
TECHNICAL REPORT

Report No. CS2014-01
Date: October 2014

Extending Contract Automata with
Reparations

Shaun Azzopardi
Gordon J. Pace
Fernando Schapachnik

University of Malta

Department of Computer Science
University of Malta
Msida MSD 06
MALTA

Tel: +356-2340 2519
Fax: +356-2132 0539
http://www.cs.um.edu.mt

Extending Contract Automata with
Reparations

Shaun Azzopardi
Department of Computer Science

University of Malta
Msida, Malta

Gordon J. Pace
Department of Computer Science

University of Malta
Msida, Malta

Fernando Schapachnik
Departamento de Computación, FCEyN,

Universidad de Buenos Aires
Buenos Aires, Argentina

Abstract: Although contract reparations have been extensively
studied in the context of deontic logics, there is not much literature
using reparations in automata-based deontic approaches. Contract
automata are a recent approach to modelling the notion of contract-
based interaction between different parties using synchronous com-
position. However, it lacks the notion of reparations for contract
violations. In this article we look into different ways reparation can
be added to an automaton-based contract approach, extended contract
automata with three forms of such clauses: (i) catch-all reparations
for violation; (ii) reparations for specific violations; and (iii) hierar-
chical contracts for local reparation reasoning.

Extending Contract Automata with
Reparations∗

Shaun Azzopardi
Department of Computer Science

University of Malta
Msida, Malta

Gordon J. Pace
Department of Computer Science

University of Malta
Msida, Malta

Fernando Schapachnik
Departamento de Computación, FCEyN,

Universidad de Buenos Aires
Buenos Aires, Argentina

Abstract: Although contract reparations have been extensively
studied in the context of deontic logics, there is not much literature
using reparations in automata-based deontic approaches. Contract
automata are a recent approach to modelling the notion of contract-
based interaction between different parties using synchronous com-
position. However, it lacks the notion of reparations for contract
violations. In this article we look into different ways reparation can
be added to an automaton-based contract approach, extended contract
automata with three forms of such clauses: (i) catch-all reparations
for violation; (ii) reparations for specific violations; and (iii) hierar-
chical contracts for local reparation reasoning.

1 Introduction

Contracts are legal agreements between two or more parties that regulate their be-
haviour within some context by specifying what each party should or can do at each
part of some process. An essential element of any contract specification logic is the
notion of reparation — what should be done in the case of the violation of a part of
the contract. In particular, in the context of deontic logics, the notion of contrary-
to-duty (CTD) dealing with what happens when an obligation clause is violated, has
been extensively studied in the literature [GR06].

Compared to logic-based approaches, automata-based ones typically provide a less
structured, yet more operational mechanisms for specification and analysis. A number

∗Partially supported by UBACyT 20020130200032BA

1

of automata-based proposals have also been developed for deontic reasoning [PS12,
DCMS13]. Although some of these frameworks do allow for reparations, their current
scope is limited and a general understanding of the design-space for dealing with
reparations in an graph or automaton-based approach is still lacking. As opposed to
structured deontic logics, in which reparations are usually related to sub-expressions,
the lack of structure in graph-based representations presents challenges as to how
reparations should be integrated.

In this paper we look into different ways of adding reparations to graph-based con-
tract representations focussing, in particular, on contract automata [PS12]. Contract
automata regulate interactivity between parties based on synchronous composition.
Explicitly modelling interactivity allows richer reasoning on norm satisfaction: e.g.,
the obligation of a passenger to put his luggage in the cargo of a plane can be violated
if the passenger does not hand his luggage, but also if the crew does not accept it.

We identify three different approaches to adding reparations as part of the contract
descriptions. The first uses a catch-all approach to violation handling, partitioning
transitions into those which can be taken when the contract is respected and others
which are taken upon a violation, thus acting as a form of reparation. Although
resulting in clean and simple specifications, this lacks the ability to identify which
norms have been violated. This is addressed in the second approach, in which transi-
tions are tagged with expressions identifying which norms have to be respected and/or
violated for the transition to be enabled. Finally, we present a more structured hier-
archical approach inspired by notations such as Statecharts [MLS97], which allows for
clustering sub-graphs for common and complex reparations in a structured manner.

The approaches are illustrated using an airline check-in desk case study [Azz14], ex-
tended from [FPS09]. Due to lack of space, we only outline the formalisation of the
different semantics, giving just sufficient details to enable comparing the approaches
from the perspective of tractability of verification. In Section 2 we recall the funda-
mentals of contract automata necessary for the rest of the paper. We then present
three different approaches to extending contract automata with reparations in Sec-
tion 3, which are discussed together with other approaches from the literature in
Section 4.

2 Background

In this section we give an overview of contract automata (see [PS12] full details), a
model that enables reasoning about the interactivity between parties in the context
of a contract. The behaviour of each party is modelled by multi-action automata,

2

which are synchronously composed to model interaction.

Definition 1. A multi-action automaton is a tuple S = 〈Σ,Q, q0,→〉, where Σ is the
alphabet of actions, Q is the set of states, q0 ∈ Q is the initial state and→ ⊆ Q×2Σ×Q

is the transition relation. We will write q
A−→ q′ for (q,A, q′) ∈→, and acts(q) to be the

set of all action sets on the outgoing transitions from q, defined to be {A |∃q′ ·q A−→ q′}.
For two automata Si = 〈Σi,Qi, q0i ,→i〉, i ∈ {1, 2}, their synchronous composition,
over alphabet G, is written S1‖GS2 ≡ 〈Q1×Q2, (q01 , q02),→〉, where → is the classical
synchronous composition relation defined below:

(q1
A−→1 q

′
1)

(q1, q2)
A−→ (q′1, q2)

A ∩G = ∅
(q2

A−→2 q
′
2)

(q1, q2)
A−→ (q1, q

′
2)

A ∩G = ∅

(q1
A−→1 q

′
1), (q2

B−→2 q
′
2)

(q1, q2)
A∪B−−→ (q′1, q

′
2)

A ∩G = B ∩G 6= ∅

Contract automata are then multi-action1 automata with states tagged with sets of
clauses ranging over obligations and permissions to perform or not an action: Op(a)
is the obligation on party p to perform action a, while Op(!a) is the obligation not to
perform a (hence a prohibition). Permission is similarly written as Pp(x). The type
Clause thus contains terms of the form Op(x) or Pp(x), where x is a possibly negated
action a or !a.

Definition 2. A contract automaton is a total and deterministic multi-action au-
tomaton S = 〈Σ,Q, q0,→〉, together with a total function contract ∈ Q→ 2Clause. →
is a subset of Q× 2Σ ×Q and is total i.e. ∀q ∈ Q,A ∈ 2Σ · ∃q′ ∈ Q s.t. q

A−→ q′.

Below is a contract automaton2 modelling the clause: When the passenger arrives at
the gate he must present his boarding pass. After that he can board at any time. He
is allowed one piece of hand luggage.

start Op(boardingPass)
Pp(boardPlane),
Pp(handLuggage)

{atGate} boardingPass} {boardPlane}

{boardPlane, handLuggage}

1Otherwise concurrent obligations can never be satisfied [PS12].
2Throughout this report, we leave out transitions going to a sink state used to make the automata

shown total as required.

3

Contract automata are closed under synchronous composition, which acts as a form
of conjunction. The overall behaviour of a regulated system consists of the behaviour
of the parties synchronously composed with a contract automaton, which allows for
a contract satisfaction predicate to be defined.

Definition 3. A regulated two-party system synchronizing over the set of action sets
G is a tuple R = 〈S1, S2〉AG , where Si = (Σi,Qi, q0i ,→i) is a multi-action automa-
ton specifying the behaviour of party i, and A is a contract automaton. The be-
haviour of a regulated two-party system R, written [[R]], is defined to be the automaton
(S1‖GS2)‖ΣA .

2.1 Satisfaction

Before defining satisfaction of a contract we consider what it means for an action set
to be viable i.e., contain all obliged but no prohibited actions.

Definition 4. An action set A is viable for party p in state qA , written viablep(qA ,A,),
if it contains all the obliged actions but no forbidden ones.

viablep(qA ,A,) =
{a | Op(a) ∈ contract(qA)} ⊆ A ∧ {a | Op(!a) ∈ contract(qA)} ∩ A = ∅

Obligations: An obligation for party p to do an action a is satisfied by p if it includes
a in all of the outgoing transitions of p. However p must also allow a to be performed:

satOp ((q1, q2)qA
A−→ (q′1, q

′
2)q′A) = viablep(qA ,A)

satOp ((q1, q2)qA) = ∃A ∈ acts(qp),A′ ⊆ Gc · viablep(qA ,A ∪ A′)

Permissions: A party p always respects its own permission to do an action. However,
the permission for a party p to perform a can be violated by p if it does not provide
a viable transition that includes a.

(q1, q2)qA `p Pp(a) ≡
a ∈ G =⇒ ∃A ∈ acts(qp),A

′ ⊆ Gc · a ∈ A ∧ viablep(qA ,A ∪ A′)

Thus, a party satisfies the permissions at a state if it respects all the permissions of
shared actions of the other party, by providing a viable action set.

satPp ((q1, q2)qA) = ∀Pp(a) ∈ acts(qA) · (q1, q2)qA `p Pp(a)

4

2.2 Compliance, Violation and Culpability

We can extend the operational semantics of contract automata by tagging transitions

with the compliance state of each party:
A−−−→

(ψ, ψ′)
where ψ and ψ′ are one of X, × and

r indicating satisfaction, violation without the possibility of reparation and violation
but going to a reparation state respectively3.

Definition 5. A state of a regulated system and action set pair (q, A) is said to be
violating for party p, written violp(q, A) if the state or the transition did not satisfy
the active contract clauses:

violp(q, A) ≡ ¬(satPp (q) ∧ satOp (q) ∧ ∀q′ · satOp (q
A−→ q′))

We will write viol (q, A) to denote when either party has violated the contract: violp(q, A)∨
violp(q, A). By defining δψψ′(p, q, A) to be ψ′ if violp(q, A) and ψ otherwise, we can

define the extended operation semantics: for a transition q
A−→ q′, we can deduce

q
A−−−−−−−−−−−−→

(δX×(1,q,A), δX×(2,q,A))
q′.

3 Handling Reparations in Contract Automata

Since the semantics of contract automata continue enforcing a contract even after vio-
lation, they can simulate reparations in a limited way — consider the contrary-to-duty
clause: The passenger is obliged to show a means of identification when presenting
the ticket, and would otherwise be prohibited from boarding. This can be partially
emulated using the contract automaton shown below.

Op(proveIdentity)start

Op(!boardPlane)

{showTicket, proveIdentity}

{showTicket}

This approach, however, has a number of drawbacks. Firstly, we have no implicit
notion of which transitions are violating ones from the automaton. Secondly, although
obligation and prohibition can be emulated in this manner, there is no way we can
express a reparation in the case of a permission. Finally, the approach is only partial,

3Although we have no notion of reparation yet, we introduce this possible state to be used in the
following section.

5

in that it does not distinguish between whether the passenger chose not to present a
means of identification (and hence the airline can apply the reparation) or whether the
airline never even gave the option to the passenger to show the means of identification
(by not providing a synchronising action). These limitations indicate the need for
reparation to be provided as a first class notion in contract automata. In the rest
of this section, we present three different forms of reparation extensions to these
automata.

3.1 Reparation Automata

Reparations are transitions conditionally taken upon contract violation which can
only be detected upon combining the system behaviours. The first extension to
contract automata hinges on this distinction, providing means of specifying two types
of transitions — reparation ones which are taken if a violation has taken place and is
to be reparated, and normal ones which are otherwise taken.

Consider a contract which states that: (i) The passenger is obliged to present his
boarding pass or would otherwise be obliged to go back to the check-in desk; after
which (ii) he is permitted to board the plane with hand-luggage but if stopped from
doing so, the airline company is obliged to put his hand-luggage in the hold and allow
him to board. The reparation automaton for this agreement is given in the figure
below — red dashed edges are used to identify reparation transitions:4

start Op(boardingPass)

Op(goToCheckInDesk)

Pp(boardPlane),
Pp(handLuggage)

Oc(inCargo)

{atGate}

*

{boardingPass} {boardPlane}

{boardPlane, handLuggage}

*

{inCargo}

Definition 6. A reparation automaton is a contract automaton with two transition
relations →N (normal) and →R (reparation), each a subset of Q× 2Σ×Q. While the
normal relation is to be total and deterministic as in the case of contract automata, the
reparation one need not be total but must be deterministic. We will write hasRep(q, A)

if for some state q′ there is a reparation transition q
A−→R q

′.

4An asterisk ∗ on a transition is used to denote that any action set not matching any other
outgoing transition from the source state would follow this transition. Formally, it would be a set
of transitions, one for each uncatered for action set.

6

We can now define the tagged operational semantics of a regulated two party system
using the following rules (we write q and q′ to denote the combined states (q1, q2)q3A

and (q′1, q
′
2)q′3A

respectively):

(q1, q2)
A−→ (q′1, q

′
2), q3A

A−→N q′3A

q
A−−−→

(X,X)
q′

¬viol (q, A)

(q1, q2)
A−→ (q′1, q

′
2), q3A

A−→R q
′
3A

q
A−−−−−−−−−−−−→

(δXr (1,q,A), δXr (2,q,A))
q′

viol (q, A)

(q1, q2)
A−→ (q′1, q

′
2), q3A

A−→N q′3A

q
A−−−−−−−−−−−−→

(δX×(1,q,A), δX×(2,q,A))
q′

viol (q, A) ∧ ¬hasRep(q, A)

Reparation automata enable the description of reparations but are still limited in a
number of ways. Unlike contract automata, they are not closed under synchronous
composition, since non-determinism can result from the composition. This happens
when a state has more than one active clause since it is impossible to distinguish
which of these has been violated. This is one of the major shortcomings of reparation
automata, which we seek to address in extended reparation automata.

3.2 Extended Reparation Automata

Some situations require identifying which combination of clauses was violated, as each
may be reparated in a different way. For instance, if the passenger is (i) permitted
to have one piece of hand luggage, but if not allowed on board, the crew is obliged to
send it in as cargo; and (ii) he is also permitted to have a coat, but if not allowed on
board, he may report the issue. To be able to identify which clauses the reparation is
related to, one can tag reparation transitions with the contract clauses the reparation
addresses.

The solution we adopt is to have transitions tagged not only with an action set, but
also with an expression specifying which clauses were violated (or not) by a party
(Vp(c) and ¬Vp(c)):

VExp ::= VParty(Clause) | ¬VExp | VExp ∧ VExp

7

To illustrate the use of this approach, recall the reparation automaton given in the
example discussed earlier. Reparation automata can only define one reparation tran-
sition for the action boardPlane, however a party could be in violation in multiple
ways, i.e., either the passenger was not allowed the hand luggage, or the coat, or
both. This can be modelled using extended reparation automata as shown below:5

Pp(boardPlane)
Pp(handLuggage)

Pp(coat)
Pp(report)

Oc(inCargo)
Pp(report),
Oc(inCargo)

Op(switchOffDevices)
Vc(Pp(coat)) . {boardPlane} ok . {boardPlane}

Vc(Pp(handLuggage)) . {boardPlane} Vc(Pp(coat)) ∧ Vc(Pp(handLuggage)) . {boardPlane}

Definition 7. An extended reparation automaton is a contract automaton where the
transition relation is augmented with a boolean expression over clause violation: →⊆
Q×VExp×2Σ×Q. Totality and determinism of the transition relation is still required
— for any action set A, the disjunction of the violation expressions on transitions
tagged by A must be a tautology and any two such expressions must be mutually
exclusive.

We can now give the tagged semantics of extended reparation automata as follows
(we write (q, A) ` V to denote that violation expression V ∈ VExp is satisfied when
action set A is taken from state q):

(q1, q2)
A−→ (q′1, q

′
2), q3A

ok .A−−−→ q′3A

q
A−−−→

(X,X)
q′

(q, A) ` ok

(q1, q2)
A−→ (q′1, q

′
2), q3A

V .A−−−→ q′3A

q
A−−−−−−−−−−−−→

(δXr (1,q,A), δXr (2,q,A))
q′

V 6= ok, (q, A) ` V

The totality of the transition relation means that no transitions are unmitigatable
violating ones. We can address this problem by having a violation state, in which
violations with no reparation are sent to. Alternatively, one could modify the se-
mantics of extended reparation automata to allow for partial transitions and treat

5The expression ok is used to denote that none of the clauses in the source state are violated by
either of the parties.

8

missing transitions or the transition (ok, A) as a catch-all when A takes place and
no other transition is activated. The semantics given above are, however, more com-
positional and thus preferred. Given that one can now differentiate between a norm
being violated or not, extended reparation automata are closed under synchronous
composition.

3.3 Hierarchical Reparation Automata

One aspect of logics lost when one uses automata is that of structure. For instance,
the reparation for an airline not to allow a passenger to board might be to have to offer
the passenger overnight accommodation, and (later) book them on the next available
flight. By looking at the automata describing this behaviour, it is not possible to know
whether the reparation is the overnight accommodation offer or whether it extends
to the booking on the next available flight or whether it extends even further. A
standard way of introducing structure and nesting in an automaton-based formalism
is to use hierarchical automata (e.g. see [MLS97]) to be able to encapsulate a whole
automaton in a single state, resulting in different levels of behavioural detail thus
giving a means of grouping behaviour together.

We have used such a nested approach in hierarchical reparation automata, in which
any state can be refined into two automata — the first giving the contract in force
(without reparations) and the second being another contract which will be triggered
if any part of the first contract is violated. This nesting can be done to any arbitrary
depth to enable the description of reparations triggered in case a reparation itself is
violated.

Definition 8. A hierarchical reparation automaton H ∈ H consists of (i) a multi-
action automaton S = 〈Σ,Q, q0,→〉, with: (i) a state partition Q = Q0 ∪ QN (with
Q0 ∩ QN = ∅) where Q0 are the normal states and QN are the nested states; (ii)
a set of final states F ⊆ Q; (iii) a set of clauses associated to each normal state
contract ∈ Q0 → 2Clause; and (iv) two functions used to access the normal contract
and the reparation automata in a nested state: nrm, rep ∈ QN → H.

The configuration of a hierarchical reparation automaton consists of a stack of pairs
of states and automata specifying where the contract currently lies. In an automaton
H, the stack just contains (H, q0(H)) (which we write as conf0(H)) and advances by
(i) moving along the top automaton if no violation is detected, also removing the item
from the stack if a final state is reached or adding an item if the state moved into is a
nested one; or (ii) moving to the initial state of the reparation automaton of the next
item on the stack (if any) in the case of a violation. Two of the rules specifying the

9

behaviour of a regulated system using hierarchical reparation automata are shown
below (we write q to denote (q1, q2)q3A

)):

(q1, q2)
A−→ (q′1, q

′
2), q3A

A−→ q′3A

(q1, q2)(H,q3A
):hs

A
=⇒ (q′1, q

′
2)(H,q′3A

):hs

¬viol (q, A) ∧ q′3A
/∈ F (H) ∪QN(H)

(q1, q2)
A−→ (q′1, q

′
2), q3A

A−→ q′3A

(q1, q2)(H,q3A
):(H′,q′4A

):hs
A
=⇒ (q′1, q

′
2)conf0(rep(H′)):hs

viol (q, A) ∧ q′4A
∈ QN(H ′)

The example given earlier in this section, regarding the reparation for an airline
not to allow a passenger on board, can be modelled using a hierarchical reparation
automaton as shown below:

RepBoardPlane

Oc(boardPlane) RepBoardPlane

Oc(bookNextFlight)Oc(bookAccomodation)
{bookAccomodation} {bookNextFlight}

As in reparation automata, we cannot differentiate between the norms being vio-
lated and thus hierarchical reparation automaton are not closed under synchronous
composition. Although one could tag reparation sub-automata with an expression
specifying upon which violation it is to be trigerred (similar to extended reparation
automata), this would still not suffice since the normal behaviour automaton may
contain multiple states and thus a single norm may be violated from different states.

4 Discussion and Related Work

We have presented three distinct approaches to adding reparations to contract au-
tomata: reparation automata provide a rudimentary means of enabling branching
upon a violation as part of a contract. In a reasonably sophisticated reparation set-
ting, however, one needs stronger means to be able to identify which clauses have been
violated and by which party, which can be done using extended reparation automata
by allowing branching on conditions identifying which clauses have been violated. Fi-
nally, to add structure to our contracts (and reparations), we introduced hierarchical
automata to specify reparation contracts as sub-automata.

10

Of these approaches we found extended reparation automata to deal best with the
airline case study [Azz14], although the structure of most parts of the contract are lost
in the formalisation. Unless one tags hierarchical reparation automata with clauses
which are to be violated to trigger reparation, extended reparation automata are the
only formalism that manages to deal with states with multiple clauses effectively.
However employing this increases the size of the automata and makes the represen-
tation of larger contracts difficult to generate and understand.

This complexity does not come as a surprise, since reparations, although generally
well understood on more structured logical approaches e.g. [GR06, FPS09, Hag01] are
generally more challenging in graph-based approaches. For space reasons we survey
only a couple that represent the general state-of-the-art: C-O diagrams [DCMS13] are
a graphical contract visualization framework that although being able to cope with
violations cannot consider what action set was responsibly for the violation (similar
to our reparation automata). Taking a more pragmatic approach, contract automata
for service contracts presented in [BDF14] detect violations at runtime, but do not
have a formalisation that allows reasoning about them.

It is interesting to note that in all the presented approaches reparations for the viola-
tion of permissions are handled analogously to the more traditionally explored notions
of contrary-to-duty and contrary-to-prohibition clauses. At a semantic level, viola-
tions of permissions in contract automata occur at the state level (when one party
does not allow the necessary interaction to perform the permitted action) as opposed
to violations of obligations and prohibitions which occur at the transition level (when,
in the case of a prohibition, an action is performed or, in the case of an obligation,
it is not). This dual nature may indicate that the reparation of the two should be
handled in a similarly dual manner — with reparations for violation of permission
being related to a state, while the reparation for an obligation or prohibition to be
related with a transition. However, such an approach would substantially increase the
complexity of the formalism’s syntax (before the dual nature of violation was implicit
in the semantics of contract automata, not their syntax). The hierarchical approach
fares best here, since the moment of violation triggering the reparation is identi-
fied semantically and can thus be addressed differently for permission as opposed to
obligation and prohibition in a syntactically transparent manner.

It is interesting to note that extended reparation automata allow for branching on
the violation of clauses which are not part of the contract clauses in force at a partic-
ular state. Consider, for example, a state in which the only active clause is that the
passenger is obliged to prove their identity, and from which one may have outgoing
transitions depending on whether or not the passenger permits the airline to record
his details on their database — if he does, then they are forbidden from sharing the
information with others. Note that the requirement to permit the airline company to

11

collect the passenger’s data was never in force, and can be thus seen as a hypothetical
permission clause. Although compliance to or violation of hypothetical prohibitions
and obligations can be emulated using standard contract automata, similar reasoning
about permissions was not possible. In our formalism, the possibility of adopting such
hypothetical clauses on transitions may lead to spurious violations being identified
(ones which are hypothetical but not actual), which thus requires additional machin-
ery to identify violations with clauses in force on the states, but does not permit a
straightforward relationship between reparations and clauses in force.

References

[Azz14] Shaun Azzopardi. Extending contract automata with reparation, hypo-
thetical and conditional clauses. Technical report, University of Malta,
May 2014.

[BDF14] Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari. Automata for
service contracts. In Hot Issues in Security Principles and Trust 2014,
2014.

[DCMS13] Gregorio Dı́az, Maŕıa Emilia Cambronero, Enrique Mart́ınez, and Gerardo
Schneider. Specification and Verification of Normative Texts using C-O
Diagrams. IEEE Transactions on Software Engineering, 99:1, 2013.

[FPS09] Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. Automatic Con-
flict Detection on Contracts. In Proceedings of the 6th International Col-
loquium on Theoretical Aspects of Computing (ICTAC’09), volume 5684
of Lecture Notes in Computer Science. Springer Verlag, 2009.

[GR06] Guido Governatori and Antonino Rotolo. Logic of Violations: A Gentzen
System for Reasoning with Contrary-To-Duty Obligations. In The Aus-
tralasian Journal of Logic, volume 4, pages 193–215, 2006.

[Hag01] Jaap Hage. Contrary to Duty Obligations — A Study in Legal Ontology.
In Legal Knowledge and Information Systems (JURIX 2001), December
2001.

[MLS97] Erich Mikk, Yassine Lakhnech, and Michael Siegel. Hierarchical automata
as model for statecharts. In Third Asian Computing Science Conference.
Advances in Computing Science – ASIAN’97, volume 1345 of Lecture
Notes in Computer Science. Springer Verlag, 1997.

12

[PS12] Gordon J. Pace and Fernando Schapachnik. Contracts for Interacting
Two-Party Systems. In Proceedings of Sixth Workshop on Formal Lan-
guages and Analysis of Contract-Oriented Software (FLACOS’12), vol-
ume 94 of Electronic Proceedings in Theoretical Computer Science, 2012.

13

