open doors.

It may be the case that the explanation contains detail which may be unnecessary or
can be expressed in a more concise manner. CNL3 uses summarisation to achieve this
— for instance, the first sentence in the explanation below summarises the contents
of what were previously paragraphs 1–3. The last paragraph is left unchanged, since
every sentence included there is required to properly understand the cause of the
error.
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CNL3

1. The lift arrived at floor 4, serviced floor 4, then serviced floor

2. The doors opened, a user requested to go to floor 3, and the lift
moved up. However this last action should not have been allowed
because the lift cannot move with open doors.

Pace and Rosner [PR14] explored the use of finite state techniques to achieve a natural
language explanation of a violation trace. The explanation language is considered as
a CNL, whose basis, which includes how system actions present in the trace should
be expressed, was described in XFST by a human author. The natural language
explanation is obtained after having passed through different phases, each one using
finite state technologies. Although finite-state technologies (such as automata and
transducers) provide limited computational expressiveness, they have been used in the
area of natural language processing and have been found to be well-suited for certain
kinds of representations of linguistic knowledge, especially in the area of morphological
parsing [Win08]. A variety of finite-state technology toolkits have thus been created,
among which are HFST [LSP09], SFST [Sch06] and the toolkit we shall be using:
XFST [BK03]. The Xerox Finite State Toolkit (XFST) is a toolkit used to build finite-
state automata and transducers [Ran98], allowing for regular relations, which are
sets of pairs of strings which can be compiled into a finite-state transducer. Starting
from simply substituting trace symbols with sentences, every subsequent explanation
becomes more natural, through the use of linguistic techniques such as structuring
the text into paragraphs, aggregation, contextuality — as increasingly adopted in the
CNLs above.

3 Generalised Explanations

Given a particular property, one can design a NLG tool specialised for that property,
and capable of explaining violation traces of that property. However, it requires a
substantial amount of work to write a generator for each property. In addition, some
of the explanation improvements presented in the previous section, going from CNL0
to CNL3 are common to all, or at least most, properties. We thus chose to address
the more general problem of trace violation explanations, in a manner such that,
although domain-specific concepts (e.g. the meaning of individual events and ways of
summarising them) need to be specified, much of the underlying machinery pertaining
to the implied semantics of the event traces (e.g. the fact that a trace is a temporally
ordered sequence of events, and that the events are independent of each other) will
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be derived automatically. The resulting approach, as shown in Fig. 1, in which we
focus on the Generic NLG component uses the domain-specific information about a
particular property (the Explanation Specification script provided by a QA engineer)
to produce an explanation generator for a whole class of traces (all those violating
that property).

In order to explain a trace emitted by a particular system, a specification of what
different symbols occurring in it mean is required. Symbols can be explained in
different ways: separately, in a particular context, and grouped together, depending
on the type of output required; more groupings can possibly mean more summarised
explanations. Using the gate example mentioned previously, we can explain <o> as:
The gates opened or The gates opened again if it occurs after <o,c>. <o,c> can be
explained as: The gates opened and closed. Also important is the explanation of
errors, and how they come about. The contents of such explanations should include
basic sentence elements like subject and predicate. Other information can be given
which can enable us to know what kind of linking words to use (contrastive, sequential,
additive, etc.) so that sentences can be aggregated, making their overall structure
more fluid. Such a specification has to be given by a QA engineer, yet many of the
linguistic details are likely to be outside such a user’s immediate sphere of competence.
For this reason a specification language was designed and implemented to facilitate
the creation of a specification by non-specialist users.

A script in the general trace-explanation language is used to automatically construct
a specific explanation generator, which uses XFST [BK03], for the language of traces
violating the property in question. In this manner, our approach is to go beyond a
natural language generation system by developing a generator of trace explanation
generators. Hence, our tool generates an XFST script using specifications given by
the QA engineer. When the trace has been supplied, it is added to the script, which
is then run by XFST. The explanation is then generated.

4 Specifying Trace Explanations

Scripts for our framework allow the user to specify the domain-specific parts of the
explanations for a particular property, leaving other generic language features to be
deduced automatically. The core features of the scripting language are discussed
below:

Explaining events: Individual events require to be explained to enable descriptions
to be derived. Rather than give a complete sentence for each symbol, we split the
information into the subject and predicate, thus allowing us to derive automat-
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ically when sequential actions share a subject (thus allowing their combination
in a more readable form). For example, the EXPLAIN section of the script is
used to supply such event definitions:

EXPLAIN {

<a4>: {

subject: "the lift";

predicate: "arrived at level four";

}

...

}

Events in context: Certain events may be better explained in a different way in a
different context. For instance, the event at would typically be described as
‘The lift arrived at floor four’, except for when the lift is already on the fourth
floor, when one may prefer to say that ‘The lift remained at floor four’. Regular
expressions can be used to check the part of the trace that precedes or follows
a particular event to check for context:

<a4>: {

subject: "the lift";

predicate {

context: {

default: "arrived at level four";

<r4>_ : "remained at floor four";

}

}

}

Compound explanations: Sometimes, groups of symbols would be better explained
together rather than separately. Using regular expressions, in the EXPLAIN sec-
tion of the script allows for such terms to be explained more succinctly as can
be seen in the example below:

<r2><c><d><a3><d><a2>: {

subject: "the lift";

predicate: "serviced floor 2";

}

Errors and assigning blame: Errors in a violation trace typically are the final
event in the trace. We allow not only for the description of the symbol in this
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context, but also an explanation of what went wrong and, if relevant, where the
responsibility lies:

ERROR_EXPLAIN {

[<u>|<d>]: {

blame: "due to a lift controller malfunction";

error_reason:

context: {

default: "";

[<o>[<r1>|<r2>|<r3>|<r4>]]_:

"the lift cannot move with open doors";

}

}

}

Document structure: A way is needed to know how to structure the document by
stating how sentences should be formed, and how they should be structured into
paragraphs. For example, using CNL1 as an example, we can add a newline
after the lift arrives at a particular floor. Similarly, based on the example for
CNL2, we specify that the sequence of events <o><r4><4> should be aggregated
into a (enumerated) paragraph:

SENTENCE_AGGREGATION {

[<1>|<2>|<3>|<4>]: { newline: after; }

<o><r4><4>;

}

5 Evaluation

Two aspects of our approach were evaluated: (i) natural sounding explanations: Us-
ing our approach, what degree of naturalness can the trace explanations achieve?
How much effort is required to achieve a high enough degree of naturalness in the
explanations?; and (ii) user acceptance: How difficult is it for first time users to write
specifications using our framework?

5.1 Effort In-Naturalness Out

Since, using our framework one can achieve a degree of naturalness depending on
the complexity of the logic encoded in our script, unsatisfactory explanations may be
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caused by limitations of our approach or just a badly written script. The framework
was first evaluated to assess how effort put into writing the script for a particular
property correlates with naturalness of the explanations. In order to measure this,
we considered three different properties (one for an system controlling an elevator,
one for a file system and one for coffee vending machine). We then built a series of
scripts, starting with a basic one and progressively adding more complex features.
For each property, we thus had sequence of trace explanation scripts of increasing
complexity, where the time taken to develop each script was known. These scripts
were then executed in our framework on a number of traces, producing a corpus
of natural language explanations each with the corresponding trace and associated
script development time. The sentences together with the corresponding trace (but
not the script or time taken to develop it) were then presented using an online ques-
tionnaire to human judges who were asked to assess the naturalness, readability and
understandability of the generated explanations.

Explanations were rated on a scale from 1–6: 1 being unnatural and difficult to
follow, 6 being very natural and easy to follow1; the even number of different choices
prevented the respondents from choosing a neutral score. Out of the total number
of generated explanations, only a fraction were shown to each evaluator, and were
presented in a random order rather than in the order they were generated. These
measures were taken in order to prevent the human judges from making note of
certain patterns, which might have incurred a bias. For the experiment we elicited
over 477 responses from over 64 different persons.

The results of this analysis can be found in Table 1, which shows the scores given
to explanations for the different systems and for traces produced by the scripts with
different complexity. The results show that the naturalness of the generated expla-
nations was proportional to the time taken to write the scripts — the explanations
which fared best having a high rate of aggregation and summarisation. Interestingly,
even with scripts written quickly e.g. 15–20 minutes2 many evaluators found the
explanations to be satisfactory with respect to naturalness.

Figure 2 shows the results of plotting time taken to write the script (x-axis) against
naturalness of the explanation (y-axis). For the coffee machine and elevator controller
traces, the graphs begin to stabilise after a relatively short time, converging to a limit,
which is close to 5 (corresponding to fairly natural). As marked on Figure 2, 80%
of this limit is roughly achieved during the first 20–30% of the total time taken to

1From 1–6: unnatural and difficult to follow, unnatural but somewhat easy to follow, unnatural
but very easy to follow, contains some natural elements, fairly natural, very natural and easy to
follow.

2Recall that one such script can be used to explain any counter-example trace for that property,
and would thus be repeatedly and extensively used during system verification or analysis.
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Table 1: Overall scores given to generated explanations

System Time/mins
Score

1 2 3 4 5 6 Mean

10 1 8 10 9 2 10 3.83
Elevator system 16 2 4 4 9 15 9 4.35

24 1 2 2 4 15 6 4.6
39 1 0 3 8 8 11 4.77

12 5 7 11 3 3 1 2.83
File system 19 5 8 7 7 8 7 3.62

22 2 5 13 5 6 3 3.5
32 0 2 4 5 14 18 4.98

10 3 4 4 12 5 8 4
15 3 6 4 8 14 4 3.92

Coffee machine 25 1 3 5 3 9 8 4.38
28 1 1 3 10 10 11 4.67
38 2 1 2 4 18 17 4.95

create the most comprehensive script we wrote3. The graph obtained for the file
system traces gives a somewhat different view; a higher overall score is obtained than
the other two graphs, yet we do not get the same initial steepness in gradient4. A
possible reason for the discrepancy in the graph shape could be that traces obtained
for this system all contained many repeated symbols in succession, and therefore,
until the stage was reached when the script handled this repetition, the explanations
received low scores. This shows that there may also be a relation between the kind of
system we are considering and the effort and linguistic techniques required to generate
natural sounding explanations for its traces.

From this experiment, one can conclude that whilst we can say that a certain inherent
limits exist, natural-sounding explanations can be well achieved using this system.
Effort however is rather important, and in most cases, the more time invested in
building a script, the better the quality of the output obtained. Nevertheless, even
with minimal effort, a script author highly trained in the input language can obtain
a rather satisfactory output.

3This is reminiscent of the Pareto Principle, which states that for many phenomena 20% of the
cause is responsible for 80% of the effect.

4It is worth noting that, for example, the first data point in all graphs occurs at the time after
which similar linguistic techniques were included in the script.

11



Figure 2: Graphs of the naturalness score given against the time after which the
corresponding input script was created

5.2 User Acceptance Test

To assess how accessible the framework was for users, we ran a four-hour experiment
with four users, who were already familiar with concepts such as regular expressions.
These test-users were given a brief introduction to the system and its intended use,
after which it they were requested to produce scripts to explain different properties
without any further support. The users were then asked to comment about how
easy they found the input language to use, whether they felt it restricted them from
providing certain explanations, their levels of satisfaction with the output generated,
and whether it matched their expectations. Given the low number of participants,
the results are only indicative, and assessing the quality of the scripts they produced
would not have given statistically meaningful results.

However, overall, these users characterised the scripting language between somewhat
difficult to easy to use. Dealing with the contextual explanation of events presented
the greatest challenges, although all managed to produce an error explanation which
required the use of this concept. Apart from simply explaining every symbol as a
complete sentence, the users also managed to create scripts involving aggregation
and summarisation. When questioned, the users showed satisfaction with the ex-
planations they managed to produce, although one of the subjects commented that
scripts sometimes had to be executed to understand exactly the effect of a particular
line of code.

The fact that all users managed to produce scripts that successfully achieved expla-
nations within four hours of becoming acquainted with our system indicates that it is
not excessively difficult to use. That the overall idea was easily understood and the
input language quickly learnt suggests that a system of this kind could minimise the
overheads associated with the task of automated explanation generation for systems
more complex than those illustrated here.
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6 Related Work

Although limited, there is other work from the literature attempting to generate
explanations for different end-users, based on a sequence of actions or events. In most
cases, however, the work is limited to producing generators for any trace, rather than
a higher-order framework which is used to write scripts which produce the generators.

BabyTalk BT-45 [RGPvdM08] is a system which generates textual summaries of low-
level clinical data from a Neonatal Intensive Care Unit created over a 45-minute
interval. In our system, one may consider summarisation to make understanding an
error easier for different professionals and similarly in this case, the summaries are
created for different audiences, such as doctors and nurses, to help them in making
treatment decisions. The automatically generated summaries were found to be useful,
but somewhat lacking in narrative structure when compared to those created by
humans. The fact that the generated explanations reported here were judged to be
relatively natural is partly explained by the relative simplicity of our examples and
the corresponding “stories” compared to the much more complex data handled by
BabyTalk. Further investigation is clearly needed to determine where the tradeoffs
lie between acceptable explanations, underlying data complexity, and computational
efficiency.

Power [Pow12] describes OWL-Simplified English, a CNL used to edit semantic web
ontologies in OWL. This work can be considered related to ours in that it seeks to em-
power users not familiar with the technical complexities of editing OWL by providing
them with a purpose-built CNL for that job that is understandable to native English
speakers. Power’s work is also notable in that it is one of the few to successfully
employ finite-state techniques for the definition of a user-oriented communication
language despite the well-known fact that English is not a regular language.

7 Conclusions

Understanding why a violation occurred has many benefits for the end-users of ver-
ification techniques and can save precious amounts of time during the design phase
of complex systems. Finite-state technology makes for a simple and efficient way of
producing natural language but has its own limitations due to the restrictions of reg-
ular languages. However, we have found that our solution, which exploits the relative
simplicity of finite-state specifications, has the advantage of not being difficult to use
by people with a background in computer science, and has the possibility of gener-
ating natural and easily understandable explanations that might otherwise require
familiarity with potentially complex linguistic issues.
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An interesting possibility for future work would be to consider an system which pro-
vides a natural language explanation of actions performed by a system which is cur-
rently running, such as an online system. The techniques discussed in this work can
be used to provide a dynamic explanation of the actions which happened up to the
present.

If the constraints of regular languages prove to be such that this system would not be
applicable in many areas, there is the possibility of not using finite-state techniques
without any major changes in the general architecture of the framework.
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