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Abstract: Compensations have been used for decades in areas such
as flow management systems, long-lived transactions and more re-
cently in the service-oriented architecture. Since compensations en-
able the logical reversal of past actions, by their nature they cross-cut
other programming concerns. Thus, intertwining compensations with
the rest of the system not only makes programs less well-structured,
but also limits the expressivity of compensations due to the tight cou-
pling with the system’s behaviour.
To separate compensation concerns from the normal forward be-
haviour of the system, we propose a novel design paradigm in which
compensations are programmed separately from the system, and in-
corporated within a compensation manager following relevant system
events and manages compensations. If the system signals the need
to be compensated, the manager triggers the execution of compensa-
tions on behalf of the system and subsequently returns control to the
system. We show that this approach can be used to program a sophis-
ticated real-life case study which existing compensation approaches
have difficulty in handling.
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1 Introduction

Computer systems have been growing in size and complexity for decades, making it
virtually impossible for such systems to be faultless. On the other hand, their role
in sensitive human activities have put higher pressures on their correctness. Con-
sequently, fault tolerance techniques such as error recovery [RLT78] started being
incorporated so that systems could withstand failures. In this context, two main
techniques were proposed: backward recovery which backtracks to an earlier (cor-
rect) state of the system and forward recovery which attempts to repair the current
system state. While forward recovery is ideal in that it does not lose any recent state
modifications, reparation might not always be possible. For example, when a system
crashes, the only way to recover would generally involve loading the last persisted
state. Backward recovery, on the other hand, can be automated as in the case of a
rollback in traditional databases. However, backward recovery cannot be used when
some processes with which the system interacts do not support backward error recov-
ery. Typical examples are real-life processes such as bank account transfers, shipping,
etc. Such processes cannot be simply undone and forgotten. In such cases, instead of
undoing some actions, one might actually need to execute further “counteractions”,
better known as compensations. For example in the case of a bank account transfer,
one might have to add a processing fee over and above the return of funds to the
original account, while in the case of shipping one might need to ship some items
back. Note that while a compensation is conceptually a form of backward recovery,
at a lower level of abstraction it is actually forward recovery since the action and the
counteraction do not cancel each other out (as in other backward recovery techniques
such as a rollback), rather the system would keep record of both the action and the
counteraction.

Compensations have thus become particularly useful in areas which program real-life
processes such as in flow management systems, long-lived transactions, and more re-
cently web services, enabling loosely-coupled interactions across entities. To facilitate
programming such interactions, several notations and architectures have been pro-
posed along the years with the current de facto industry standard being the Business
Process Execution Language (BPEL) [AAB+07]. From an academic point of view, ex-
tensive research [CP12] has been conducted in the area, particularly by suggesting dif-
ferent formal models of compensation [BMM05, BF04, BHF04, LMSMT08, GLG+06]
and defining formal semantics for BPEL [ES08, FR05, HZWL08, LPT08] in which
compensations play a crucial role.

Since compensations enable the logical reversal of past actions, by their nature they
cross-cut other programming concerns. For example consider a payment which should
be refunded free of charge if the customer has earlier bought some items but against a
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charge if not. Programming such a compensation from basic principles would require
some form of record of the customer’s history and a mechanism through which the
refund action is associated to the payment action as its compensation. Such additions
clutter the code and intertwine the programming of the system actions with their
compensations.

A recurrent approach for structuring compensation logic [CP12] involves associating
a compensation blocks to corresponding system blocks in a try-catch-block fashion.
However, as with the try-catch-block for exception handling, this approach still has
difficulty in expressing highly cross-cutting concerns such as compensations spanning
different modules (see [GFJK03] for an example). In the case of exception handling,
this limitation has been overcome by technologies and approaches such as aspect-
oriented programming [Kic05] and monitoring-oriented programming [MJG+11]. In
the case of compensation programming, we propose a novel design paradigm (Sec-
tion 2) in which compensations are programmed separately from the system, and
incorporated within a compensation manager which listens for relevant system the
collated compensations. If the system signals the need to be compensated, the man-
ager triggers the execution of the collated compensations on behalf of the system and
subsequently returns control to the system. Furthermore, we propose compensating
automata (Section 3) as a means of programming compensations and show how these
can be used to program compensations for a sophisticated e-procurement system (Sec-
tion 4) adapted from [GFJK03] which existing compensation notations have difficulty
in handling. We conclude (Section 5) with a discussion on the implementation and
security concerns of our approach.

2 Programming Compensations

Attempting to program complex compensations using standard compensation formal-
isation has been shown to be impractical for particular case studies [GFJK03]. On the
other hand, programming without compensations is significantly more straightforward
than programming with compensations. As an example we refer to the e-procurement
scenario adapted from [GFJK03]. In the first subsection we show that programming
the e-procurement scenario without handling compensation concerns is straightfor-
ward. Next, we describe a novel design paradigm which enables compensations to be
programmed separately — leaving the system code uncluttered.
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2.1 An E-Procurement Case Study

The bare logic of a procurement starts by receiving a quote request from a customer.
The merchant then checks that the customer is a valid customer — that is, registered
and with no overdue payments. For invalid customers, a message informing the
customer that he or she is no longer a valid customer is sent and the business process
terminates. For valid customers, a quote is calculated and sent to the customer.
If the customer chooses to proceed with the order, the customer sends a purchase
order to the merchant. Upon its receipt, the merchant reserves the ordered goods
and concurrently initiates the payment and delivery processes. The payment process
consists of the merchant sending an invoice, receiving payment and issuing a receipt.
The delivery process consists of arranging transportation, shipment of goods, sending
notification to the customer that ordered goods are now in transit and receiving an
acknowledgement that goods have been received by the customer. The transaction is
considered complete once the delivery and payment processes have completed. The
the vanilla version of the e-procurement system (S ) may be defined in terms of three
programs: reserve goods (R), payment (P), transport (T ) such that the parallel
composition of P and T follows R, written S = R; (P | T ), and each program may be
expressed as follows:

Program R
RecQuoteReq

If !checkCustomer

Then

sendInvalidCustomerMsg

Return

Calculate Price

Send Quote

RecPurchaseOrder

ReserveGoods

Program P
SendInvoice

RecPayment

SendReceipt

Program T
ArrangeTransport

ShipGoods

SendGoodsNot

RecGoodsDeliveredAck

However, there are numerous ways in which the business process may diverge from
the expected behaviour. This may happen for several reasons e.g. explicit cancellation
by the customer, software or hardware crashes, loss of communication, third-party
system failure, etc. Some such divergences one would like to handle are listed below:

1. If the customer decides to cancel the order before the merchant has reserved
the goods, the business process can be simply terminated.

2. If a user cancellation is received after goods have been reserved and transporta-
tion arranged but before an invoice has been sent and the goods shipped, then
the order can be cancelled by running compensations in reverse chronological
order for those activities that have successfully executed.
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3. If ordered goods have already been shipped then a cancellation process will
require the invocation of a return goods process, i.e. it would arrange the de-
livery for the unwanted goods back from the customer. It would also involve
an inspection to make sure that the goods returned were the ones originally
delivered. Notice that the return goods process may itself fail and this needs to
be appropriately handled by charging the customer an extra fee if the delivery
or inspection fails.

4. If an order is cancelled then the cancellation fee is dependent on the state of
the delivery. If there is a fee for the cancellation for delivery, then the costs
are passed onto the customer. If an invoice has not been sent, then an invoice
for the cancellation fee is sent to the customer; if an invoice has been sent and
payment has been received, then a partial refund is sent to the customer.

5. The merchant can choose whether to accept or reject the user-initiated cancel-
lation requests. During the time the merchant needs to decide, the transaction
should be paused to avoid race conditions.

6. If one transportation company cannot deliver the order then the merchant can
find an alternative.

7. An activity may fail due to a network or remote server failure. In this case,
the most practical handling of such a failure (such as to affect payment) is to
periodically retry the activity until it succeeds.

8. If the delivery of goods were sent to the wrong address. The shipment is re-
turned, the merchant attempts to determine the correct address, and if success-
ful, resends the shipment.

9. When a merchant cannot provide all the goods at the time of delivery, the
merchant ships the available goods and later it arranges transport of the other
goods when they become available. Consequently, the invoice to the customer
is not for the full amount but only for goods that have been shipped. A later
invoice is sent when the unavailable goods are shipped.

In view of the strict interpretation of compensation programming we advocate — that
compensations are logical reverses of corresponding activities, a substantial number
of the features of the e-procurement system do not fall within the realm of compen-
sations. For example stopping or pausing the business process, trying an alternative
transport company, or retrying an activity are not compensation operations. On the
other hand, giving a refund, and returning shipped goods are compensations. In fact,
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only items 2–4 and partially item 8 (from the above list) give any information about
compensations. The rest of the items should be reflected in the system code.

Considering component R, we rename it to R′ and add a loop to handle partial
shipments of the order (item 9). Updating component P to P ′, we add a loop to
retry payment receipt when this fails (item 7). Similarly, we update program T to T ′

to handle transport alternatives (item 6) and reshipping in case of a wrong address
(item 8).

Program R′

RecQuoteReq

If (!checkCustomer)

Then

SendInvalidCustomerMsg

Return

CalculatePrice

SendQuote

RecPurchaseOrder

ReserveGoods

While (!allGoodsAvailable)

(P | T)(partialOrder)

(P | T)(fullOrder)

Program P ′

SendInvoice

RecPayment

While (!RecPayment

&& (NetworkIsDown

|| BankIsDown))

Wait

RecPayment

SendReceipt

Program T ′

If (!ArrangeTransport(A))

Then ArrangeTransport(B)

ShipGoods

SendGoodsNot

RecGoodsDeliveredAck

If (!RecGoodsDeliveredAck)

VerifyAddress

If (UnavailableAddress

|| AddressOk)

Compensate

Else If (CorrectedAddress)

Run(T’)

Thus, we have effectively defined a new system, S ′ = R′;P ′ | T ′, which however, still
does not address all the features. Particularly, the system does not pause to process
user cancellations and stop if the cancellation is approved (items 1 and 5). To address
this limitation, we add a process U which receives user cancellations and is able to
pause and resume the system.

Program U

If (UserCancel)

Pause

VerifyCancelValidity

If (cancelValid) then

Compensate

Else

Continue

By combining component U with S ′, we get an e-procurement system, S ′′ = U | S ′,
which knows when compensation is required but does not know what or how to
compensate. We propose to program compensations separately through the proposed
architecture on which we elaborate in the following subsection.

2.2 Proposed Compensation Design Paradigm

To facilitate programming of compensations we propose a complete separation of
concerns with the system being completely unaware of how and what to compensate
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System
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Figure 1: The architecture with programmed compensations.

but it only knows when there is need to start compensating. Such a design pattern
necessitates a compensation manager which listens for system activities and collates
compensations accordingly. As soon as the system communicates with the compen-
sation manager that it needs to start compensating, then the compensation manager
takes over and communicates to the system which actions need to be executed. Fig. 1
shows the overall setup with the system communicating events to the compensation
manager and the latter communicating compensations if it receives a signal on the
compensate line.

In order to program the compensation manager, we propose a dedicated formalism
which is solely concerned with constructing compensations. Based on the literature
[CP12], a compensating formalism should allow support two main activities: that
of programmatically collating compensations and that of activating them. Collating
compensations usually involves installing compensations with the possibility of re-
placing previously installed compensations. Once compensations are activated, the
mechanism should allow for an indication that the compensations have been applied,
and that the system should resume execution (and the compensation manager to
revert back to collating compensations). Furthermore, the user can also collate com-
pensations during the execution of compensations so that failed compensations can
be compensated. Finally, the user might need to collate/execute compensations con-
currently. Of all these features, the system is responsible for signalling the switch
from collating compensations to activating compensations. The rest of the features
should be programmable through the formalism proposed as explained below with
examples:

Basic compensation installations The formalism should allow actions to be des-
ignated as compensations for other actions. Subsequently, upon completion of an
action, the corresponding compensation is pushed onto a stack. If compensation is
invoked, the actions in the stack are executed in the reverse order of their counter-
parts. In the e-procurement scenario, this corresponds to a number of examples such
as “unreserving” previously reserved goods. This is depicted in Fig. 2(a)[left] where
the automaton transitions upon the ReserveGoods event while installing the compen-
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(a)

ReserveGoods?

UnreserveGoods!

SendQuote?
transCancOk!

τ

(b)

CancelA!

ShipGoods?

CancelB!

ReturnGoods!

ArrangeTransA?

ArrangeTransB?

(c)
same as (b) SendGoodsNot? RecGdsDelAck?

CorrectedAddr?

UnavailableAddr?

AddrOk?

(d)

ReturnGoods!

InspectionOk?GoodsReturned?

charge!

τ

(e)

done!

CancelA!

ArrangeTransA?

ShipGoods?

done!

CancelB!

ArrangeTransB?

done?

(f)

ArrangeTrans?

transCancOk!

RecPay?

charge? Refund!
transCancOk?

charge! Cancel!

ShipGoods?τ

Figure 2: Examples of different compensation constructs.
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sation UnreserveGoods. Some activities such as sending a quotation might not have
a compensation. These are depicted as in Fig. 2(a)[middle]. Similarly, we allow for
the automatic installation of compensations with no associated event. The forward
arrow in such cases is annotated with τ — see e.g. Fig. 2(a)[right].

Replacing compensations Compensations may have to be replaced at some point
and therefore it should be possible to delimit compensation patterns which upon
being matched should be replaced by another compensation. For example, as soon
as the goods are shipped, then it no longer makes sense to cancel the transport
arrangement. Instead, this is replaced by the shipment back of the goods once they
reach their destination. Compensation replacement is depicted in Fig. 2(b) where an
automaton monitoring transport arrangement is scoped so that when the goods are
shipped, any accumulated compensations (CancelA or CancelB) are discarded and
replaced by the compensation ReturnGoods.

Stopping compensation activation Sometimes a business process should not be
reversed completely. For example if the goods have been shipped, but returned (e.g.
the goods notification remains unacknowledged), the system checks whether the rea-
son is a wrong address. If it is the case, the compensation should be temporarily
suspended — deviated to another state — until the system attempts to verify the
address was correct. If the address was correct then the system signals compensation
to continue. Otherwise, the system should continue by re-attempting shipping to the
corrected address while the compensation manager continues to collate compensa-
tions from the deviated state onwards. A deviation is shown in Fig. 2(c) as a bold
line with two outgoing arrows: a plain arrow which is taken on the first traversal and
a double arrow which points to the deviation state.

Compensations having compensations Compensation actions may have compen-
sations themselves. For example, while goods are being shipped back (the compen-
sation in the previous point), compensations might still be needed since the process
might also fail at some stage. As depicted in Fig. 2(d), the ReturnGoods action is ex-
pected to give rise to a number of system events including the shipment of the goods
back to the supplier and inspecting the goods to ensure that they are the expected
goods in the expected condition. Note that if inspection fails, then the compensation
of the shipment would involve a charge to the customer’s credit card.

Concurrent communicating compensation handlers To enable better decom-
position of compensation management, particularly for specifying compensation se-
quences which should run in parallel, it is more convenient to have multiple concurrent
compensation handlers which can communicate. For example a more efficient way
of arranging for transport might be to start the booking process with the two ship-
ping companies and then cancel one as soon as the other is confirmed. Better known
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as a speculative choice, this can be encoded by communicating automata as shown
in Fig. 2(e). Communication can also be used to synchronise during compensation
execution. In our example, the refund operation has to wait for the transport can-
cellation (if this has taken place) so that any fees incurred can be passed on to the
user. Fig. 2(f) shows the payment automaton and the transport automaton where
the Refund compensation has to wait for either the charge signal or the transCancOk
signal signifying a transport cancellation charge and no charge respectively. Note
that we use labels starting in lower caps for local communication.

In the next section we formalise compensating automata, giving their syntax and
semantics.

3 Formalising Compensating Automata

A compensating automaton is intended to enable the user to program the compen-
sation manager so that depending on the sequence of occurring system activities,
compensations are collated and possibly later executed if the system signals compen-
sation. As such a compensating automaton should not only be aware of, but also able
to carry out system activities.

Definition 1 A compensating automaton event is defined in terms of a set of system
activities Σ and triggers if one of the system activities is received. We take τ to be a
special event which immediately triggers and use Στ to denote Σ∪{τ}. A compensating
automaton event I is thus a non-empty disjunction of system activities, I ∈ 2Στ . I is
said to trigger upon a system activity i, if and only if i ∈ I.

A compensating automaton action O is a set of system activities, O ∈ 2Σ, which the
automaton can instruct the system to carry out concurrently.

Compensating automata can run concurrently and may need to communicate. This is
achieved by distinguishing between the set of system activities ΣS and the set of local
activities ΣL (assuming that ΣS ∩ΣL = ∅ and ΣS ∪ΣL = Σ), with the latter only used
internally across automata.

Once an event triggers, a compensating automaton takes transitions to move through
the automaton states.

Definition 2 A compensating automaton is composed of an alphabet Στ , a set of
states Q, a set of transitions δ, an initial state q0 ∈ Q, and a set of final states
F ⊆ Q. Thus, a compensating automaton is a quintuple A = (Στ , Q, δ, q0, F ). We

10



use A to represent the type of compensating automata and Â for the type of vectors of
compensating automata. We will use variables A, A′ ∈ A to range over compensating
automata and Â, Â′ ∈ Â to range over vectors of automata.

To support compensation scoping, each state q ∈ Q may be nested with compensating
automata. When the nested automata complete, their accumulated compensations are
discarded and replaced. Thus, q is a tuple Â×C where C is the compensation used for
replacing the compensations of the vector. A state with no nested automata is called
a basic state. We use N to represent nested states and B to represent basic states
such that Q = B ∪N .

A transition across compensating automata states defines an event upon which the
transition is taken and what compensation should be installed for that event. To enable
local communication, a transition event can be a local event and can also trigger a lo-
cal action. Thus a transition t is a quintuple: a source state, an event-action tuple to-
gether with their compensation, and a destination state — t ∈ (Q× 2Στ × 2ΣL × C ×Q).

Furthermore, compensating automata allow activated compensations to be interrupted
so that the process is allowed to attempt a deviation. Thus, some transitions specify
a third state from where the automaton continues after stopping the compensation
process. A deviating transition t′ is a sextuple consisting of a source state, an event-
action tuple together with their compensation, a deviation state, and a destination
state — t′ ∈ (Q× 2Στ × 2ΣL × C ×Q×Q).

To simplify semantics, we represent non-deviating transitions as deviating transitions
with a blank state, ◦. Using D = Q ∪ {◦}, the set of transitions, δ, is a subset of the
Cartesian product (Q× 2Στ × 2ΣL × C ×D ×Q).

We will write event(t) and src(t) to respectively refer to the event and source state
appearing in a transition t.

Next, we define what compensations are in the context of compensating automata.

Definition 3 A compensation is an action which may include both system and local
activities. To enable concurrent compensations to synchronise, the action is guarded
by a local event. Furthermore, the compensation may itself have programmed compen-
sations in terms of a vector of compensating automata which collate compensations
while the compensation executes. More formally a compensation c of type C is an
element of the Cartesian product: (2ΣLτ × 2Σ × Â).

Since a compensating automaton may have nested vectors of automata, its config-
uration should be correspondingly nested by a vector of configurations. Each basic
configuration, i.e. a non-nested configuration, has to keep track of: (i) the state it is
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Conf

Conf

NConf BConf NConf

BConf Conf

BConf

BConf

Figure 3: An example of a structure or configurations.

in; (ii) whether it is currently collating compensations (conceptually the system state
is progressing forward) or activating compensations (conceptually the system state is
progressing backwards); and (iii) the collated compensation, including the installed
compensations and the points at which compensation activation should be deviated.

Definition 4 A configuration of a compensating automaton is either (i) a basic con-
figuration composed of an automaton of type A, a state of type Q, a (forward or
backward) direction of type R, and a stack of type S; (ii) a nested configuration con-
sisting of a basic configuration and the configuration of the nested automata vector;
or (iii) a vector configuration encoded as a sequence of nested configurations. This
can be summarised as:

BConf ::= Basic(A×Q×R× S)

NConf ::= BConf | Nest(BConf,Conf)

Conf ::= Vect(seq NConf)

A compensating automaton is either executing forward, or backward. Thus, an au-

tomaton execution direction, is of type R def
= {→,←} signifying forward and backward

execution respectively.

A stack S : S is a sequence of stack elements S def
= seq Stack where each element of

type Stack can either be a compensation or a deviation Stack ::= Comp C | Dev D.

An example of a structure of configurations is shown in Fig. 3 including a vector
of three configurations with two of them being nested configurations. The first
nested configuration consists of basic configuration and an empty vector while the
second consists of a basic configuration and a vector containing a basic configuration:
[(BConf,[]), BConf, (BConf,[BConf])]. As abbreviations for configurations we use

Ã[q]S to denote Basic(A, q,∼, S) where ∼∈ R (for instance if ∼= →,
→
A[q]S signifies a

forward executing configuration); and Ã[q]Scnf to denote Nest(Ã[q]S, cnf).

Definition 5 The push operation, denoted s� S, adds an element s onto the top of
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stack S where s is either a compensation c : C or a deviation d : D:

c� S
def
= (Comp c) :S

d� S
def
=

{
S if d = ◦
(Dev d) :S otherwise

A configuration reaches a point where it cannot proceed further when either the au-
tomaton has reached a final state during forward execution, i.e. no further installations
can occur, or all the compensations have been activated during backward execution.

Definition 6 A basic configuration cnf is said to be terminated, written �(cnf), if

and only if it has reached a final state and it is in forward direction: �(Ã[q]S)
def
= q ∈ F∧ ∼= →.

A basic configuration cnf is said to be compensated, written �(cnf), if and only if it

has an empty stack and it is in backward direction: �(Ã[q]S)
def
= S = []∧ ∼= ←.

Nested configurations are neither terminated nor compensated since execution contin-
ues with the parent.

A vector configuration is said to have terminated if all sub-configurations are either
terminated or compensated and at least one has terminated:

�([cnf1, cnf2, . . . , cnfn])
def
= ∃i ∈ 1.. n ·�(cnfi) ∧ ∀j ∈ 1.. n · j 6= i⇒ �(cnfj) ∨�(cnfj)

On the other hand, a vector configuration is said to have compensated if all sub-

configurations have compensated: �([cnf1, cnf2, . . . , cnfn])
def
= ∀i ∈ 1.. n ·�(cnfi).

Definition 7 The initial configuration of a vector of compensating automata is given
by the init function which starts each automaton from its respective initial state with

an empty stack: init(Â)
def
= [goto(A1, q01, []), goto(A2, q02, []), . . . , goto(An, q0n, [])]

Function goto returns the configuration of a compensating automaton, starting at
a particular state with a particular stack. If the function goto is called on a basic
state, then the configuration returned is a basic configuration. Otherwise, if the state
is nested, the configuration of the nested vector of automata is obtained through a
recursive use of init:

goto(A, q, S)
def
=

{ →
A[q]S if q ∈ B
→
A[(Â′, c)]S

init(Â′)
if q = (Â′, c) ∈ P

Since compensating automata are intended for monitoring systems, determinism is
crucial to ensure that monitoring remains cheap.
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Definition 8 A compensating automaton (Σ, Q, δ, q0, F ) is said to be deterministic
if and only if: (i) if a state has an outgoing τ transition then it may have no other
outgoing transitions: ∀t, t′ ∈ δ · (t 6= t′ ∧ src(t) = src(t′)) =⇒ τ /∈ event(t); (ii) no
outgoing transitions with shared labels from the same state: ∀t, t′ ∈ δ ·(t 6= t′∧src(t) =
src(t′)) =⇒ event(t) ∩ event(t′) = ∅; (iii) once a final state is reached, no further
transitions may be taken: ∀t ∈ δ · src(t) /∈ F .

Furthermore, a compensating automaton is said to be well-formed if it contains no
loops made up of transitions with labels over ΣL ∪ τ .

3.1 Semantics

We give the semantics of compensating automata in SOS style [Plo81] in terms of a
labelled transition system where states are configurations.

Definition 9 The semantics of a vector of compensating automata is the least tran-
sition relation

x−→: Conf × Trace × Conf satisfying the rules in Fig. 4(top) where an
element of type trace is either (i) an automaton transition, i.e. an activity triggering
local action, of type A × Στ × 2ΣL; (ii) a compensation action, i.e. a local activ-
ity triggering an action, of type A × ΣLτ × 2Σ; (iii) a compensate signal � which
switches the automaton from collating to activating compensations; and (iv) a silent
transition, τ , representing the rest of the automata activities. Thus, we define the
type Trace as Trace ::= Forw(A× Στ × 2ΣL) | Back(A× ΣLτ × 2Σ) | � | τ . As abbre-
viation, we write Forw(A, i, O) as (iO)A and Back(A, i, O) as (iO)A (subscripting the
local symbols).

The first rule, Suc, deals with the basic automaton transitions such that if the tran-
sition event triggers, then the transition action is carried out and the compensation
and deviation are pushed onto the stack. If the destination state (q′) has a nested
automaton, then the corresponding nested initial configuration is given by calling the
goto function on automaton A with q′ as the state.

When the compensating automaton receives the compensate signal, denoted by �, rule
Fail turns the execution mode of the automaton from forward to backwards. Once
the execution direction is backwards, if the topmost stack element is a compensation,
then rule Comp pops it from the stack and activates it. Recall that each compen-
sation action has an associated (possibly empty) vector of automata as programmed
compensation. Thus the resulting configuration is a nested configuration including
the configuration for the programmed compensation. If the topmost stack element is
a deviation, then this signifies that the automaton should stop activating compensa-
tions and resume collating them. Rule Dev deviates the execution by reverting the
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configuration direction from backwards to forwards and sets the deviation state as
the new configuration’s state. Since this state may have nested automata, the new
configuration is obtained through the goto function.

Upon successful completion of a nested vector of automata, i.e. its configuration is
terminated, rule NestSuc is responsible to pass control back to the parent by dis-
carding the corresponding configuration and installing the programmed compensation.
In case the nested configuration is compensated, then the parent configuration starts
compensating itself. This scenario is handled by the NestFail by discarding the
nested configuration and changes the parent’s direction to backwards. When the parent
configuration has a backward direction, when the nested configuration is terminated
or compensated, rule NestComp triggers and passes control back to the parent so
that the latter continues with its compensation. Whenever a nested configuration is
reached, the Nest rule is required to enable nested configurations to progress. Sim-
ilarly, the Vect rule enables individual configurations within a vector to progress
independently (α, β : seq Conf).

Upon receiving a system activity or the compensate signal, a vector of compensating
automata triggers the relevant transitions followed by other non-(directly-)system-
triggered transitions. All the steps triggered through a single system signal (directly
or not) are collectively called a big step. To give the semantics of communication
within compensating automata, the big step is split into small steps where each step
allows one transition to occur, taking into account local communication.

Definition 10 Small steps are specified on small-step configurations ssConf which
are each composed of a vector configuration plus a set of local symbols: ssConf ∈
(Conf×2ΣL). The set of local symbols is used to keep track of the local communication.
There are five kinds of small steps (each described by a rule in Fig. 4(bottom)): two
which are directly triggered as a result of system signal (rules Sys and Fal) while
there are three kinds of transitions which are not directly system-triggered, namely: (i)
silent transitions (rule Sil); and (ii) local- or (iii) tau-triggered communication (rules
Loc and Tau respectively). Note that local symbols are added to the configuration
whenever local communication triggers (rules Sys, Tau, and Loc). Furthermore,
local communication (rule Loc) can only trigger if a corresponding symbol is present
in the configuration set of symbols.

Grouping small steps into big steps, we use the notion of an exhaustive transitive
closure of a relation →. Denoted →•, the exhaustive transitive closure is defined
to be the maximal transitive closure with no further possible compositions; more
formally, →• def

= {(α, β) ∈→∗ | β /∈ dom(→)}.
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Basic Configurations

Suc
→
A[q]S

(iO)A−−−→ goto(A, q′, d� c� S)

(q, I, O, c, d, q′) ∈ δ
i ∈ I

Fail →
A[q]S �−→

←
A[q]S

Comp
←
A[q]((I,O),Â)�S (iO)A−−−→

←
A[q]S

Init(Â)

i ∈ I

Dev ←
A[q]d�S

τ−→ goto(A, d, S)

Nested Configurations

NestSuc →
A[(Â, c)]Scnf

τ−→
→
A[(Â, c)]c�S

�(cnf) NestFail →
A[q]Scnf

τ−→
←
A[q]S

�(cnf)

NestComp ←
A[q]Scnf

τ−→
←
A[q]S

�(cnf) ∨�(cnf) Nest
cnf

x−→ cnf ′

Ã[q]Scnf
x−→ Ã[q]Scnf ′

Vector Configurations

Vect
cnf

x−→ cnf ′

α ++[cnf] ++β
x−→ α ++[cnf ′] ++β

Small Steps

Sys
cnf

(iO)A−−−→ cnf ′

cnf[L]

(iO)A
↪−−−→ cnf ′[L∪O]

i ∈ ΣS Fal
cnf �−→ cnf ′

cnf[L]
�
↪−→ cnf ′[L]

Sil
cnf

τ−→ cnf ′

cnf[L]

τ
↪−→ cnf ′[L]

Tau
cnf

(τO)A−−−→ cnf ′ or cnf
(τO)A−−−→ cnf ′

cnf[L]

(τO)A
↪−−−→ cnf ′[L∪(O∩ΣL)]

Loc
cnf

(lO)A−−−→ cnf ′ or cnf
(lO)A−−−→ cnf ′

cnf[L]

(lO)A
↪−−−→ cnf ′[L∪(O∩ΣL)]

l ∈ L

Figure 4: Basic semantic rules (top), small steps (bottom)
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Definition 11 Given a sequence e : E of system activities and failure signals, e ∈
Σ∪{�}, the behaviour of a compensation manager programmed with vector of automata
Â, is characterised by two phases.

1. Starting from the initial configuration init(Â), the compensation manager per-
forms all possible non-system-triggered small steps. More formally, the first
phase is characterised by

τ
=⇒• where

τ
=⇒ is one of the three non-system-triggered

small steps.

cnf[L]
τ

=⇒ cnf ′[L′]
def
= cnf[L]

τ
↪−→ cnf ′[L]

∨ cnf[L]

(τO)A
↪−−−→ cnf ′[L∪O]

∨ cnf[L]

(lO)A
↪−−−→ cnf ′[L∪O]

2. Execution continues by repeatedly consuming elements from e : E until either the
sequence of system activities and failures is fully consumed or the automata vec-
tor cannot proceed further. Processing each e element, denoted by an e-big-step
involves triggering all possible transitions waiting on e and collecting all the trig-

gered local actions in the configuration set of symbols —
(eO1)A1

(eO2)A2
...(eOn)An

↪−−−−−−−−−−−−−−−→•
or

��...�
↪−−→• depending on e. This is followed by a

τ
=⇒• so that the automata vector

exhausts all the internal small steps. Note that to ensure that each automaton
makes only one step, each automaton A1 . . . An must be unique.

cnf[∅]
e

=⇒ cnf ′[L]
def
= cnf[∅]

(eO1)A1
(eO2)A2

...(eOn)An
↪−−−−−−−−−−−−−−−→• τ

=⇒•cnf ′[L]

(∀i, j : N · i 6= j =⇒ Ai 6= Aj)

∨ cnf[∅]
��...�
↪−−→• τ

=⇒•cnf ′[L]

Putting the two phases together, the overall behaviour can be summarised as
τ

=⇒• e:E
=⇒•.

Proposition 1 Given a deterministic and well-formed compensating automaton vec-
tor (Definition 8) Â, the semantics are deterministic, i.e. only one configuration can
be reached over a given a sequence e : E:

6 ∃cnf, cnf′ · init(Â)
τ

=⇒• e:E
=⇒•cnf ∧ init(Â)

τ
=⇒• e:E

=⇒•cnf′

Example 1 Consider the communication example depicted in Fig. 5(f) and let [A1, A2]
represent the vector composed of the two automata (with A1 = (Σ1, Q1, q01, F1) and
A2 = (Σ2, Q2, q02, F2) representing the left and right automaton respectively). The
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initial configuration, given by init([A1, A2]) is [
→
A1[q01][],

→
A2[q02][]]. Performing the ini-

tial phase (
τ

=⇒•) would result in the installation of compensation transCancOk,

[
→
A1[q01][],

→
A2[q12][(τ,transCancOk,[])]], through rules Suc, Vect, and Tau.

Next we consider two scenarios for the second phase: (i) payment succeeds followed
immediately by failure ( RecPay,�), and (ii) all actions succeed except for ShipGoods,
i.e. ( RecPay,ArrangeTrans,�).

Under scenario (i), upon RecPay, the configuration proceeds to

[
→
A1[q11][(transCancOk, charge,Refund,[])],

→
A2[q12][(τ,transCancOk,[])]] through rules Suc, Nest, Vect,

and Sys. Upon failure, execution direction turns backwards for both automata and
local communication takes place, [

←
A1[q11][],

←
A2[q12][]], first through rules Comp, Nest,

Vect, and Tau (storing transCancOk in the configuration), and then through rules
Comp, Nest, Vect, and Loc.

Under scenario (ii), upon ArrangeTrans, first through rules Suc, Nest, Vect, and
Sys, and then by rules NestSuc, Vect, and Sil the configuration evolves to
[
→
A1[q11][(transCancOk, charge,Refund,[])],

→
A2[q22][(τ,charge, Cancel,[])]]. Upon failure, execution di-

rection turns backwards for both automata and local communication takes place, first
through rules Comp, Vect, and Tau (storing charge, Cancel in the configuration),
and then through rules Comp, Vect, and Loc, triggering the Refund action.

In what follows we define the sanity of compensating automata — i.e. events are
correctly compensated, and we prove that compensating automata are indeed sane.

3.2 Self-Cancellation in Compensating Automata

A standard way of checking that a compensation formalism is sane [BHF04] is to show
that for any compensation program, if it has completely and successfully compen-
sated, assuming perfect compensations, then the outcome would be self-cancellation,
i.e. logically equivalent to performing no action.

Definition 12 Following the same idea of [BHF04], we assume the existence of a
total injective function comp, ·, which returns a non-empty unique compensation
action O ∈ 2Σ for an activity i ∈ Στ of which the former is the perfect compensation —
intuitively meaning that executing i following by O is equivalent to executing nothing.
Overloading · to strings, a1 a2 . . . an = an . . . a2 a1. Furthermore, a = a and τ = τ .

In order for compensating automata to be perfectly self-cancelling, it must be ensures
that installed compensations correspond to the event triggering the installation on
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every transition. Furthermore, note that when replacing compensations, fine-grained
compensations are discarded, and hence lose the one-to-one correspondence of events
and compensations. For this reason, to prove self-cancellation, one must ignore both
the actions of nested automata (whose compensations are discarded) and also the
replacing compensation. Rule Nest already silences actions of nested automata to
the parent. Thus, what remains is to assume that the replacing compensation is an
empty action.

Definition 13 A perfectly-compensating automaton A− is an automaton whose tran-
sitions (q, I, O, (I ′, O′, Â), d, q′) ∈ δ such that events and compensation actions must
correspond, i.e. ∀i ∈ I ·O′ = i.

Next, since we lose event-compensation correspondence when discarding/replacing
compensations, we assume that all nested states of self-cancelling automata
(Â, (I, O, Â)) ∈ N should have an empty compensation, i.e. O = ∅.
We use A− to refer to the set of perfect automata.

Since we are concerned with using compensating automata for programming a sys-
tem’s compensations, we ignore the strictly local components in the trace, and silent
actions. Furthermore, traces are projected for a particular automaton, leaving out
any activities related to other automata.

Definition 14 Given trace elements of the form (iO)A we drop O (which are local
actions) and given trace elements of the form (iO)A we drop i (which is a local event).
Silent trace elements � and τ are also dropped and for an automaton A, all elements
tagged with A′ 6= A are dropped. Thus, given a trace w : Trace∗, we define w−A :
Trace−

∗
such that

Trace− ::= Στ | 2Στ

(a : w)−A =


i(w−A ) if a = (iO)A

O(w−A ) if a = (iO)A

w−A otherwise

Next we define what it means for a compensating automaton to be self-cancelling.

Definition 15 Given a projected trace w−A of a compensating automaton A, the func-
tion cancOut removes consecutive corresponding event-compensation pairs:
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cancOut(w xx′w′) = cancOut(ww′) if x′ = x

cancOut(w) = w otherwise

A string w for which cancOut(w−A ) = ε is said to be self-cancelling. Using the above
cancelling function we now go on to define what it means of a compensating automaton
to be self-cancelling.

A compensating automaton A is said to be self-cancelling if and only if all traces
originating from an initial configuration and ending in a terminated configuration are
self-cancelling:
∀w : Trace∗ · goto(A, q0, [])

w−→
←
A[q][] ⇒ cancOut(w−A ) = ε.

A vector of compensating automata Â is said to be self-cancelling if and only if all
traces originating from an initial configuration and ending in a terminated configura-
tion are self-cancelling:
∀w : Trace∗ · init(Â)

w−→ cnf ∧�(cnf)⇒ ∀A ∈ Â · cancOut(w−A ) = ε.

To facilitate reasoning about stacks, we define a function which returns the string
representation of the stack dropping any stack elements which do not contribute to
the trace.

Definition 16 Given a stack S, the function behaviour, S#, returns a sequence of
actions such that each character represents a compensation on the stack, with the head
being the bottom element of the stack. Since deviations only contribute a τ action to
the trace, we ignore deviation elements on the stack. Similarly, empty actions are
ignored.

((I, O, Â) � S)# =

{
S# if O = ∅
S# O otherwise

(d� S)# = S#

⊥# = ε

Proposition 2 Given a string w composed solely of compensations w ∈ (2Σ)∗, then
w returns a string composed solely of activities, w ∈ Σ∗ and hence applying cancOut
on w yields no change: if w ∈ (2Σ)∗, then cancOut(w) = w.

Proof Only the third case of Definition 15 can be applicable on w and hence no
reduction can take place.
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Proposition 3 Given an activity i ∈ Σ and a string w ∈ Trace−
∗
, then appending i

to w cannot contribute to cancellations which are not present in w. More formally,
cancOut(w) i = cancOut(w i)

Proof By Definition 15, i can only cause a reduction if i i is a sequence of the string.
Thus, cancOut(w i) would return the same cancellation result as cancOut(w) i since
nothing follows i.

Proposition 4 Given a compensation i and a string s = w j (i 6= j), then appending
i to s cannot contribute to cancellations which are not present in w. More formally,
cancOut(s) i = cancOut(s i)

Proof By Definition 15, i can only cause a reduction if i i is a sequence of the
string. By Proposition 3, cancOut(s) i = cancOut(w) j i and since j i by definition of
cancOut and uniqueness of compensations do not cancel out, then cancOut(w) j i =
cancOut(s i).

Proposition 5 Multiple applications of cancOut is the same as one application:
cancOut(cancOut(w)) = cancOut(w)

Proof The proof follows by string induction on w.

The base case for w = ε follows from Definition 15.

The inductive case w = k x is split into the following cases:

Case 1: x = i, (i ∈ Σ)

cancOut(k x)

{ By Proposition 3 }
= cancOut(k)x

{ By the inductive hypothesis }
= cancOut(cancOut(k))x

{ By Proposition 3 twice }
= cancOut(cancOut(k x))

Case 2a: x = i assuming k = k′ j (i 6= j)
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cancOut(k i)

{ By Proposition 3 }
= cancOut(k) i

{ By the inductive hypothesis }
= cancOut(cancOut(k)) i

{ By Proposition 4 twice }
= cancOut(cancOut(k i))

Case 2b: x = i and k = k′ i

{ By the inductive hypothesis }
cancOut(k′ i) = cancOut(cancOut(k′ i))

{ By Proposition 3 trice }
⇒ cancOut(k′) i = cancOut(cancOut(k′)) i

{ By removing i both sides }
⇒ cancOut(k′) = cancOut(cancOut(k′))

{ By Definition 15 twice }
⇒ cancOut(k i i) = cancOut(cancOut(k i i))

Proposition 6 Applying cancOut on a string w i is the same as cancelling out w and
then cancelling the result appended with i: for any w,w′ : Trace−

∗
, cancOut(w i) =

cancOut(cancOut(w) i).

Proof The proof follows by string induction on w.

The base case for w = ε follows by Definition 15.

The inductive case w = k x follows from the following cases:

Case 1: x = j, (j 6= i)

cancOut(k b i)

{ By Definition 15 }
= cancOut(cancOut(k j i))

{ By Proposition 4 twice }
= cancOut(cancOut(k j) i)

Case 2: x = a
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cancOut(k a a)

{ By Definition 15 }
= cancOut(k)

{ By Proposition 5 }
= cancOut(cancOut(k))

{ By Definition 15 }
= cancOut(cancOut(k) a a)

{ by Proposition 3 }
= cancOut(cancOut(k a) a)

Proposition 7 If cancOut(w) = w′ a then cancOut(w a) = cancOut(w′).

Proof The result is proved as follows:

{ By Proposition 6 }
⇒ cancOut(w a) = cancOut(cancOut(w) a)

{ By substitution }
⇒ cancOut(w a) = cancOut(w′ a a)

{ By Definition 15 }
⇒ cancOut(w a) = cancOut(w′)

Recall that the stack of a configuration stores a compensation for each activity which
occurred. When a compensation is activated, it is removed from the stack and exe-
cuted. Note that for each activity or compensating action, a corresponding modifica-
tion occurs on the stack. Thus, we can define the resulting stack of a configuration
step in terms of the original stack and the activity/action which occurred. Consider
the stack S = c � b � a � S which contains the compensation of three consecu-

tive activities a b c. Note that S# = c b a = a b c = a b c. Thus the compensation
stack acts as a record of past activities. If another activity d occurs, its compen-
sation would be pushed onto the stack resulting in a stack S ′ = d � S. As shown
before S ′# = a b c d = S# d. If the compensation d is executed, then the resulting

stack S ′′ would satisfy (#S ′′) = a b c. Furthermore, note that this is also equal to
cancOut(S ′# d). This is expressed in the following lemma.

Lemma 1 Generalising these observations, given a configuration Ã[q]S (where A :
A−) which reaches Ã[q′]S

′
on string w, the resulting stack S ′ can be expressed as a

function of the original stack and the generated string such that if Ã[q]S
w
=⇒ Ã[q′]S

′
,
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then S ′# = cancOut(S#w
−
A ). The same can be said if the initial or end configuration

(or both) is a nested configuration.

Proof The proof proceeds by string induction on w.

Base case: w = ε and thus S = S ′.

{ By application of Definition 16 }
⇒ S# = S ′#
{ By Definition 16 and by Proposition 2 }

⇒ S# = cancOut(S ′#)

{ By Definition 12 and w−A = ε }
⇒ S# = cancOut(S ′#w

−
A )

Inductive case: w = k x — The proof proceeds by a rule-by-rule analysis starting by
the rules which trigger on forward configurations,

→
A[q]S or

→
A[q]Scnf.

Case 1: Rule Suc, w = k (ii)A

{ By application of Suc }
⇒ S ′′ = ((i′, i), Â) � S ′

{ By Definition 16 }
⇒ S ′′# = iS ′#
{ By inductive hypothesis }

⇒ S ′′# = icancOut(S# k
−
A )

{ By Definition 12 }
⇒ S ′′# = cancOut(S# k

−
A ) i

{ By Proposition 3 and Definition 14 }
⇒ S ′′# = cancOut(S# (k i)−A )

Case 2: Rule Fail, w = k �, and S ′′ = S ′

{ By application of Fail and Definition 16 }
⇒ S ′′# = S ′#
{ By inductive hypothesis }

⇒ S ′′# = cancOut(S# k
−
A )

{ By Definition 14 }
⇒ S ′′# = cancOut(S# (k �)

−
A )
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Case 3: Rule NestSuc, w = k τ

{ By application of NestSuc and Definition 16 }
⇒ S ′′# = S ′#
{ By inductive hypothesis }

⇒ S ′′# = cancOut(S# k
−
A )

{ By Definition 14 }
⇒ S ′′# = cancOut(S# (k τ)−A )

Case 4: Rule NestFail, w = k �

{ By application of NestFail and Definition 16 }
⇒ S ′′# = S ′#
{ By inductive hypothesis }

⇒ S ′′# = cancOut(S# k
−
A )

{ By Definition 14 }
⇒ S ′′# = cancOut(S# (k �)

−
A )

Case 5: Rule Nest, w = k x
(x ∈ {(iO)A′ , (iO)A′ | i ∈ Σ ∧O ∈ 2Σ ∧ A′ 6= A} ∪ {τ, �})

{ By application of Nest and Definition 16 }
⇒ S ′′# = S ′#
{ By inductive hypothesis }

⇒ S ′′# = cancOut(S# k
−
A )

{ By Definition 14 }
⇒ S ′′# = cancOut(S# (k x)−A )
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Next, the rules which trigger on backward configurations,
←
A[q]S or

←
A[q]Scnf are consid-

ered.

Case 1: Rule Comp, w = k (i, i)A

{ By application of Comp }
⇒ S ′ = ((i′, i), Â) � S ′′

{ By Definition 16 }
⇒ S ′# = i S ′′#
{ By inductive hypothesis }

⇒ cancOut(S# k
−
A ) = i S ′′#

{ By Definition 12 twice }
⇒ cancOut(S# k

−
A ) = S ′′# i

{ By Proposition 7 and Definition 14 }
⇒ cancOut(S# (k i)−A ) = cancOut(S ′′#)

{ By Proposition 2 }
⇒ cancOut(S# (k i)−A ) = S ′′#
{ By Definition 12 }

⇒ cancOut(S# (k i)−A ) = S ′′#

Case 2: Rule Dev, w = k τ

{ By application of Dev }
⇒ S ′ = d� S ′′

{ By Definition 16 }
⇒ S ′# = S ′′#
{ By inductive hypothesis }

⇒ cancOut(S# k
−
A ) = S ′′#

{ By Definition 14 }
⇒ cancOut(S# (k τ)−A ) = S ′′#
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Case 3: Rule NestComp, w = k τ

{ By application of NestComp and Definition 16 }
⇒ S ′# = S ′′#
{ By inductive hypothesis }

⇒ cancOut(S# k
−
A ) = S ′′#

{ By Definition 14 }
⇒ cancOut(S# (k τ)−A ) = S ′′#

Case 4: Rule Nest, w = k x
(x ∈ {(iO)A′ , (iO)A′ | i ∈ Σ ∧O ∈ 2Σ ∧ A′ 6= A} ∪ {τ, �})

{ By application of Nest and Definition 16 }
⇒ S ′′# = S ′#
{ By inductive hypothesis }

⇒ S ′′# = cancOut(S# k
−
A )

{ By Definition 14 }
⇒ S ′′# = cancOut(S# (k x)−A )

Theorem 1 A compensating automaton is self-cancelling, i.e.
∀w : Trace∗ · goto(A, q0, [])

w
=⇒

←
A[q][] =⇒ cancOut(w−A ) = ε.

Proof By applying Definition 7 and Lemma 1 on the premise of the implication,

then it follows that []# = cancOut([]# w
−
A ). Since []# = ε, this gets simplified to

ε = cancOut(w−A ). Finally, by applying comp on both sides and by Definition 12, we
get ε = cancOut(w−A ) as required.

Note that the theorem above proves self-cancellation of a compensating automaton A
based on the definition of cancOut (Definition 15) which ignores symbols from nested
automata. If a nested automaton B is also a sibling of A in an automata vector,
then this would interfer with self-cancellation. Thus, without loss of generality, in
the corollary below it is assumed that nested automata are labelled differently from
sibling automata.

Corollary 1 A vector of compensating automata is self-cancelling, i.e.
∀w : Trace∗ · init(Â)

w
=⇒ cnf ∧�(cnf) =⇒ ∀A ∈ Â · cancOut(w−A ) = ε.

Proof The proof follows by induction on the number of automata in the vector. Self-
cancellation straightforwardly holds on an empty vector. The inductive case holds
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by considering rule Vect, Definition 14, which drops all activities relating to other
automata, and Theorem 1 which states that each trace of a compensating automaton
is self-cancelling.

4 Programming with Compensating Automata

The compensation logic for the e-procurement system has been programmed as a
vector of five automata shown in Fig. 5. Fig. 5(a) listens for program R′ events
up to the point where it is confirmed that at least some of the goods are available.
Subsequently, Fig. 5(b) is triggered and installs the compensation UnreserveGoods
upon the event ReserveGoods. Next, payment and transport for the goods available
are triggered through startPayment and startTransport respectively. If only some of
the goods are initially available and a partial shipment is going to take place, then
the Fig. 5(a) iterates till all the goods are available.1 One might argue that Fig. 5(a)
is useless since it is not installing any compensations. However, note that all the
following compensations are only installed if the pattern of its events is matched.
Through such event patterns, one may distinguish the kind of compensation required
in different contexts.

Fig. 5(c) depicts the automaton which compensates for payment. Initially a PayProc
compensation is installed so that if the process fails, any transport costs incurred
(hence the local communication guards) can be collected. Note that PayProc has
programmed compensation so that if the payment fails, an operator is notified. If
normal payment succeeds then the PayProc compensation is replaced by a Refund
which also takes into consideration the progress of the transport arrangement.

Fig. 5(d) depicts the automaton which compensates for transport arrangement. In
particular, if the process fails after the goods have been shipped, then the goods are
returned. If the return of the goods fails, then the returnFailed signal communicates
with Fig. 5(a) and the UnreserveGoods compensation is discarded. Furthermore,
Fig. 5(d) also includes a deviation which have been explained in Section 2.

Finally, Fig. 5(e) is responsible for installing the transCancOk signal and discarding
it whenever it is not longer required, i.e. whenever a charge compensation is installed.
This ensures that actions listening on event transCancOk, charge get triggered and
that only one of the elements is enabled.

The overall behaviour of programming the compensation manager with these au-
tomata and applying it to system S ′′ (assuming S ′′ knows the logic corresponding

1To provide compensations for all iterations we use parametrised events and dynamically trigger
copies of the automata in the spirit of the Larva framework [CPS08].

28



(a)

SendQuote?CustomerOk? CalcPrice?

SomeGoodsAv?

RecPurchOrder? AllGoodsAv?

RecQuoteReq?

RecQuoteReq?
processGoods!

processGoods!

(b) UnreserveGoods!

ReserveGoods?
startTransport!

reserveCanc?

returnFailed?processGoods? startPayment!

reserveCanc?

(c)
PayProc!

PayFailed?

transCancOk?

charge? Refund!

transCancOk?

charge?

SendInv?τ

startPayment? SendReceipt?

Operator!

RecPay?

RecPay?SendInv?

PayFailed?

(d)

ReturnGoods!

ShipGoods?

RecGdsDelAck?

startTransport?

ArrangeTransB?

ArrangeTransA?

UnavailableAddr?

CorrectedAddr?

charge! CancelA!

charge! CancelB!

SendGoodsNot?

AddrOk?

returnFailed!

InspectionOk?GoodsReturned?

charge!

τ

(e)

startTransport? ArrangeTransA?

transCancOk!
ArrangeTransB?

GoodsReturned?

reserveCanc!

τ

Figure 5: The compensating automata vector for the e-procurement system.
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to UnreserveGoods, RecPay, Refund, etc) would satisfy all the features of the e-
procurement system.

5 Discussion

A concern for the take up of our approach would probably be security and privacy con-
cerns for the communication of system events to the compensation manager. However,
while it is true that we have logically separated the system from its compensations,
this is not necessarily so at the execution level. For example a preliminary implemen-
tation on Java uses aspect-oriented programming [Kic05] which preserves the logical
separation even at the Java code level but at the same time does not expose sensi-
tive information to external entities (at least not any more than the system already
exposes).

There are numerous formalisations and notations [bpm08, BMM05, BF04, BHF04,
ES08, FR05, GLG+06, HZWL08, LMSMT08, LPT08, SDN07] which support compen-
sations including some which are pictorial (e.g. petrinet-based formalisms [HZWL08],
communicating hierarchical transaction-based timed automata (CHTTAs) [LMSMT08],
and BMPN [bpm08]). There are three main features distinguishing are work. Firstly,
do to the proposed compensation design paradigm, compensating automata do not
have operators which include forward recovery such as alternative forwarding and
speculative choice (provided for example in [BMM05, BHF04]). Secondly, compen-
sating automata provide a set of compensation-dedicated operators which do not
require the user to hand code frequently occurring patterns in compensation design
(for example compensating automata provide explicit compensation replacement as
opposed to for example [BF04, GLG+06] which provide generic stack operations).
Thirdly, compensating automata support the concept of a deviation which enables
a business process to be partially compensated. To the best of our knowledge this
has not been proposed before in the literature. The formalism which is most similar
to ours is that of CHTTAs. However, in CHTTAs compensations are not first-class
operators and are instead wired in terms of communicating channels. Furthermore,
compensations in CHTTAs are programmed in terms of patterns which lose the un-
structured nature of automata.

We are aware of two other approaches which offer a solution to the compensation issues
highlight through the e-procurement scenario. The first, by Nepal et al. [NFG+05],
moves towards the complete opposite of our approach and proposes a model which
does not differentiate between normal and exceptional behaviour, and abstracts away
from the notion of compensation. They claim that this approach simplifies the spec-
ification of the system. The second approach, by Schäfel et al. [SDN07], is similar to
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ours in that it proposes the separation of compensations from functionality, proposing
a manager which manages compensations for a particular web service functionality
and a compensation language which specifies the corresponding compensations. How-
ever, although conceptually similar, our approach is fundamentally different due to
their lose understanding of compensations. By our strict definition of compensation,
their approach does not separate compensation concerns from other concerns such as
repeating or retrying activities.

6 Conclusions

Compensation concerns often crosscut other programming concerns and thus attempt-
ing to program compensations within the main flow of a program would clutter the
program and also limit the expressivity of compensation programming. In this paper,
we have presented an alternative approach to compensation programming through
the monitoring of system events using a compensation manager. The contributions
of this paper include: (i) A novel compensation design paradigm which advocates
complete separation of compensation concerns; (ii) A compensation programming
notation — compensating automata, which includes a new compensation construct,
the deviation, used to redirect compensation; (iii) Formalisation of the syntax, seman-
tics, and self-cancellation of these automata; and (iv) Programming compensations
for a real-life e-procurement system — showing compensating automata to be useful
for handling non-trivial compensation logic.

A limitation of the current approach is that the system has a single feedback line
through which it can signal compensations. This is a limitation when there are several
different potential compensations from which the system can choose (for example see
[BF04]). In the future we aim to lift this limitation by using monitoring techniques
to decide which compensation should be run in the given runtime context.
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