
Hardware Design
Based on Verilog HDL

Gordon J. Pace
Balliol College

Oxford University Computing Laboratory

Programming Research Group

Trinity Term 1998

Thesis submitted for the degree of Doctor of Philosophy

at the University of Oxford

Abstract

Up to a few years ago, the approaches taken to check whether a hardware com-
ponent works as expected could be classified under one of two styles: hardware
engineers in the industry would tend to exclusively use simulation to (empiri-
cally) test their circuits, whereas computer scientists would tend to advocate an
approach based almost exclusively on formal verification. This thesis proposes
a unified approach to hardware design in which both simulation and formal
verification can co-exist.

Relational Duration Calculus (an extension of Duration Calculus) is devel-
oped and used to define the formal semantics of Verilog HDL (a standard indus-
try hardware description language). Relational Duration Calculus is a temporal
logic which can deal with certain issues raised by the behaviour of typical hard-
ware description languages and which are hard to describe in a pure temporal
logic. These semantics are then used to unify the simulation of Verilog pro-
grams, formal verification and the use of algebraic laws during the design stage.
A simple operational semantics based on the simulation cycle is shown to be
isomorphic to the denotational semantics. A number of laws which programs
satisfy are also given, and can be used for the comparison of syntactically dif-
ferent programs.

The thesis also presents a number of other results. The use of a temporal
logic to specify the semantics of the language makes the development of pro-
grams which satisfy real-time properties relatively easy. This is shown in a case
study. The fuzzy boundary in interpreting Verilog programs as either hardware
or software is also exploited by developing a compilation procedure to translate
programs into hardware. Hence, the two extreme interpretations of hardware
description languages as software, with sequential composition as the topmost
operator (as in simulation), and as hardware with parallel composition as the
topmost operator are exposed.

The results achieved are not limited to Verilog. The approach taken was
carefully chosen so as to be applicable to other standard hardware description
languages such as VHDL.

All of a sudden, it occurred to me that I

could try again in a different way, more sim-

ple and rapid, with guaranteed success. I be-

gan making patterns again, correcting them,

complicating them. Again I was trapped in

this quicksand, locked in this maniacal ob-

session. Some nights I woke up and ran to

note a decisive correction, which then led to

an endless series of shifts. On other nights I

would go to bed relieved at having found the

perfect formula; and the next morning, on

waking, I would tear it up. Even now, with

the book in the galleys, I continue to work

over it, take it apart, rewrite. I hope that

when the volume is printed I will be outside

it once and for all. But will this ever hap-

pen?

The Castle of Crossed Destinies

Italo Calvino, 1969

Acknowledgements

First of all, I would like to thank my supervisor, Jifeng He, for frequent and
fruitful discussions about the work presented in this thesis. I would also like to
thank all those in Oxford with similar research interests, discussions with whom
regularly led to new and interesting ideas.

Thanks also go all my colleagues at the Department of Computer Science and
Artificial Intelligence at the University of Malta, especially Juanito Camilleri,
for providing a wonderful working environment during this past year.

Needless to say, I would like to thank all my friends, too numerous to list,
who helped to make the years I spent in Oxford an unforgettable period of my
life. Also, thanks go to my parents whose constant support can never be fully
acknowledged.

Finally, but certainly not least, thanks go to Sarah, for encouragement,
dedication and patience, not to mention the long hours she spent proof-reading
this thesis.

I also wish to acknowledge the financial help of the Rhodes Trust, who
partially supported my studies in Oxford.

Contents

1 Introduction 1
1.1 Aims and Motivation . 1

1.1.1 Background . 1
1.1.2 Broad Aims . 2
1.1.3 Achievements . 3
1.1.4 Overview of Existent Research 4
1.1.5 Choosing an HDL . 5
1.1.6 Verilog or VHDL? . 6

1.2 Details of the Approach Taken 7
1.2.1 General Considerations 7
1.2.2 Temporal Logic . 7

1.3 Overview of Subsequent Chapters 8

I 10

2 Verilog 11
2.1 Introduction . 11

2.1.1 An Overview . 11
2.2 Program Structure . 12
2.3 Signal Values . 13
2.4 Language Constructs . 13

2.4.1 Programs . 14
2.4.2 Example Programs . 17

2.5 The Simulation Cycle . 17
2.5.1 Initialisation . 18
2.5.2 Top-Level Modules . 19

2.6 Concluding Comments . 20

3 Relational Duration Calculus 21
3.1 Introduction . 21
3.2 Duration Calculus . 21

3.2.1 The Syntax . 21
3.2.2 Lifting Predicate Calculus Operators 22
3.2.3 The Semantics . 23
3.2.4 Validity . 25
3.2.5 Syntactic Sugaring . 26

3.3 Least Fixed Point . 27
3.3.1 Open Formulae . 27
3.3.2 Fixed Points . 27
3.3.3 Monotonicity . 28
3.3.4 Semantics of Recursion 28

i

3.4 Discrete Duration Calculus . 29
3.5 Relational Duration Calculus . 29

3.5.1 Introduction . 29
3.5.2 The Syntax and Informal Semantics 30
3.5.3 The Semantics . 31

3.6 Laws of the Relational Chop Operator 34
3.7 Conclusions . 35

4 Real Time Specifications 37
4.1 The Real Time Operators . 37

4.1.1 Invariant . 37
4.1.2 Followed By . 38
4.1.3 Leads To . 38
4.1.4 Unless . 39
4.1.5 Stability . 40

4.2 Discrete Duration Calculus . 40
4.3 Summary . 40

II 41

5 Formal Semantics of Verilog 42
5.1 Introduction . 42
5.2 Syntax and Informal Semantics of Verilog 42
5.3 The Formal Semantics . 46

5.3.1 The Techniques Used . 46
5.3.2 Syntactic Equivalences . 47
5.3.3 The Primitive Instructions 47
5.3.4 Constructive Operators 50
5.3.5 Top-Level Instructions . 52

5.4 Other Extensions to the Language 53
5.4.1 Local Variables . 53
5.4.2 Variable Initialisation . 53
5.4.3 Delayed Continuous Assignments 54
5.4.4 Transport Delay . 54
5.4.5 Non-Blocking Assignments 55

5.5 Discussion . 57
5.5.1 Avoiding Combinational Loops 57
5.5.2 Time Consuming Programs 57
5.5.3 Extending Boolean Types 58
5.5.4 Concurrent Read and Write 59

5.6 Related Work . 59
5.7 Conclusions . 60

6 Algebraic Laws 61
6.1 Introduction . 61
6.2 Notation . 61
6.3 Monotonicity . 62
6.4 Assignment . 65
6.5 Parallel and Sequential Composition 66
6.6 Non-determinism and Assumptions 68
6.7 Conditional . 69
6.8 Loops . 70
6.9 Continuous Assignments . 73

ii

6.10 Communication . 74
6.11 Algebraic Laws for Communication 74

6.11.1 Signal Output . 74
6.11.2 Wait on Signal . 75
6.11.3 Continuous Assignment Signals 76

6.12 Signals and Merge . 76
6.13 Conclusions . 77

III 78

7 A Real Time Example 79
7.1 Introduction . 79
7.2 System Specification . 79

7.2.1 The Boolean States Describing the System 79
7.2.2 System Requirements . 80
7.2.3 System Assumptions . 81

7.3 Implementing the Specification 82
7.4 Specification and Implementation Decomposition 82
7.5 Calculation of the Implementation 83

7.5.1 Closing and Opening the Gate 83
7.5.2 The Traffic Lights . 83

7.6 The Implementation . 85
7.7 Other Requirements . 85

8 Hardware Components 87
8.1 Combinational Circuits . 87
8.2 Transport Delay . 87
8.3 Inertial Delay . 87
8.4 Weak Inertial Delay . 88
8.5 Edge Triggered Devices . 88
8.6 Weak Edge Triggered Devices . 88
8.7 Hiding . 89
8.8 Composition of Properties . 89
8.9 Algebraic Properties of Hardware Components 90

8.9.1 Combinational Properties 90
8.9.2 Delay Properties . 91
8.9.3 Edge Triggers . 92
8.9.4 Composition . 92
8.9.5 Hiding . 93

8.10 Reducing Properties to a Normal Form 94
8.10.1 The Normal Form . 94
8.10.2 Transport to Inertial Delay 94
8.10.3 Weak Inertial Delays . 95
8.10.4 Edge Triggered Registers 95

8.11 Reduction to Normal Form . 96
8.12 Implementation of Properties in Verilog 97
8.13 Summary . 99

iii

9 Decomposition of Hardware Component Specifications: Exam-
ples 100
9.1 A Combinational n-bit Adder . 100

9.1.1 Combinational Gates . 101
9.1.2 Half Adder . 101
9.1.3 Full Adder . 102
9.1.4 Correctness of the Full Adder 102
9.1.5 n-bit Adder . 103
9.1.6 Implementation in Verilog 105

9.2 Delayed Adder . 105
9.2.1 The Logic Gates . 106
9.2.2 Half Adder . 106
9.2.3 Full Adder . 106
9.2.4 Proof of Correctness . 107
9.2.5 n-bit Delayed Adder . 108
9.2.6 Implementation in Verilog 108

9.3 Triggered Adder . 109
9.3.1 Components . 109
9.3.2 Decomposition of the Specification 109
9.3.3 Implementation . 110

9.4 Conclusions . 110

IV 112

10 A Hardware Compiler for Verilog 113
10.1 Introduction . 113
10.2 Triggered Imperative Programs 114
10.3 The Main Results . 116

10.3.1 Sequential Composition 116
10.3.2 Conditional . 117
10.3.3 Loops . 118

10.4 Compilation . 119
10.5 Conclusions . 124

10.5.1 Other Constructs . 124
10.5.2 Basic Instructions . 125
10.5.3 Single Runs . 125
10.5.4 Overall Comments . 126

11 An Operational Semantics of Verilog 127
11.1 Introduction . 127
11.2 The Program Semantics . 128

11.2.1 Infinite Tail Programs . 128
11.2.2 Finite Loops . 128

11.3 The Operational Semantics . 129
11.3.1 Immediate Transitions 129
11.3.2 Extension to Parallel Composition 131
11.3.3 Unit Time Transitions . 132

11.4 Equivalence of Semantics . 136
11.4.1 An Informal Account . 136
11.4.2 Formalising the Problem 136
11.4.3 Refinement Based on the Denotational Semantics 137
11.4.4 Refinement Based on the Operational Semantics 138
11.4.5 Preliminary Results . 139

iv

11.4.6 Unifying the Operational and Denotational Semantics . . 142
11.5 Conclusions . 145

V 146

12 Conclusions and Future Work 147
12.1 An Overview . 147
12.2 Shortcomings . 147
12.3 Future Work . 148

12.3.1 Other Uses of Relational Duration Calculus 148
12.3.2 Mechanised Proofs . 149
12.3.3 Real-Time Properties and HDLs 149
12.3.4 Extending the Sub-Languages 149

12.4 Conclusion . 150

Bibliography 151

v

Chapter 1

Introduction

1.1 Aims and Motivation

1.1.1 Background

System verification is one of the main raisons d’être of computer science. Var-
ious different approaches have been proposed and used to formally define the
semantics of computer languages, and one can safely say that most computer
scientists have, at some point in their research, tackled this kind of problem or
at least a similar one. One particular facet of this research is hardware veri-
fication. Before discussing the possible role of computer science in hardware,
it may be instructive to take a look at how hardware is usually developed in
practice.

In contrast to software, checking hardware products by building and then testing
on a number of ‘typical’ inputs and comparing the outputs with the expected
results, can be prohibitively expensive. Building a prototype circuit after every
iteration of the debugging process involves much more resources, ranging from
time to money, than those involved in simply recompiling the modified source
code.

This gave rise to the concept of simulation of hardware using software. If hard-
ware can be simulated by software efficiently and correctly, then the expense
of developing hardware can be reduced to that of software and, similarly, the
order of the speed of development of hardware can be pushed up to be on the
same level as that for software

This idea can be pushed further. Since the comparison of input and output pairs
can be a tiresome and hence error prone process, given a description of a hard-
ware product, one can build a shell around it to successively feed in a number
of inputs and compare them to the expected outputs. Hence, simply by giving
a table of results, an engineer can design and use a testing module which would
protest if the given circuit failed any of the tests. This makes the debugging
process easier, and furthermore the results are more easily reproducible.

But certain devices can be described more easily than by giving a whole table
of input, output pairs. For some, a simple equation can suffice, while for others
it may be necessary to use an algorithm. Hence, if the simulator is also given
the ability to parse algorithms, one can check circuits more easily. For example,
given a circuit and a claim that it computes the nth Fibonacci number (where
n is the input), we can easily test the circuit for some inputs by comparing
its output to the result of a short program evaluating Fibonacci numbers using

1

recursion or iteration. If the algorithmic portions in the simulator can be some-
how combined with the hardware description parts, one can also start with an
algorithmic ‘specification’ and gradually convert it into a circuit.

This is the main motivation behind the development and design of hardware
description languages. Basically, they provide a means of describing hardware
components, extended with algorithmic capabilities, which can be efficiently
simulated in software to allow easy and cheap debugging facilities for hardware.

As in software, hardware description languages (henceforth HDLs) would benefit
greatly if research is directed towards formalising their semantics.

1.1.2 Broad Aims

In the hardware industry, simulation is all too frequently considered synony-
mous with verification. The design process usually consists of developing an
implementation from a specification, simulating both in software for a number
of different inputs and comparing the results. Bugs found are removed and the
process repeated over and over again, until no new bugs are discovered. This
procedure, however, can only show the presence of errors, not their absence.

On the other hand, formal methods cannot replace existing methods of hardware
design overnight. Figure 1.1 proposes one possible framework via which formal
methods may be introduced in hardware design. The approach is completely
built upon formal techniques but includes simulation for design visualisation and
development. Formal laws helping hardware engineers to correctly transform
specifications into the implementation language are also included. The result
is more reliability within an environment which does not require a complete
revolution over current trends.

• Both the specification and implementation languages are formally defined
within the same mathematical framework. This means that the statement:
‘implementation I is a refinement of specification S’ is formally defined
and can be checked to be (or not to be) the case beyond any reasonable
doubt.

• Design rules which transform a code portion from one format into another
are used to help the designer transform a specification into a format more
directly implementable as a hardware component. These rules are verified
to be correct within the semantic domain, and hence the implementation
is certain to be reliable.

• The relation between the simulator semantics and the semantics for the
implementation language can also be shown. By formally defining the
simulation cycle, we can check whether the semantics of a program as
derived from the implementation language match the meaning which can
be inferred from the simulation of the program.

The synthesis process is effectively a compilation task, which can be verified
to be correct — that the resultant product is equivalent to (or a refinement
of) the original specification code. However, since the design rules may not be
complete, leaving situations unresolved, the inclusion of simulation within the
formal model is used to help in the design process. This is obviously the area
in which formal tools fit best. A verified hardware compiler which transforms
high level HDL code into a format which directly represents hardware is one
instance of such a tool.

2

Simulation

simulation process
Formally defined

Design Rules
Implementation

to behavioural semantics
Simulation semantics equivalent

Formally verified algebraic laws Formal semantics for
industry standard HDLspecification language

Formal semantics for

Specification

Figure 1.1: Simulation and verification: a unified approach

Since the design procedure is not always decidable, it may leave issues open,
which it hands over to the designer to resolve. The simulator may then be used
to remove obvious bugs, after which, it can be formally verified.

This is not the first time that a framework to combine simulation and formal ver-
ification techniques has been proposed. Other approaches have been proposed
elsewhere in the literature.

In view of these facts, a formal basis for an HDL is of immediate concern. As in
the case of software, one would expect that, in general, verifying large circuits
would still be a daunting task. However, it should hopefully be feasible to verify
small sensitive sub-circuits. This indicates the importance of a compositional
approach which allows the joining of different components without having to
restart the verification process from scratch.

Finally, another important aim is to analyse the interaction between software
and hardware. A circuit is usually specified by a fragment of code which mimics
the change of state in the circuit. Since most HDLs include imperative language
constructs, a study of this feature will help anyone using an HDL to consider the
possibility of implementing certain components in software. At the opposite end
of the spectrum, software designers may one day include HDL-like constructs in
their software languages to allow them to include hardware components within
their code.

The aim of this research is thus twofold:

1. To investigate the formal semantics of a hardware description language

2. To study possible algebraic methods and formal hardware techniques which
can aid the process of verification and calculation of products. These tech-
niques will ideally be of a general nature and the ideas they used would
be applicable to other HDLs.

1.1.3 Achievements

The original contributions presented in this thesis can be split into a number of
different areas:

• At the most theoretical level, we present a variant of Duration Calculus,
which can deal with certain situations which normal Duration Calculus
fails to handle. Since the conception of Relational Duration Calculus, a
number of similar extensions to Duration Calculus have sprung up inde-
pendently. Despite this we still believe that Relational Duration Calculus

3

can express certain constraints much more elegantly than similar calculi.
A justification of this statement is given in chapter 3.

• Relational Duration Calculus is used to specify a semantics of a subset
of Verilog. We do not stop at giving the semantics to this subset, but
investigate other Verilog instructions where the more complex semantics
expose better the inherent assumptions made in the exposition of the
initially examined constructs.

• Algebraic laws allow straightforward syntactic reasoning about semantic
content and are thus desirable. The semantics of Verilog are used to derive
a suite of useful algebraic laws which allow comparison of syntactically
different programs.

• The semantics are also used to transform specifications in different styles
into Verilog programs. One of the two styles, real-time specifications, has
been, in our opinion, largely ignored in formal treatments of HDLs. The
other style shows how one can define a simple specification language and
give a decision procedure to transform such a specification into Verilog
code. Some examples are given to show how such a specification language
can be used.

• Finally, the two opposing aspects in which one can view HDLs, as software
or as hardware, is investigated in the last few chapters. On one hand,
Verilog is simulated in software, essentially, by reducing it into a sequential
program. On the other hand, certain Verilog constructs have a direct
interpretation as hardware.

– We start by showing that the denotational semantics of Verilog are
sound and complete with respect to a simple version of Verilog sim-
ulation cycle semantics (given as an operational semantics). Essen-
tially, this allows us to transform Verilog programs into sequential
programs.

– At the other end of the spectrum, we define, and prove correct, a
compilation procedure from Verilog programs into a large collection
of simple programs running in parallel. Most of these programs can
be directly implemented in hardware.

This allows a projection of Verilog programs in either of the two different
directions.

As can be deduced from this short summary, the main contribution of this thesis
is to give a unified view of all these issues for Verilog HDL. Some of the aspects
treated in this thesis had previously been left unexplored with respect to HDLs
in general.

In exploring these different viewpoints, we have thus realised a basis for the
formal framework shown in figure 1.1 and discussed in the previous section.

1.1.4 Overview of Existent Research

Frameworks similar to the one proposed have been developed and researched
time and time again for software languages. However, literature on the join-
ing of the two, where hardware simulation and verification are put within the
same framework, is relatively sparse [Cam90, Poo95, Tan88, Mil85b, Bry86,

4

Pyg92] and such approaches with an industry standard HDL are practically
non-existent.

Most research treating hardware description languages formally tends to con-
centrate on academically developed languages, such as CIRCAL and RUBY.
When one considers the complexities arising in the semantics of real-life hard-
ware description languages, this is hardly surprising.

Formal studies of industry standard HDLs have been mostly limited to VHDL1

[BGM95, BSC+94, BSK93, Dav93, Goo95, KB95, Tas90, TH91, Tas92, WMS91].
As with hardware models, the approaches used are extremely different, making
comparison of methods quite difficult. Since the semantics of the language is
intimately related to the simulation cycle, which essentially sequentialises the
parallel processes, most of the approaches are operational. These approaches
usually help by giving a formal documentation of the semantics of the simulation
language, but fail to provide practical verification methods.

Another popular standard HDL is Verilog[Ope93, Tho95, Gol96]. Although it
is as widespread as VHDL, Verilog has not yet attracted as much formal work
[Bal93, Gor95, GG95, Pro97, PH98]. Paradoxically, this fact may indicate a
more promising future than for VHDL. Most formal work done on VHDL refers
back to the informal official documentation. In Verilog, a paper addressing the
challenges posed by the language and giving a not-so-informal description of the
semantics was published before a significant amount of work on the language
appeared [Gor95]. Hopefully, researchers will use this as a starting point or at
least compare their interpretation of the semantics with this. Also, the research
carried out in developing formal techniques for the treatment of VHDL is al-
most directly applicable to Verilog. If researchers in Verilog stick to the clearer
semantics presented in [Gor95] rather than continuously referring back to the
language reference manual, and follow guidelines from the lessons learnt from
VHDL, formal research in this area may take a more unified approach.

Practical verification methods and verified synthesis procedures, which trans-
form specifications into a form directly implementable as hardware, are probably
the two main ultimate goals of the research in this field. Currently, we are still
very far from these ultimate targets, and a lot of work still has to be done before
positive results obtained will start to change the attitude of industries producing
hardware with safety-critical components towards adopting these methods.

1.1.5 Choosing an HDL

One major decision arising from this discussion, is what HDL to use. We can
either use an industry standard language or use one which has been developed
for academic use or even develop one of our own.

The first choice is whether or not to define an HDL from scratch. The advantages
of starting from scratch are obvious: since we are in control of the design of
the language, we can select one which has a relatively simple behavioural and
simulation semantics. On the other hand, this would mean that less people
(especially from industry) would make an effort to follow the work and judge
whether the approach we are advocating is in fact useful in practice. Defining
our own language would also probably mean that certain features commonly
used by hardware engineers may be left out for the sake of a simple formalism,
with the danger that this choice may be interpreted as a sign that the formal

1VHSIC Hardware Description Language, where VHSIC stands for ‘Very High Speed In-
tegrated Circuits’[Per91, LMS86]

5

approach we are advocating is simply not compatible with real-life HDLs. In
view of these facts it is probably more sensible to work with an already existent
HDL.

However, we can choose to avoid the problem by using an already existent aca-
demically developed HDL such as RUBY or CIRCAL. This is quite attractive
since the formal semantics of such HDLs have already been defined, and it is
usually the case that these semantics are quite elegant. In comparison, indus-
trially used HDLs tend to be large and clumsy, implying involved semantics
which are difficult to reason with and not formally defined anywhere. Despite
these advantages, the difficulty in getting industry interested in the techniques
developed for non-standard HDLs is overwhelming.

This means that the only way of ensuring that the aims of the approach proposed
are feasible, would be to grit our teeth and use an industry standard HDL,
possibly restricting the language reasonably in order to have simpler semantics.
The main aim of this thesis is to show how industrial methods such as simulation
can be assisted (as opposed to just replaced) by formal methods. Working with
a subset of a industry standard HDL means that there is a greater chance of
persuading hardware engineers to look at the proposed approach and consider
its possible introduction onto their workbench.

The final problem which remains is that of choosing between the standard in-
dustrial HDLs available. This choice can be reduced to choosing between the
two most popular standards: Verilog or VHDL. These are the HDLs which can
best guarantee a wide hardware engineer audience.

1.1.6 Verilog or VHDL?

It is important to note that this is a relatively secondary issue. The main
aim of this thesis is not to directly support a particular HDL, but to present
a framework within which existent HDLs can be used. We will avoid lengthy
discussions regarding particular features of a language which are not applicable
to other standard HDLs. Having said this, it is obviously important to choose
one particular language and stick to it. If not, we might as well have developed
our own HDL.

When choosing an HDL to work on, the first that tends to spring to mind is
VHDL. It is usually regarded as the standard language for hardware description
and simulation. A single standard language avoids repetition of development
of libraries, tools, etc. This makes VHDL look like a very likely candidate.
Furthermore, quite a substantial amount of work has also been done on the
formalisation of the VHDL simulation cycle and the language semantics which
can help provide further insight into the language over and above the official
documentation.

Another choice is Verilog HDL. Verilog and VHDL are the two most widely used
HDLs in industry. Verilog was developed in 1984 by Phil Moorby at Gateway
Design Automation as a propriety verification and simulation product. In 1990,
the IEEE Verilog standards body was formed, helping the development of the
language by making it publicly available. Unlike VHDL, which is based on ADA,
Verilog is based on C. It is estimated that there are as many as 25,000 Verilog
designers with 5,000 new students trained each year[Gor95]. This source also
claims that Verilog has a ‘wide, clear range of tools’ and has ‘faster simulation
speed and efficiency’ than VHDL.

6

Research done to formalise Verilog is minimal. However, in [Gor95], M.J.C. Gor-
don informally investigated the language and outlined a subset of the language
called V. Although the approach is informal, the descriptions of the simulation
cycle and language semantics are articulated in a clearer way than the official
language documentation. If this description is accepted as a basis for the lan-
guage by the research community, it would be easier to agree on the underlying
semantics. The sub-language, V, is also an advantage. In research on VHDL,
different research groups came up with different subsets of the language. V pro-
vides researchers working on Verilog with a small manageable language from
which research can start. Although, the language may have to be even further
reduced or enhanced to make it more suited to different formal approaches, the
common sub-language should help to connect work done by different research
groups.

Finally, Verilog provides all the desirable properties of an HDL. It provides a
structure in which one can combine different levels of abstraction. Both struc-
tural and behavioral constructs are available, enabling design approaches where
a behavioral definition is gradually transformed into a structural one which may
then be implemented directly as hardware.

The competition seems to be quite balanced. VHDL, being more of an ac-
knowledged standard, is very tempting. However, Verilog is widely used and is
(arguably) simpler than VHDL. The definition of a sub-language of Verilog and
a not-so-informal definition of the semantics, before any substantial research has
been carried out are the decisive factors. They solve a problem encountered by
many VHDL researchers by attempting to firmly place a horse before anyone
even starts thinking about the cart.

Most importantly, however, I would like to reiterate the initial paragraph and
emphasise that the experience gained in either of the languages can usually be
applied to the other. Thus, the application of the semantics of these languages
and techniques used to describe the semantics is where we believe that the main
emphasis should be placed.

1.2 Details of the Approach Taken

1.2.1 General Considerations

The first decision to be taken was that of selecting the kind of approach to
be used in defining the semantics of the language. Most interpretations of
the VHDL semantics have been defined in terms of an operational semantics.
Although the definitions seem reasonably clear and easy to understand, in most
cases the result is a concrete model which can make verification very difficult.
Operational semantics are implementation-biased and cannot be used to link a
design with its abstract specification directly. A more abstract approach seems
necessary for the model to be more useful in practice.

1.2.2 Temporal Logic

Previous research has shown the utility of temporal logic in specifying and
verifying hardware and general parallel programs in a concise and clear manner
[Boc82, HZS92, MP81, Mos85, Tan88]. Other approaches used include, for
example, Higher Order Logic (HOL) [CGM86], relational calculus, petri nets,
process algebras such as CSP or CCS, etc. Temporal logics appear to be more

7

suitable for our purpose of defining the semantics of Verilog. It avoids the
explicit use of time variables, has a more satisfactory handling of time than
CSP or CCS and handles parallel processes in an easier way than pure Relational
Calculus.

A deeper analysis of Verilog shows that standard temporal logics are not strong
enough to define the semantics of the language completely. The mixture of
sequential zero-delay and timed assignments cannot be readily translated into
a temporal logic. Zero time in HDLs is in fact interpreted as an infinitesimally
small (but not zero) delay. Standard temporal logics give us no alternative but
to consider it as a zero time interval (at a high level of abstraction), which can
cause some unexpected and undesirable results. One solution was to upgrade
the temporal logic used to include infinitesimal intervals. This is, in itself, a
considerable project. A less drastic but equally effective solution is to embed a
relational calculus approach within a temporal logic.

The next decision dealt with the choice of temporal logic to use. Interval Tem-
poral Logic [Mos85] and Discrete Duration Calculus [ZHR91, HO94] seemed
to be the most appropriate candidates. Eventually, Discrete Duration Calculus
was chosen because of its more direct handling of clocked circuits and capability
of being upgraded to deal with a dense time space if ever required.

1.3 Overview of Subsequent Chapters

The thesis has been divided into four main parts, each of which deals with a
different aspect of the formalisation of the semantics of Verilog HDL.

Part I: This part mainly serves to set the scene and provide the background
and tools necessary in later parts.

Chapter 2 gives a brief overview of Verilog, concentrating on the subset
of the language which will be subsequently formalised.

Chapter 3 starts by describing vanilla Duration Calculus as defined in
[ZHR91]. It is followed by an original contribution — an extension to the
calculus to deal with relational concepts: Relational Duration Calculus,
which will be necessary to define the formal semantics of Verilog.

Expressing real-time properties in Duration Calculus can sometimes yield
daunting paragraphs of condensed mathematical symbols. But abstraction
is what makes mathematics such a flexible and useful tool in describing the
real world. Chapter 4 gives a syntactic sugaring for Duration Calculus
to allow concise and clear descriptions of real-time properties, based on
the work given in [Rav95].

Part II: We now deal with the formalisation of Verilog HDL.

Chapter 5 gives a formal interpretation of the semantics of a subset of
Verilog using Relational Duration Calculus, and discusses how this subset
can be enlarged.

Algebraic reasoning is one of the major concerns of this thesis. Chapter
6 gives a number of algebraic laws for Verilog based on the semantics given
in the previous chapter.

8

Part III: Two case studies are given to assess the use of the semantics.

In chapter 7 we specify a rail-road crossing (as given in [HO94]) and
transform the specification into a Verilog program which satisfies it.

A different approach is taken in chapters 8 and 9. In this case, a sim-
ple hardware specification language is defined, which can be used to state
some basic properties of circuits. Using this language, a number of simple
circuits are specified. A number of algebraic laws pertaining to this spec-
ification language are then used on these examples to show how it can be
used in the decomposition of hardware components and their implemen-
tation in Verilog.

Part IV: Finally, the last part investigates the relationship between hardware
and software inherent in Verilog specifications.

Chapter 10 looks at the conversion of Verilog code into a smaller subset
of Verilog which has an immediate interpretation as hardware. Essentially,
the transformations proved in this chapter provide a compilation process
from Verilog into hardware.

Chapter 11 shows how a simplification of the Verilog simulation cycle,
interpreted as an operational semantics of the language, guarantees the
correctness of the semantics given earlier.

Lastly, the twelfth and final chapter gives a short resumé and critical analysis of
the main contributions given in this thesis and investigates possible extensions
which may prove to be fruitful.

9

Part I

This part of the thesis sets the scene for the rest
of the work by introducing the basic theory and
notation necessary. Chapter 2 describes the sub-
set of the Verilog HDL which will be formalised.
Chapter 3 introduces the Duration Calculus and
Relational Duration Calculus which will be used
to define the semantics of Verilog. Finally, chap-
ter 4 defines a number of real-time operators
which will be found useful in later chapters.

10

Chapter 2

Verilog

2.1 Introduction

This chapter gives an informal overview of Verilog. Not surprisingly, this ac-
count is not complete. However, all the essentials are treated in some depth,
and this obviously includes the whole of the language which will be treated for-
mally later. For a more comprehensive description of the language a number
of information sources are available. [Tho95, Gol96] give an informal, almost
tutorial-like description of the language, while [Ope93, IEE95] are the standard
texts which one would use to resolve any queries. Finally, a concise, yet very
effective description of a subset of Verilog and the simulation cycle can be found
in [Gor95].

2.1.1 An Overview

A Verilog program (or specification, as it is more frequently referred to) is a
description of a device or process rather similar to a computer program written
in C or Pascal. However, Verilog also includes constructs specifically chosen to
describe hardware. For example, in a later section we mention wire and register
type variables, where the names themselves suggest a hardware environment.

One major difference from a language like C is that Verilog allows processes
to run in parallel. This is obviously very desirable if one is to describe the
behaviour of hardware in a realistic way.

This leads to an obligatory question: How are different processes synchronised?
Some parallel languages, such as Occam, use channels where the processes run
independently until communication is to take place over a particular channel.
The main synchronisation mechanism in Verilog is variable sharing. Thus, one
process may be waiting for a particular variable to become true while another
parallel process may delay setting the particular variable to true until it is out
of a critical code section.

Another type of synchronisation mechanism is the use of simulation time. At
one level, Verilog programs are run under simulators which report the values
of selected variables. Each instruction takes a finite amout of resource time to
execute and one can talk about speed of simulators to discuss the rate at which
they can process a given simulation. On the other hand, Verilog programs also
execute in simulation time. A specification may be delayed by 5 seconds of
simulation time. This does not mean that simulating the module will result

11

in an actual delay of 5 seconds of resource time before the process resumes,
but that another process which takes 1 second of simulation time may execute
5 times before the first process continues. This is a very important point to
keep in mind when reading the following description of Verilog. When we say
that ‘statement so-and-so takes no time to execute’ we are obviously referring
to simulation time — the simulator itself will need some real time to execute
the instruction.

2.2 Program Structure

A complete specification is built from a number of separate modules. Each
module has a number of input and output ports to enable communication with
the outside world. The module body relates the inputs and outputs. The top
level module then specifies a complete system which can be executed by a Verilog
simulator. Two types of module body descriptions can be used: structural and
behavioural.

A structural description of a module contains information about how the wires in
the system are connected together, possibly instantiating a number of modules
in the process. Essentially, a structural description serves as the interface of the
module. A simple example of a structural description of a half adder is:

module HALF_ADDER_STRUCT(in1, in2, cout, sout);

input in1, in2; output cout, sout;

AND AND_1(in1, in2, cout);

XOR XOR_1(in1, in2, sout);

endmodule

The meaning of the module is self-evident: A half adder module has two inputs
and two outputs. An AND module and a XOR module are instantiated for every
half-adder, naming them AND_1 and XOR_1 respectively. The inputs and outputs
of the half-adder are then ‘rewired’ into these gates.

On the other hand, a behavioural description of a module describes what the
module actually does — how the output is calculated from the input. A be-
havioural description of a half-adder may look like:

module HALF_ADDER_BEH(in1, in2, cout, sout);

input in1, in2; output cout, sout;

assign cout = (in1+in2) / 2;

assign sout = (in1+in2) % 2;

endmodule

The assign statements make sure that whenever the right hand side expression
changes value so does the variable being assigned to.

Obviously, since structural modules are built of modules themselves, this nest-
ing must end at some level. Verilog, however, provides a number of standard
modules which provide a convenient level at which to stop describing structure.

12

The description of these in-built modules is beyond the scope of this chapter
and will not be described any further.

It is also interesting to note that in engineering circles, modules are sometimes
described in both ways. Both modules are then combined into a single module
together with a test module which feeds a variety of inputs to both modules,
and compares the outputs. Since behavioural modules are generally easier to
understand and write than structural ones, this is sometimes considered to be
an empirical basis for ‘correctness’.

2.3 Signal Values

Different models allow different values on wires. The semantic model given in
this thesis deals with a simple binary (1 or 0) type. This is extendable to deal
with two extra values z (high impedance) and x (unknown value). Other models
allow signals of different strengths to deal with ambiguous situations.

Sometimes it is necessary to introduce internal connections to feed the output
of a module into another. Verilog provides two types of signal propagation
devices: wires and registers. Once assigned a value, registers keep that value
until another assignment occurs. In this respect, registers are very similar to
normal program variables. Wires, on the other hand, have no storage capacity,
and if undriven, revert to value x.

In this chapter we will be discussing only register variables. For a discussion of
wire type variables one can refer to any one of the main references given at the
beginning of the chapter.

2.4 Language Constructs

Behavioural descriptions of modules are built from a number of programming
constructs some of which are rather similar to ones used in imperative pro-
gramming languages. Four different types of behavioural modules are treated
here:

Continuous assignments: A module may continuously drive a signal on a
variable. Such a statement takes the form:

assign v=e

This statement ensures that variable v always has the value of expression
e. Whenever the value of a variable in expression e changes, an update to
variable v is immediately sent.

Delayed continuous assignments: Sometimes, it is desirable to wait for the
expression to remain constant for a period of time before the assignment
takes place. This is given by:

assign v = #n e

If the variables of e change, an assignment is scheduled to take place in n

units time. Furthermore, any assignments scheduled to take place before
that time are cancelled. Note that if v can be written to by only one such
statement, the effect is equivalent to making sure that after the variables
in e change, they must remain constant for at least n time units if the
value of v is to be updated. This type of delay is called inertial delay.

13

One-off modules: It is sometimes desirable to describe the behaviour of a
module using a program. The following module starts executing the pro-
gram P as soon as the system is started off. Once P has terminated, the
module no longer affects any wires or registers.

initial P

Looping modules: Similarly, it is sometimes desirable to repeatedly execute a
program P. In the following module, whenever P terminates, it is restarted
again:

forever P

The different modules are executed in ‘parallel’ during simulation. Hence, we
can construct a collection of modules which outputs a_changed, a variable which
is true if and only if the value of a has just changed:

assign a_prev = #1 a

assign a_changed = a xor a_prev

2.4.1 Programs

The syntax of a valid program is given in table 2.1. As can be seen, a pro-
gram is basically a list of semi-colon separated instructions. If the sequence
of instructions lies within a fork . . . join block, the instructions are executed
in parallel, otherwise they are executed in sequence, one following the other.
These two approaches can be mixed together. Note that if a parallel block is
put into sequential composition with another block, as in fork P;Q join; R,
R starts only after both P and Q have terminated.

Instruction blocks can be joined together into a single instruction by the use of
begin and end. This allows, for example, the embedding of sequential programs
in parallel blocks as shown in the following program:

fork begin P;Q end; R join

In this case, Q must wait for P to terminate before executing. On the other
hand, R starts at the same time as P.

The instructions we will be expounding can be split into 3 classes: guards,
assignments and compound statements.

Guards

Timed guards: #n stops the current process for n simulation time units after
which control is given back.

Value sensitive guards: A program can be set to wait until a particular con-
dition becomes true. wait e, where e is an expression, does just this.

Edge sensitive guards: The processing of a process thread can also be paused
until a particular event happens on one of the variables. There are three
main commands: @posedge v waits for a transition from a value which is
not 1 to 1 on v; @negedge v waits for a falling edge on variable v; and @v

which waits for either event.

Complex guards: A guard can also be set to wait until either of a number of
edge-events happen. @(G1 or G2 or ... Gn), waits until any of @G1 to
@Gn is lowered.

14

〈prog〉 ::= 〈instr〉
| 〈instr〉 ; 〈prog〉

〈edge〉 ::= 〈var〉
| posedge 〈var〉
| negedge 〈var〉
| 〈edge〉 or 〈edge〉

〈guard〉 ::= # 〈number〉
| wait 〈var〉
| @ 〈edge〉

〈inst〉 ::= begin 〈prog〉 end
| fork 〈prog〉 join
| 〈guard〉
| 〈var〉 = 〈expr〉
| 〈var〉 = 〈guard〉 〈expr〉
| 〈guard〉 〈var〉 = 〈expr〉
| 〈var〉 <= 〈guard〉 〈expr〉
| if (〈expr〉) 〈inst〉
| if (〈expr〉) 〈inst〉 else 〈inst〉
| while (〈expr〉) 〈inst〉
| do (〈expr〉) while 〈inst〉
| forever 〈inst〉
| fork 〈prog〉 join

Table 2.1: The syntax of a subset of Verilog

15

Assignments

Immediate assignments: Assignments of the form v=e correspond very closely
to the assignment statements normally used in imperative programming
languages like C and Pascal. The variable v takes the value of expression
e without taking any simulation time at all.

Blocking guarded assignments: There are two types of blocking assignment
statements: g v=e and v=g e, where g is a guard. Their semantics are
quite straightforward — g v=e behaves just like g; v=e and v=g e be-
haves like v′=e; g; v=v′ (where v′ is a fresh variable, unused anywhere
else).

Non-blocking guarded assignments: The assignment v<=g e acts just like
v=g e, but does not block the execution of any code appearing after it.
Thus, for any program P, v<=g e; P acts like:

fork v=g e; P join1

Each of these types of assignments can be used to assign a number of variables
in parallel. For example, v1, v2, ...vn = e1, e2, ...en is interpreted as
the assignment which starts by calculating the values of expressions e1 up to en

(using the old values of variables v1 to vn) and then assigning these values to
the variables at one go. Hence, after executing v=0 ; v,w=1,v, v and w have
the values 1 and 0 respectively.

Constructs

Conditional: The conditional statements if (b) P and if (b) P else Q act
just like their counterpart in imperative programming languages like C and
Pascal. The value of b is evaluated and, if it is evaluated to 1, execution
follows through the first branch, otherwise through the second branch.

Loops: while (b) P corresponds exactly once again to its counterpart in im-
perative programming. b is evaluated and, if true, P is executed. At the
end of the execution, control is placed once again at the beginning of the
while loop. When b is evaluated and is found to be 0, the loop terminates.

do P while (b) acts in a similar fashion, but checks the value of the
expression at the end of the executions, rather than at the start.

forever P is used for non-terminating loops, acting just like while (1) P.

There is obviously much more to Verilog than this. However, this probably
constitutes the main core of ideas behind the whole language. The informal
presentation of the semantics in this section, still leaves a wide range of possible
behaviours. We will reduce this by giving the simulation cycle semantics of
the language. This will, essentially, describe how the language is executed on
a simulator and will therefore remove most of the issues still unclear up to this
point.

1Note that this is only meant as an informal description of the semantics. If we were to
use this definition, one of the conditions would have to be that P is the rest of the sequen-
tial program. Otherwise, we would have situations where (v<=g e; P); Q does not act like
v<=g e;(P;Q), which is undesirable, since it would mean that sequential composition is not
associative.

16

2.4.2 Example Programs

A computer science or programming background gives the necessary intuition
to deal with the procedural (imperative) subset of Verilog. The continuous
assignments and the concept of simulation time, on the other hand, correspond
very closely to ideas in hardware. The main source of confusion one usually
encounters is when the two meet. This section gives a small example to help
clarify these ideas. For the sake of a high interest-to-size ratio, the example will
use integer variables.

Any self-respecting programmer can produce a solution to the calculation of the
Nth Fibonacci number in imperative Verilog:

prev=1; curr=1; n=2;

while (n<N)

prev, curr, n = curr, curr+prev, n+1;

Since, the answer may be needed by another module, an engineer may choose
to package the procedure differently. If we call the above program P :

wait start;

P
finish = #1 1;

finish<= #1 0

The procedure now waits for the signal start to become true before it starts its
execution. Upon termination, it delivers a short high signal on variable finish.
This allows other procedures to know when the value of the Nth fibonacci
number is available.

What about another module which needs the seventh fibonacci number?

N=7;

start = #1 1;

start<= #1 0;

wait finish;

Q

This program writes 7 to variable N and sends a start signal. It then waits
for signal finish to turn to true, which signifies that the other module is done
processing. This module may now safely run a programQ which uses the seventh
fibonacci number.

Note that these programs work no matter how long the first program takes to
calculate the seventh (or indeed any) fibonacci number.

2.5 The Simulation Cycle

The most obvious way of reducing the ambiguity in the above description of
Verilog constructs is by explaining how the constructs are interpreted by a
simulator. The description given here is based on [Ope93] and is also very
similar to the one given is [Gor95]. In particular, the introduction of the guards
∆〈edge〉 and a new assignment statement v←#n e are taken directly from the
latter reference.

The state of the execution consists of the current simulation time, a function
giving the current values of registers and two sets of threads. All threads consist
of the code they execute (together with a marker where the next instruction to

17

be executed lies), their status and possibly, a pending assignment. The status
of a thread can be one of:

• Enabled

• Delayed until t

• Guarded by g

• Finished

The two sets of threads are called statement threads and update threads.

2.5.1 Initialisation

Initially, the variables are all set to the unknown state x and the simulation
time is reset to 0. Each module is placed in a different statement thread with
the execution point set at the first instruction and with its status enabled.

Simulation Cycle

We start by describing what the execution of a statement in a thread does. This
obviously depends on the instruction being executed.

Guards: For each type of guard, we specify the actions taking place. We will
add a new type of guard ∆v, where v is an edge. The reason will become
apparent later.

• #n: The status of the thread is set to: delayed until t, where t is n

more than the current simulation time.

• wait v: If v is true, the thread remains enabled and the execution
point is advanced. Otherwise, the thread becomes blocked by a guard
which is lowered when v becomes true.

• ∆e: changes the status to guarded by e, where e is the guard at the
execution point.

• @v, @posedge v, @negedge v and @(g1 or g2 ... or gn): behave
just like the guards ∆v; #0, ∆posedge v; #0, ∆negedge v; #0

and ∆(g1 or g2 ... or gn) ;#0 respectively. The implications of
this interpretation are discussed in more detail at the end of this
section, once the whole simulation cycle has been described.

Assignments: We consider the different type of assignments separately:

• v=e: e is evaluated and the resulting value is written to variable v.

• g v=e: is treated just like g; v=e.

• v=g e: e is evaluated to α and the thread is set guarded by g. A
pending assignment v=α is also added to the thread.

• v<=g e: e is evaluated to α and a new update thread is created
guarded by g and with an assignment statement v=α as its only code.

After this, the execution point of the code is advanced if there are any
further instructions. Otherwise, the status of the thread is set to finished.

18

Compound Statements:

• if (b) P: b is evaluated and the execution point is moved to P if
true, but moved to the end of the whole instruction otherwise.

• if (b) P else Q: b is evaluated and the execution point is advanced
into P or Q accordingly.

• while (b) P: is replaced by if (b) begin P; while (b) P end.

• forever P: is replaced by while (1) P

• fork P join: Creates as many threads as there are statements in P

and sets them all as enabled.

• begin P end: is simply replaced by P.

The complete simulation cycle can now be described:

1. If there are any enabled statement threads, the simulator starts by picking
one. If it has a pending assignment it is executed and the pending assign-
ment is removed, otherwise a step is made along the statement code. If a
change which has just occurred on a variable lowers other threads’ guards,
these threads have their status modified from guarded to enabled, and the
simulator goes back to step 1.

2. If there are any threads delayed to the current simulation time they are
enabled and the simulator restarts from step 1.

3. If any update threads are enabled, they are carried out in the order they
were created and the threads are deleted. If the updates have lowered
guards on some threads, these have their status reset to enabled. Control
returns back to step 1.

4. Finally, we need to advance time. The simulator chooses the lowest of the
times to which statement threads are delayed. The simulation is set to
this time and all threads enabled to start at this time are enabled. Control
is given back to step 1.

Now, the difference between @e and ∆e should be clearer. In (∆e; P), P
becomes enabled immediately upon receiving the required edge e. On the other
hand, in (@e; P), P is only enabled once the required edge is detected and all
other enabled statements in parallel threads are exhausted.

2.5.2 Top-Level Modules

This description of the simulation cycle is limited to programs. How are modules
first transformed into programs?

Modules in the form initial P are transformed to P, and modules in the form
always P are transformed to forever P.

Intuitively, one would expect that assign v=e to be equivalent to the module
always @(v1 or ... or vn) v=e where v1 to vn are the variables used in
expression e. Reading the official documentation carefully, however, shows that
this is not so. When the assign statement is enabled (by a change on the
variables of e), the assignment is executable immediately. In the other situation,
after lowering the guard @(v1 or ... vn), one still has to wait for all other

19

enabled statements to be executed before the assignment can take place. Thus,
the continuous assignment is treated in a way analogous to:

always ∆(v1 or ... vn) v=e

This leaves only delayed continuous assignments to be dealt with. The instruc-
tion always v=#n e is equivalent to:

always ∆(v1 or ... vn) v← #n e

v←#n e is another type of assignment acting as follows: the current value of e
is evaluated (α) and a new statement thread, delayed to n time units more than
the current simulation time, is created. This new thread has the assignment v=α
as its code. Furthermore, all similar statement threads with code v=α and which
are delayed to earlier times are deleted (hence achieving the inertial effect).

2.6 Concluding Comments

We have presented the informal semantics of Verilog in two distinct ways. In
our opinion, neither presentation explains the language in a satisfactory manner.
The first presentation lacks enough detail and is far too ambiguous to be used
as a reference for serious work. The second is akin to presenting the semantics
of C by explaining how a C compiler should work. This is far too detailed,
and despite the obvious benefits which can be reaped from this knowledge, one
can become a competent C programmer without knowing anything about its
compilation. Having more space in which to expound their ideas, books about
Verilog usually take an approach similar to our first presentation but give a more
detailed account. They still lack, however, the elegance which can regularly be
found in books expounding on ‘cleaner’ languages such as C and Occam. The
main culprits are shared variables and certain subtle issues in the simulation
cycle (such as the separate handling of blocking and non-blocking assignments).
This indicates that the language may need to be ‘cleaned up’ before its formal
semantics can be specified in a useful manner. This will be discussed in more
detail in chapter 5.

20

Chapter 3

Relational Duration

Calculus

3.1 Introduction

Temporal logics are a special case of modal logic [Gol92], with restrictions placed
on the relation which specifies when a state is a successor of another. These
restrictions produce a family of states whose properties resemble our concept of
time. For example, we would expect transitivity in the order in which events
happen: if an event A happens before another event B which, in turn, happens
before C, we expect A to happen before C.

Applications of temporal logics in computer science have been investigated for
quite a few years. The applications include hardware description, concurrent
program behaviour and specification of critically timed systems. The main ad-
vantage over just using functions over time to describe these systems is that
temporal logics allow us to abstract over time. We can thus describe systems
using more general operators which makes specifications shorter, easier to un-
derstand and hence possibly easier to prove properties of. They have been
shown to be particularly useful in specifying and proving properties of real-time
systems where delays and reaction times are inherent and cannot be ignored.

The temporal logic used here is the Duration Calculus. It was developed by
Chaochen Zhou, C.A.R. Hoare and Anders P. Ravn in 1991 [ZHR91]. As with
other temporal logics, it is designed to describe systems which are undergo-
ing changes over time. The main emphasis is placed on the particular state
holding for a period of time, rather than just for individual moments. Several
applications of Duration Calculus (henceforth DC) and extensions to the cal-
culus have been given in the literature. The interested reader is referred to
[Zho93, ZHX95a, ZRH93, ZX95, Ris92, HRS94, HO94, HH94, HO94, MR93] to
mention but a few. [HB93] gives a more formal (and typed) description of DC
than the one presented here where the typed specification language Z [Spi92] is
used for the description.

3.2 Duration Calculus

3.2.1 The Syntax

We will start by describing briefly the syntax of the DC. The natural and real
numbers are embedded within DC. Then, we have a set of state variables, which

21

〈natural number 〉
〈state variables 〉
〈state expression〉 ::= 〈state variables 〉

| 〈state expression〉 ∧ 〈state expression〉
| 〈state expression〉 ∨ 〈state expression〉
| 〈state expression〉 ⇒ 〈state expression〉
| 〈state expression〉 ⇔ 〈state expression〉
| ¬〈state expression〉

〈duration formula〉 ::=
∫
〈state expression〉 = 〈natural number〉

| d〈state expression〉e
| 〈duration formula〉 ∧ 〈duration formula〉
| 〈duration formula〉 ∨ 〈duration formula〉
| 〈duration formula〉 ⇒ 〈duration formula〉
| 〈duration formula〉 ⇔ 〈duration formula〉
| ¬〈duration formula〉
| 〈duration formula〉 ; 〈duration formula〉
| ∃∃〈state variable〉 · 〈duration formula〉

Table 3.1: Syntax of the Duration Calculus

are used to describe the behaviour of states over time. The constant state
variables 1 and 0 are included.

The state variables may be combined together using operators such as ∧, ∨ and
¬ to form state expressions. These state expressions are then used to construct
duration formulae which will tell us things about time intervals, rather than
time points (as state variables and state expressions did). Table 3.1 gives the
complete syntax.

We will call the set of all state variables SV and the set of all duration formulae
DF .

3.2.2 Lifting Predicate Calculus Operators

Before we can start to define the semantics of Duration Calculus, we will recall
the lifting of a boolean operator over a set. This operation will be found useful
later when defining DC.

Since the symbols usually used for boolean operators are now used in DC (see
table 3.1), we face a choice. We can do either of the following:

• overload the symbols eg ∧ is both normal predicate calculus conjunction
and the symbol as used in DC, or

• use alternative symbols for the boolean operators

The latter policy is adopted for the purposes of defining the semantics of DC so
as to avoid confusion. The alternative symbols used are: ∼ is not, ∩ is and, ∪
is or, → is implies and ↔ is if and only if.

Given any n-ary boolean operator ⊕, from
� n to

�
, and an arbitrary set S, we

can define the lifting of ⊕ over S, written as
S
⊕.

22

S
⊕ is also an n-ary operator which, however, acts on functions from S to

�
, and

returns a function of similar type.

LIFT == S −→ �

S
⊕:: LIFTn −→ LIFT

Informally, the functional effect of lifting an operator ⊕ over a set S is to apply
⊕ pointwise over functions of type LIFT . In other words, the result of applying
S
⊕ to an input (a1, a2, . . . an) is the function which, given s ∈ S acts like applying
each ai to s and then applying ⊕ to the results.

S
⊕ (a1 . . . an)(s)

def
= ⊕ (a1(s) . . . an(s))

For example, if we raise the negation operator ∼ over a set � we get an oper-

ator
�∼ which given a function from time (�) to boolean values (

�
), returns its

pointwise negation: for any time t,
�∼ P (t) =∼ P (t).

This concept is being defined generally, rather than just applying it whenever
we need, because we can easily prove that lifting preserves certain properties
of the original operator such as commutativity, associativity, idempotency, etc.
This allows us to assume these properties whenever we lift an operator without
having to make sure that they hold each and every time.

3.2.3 The Semantics

Now that the syntax has been stated, we may start to give a semantic meaning
to the symbols used. So as to avoid having to declare the type of every variable
used, we will use the following convention: n is a number, X and Y are state
variables, P and Q state expressions and D, E and F duration formulae. Given
an interpretation I of the state variables, we can now define the semantics of
DC.

State Variables

State variables are the basic building blocks of duration formulae. State vari-
ables describe whether a state holds at individual points in time. We will use
the non-negative real numbers to represent time.

� == � + ∪ {0}
Thus, an interpretation of a state variable will be a function from non-negative
real numbers to the boolean values 1 and 0. For any state variable X , its
interpretation in I, written as I(X), will have the following type:

I(X) :: � −→ {0, 1}
The semantics of a state variable under an interpretation I is thus easy to define:

[[X]]I
def
= I(X)

Any interpretation should map the state variables 1 and 0 to the expected
constant functions:

I(1) = λt : � · 1
I(0) = λt : � · 0

23

State Expressions

State expressions have state variables as the basic building blocks. These are
then constructed together using symbols normally used for propositional or pred-
icate calculus. We interpret the operators as usually used in propositional cal-
culus but lifted over time.

[[X]]I
def
= I(X)

[[P ∧Q]]I
def
= [[P]]I

�∩ [[Q]]I

[[P ∨Q]]I
def
= [[P]]I

�∪ [[Q]]I

[[P ⇒ Q]]I
def
= [[P]]I

�→ [[Q]]I

[[P ⇔ Q]]I
def
= [[P]]I

�↔ [[Q]]I

[[¬P]]I
def
=

�∼ [[P]]I

where the operators used are the lifting of the normal propositional calculus
operators over time as defined earlier.

Duration Formulae

We now interpret duration formulae as functions from time intervals to boolean
values. We will thus be introducing our ability to discuss properties over time
intervals rather just than at single points of time. We will only be refering to
closed time intervals usually written in mathematics as [b, e], where both b and
e are real numbers. This is formally defined as follows:

[·, ·] :: � × � → � �

[b, e]
def
= {r : � | b ≤ r ≤ e}

Interval is the set of all such intervals such that b is at most e:

Interval
def
= {[b, e] | b, e ∈ � , b ≤ e}

We can now specify the type of duration formulae interpretation:

[[D]]I :: Interval −→ {0, 1}
∫
P = n holds if and only if P holds exactly for n units over the given interval.

More formally:

[[
∫
P = n]]I [b, e]

def
=

∫ e

b

[[P]]Idt = n

dP e is true if the state expression P was true over the whole interval being
considered, which must be longer than zero:

[[dP e]]I [b, e] def
= (

∫ e

b

[[P]]Idt = e− b) and (b < e)

24

Now we come to the operators ∧, ∨, ¬, ⇒ and ⇔. Note that these are not
the same operators as defined earlier for state expressions. Their inputs and
outputs are of different types from the previous ones. However, they will be
defined in a very similar way:

[[D ∧ E]]I
def
= [[D]]I

Interval∩ [[E]]I

[[D ∨ E]]I
def
= [[D]]I

Interval∪ [[E]]I

[[D ⇒ E]]I
def
= [[D]]I

Interval→ [[E]]I

[[D ⇔ E]]I
def
= [[D]]I

Interval↔ [[E]]I

[[¬D]]I
def
=

Interval∼ [[D]]I

These definitions may be given in a style which is simpler to understand by
defining the application of the function pointwise as follows:

[[D ∧ E]]I [b, e]
def
= [[D]]I [b, e] ∩ [[E]]I [b, e]

We now come to the chop operator ; , sometimes referred to as join or sequential
composition. By D ; E we will informally mean that the current interval can
be chopped into two parts (each of which is a closed, continuous interval) such
that D holds on the first part and E holds on the second. Formally, we write:

[[D ; E]]I [b, e]
def
= ∃m ∈ [b, e] · [[D]]I [b,m] ∩ [[E]]I [m, e]

Existential Quantification

Standard DC allows only quantification over global variables whereas in Interval
Temporal Logic the quantifier can be used over both global variables and state
variables. We adopt state variable quantification since it will be found useful
later.

Existentially quantifying over a state variable is defined simply as existentially
quantifying over the function:

[[∃∃X ·D]]I is true if there exists an alternative interpretation I ′ such that:

I ′(Y) = I(Y) if Y 6= X

and [[D]]I′ = true

3.2.4 Validity

A duration formula is said to be valid with respect to an interpretation I if it
holds for any prefix interval of the form [0, n]. This is written as I ` D.

A formula is simply said to be valid if it is valid with respect to any interpretation
I. This is written as ` D.

For example, we can prove that for any interpretation, the chop operator is
associative. This may be written as:

` (D ; (E ; F))⇔ ((D ; E) ; F)

25

3.2.5 Syntactic Sugaring

At this stage, anybody familiar with other temporal logics may wonder when cer-
tain features and operators common to these logics will be presented. Operators
such as always and sometimes can, in fact, be defined as syntactic equivalences
to operators already described. This section will deal with the definition of some
of these useful operators:

• l, read as length gives the length of the interval in question. It may be
defined simply as the integral of the function 1 (which always returns true)
over the current interval:

l
def
=
∫

1

Note that, since we have only defined the meaning
∫
P = n, we can only

use the length operator to make sure that the interval is in fact exactly n
units long, that is, in the form l = n. Later we will define constructs to
allow us to state that the length of the interval is at least, or at most, n.

• de, read as empty , states that the interval under consideration is empty.
Recall that dP e is always false for an empty interval. Also note that d1e
is always true for non-empty intervals.

de def
= ¬d1e

• We can now define a construct to make sure that a state expression is
true throughout the construct. Unlike dP e, however, we will consider an
empty interval to satisfy this constraint.

bP c def
= de ∨ dP e

• As in the case of boolean states, we would like a duration formula which
is always true. This will be aptly named true:

true
def
= de ∨ d1e

false may now be defined simply as a negation of true:

false
def
= ¬true

• For any duration formula D, 3D, read as sometimes D, holds if and only
if D holds over some sub-interval of the one being currently considered.
3D is itself a duration formula. The formal definition is:

3D
def
= true ; D ; true

• We define 2 as the dual of sometimes. 2D, read as always D, holds
whenever D holds for any subinterval of the current one. Alternatively,
it may be seen as: there is no subinterval over which ¬D holds. The
definition is given in terms of sometimes:

2D
def
= ¬(3(¬D))

From this definition we can immediately infer that:

3D = ¬(2(¬D))

• Similar to 3D we can define 3iD, read as initially, sometimes D, which
holds if there is a prefix of the current interval over which D holds:

3iD
def
= D ; true

26

• As before, we can define 2iD, read as initially, always D, as follows:

2iD
def
= ¬3i¬D

• Recall that we only defined
∫
P = n as a duration formula. It is usually

the case that we desire to check conditions such as
∫
P ≤ n or

∫
P ≥ n.

These may be defined as:

∫
P ≥ n def

=
∫
P = n ; true

∫
P ≤ n def

= ¬(
∫
P ≥ n) ∨ (

∫
P = n)

Note that now the expressions l ≥ n and l ≤ n are duration formulae.

3.3 Least Fixed Point

In expressing certain situations, it may be useful to be able to recursively define
temporal behaviour. In [PR95] P.K. Pandya and Y.S. Ramakrishna introduce
the use of the µ notation in the Mean-Value Calculus, a variant of Duration
Calculus. This section presents part of this work with respect to the Duration
Calculus. The resulting calculus allows for finitely many free variables, and
enables us to use finite mutual recursion.

3.3.1 Open Formulae

A duration formula is said to be open if contains a positive number of free
variables. One such formula is l < 5 ∨ (l = 5;X). We will write such formulae
as F (X), where X is the list of free variables in the formulae.

Given an interpretation J of open variables, we can also give the meaning of
open formulae:

[[X]]JI
def
= J (X)

For any other duration formula D, the extended semantics act just as before:

[[D]]JI
def
= [[D]]I

3.3.2 Fixed Points

Now consider the recursive equation X = F (X). An interpretation j of variable
X is a solution (for a particular I and J) if:

j = [[F (X)]]
J [X←j]
I

where J [X ← j] represents the interpretation identical to J except that X
is interpreted as j. The formula given does not necessarily have exactly one
solution. Of these, we will be interested in the least fixed point, which we
denote by µX · F (X).

The concept of least can be expressed informally as ‘the interpretation which
assigns 1 the least possible number of times’. More formally, we say that an
interpretation (of a single variable) i is at least as large as another interpretation
j (which we will write as i ≤ j), if any interval for which i returns 1, so does j:

i ≤ j def
= i

Interval→ j
.

27

3.3.3 Monotonicity

We say that an interpretation J is not larger than J ′, with respect to a variable
X if:

• J (Y) = J ′(Y) for any Y 6= X , and

• J (X) ≤ J ′(X)

We write this as J ≤X J ′.
A formula F is said to be monotonic if:

J ≤X J ′ ⇒ [[F]]JI ≤ [[F]]J
′

I

3.3.4 Semantics of Recursion

[PR95] goes on to prove a number of useful results. The ones which are of
interest here are:

• If, in a formula F , X always appears within the scope of an even number
of negations, F is monotonic.

• If F is monotonic in X , then the semantics of µX · F are given by:

Interval∩ {i | [[F]]
J [X←i]
I ≤ i}

In other words, it is true for an interval if and only if all interpretations
in V are true over that interval.

• The least fixed point satisfies the following laws:

µX · F (X) = F (µX · F (X))

F (D)⇒ D ` µX · F (X)⇒ D

This construct can, for example, be used to specify a clock signal with period
2n in such a way as to expose its iterative nature:

CLOCK1 = (l < n ∧ bCc) ∨ (l = n ∧ dCe);CLOCK0

CLOCK0 = (l < n ∧ b¬Cc) ∨ (l = n ∧ d¬Ce);CLOCK1

These can be combined into:

CLOCK = µX ·

(l < n ∧ bCc)
∨ (l = n ∧ dCe); (l < n ∧ b¬Cc)
∨ (l = n ∧ dCe); (l = n ∧ d¬Ce);X

28

3.4 Discrete Duration Calculus

In [HO94] Jifeng He and Ernst-Rüdiger Olderog reduce the general duration
calculus to a discrete time domain. This serves to simplify the calculus whenever
continuous time is not required, such as in the description of clocked circuits.
The modifications are now described.

The calculus will stand unchanged except for the following assumptions:

1. The state functions may only change values at integer times. In other
words, any state function has to be constant over open intervals of the
form (n, n+ 1) where n is a natural number.

2. Only intervals with integer start and end points are allowed.

3. Because of the previous condition, validity is now reduced to prefix inter-
vals of the form [0, n] where n is a natural number.

It will also be useful to introduce a unit interval operator similar to dP e but
also implying that we are considering a unit length interval:

ddP ee def
= dP e ∧ l = 1

Since the boolean states are now discrete, rather than continuous, it now makes
more sense to introduce a past, or history operator, which uses past values of
the state variables or expressions. For a state expression P and natural number
n, n� P , read as P shifted by n, is defined as P but with time shifted n units
back. Since P is a function defined on the non-negative real numbers, n � P
has to be arbitrarily defined on the first n time units. As a convention, we
choose n � P to be false for this period. Time shift may be formally defined
as:

(n� P) t =

{
0 if t < n
P (t− n) otherwise

Specifying the clock signal is now possible in a different style, emphasising better
the alternating value of the clock:

CLOCK = 2(l = 1⇒ ddn� C = ¬Cee)

3.5 Relational Duration Calculus

3.5.1 Introduction

The Problem

As has been shown elsewhere, duration calculus (DC) and other temporal logics
are very useful in describing systems where timing is inherent. When describing
a system using DC we can usually take safe estimates about timings. However,
certain systems we would like to describe using temporal logics include a non-
timed subset which is very difficult to describe using a standard temporal logic.
Problems usually arise when we would like to describe strings of consecutive
zero time transitions.

When defining the semantics of most hardware description languages in terms
of some temporal logic, this is one of the main obstacles which have to be

29

overcome. Most HDLs (such as Verilog HDL and VHDL) have both timed and
zero delay transitions (assignments). The non-zero delay transitions are quite
readily described using any temporal logic. However, the zero delay assignments
prove to be a problem since we expect these zero length transitions to happen
consecutively.

Zero delays are best described as infinitesimal delays. We may thus fit any
finite number of ‘zero delays’ into any finite interval. Momentary intermediate
values taken by variables during these infinitesimal transitions are ignored by
the model as a whole, but may still affect other variables.

For example, in the series of assignments: i:=1; j:=i; i:=0, the temporary
value 1 of variable i will not be captured by the complete system. Still, its
side-effects should be visible, and we expect j to be set to 1 after the series of
assignments.

The Solution

The approach used here is to define an extension of DC, where these zero time
transitions are treated in a relational way to capture temporary and carried over
values. Hence the name relational duration calculus.

Despite the problems faced by pure DC, most specifications are only interested
in the stable states of the system. This means that the specification of such
a system can usually be given in pure DC. An implementation may, however,
require the use of the relational extension presented here. The embedding of DC
within our system would thus mean that, in effect, such pure DC specifications
can be directly verified.

The problem of where to introduce this necessary effect now arises. The solution
presented here introduces a new chop operator. The standard chop operator (;)
presented earlier causes problems when dealing with zero delay transitions. One
example where the result is not what we expect in this new domain of application
is:

(de ∧A) ; (de ∧ B) ≡ (de ∧A ∧ B) ≡ (de ∧B) ; (de ∧ A)

The whole idea of sequence is thus lost.

3.5.2 The Syntax and Informal Semantics

Relational duration calculus is built over discrete duration calculus by adding a
number of new operators to handle immediate changes over state variables.

Pre and Post Values of State Variables

We will need a way of examining the value of a state variable just before the
current interval begins. This is, in effect, similar to reading an input. ←−v will
stand for this value.

Similarly we will need to examine or set values of state variables at the end of
the current interval. Again, this has a similar connotation to the output of a
process. −→v is the end value of state variable v.

As a simple example, we may now specify the real meaning of an assignment
v := w as follows: de ∧ −→v =←−w .

30

A New Chop Operator

As already discussed, we will need an alternative chop operator. Given two
relational DC formulae D and E, we can informally describe the meaning of
D followed by E where the post-values of the state variables var in D match

their pre-value in E. This is written as D
var
o

9
E and is informally described as

follows:

D E
.︷ ︸︸ ︷ . ︷ ︸︸ ︷.
↑ ↑ ↑
b m e

D
var
o

9
E holds over an interval [b, e] if we are able to split the interval into two

parts at a point m such that:

• D holds over [b,m] except for variables overwritten by E at m

• E holds over [m, e] with the inputs being the outputs of D

A more formal definition will be given later.

The Syntax of Relational Duration Calculus

Now that an informal description of the new operators has been given, we may
give a complete description of the relational duration calculus syntax. This is
given in table 3.2.

We will refer to the set of all duration formulae in the Relational Duration
Calculus as RDF .

3.5.3 The Semantics

As the syntax table shows, relational duration calculus has a large subset which
is simply duration calculus. The semantics of that subset are identical to those
given for the duration calculus in section 3.2.3 and are not redefined here.

Input and Output Values

The input value of a variable v over an interval [b, e], denoted by ←−v is the value
of v just before time b. If b is zero, it will automatically be false. This may be
defined as:

(←−v = x)[b, e]
def
=

{
false if b = 0

lim
t→ b− v(t) is equal to x otherwise

−→v is the ‘dual’ of ←−v . It is defined as the right limit of v at the end point of the
interval:

(−→v = x)[b, e]
def
=

lim
t→ e+ v(t) is equal to x

We may now define equality between two edge values. If e1 and e2 are edge
values (that is, of the form ←−v or −→v):

e1 = e2
def
= ∃x :

� · (e1 = x ∧ e2 = x)

31

〈boolean〉
〈natural number〉
〈state variables〉
〈state expression〉 ::= 〈state variables 〉

| 〈state expression〉 ∧ 〈state expression〉
| 〈state expression〉 ∨ 〈state expression〉
| 〈state expression〉 ⇒ 〈state expression〉
| 〈state expression〉 ⇔ 〈state expression〉
| ¬〈state expression〉

〈edge value〉 ::=
←−−−−−−−−−−−〈state variable〉

| −−−−−−−−−−−→〈state variable〉
〈duration formula〉 ::= 〈edge value〉 = 〈boolean〉

|
∫
〈state expression〉 = 〈natural number〉

| d〈state expression〉e
| 〈duration formula〉 ∧ 〈duration formula〉
| 〈duration formula〉 ∨ 〈duration formula〉
| 〈duration formula〉 ⇒ 〈duration formula〉
| 〈duration formula〉 ⇔ 〈duration formula〉
| ¬〈duration formula〉
| 〈duration formula〉

var
o

9
〈duration formula〉

| 〈duration formula〉 ; 〈duration formula〉
| ∃∃〈state variable〉 · 〈duration formula〉

Table 3.2: Syntax of the Relational Duration Calculus

32

Relational Chop

The relational chop operator will be defined in stages. To satisfy D
var
o

9
E,

we must first find a midpoint m at which to split the interval. We must then
rename all variables var in D to fresh variables. Obviously, the inputs of the
renamed variables are the same as those of the original ones. Also, we need to
store the final value of the variables at the end of D since they may be used in
E:

(D[var/varD] ∧
∧

v∈var

(←−v D =←−v ∧ v′ = −→v D))[b,m]

Similarly, variables of E will be renamed to fresh variables. We must also make
sure that the input of E is the same as the output of D:

(E[var/varE] ∧
∧

v∈var

←−v E = v′)[m, e]

Finally, we must define the values of the actual variables. For every variable v
in var:

∧

v∈var

bv ⇔ vDc[b,m] and

bv ⇔ vEc[m, e] and
−→v = −→vE [m, e] and
←−v =←−v D[b,m]

The complete definition of the relational chop operator may now be given as the
conjunction of the above expressions. If the set of variables var is {v1, v2, . . . vn}:

D
var
o

9
E

def
= ∃ m : � , var′ : � ∗ ·

∃∃ varD , varE ·
(Exp1 ∧ Exp2 ∧ Exp3)

where Exp1, Exp2 and Exp3 are the three above expressions. Moving around
the existential quantification, we can define the relational chop in terms of the
normal chop operator:

D
var
o

9
E

def
=

∃var′ : � ∗ · ∃∃varD , varE ·
(D[var/varD] ∧

∧

v∈var

(←−vD =←−v ∧ bv ⇔ vDc ∧ v′ = −→vD)) ;

(E[var/varE] ∧
∧

v∈var

(←−vE = v′ ∧ bv ⇔ vEc ∧ −→v = −→vE))

Note that we are hereby defining a family of chop operators — one for every set
of state variables var. Note that when var is chosen to be the empty set, the
relational chop reverts back to the normal DC chop operator.

33

To go back to the original example of showing that the visible behaviour of
v:=1; w:=v; v:=0 is the same as that of v,w:=0,1, we can use this new chop
construct to deduce that:

(
de ∧ −→v = 1
∧ −→w =←−w

)
{v,w}

o

9

(
de ∧ −→w =←−v
∧ −→v =←−v

)
{v,w}

o

9

(
de ∧ −→v = 0
∧ −→w =←−w

)

≡

(
de ∧ −→v = 0
∧ −→w = 1

)

3.6 Laws of the Relational Chop Operator

The relational chop operator, together with the pre- and post-value operators,
act very much like assignment and sequential composition. A number of laws
they obey are, in fact, very similar to the laws of assignment given in [H+85].
Some such laws include:

(de ∧ −→v = α)
W
o

9
(de ∧ −→v = β) = (de ∧ −→v = β) provided that v ∈W

(de ∧ −→v = α)
W
o

9
(de ∧ −→w = f(v)) = (de ∧ −→w = f(α)) provided that w ∈W

where α and β are constants. Note that in the second law, the intermediate
value of v was lost since it was not propagated in the second formula. These
and other similar laws can be deduced from the following laws:

(D ∧ −→v = α)
W
o

9
E(←−v) = D ; E(α)

D
W
o

9
E(←−v) = ∃α · (D ; E(α))

where both laws hold provided that:

• v ∈W ,

• if −→w appears in D, then w /∈ W and

• if ←−w appears in E and w is not v, then w /∈W

Both laws are direct consequences of the definition of relational chop. Using
induction, these laws can be generalised to:

(D ∧ −→v 1 = α1 ∧ . . . ∧ −→v n = αn)
W
o

9
E(←−v 1, . . . ,←−v n, . . . ,←−v n+k))

= ∃αn+1, . . . αn+k · (D ; E(α1, . . . , αn+k)

provided that:

• for all i (1 ≤ i ≤ n+ k), vi ∈ W ,

• if −→w appears in D, then w /∈ W and

• if ←−w appears in E and w is not one of the vi’s, then w /∈ W

34

3.7 Conclusions

Another temporal logic similar to Duration Calculus is Interval Temporal Logic
[Mos85]. The main difference between the two is the time domain — Duration
Calculus has a dense time domain as opposed to the discrete time domain used
in Interval Temporal Logic. Since asynchronous systems can be expressed more
naturally using a continuous time domain, Duration Calculus (together with its
discrete variant) allows immediate comparison of, for instance, the interaction
between a clocked circuit and a continuous specification of its environment.
On the other hand, Interval Temporal Logic allows quantification over state
variables which can be convenient to in temporal abstraction.

Alternative approaches to solve the problem of sequentiality of zero time inter-
vals could have been taken. In [ZH96a], Zhou Chaochen and Michael Hansen
propose a similar extension to Duration Calculus to handle immediate assign-
ments. The method they use defines the relational chop operator by creating
a small interval between the two over which the two duration formulae can
‘communicate’. This extra interval is then abstracted over.

[Qiw96] proposes another similar approach which uses a different interpretation
for state functions. The state functions associate two values for each state
variable at each and every time point which are then used in a very similar
fashion to the pre- and post-values described here. The result is used to derive
an extension to Hoare logic for reasoning about sequential programs which may
use DC formulae for time consuming (continuous) sections. The model is not
used to handle parallel processes and the elegance of the proofs would probably
be somewhat reduced for such cases.

The main difference between the calculi presented in the above two papers
[Qiw96, ZH96a] and Relational DC as presented here is the fact that our chop
operator has a related type. In the other work, the chop operator unifies all the
state variables. In other words, whereas we define a family of chop operators:
W
o

9
, they have only one chop operator behaving like

var
o

9
, where var is the set of

all the state variables in the system. This does not reduce expressivity of the
other calculi, but it can make certain properties more difficult to state. For
example, in our case it is quite straightforward to specify a number of duration
formulae, each of which controls a number of state variables and which may
interact (by, for instance, the assignment of a variable to the value of another
variable controlled by a different formula). These two specifications can usually
easily be stated using Relational DC, such that their conjunction corresponds
to the behaviour of the composition of the threads obeyed at the same time.

Consider, for example, the statement that w is assigned to 1 after which it is
assigned to the value of w ∧ v:

(de ∧ −→w = 1)
{w}

o

9
(de ∧ −→w = (←−w ∧←−v))

In relational DC this reduces to: −→w =←−v .

However, if we can use only a universal relational chop (
{v,w}

o

9
in this case), the

above statement changes its meaning to: ∃b :
� · −→w = b (which is equivalent to

true).

As already stated, this does not mean that the other calculi are less expressive.
There still are ways to state this same property. Obviously, we would rather
not place any constraints on v in this formula (since we might want to give

35

a separate duration formula describing the behaviour of v). So what can be
done if we want to describe multiple variables whose behaviour is defined by
different conjuncts? The solution proposed in [ZH96a] uses traces of the shared
variables. As expected, however, this introduces an extra level of complexity to
the specification, which Relational DC manages without. It is for this reason
that we believe that for the kind of problems treated in this thesis, Relational
DC is a better candidate than the other similar DC variants.

[BB93] shows how infinitesimal time durations can be included within a tempo-
ral process algebra. It would be an interesting project to attempt to integrate
the ideas presented in this paper into duration calculus.

Another possible approach investigated elsewhere is the use of timing diagrams
[SD97] where the semantics of such an instantaneous change are defined over
the timing diagrams of the function.

One method not explicitly investigated elsewhere is the use of a state based
discrete temporal logic where time is simply considered to be another (non-
decreasing) variable. One would then define an abstraction over the steps which
do not increase the value of time to derive a direct relationship between the
sequence of states and time steps.

To conclude, the relational duration calculus described in this chapter is one
possible way of defining the semantics of languages which combine both timed
and immediate constructs which seems to work reasonably well. The complexity
of the definitions may be initially off-putting. However, as in the case of duration
calculus, these definitions should ideally be used to verify a number of algebraic
laws, which can then be used in larger proofs. This way, the ability to simply
specify certain systems in Relational DC is not spoilt by the complex underlying
semantics.

36

Chapter 4

Real Time Specifications

This short chapter introduces a number of standard forms for the duration
calculus which can be used to simplify and standardise specifications.

These standard forms help to describe certain commonly encountered real-time
properties. A number of laws will accompany the standard forms so as to
reduce (or altogether remove) the need to revert back to duration calculus to
prove results.

These operators were originally introduced in [Rav95, MR93] where the laws we
state are also proved.

To illustrate the use of the operators, we will state properties of a simple gas-
burner system with three boolean states. Gas will be boolean state true when
gas is being released in the system, Flame is true if and only if the gas is ignited,
and finally Alarm will represent the state of an alarm, which is to be turned on
if too much unburnt gas is released into the system.

4.1 The Real Time Operators

4.1.1 Invariant

A boolean expression is said to be an invariant of the system if it is true at any
time. This will be written as

√
P and defined by:

√
P

def
= bP c

In our example system, one would expect that there is never a flame without
gas:

√
(¬Gas⇒ ¬Flame)

Laws of Invariant

Invariants are monotonic on their only operand:

Law 1: Monotonic
If P ⇒ Q and

√
P then

√
Q.

Conjunction distributes in and out of invariants:

Law 2: Conjunctive√
P ∧√Q =

√
(P ∧Q)

37

On the other hand, disjunction distributes in, but not out, of invariants:

Law 3: Disjunctive
If √P ∨√Q then √(P ∨Q).

Formulae of the form
√

(P ⇒ Q), allow us to replace P by Q in monotonic
contexts:

Law 4: Replacement
If
√

(P ⇒ Q) and F (P), where F is monotonic1, then F (Q).

4.1.2 Followed By

It is usually convenient to specify that whenever a duration formulaD holds over
an interval, another formula E will initially hold on non-zero intervals starting
at the end of the current one.

D −→ E is read as D is always followed by E and defined as follows:

D −→ E
def
= ∀r : � ·2(((D ∧ l = r) ; l > 0)⇒ (l = r ; E ; true))

One may insist that the alarm is to be turned on if there is a period of more
than 7 time units during which unburnt gas is being released: ((l ≥ 7 ∧ dGas ∧
¬Flamee) −→ dAlarme.

Laws of Followed By

Conjunction outside of followed by expressions to a common antecedent dis-
tribute to disjunction inside the operator:

Law 1: Distributive (I)
D1 −→ E and D2 −→ E if and only if (D1 ∨D2) −→ E.

On the other hand, disjunction can be distributed inside as conjunction:

Law 2: Distributive (II)
If D1 −→ E or D2 −→ E then (D1 ∧D2) −→ E.

4.1.3 Leads To

Extending the idea of the followed by operator is the leads to operator. This

operator will be used to express progress in the system being described. D
δ−→

E will signify that after duration formula D holds for δ time units, duration
formula E will then hold. It is read as D leads to E after holding for δ.

D
δ−→ E

def
= (D ∧ l = δ) −→ E

In most cases, D and E will be formulae of the form dP e. To avoid repetition,
we will overload this operator with one which takes two state expressions:

P
δ−→ Q

def
= dP e δ−→ dQe

The statement previously given about when the alarm should be turned off can

now be rephrased as: Gas ∧ ¬Flame
7−→ Alarm

1F is said to be monotonic if P ⇒ Q implies that F (P) ⇒ F (Q)

38

Laws of Leads To

The following laws pertain to the leads to operator with state expressions as
operands.

The leads to operator is monotonic on all three of its operands:

Law 1: Monotonic on delay

If P
δ−→ Q and ∆ ≥ δ then P

∆−→ Q.

Law 2: Monotonic on first operand

If P
δ−→ Q and R⇒ P then R

δ−→ Q.

Law 3: Monotonic on second operand

If P
δ−→ Q and Q⇒ R then P

δ−→ R.

Conjunction distributes in and out of the second state expression:

Law 4: Conjunctive

P
δ−→ Q1 and P

δ−→ Q2 if and only if P
δ−→ (Q1 ∧Q2).

Leads to is transitive:

Law 5: Transitive
If P

δ1−→ Q and Q
δ2−→ R then P

δ1+δ2−→ R.

4.1.4 Unless

Sometimes we want to specify that a state expression, if true, must remain so
unless another state expression is true. If P and Q are state expressions, then
the formula P unless Q is defined by:

P unless Q
def
= 2(dP e ; d¬P e ⇒ dP e ; d¬P ∧Qe ; true)

The alarm must not turn off until the gas leak is fixed: Alarm unless ¬(Gas ∧
¬Flame).

So as not to have the alarm turning on whenever it feels like it, we can insist
that it remains off until a gas leak occurs: ¬Alarm unless Gas ∧ ¬Flame.

Laws of Unless

The unless operator is monotonic on its second operand:

Law 1: Monotonic
If Q⇒ R and P unless Q then P unless R.

Conjunction distributes into the first operand becoming disjunction:

Law 2: Distributivity
If P1 unless Q and P2 unless Q then (P1 ∨ P2) unless Q.

Conjunction distributes inside the second operand:

Law 3: Conjunctivity
If P unless Q1 and P unless Q2 then P unless (Q1 ∧Q2).

39

4.1.5 Stability

Certain boolean expressions must remain true for a minimum number of time
units. This stability requirement is written as S(P, δ) and is formally defined
as:

S(P, δ)
def
= 2(d¬P e ; dP e ; d¬P e ⇒ l > δ)

Finally, to ensure that the alarm does not flash on and off we insist that once
it turns on it must remain so for at least 10 time units: S(Alarm, 10).

Laws of Stability

Stability is monotonic:

Law 1: Monotonic
If S(P,∆) and ∆ ≥ δ then S(P, δ).

4.2 Discrete Duration Calculus

Finally, we give a small number of laws which arise from these operators when
we use discrete duration calculus. These laws were given in [HO94].

Law 1: Discrete leads-to
P

δ−→ Q = 2(dd¬Qee ⇒ ∨

0<i≤δddi� ¬P ee)
Law 2: Discrete stability (I)
S(P, δ) = 2(dd¬P ee ; dP e ; dd¬P ee ⇒ l ≥ δ + 2)

Law 3: Discrete stability (II)
If we can find a state expression Q such that 2(

∧

0≤i<nddi � Qee ⇒ dd¬P ee)
and 2(

∨

0≤i<n ¬ddi� Qee ⇒ ddP ee) then S(P, n).

4.3 Summary

As already noted elsewhere (for example in [Man81, MP81]) and will be seen
later in this thesis, using a temporal logic to model the semantics of a language
eases the specification and verification of real-time requirements. For this rea-
son, a high level real-time specification language is ideal to allow parts of the
reasoning to proceed without having to fall back onto reasoning within the tem-
poral logic. This chapter describes a number of such operators which will be
used later in specifying real-time constraints and properties.

40

Part II

Now that all the necessary tools and notations
have been exposed, we define the formal seman-
tics of Verilog and, using these semantics, we
present a number of algebraic laws which Ver-
ilog programs obey.

41

Chapter 5

Formal Semantics of Verilog

5.1 Introduction

5.2 Syntax and Informal Semantics of Verilog

A Verilog specification consists of a number of modules which run in parallel.
Each module has an alphabet of local variables which it uses. In addition
there are a number of global variables which act as communication ports of
the complete system. Recall from chapter 2 that all the variables used will be
of register type and, if not assigned a value at the current time, will keep the
previous value.

We will assume that all time delays will be of integer length. If this is not
so, we can always multiply all the delays by a constant, so as to satisfy this
pre-condition. The original times may later be retrieved by dividing. Note that
this transformation is possible since we consider only rational constant delays
of which we can only have a finite number.

Each module can either (i) be a continuous assignment (assign), or (ii) execute
the module statements endlessly (always s), or (iii) execute the module just
once in the beginning (initial s).

Continuous assignments can be either immediate or delayed. Delayed continuous
assignments can be either inertial or transport delayed1.

always and initialmodule instructions are a sequence of statements separated
by the sequential composition operator ;. Each statement can be one of a
number of types:

Skip: Unarguably the simplest instruction. Does nothing and takes no simula-
tion time either.

Guards: These delay the execution of the statement sequence for some time.
Different guard types are available. The ones we will use are:

• Time delays (#n): This guard blocks the statement sequence for ex-
actly n time units.

• Edge sensitive delays (@v, @posedge v, @negedge v): These guards
block the instruction sequence until an edge of the desired type is
seen on variable v. @posedge v waits for a rising edge (v goes from 0

1Strictly speaking Verilog does not support transport delay. This type of delay can, how-
ever, be useful and we will see how it can be defined in terms of Verilog instructions later.

42

to 1), @negedge v for a falling edge (v goes from 1 to 0), and @v waits
for either type. Note that the formal model presented here cannot
handle x and z values. Section 5.5.3 discussed this in more detail.

• Value sensitive delay (wait e): wait e blocks execution until ex-
pression e becomes true. Note that it does not wait for a rising edge,
just for the value, and hence may be enabled immediately.

• Compound guards (g or. . . or h): This guard blocks execution until
at least one of the guards g. . . h is lowered. Note that this is a gener-
alisation of Verilog compound guards which may only be of the form
@(g1 ... gn).

Assignments: These are the basic building blocks of the language. The lan-
guage allows general concurrent assignments. Three types of assignments
are identified:

• Zero-delay assignments (v=e): The assignment is executed without
taking any simulation time at all.

• Guarded assignments (v=g e or g v=e): In the case of v=g e, the
values of the expressions are read, after which a guard block is en-
acted and the assignment takes place. When the guard is lowered,
the variables are assigned to the values previously read. Once the
assignment takes place, the next statement (if any) following the as-
signment is enabled. In the case of g v=e, the guard is enacted and
the assignments take place the moment it is lowered.

• Non-blocking assignment(v<=g e): This acts in a similar way as
guarded assignments. However, any statements following the assign-
ment do not wait for the assignment to terminate to be executed. In
other words, sequential composition following this type of statement
is not treated like sequential composition at all, but more like parallel
composition.

Compound statements: The statements take one or more programs and con-
struct more complex programs out of them.

• if b then P else Q: is the same as normal alternation. If b is true
enable P, otherwise enable Q. Upon termination hand control over to
the next statement, if any. The special case with no else clause is
also allowed.

• while b do P: Again, this is the normal iteration construct. If b
is currently true execute P, after which return control to the start
of the while statement. A similar instruction is the do P while b

construct. In this case, the boolean check is performed at the end of
the execution of P, not at the beginning. A special case where P is
executed repeatedly, without checking for any condition, can also be
used: forever P.

• A number of instructions can also be executed concurrently using
the fork ... join construct. Every instruction in P is executed
concurrently, and execution ends once all individual threads end.
In Verilog the individual instructions would be separated by semi-
colons. To avoid possible confusion, we will allow only binary par-
allel composition, written as fork P ‖ Q join, or simply as P ‖ Q.
Note that we can still express parallel composition of more than two
programs: if parallel composition is taken to be right associative,
fork P;Q;R join would be written as:

43

fork P ‖ (fork Q ‖ R join) join

• begin P end: This is given just as a means of collecting statements
together.

Table 5.1 gives a complete overview of the language.

Not all programs generated by this syntax will be acceptable and only the se-
mantics of a subset will be formally defined. The restrictions placed on the
language correspond to good practice hardware design and simplify the treat-
ment of the language considerably.

The restrictions are practically all related to the concept of global and local
variables. We note that a complete system is made up of a number of modules
running in parallel. Each of these modules is made up of sequentially composed
individual statements. We will assume that each of these modules has a set of
local variables (internal wires) which cannot be modified or referred to by any
other module.

There is also a set of global variables (communication registers) from which all
modules may read. These may be considered to be the input and output ports
of the modules. The alphabet of a module is defined to be its local variables
together with the global registers it writes to.

No merge on output wires: It is considered to be good hardware design
practice to avoid joining together the outputs of different components to
avoid problems such as short circuits. The alphabets of different modules
have thus to be pairwise disjoint. Common local variables can be renamed
to avoid this, but no more than one process can write to each wire.

In sections 5.4.5 and 5.5.3 we describe how this assumption can be relaxed
to enable, for instance, the specification of tri-state devices.

Registers as state holders: Global variables are always to be assigned using
a guarded assignment with a guard which always takes time to be lowered.
In other words, zero delayed assignments to output ports are not allowed.
This makes sense if we look at each module as a component which must
have an inherent delay and at the global state to be an abstraction of a
memory register. Although it limits the language, it is usually considered
good design practice to build a circuit in this fashion.

Stability of outputs of combinational circuits: When assign statements
are used to express combinational circuits, care must be taken so as not
to give rise to any combinational loop by having the output of a combina-
tional circuit connected back into itself. Again, this approach is considered
to be good design practice since it avoids problems such as race-conditions.
Formalisation of this check is also rather simple to perform (syntactically).

Stability of boolean tests: Blocking guards can only check conditions on en-
vironment variables (input ports). Furthermore, variables used in the
boolean test of a conditional or a loop must be local (internal) variables.
This allows us to look at guards as synchronisation channels between pro-
cesses. Since boolean condition checking takes no time at all, the check
may only be made over local wires.

No interference on shared variables: Global registers may not be read from
and written to simultaneously. This avoids non-determinism and interfer-
ence which can appear when we cannot be sure whether a variable value
has been updated or not at the moment it is read.

44

〈number〉

〈variable〉

〈exp〉

〈bexp〉

〈var-list〉 ::= 〈variable〉
| 〈variable〉,〈var-list〉

〈exp-list〉 ::= 〈exp〉
| 〈exp〉,〈exp-list〉

〈guard〉 ::= #〈number〉
| @〈variable〉
| @posedge 〈variable〉
| @negedge 〈variable〉
| wait 〈variable〉
| 〈guard〉 or 〈guard〉

〈statement〉 ::= skip

| 〈var-list〉=〈exp-list〉
| 〈var-list〉=〈guard〉 〈exp-list〉
| 〈guard〉 〈var-list〉 = 〈exp-list〉
| 〈guard〉
| 〈variable〉<=〈guard〉 〈exp〉
| if 〈bexp〉 then 〈statement〉 else 〈statement〉
| if 〈bexp〉 then 〈statement〉
| while 〈bexp〉 do 〈statement〉
| do 〈statement〉 while 〈bexp〉
| forever 〈statement〉
| begin 〈stmt-list〉 end
| fork 〈statement〉 ‖ 〈statement〉 join

〈stmt-list〉 ::= 〈statement〉
| 〈statement〉 ; 〈stmt-list〉

〈module〉 ::= initial 〈stmt-list〉
| always 〈stmt-list〉
| assign 〈variable〉=〈exp〉
| assign 〈variable〉=#〈number〉 〈exp〉
| assignT 〈variable〉=#〈number〉 〈exp〉
| 〈module〉 ‖ 〈module〉

Table 5.1: The syntax of a subset of Verilog

45

No super-steps: Using loops in a timed language can be rather dangerous.
One must always make sure that loops cannot block the advance of time
by providing an infinite number of steps to be executed before time can
be moved forward.

5.3 The Formal Semantics

5.3.1 The Techniques Used

The semantics of Verilog will be described using Relational Duration Calculus.
The relational chop operator is crucial in the semantics, since it allows the simple
description of zero delayed assignments.

As already discussed, a distinction has to be made between local and global
variables. We will assume that different processes have disjoint local alphabets.
The set of global variables is also assumed to be disjoint from the local variables.
A simple syntactic check may be done to ascertain these assumptions. If any
name clashes exist, renaming will solve the problem.

Here, we will use the letters u, v, . . . z to stand for the local or global variables,
and we will specify whenever a particular variable can be only local or global.
U, V will be lists of variables. e, f will be used to represent expressions such
as u OR v, and E,F lists of such expressions. P, Q, R will be used for variables
representing arbitrary chunks of code. b, c will stand for boolean expressions.
D and E will stand for arbitrary duration formulas.

We will also use a function start(e), which, given an expression e, will modify
individual variables v in the expression to ←−v . For example, the expression
start(u or v) is←−u or ←−v . This function may be easily defined using primitive
recursion on the structure of expressions.

var(e) is defined to be the set of variables used in expression e.

Finally, we note that we will be defining the meaning of primitive instructions
in terms of continuation semantics and a set of variables it can write to. For
statement P in the language, we will not define its semantics [[P]], but [[P]]W (D)
— the semantics of P writing to variables W such that after the termination of
P, the behaviour is described by duration formula D. In other words we will
define the semantics of P continued by D with the extra information that the
variables in W are written to by P . The type of the semantics is thus:

[[·]] :: Prog → � SV → RDF → RDF

The full semantics of the higher level instructions are then given in terms of
the continuation semantics of the constituent instructions. Unless otherwise
specified, any relational chop operator appearing in the definition of [[P]]W (D)
will have type W . Thus, for simplicity of presentation, o

9
will be used to stand

for
W
o

9
.

Note that the set W will be the set of local variables and global registers to
which the current process can write.

This approach to giving the semantics of Verilog specifications is necessary since
the semantics of certain instructions (such as non-blocking assignments) depend
on what happens after the instruction is executed. Thus, in general one cannot
say that [[P ;Q]] = [[P]]; [[Q]].

46

5.3.2 Syntactic Equivalences

Before we start defining the semantics of Verilog, we will introduce some syn-
tactic equivalences for Relational Duration Calculus formulae which will make
the expression of the semantics more compact and hence simpler to follow.

• Sometimes it is necessary to state that two state variables behave similarly
over the current interval:

P ≈ Q def
= bP ⇔ Qc ∧ ←−P =

←−
Q ∧ −→P =

−→
Q

• We will need to be able to rename state variables. D[Q/P] read as D with
P for Q is defined as follows:

D[Q/P]
def
= ∃∃P · (D ∧ P ≈ Q)

• It is frequently necessary to state that a state variable has remained con-
stant over the current time interval.

Const(P)
def
= P ≈ 1 ∨ P ≈ 0

It will be convenient to overload this operator to act on sets:

Const(S)
def
=
∧

P∈S Const(P)

• A conditional operator will simplify descriptions of complex systems. This
will be written asD/E.F , and readD if E else F . It is defined as follows:

D / E . F
def
= (E ∧D) ∨ (¬E ∧ F)

The algebraic laws usually associated with the similarly defined operator
in programming languages also hold here. Some such laws are:

D / true . E = D
D / false . E = E

E /D . E = E idempotency
E /D . (F / D . G) = (E /D . F) / D . G associativity

5.3.3 The Primitive Instructions

Skip

This is the simplest of instructions to define. skip followed by a duration
formula D simply behaves like D.

[[skip]]W (D)
def
= D

Unguarded Assignments

The informal meaning of v=e is that v takes the value of e. This assignment
takes no detectable time. Formally, we define the meaning of v=e followed by a
duration formula D as follows:

[[v=e]]W (D)
def
= (−→v = start(e) ∧ Const(W − {v}) ∧ de) o

9
D

Extending these semantics for concurrent assignments is rather straightforward.
If V = (v1, . . . , vn) is a variable list with corresponding expression list E =
(e1, . . . , en), then:

47

[[V=E]]W (D)
def
= (

n∧

i=1

−→vi = start(ei) ∧ Const(W − V) ∧ de) o

9
D

Guards

Guards block a process from continuing execution until a certain event happens,
or a number of time units elapse. We can divide guards into two separate
groups: simple and compound. Simple guards are of the form @v, @posedge v,
@negedge v, wait v or #n. Compound guards are of the form g1 or . . . or gn

where each gi is a simple guard.

The most straightforward way of defining the semantics of general guards is to
divide the definition into two parts: blocked and continued. blocked represents
the possibility of the guard not yet being lowered whereas continued is used to
describe the behaviour of the guard once it is eventually lowered. In both cases,
the variables to which the current process can write remain unchanged. The
semantics of a guard can be described by:

[[g]]W (D)
def
= (Const(W) ∧ blocked) ∨

(Const(W) ∧ continued) o

9
D)

The natural relation between blocked and continued can be expressed as: con-
tinued holds exactly the first time unit that blocked does not continue to hold,
or, more formally:

continued ⇔ ¬ blocked ∧(de ∨ (2i blocked) ; l = 1)

Thus, defining blocked is sufficient. Also, we always expect that if blocked holds,
it also holds for any prefix of the current interval:

blocked ⇔ 2i blocked

These properties can be verified for all guards definined in this chapter. Fur-
thermore, we can use these properties to prove other laws we would expect to
hold for blocked and continued. For example, we would expect that if a guard
is blocked, it has not yet continued (and vice-versa): blocked ⇔ ¬3i continued.
This can be proved on the basis of the above two properties.

For every simple guard g we will give the expressions for blocked and continued.
The next section will then extend this idea for compound guards.

• [[#n]]W (D)

This is the simplest guard. It is not lowered until n time units have elapsed.
It allows the process to continue after precisely n time units elapse.

blocked
def
= l < n

continued
def
= l = n

• [[@v]]W (D)

This guard is lowered once a rising or falling edge is detected on variable
v.

48

blocked
def
= (bvc ∧ −→v = true)

∨ (b¬vc ∧ −→v = false)

continued
def
= (dve ∧ −→v = false)

∨ (d¬ve ∧ −→v = true)

• [[@posedge v]]W (D)

This is similar to the previous guard but sensitive only to rising edges.

blocked
def
= bvc ∨ (bvc ; b¬vc ∧ −→v = false)

continued
def
= bvc ; d¬ve ∧ −→v = true

• [[@negedge v]]W (D)

This is identical to posedge v but sensitive to falling rather than rising
edges.

blocked
def
= b¬vc ∨ (b¬vc ; bvc ∧ −→v = true)

continued
def
= b¬vc ; dve ∧ −→v = false

• [[wait v]]W (D)

wait v waits until v becomes true. The only difference between this and
posedge v is that this does not wait for a rising edge, and may thus be
activated immediately.

blocked
def
= b¬vc ∧ −→v = false

continued
def
= b¬vc ∧ −→v = true

Compound Guards

Having defined the semantics for simple guards, we can now easily extend the
idea for a complex guard of the form:

(g1 or . . .or gn)

From the previous section, we know blockedi and continuedi for each guard gi.
These will now be used to work out blocked and continued for the complex
guard. Rather than define the semantics of a general guard with n component
guards, only the special case with two component guards is considered.

A double guard (g1 or g2) is blocked whenever both the constituent guards are
blocked. It continues once either of the guards is lowered. We must make sure
that the combined guard is lowered once the first of the individual guards is
lowered. In other words, up to one time unit ago, both guards must still have
been blocked. Formally, this translates to:

49

blocked
def
= blocked1 ∧ blocked2

continued
def
= (de ∨ (blocked1 ∧ blocked2) ; l = 1) ∧

(continued1 ∨ continued2)

When manipulating the expressions it is clear that this operation is commu-
tative, associative and idempotent. The associativity justifies the lack of use
of brackets in complex guards (without specifying whether it is left or right
associative). Furthermore, the semantics of a general complex guard can be
simplified to:

blocked
def
=

n∧

i=1

blockedi

continued
def
= (de ∨ (

n∧

i=1

blockedi ; l = 1)) ∧

n∨

i=1

continuedi

Guarded Assignments

Given an assignment of the form V=g E, where g is a guard, we can now easily
define its semantics in terms of the semantics of the guard itself. By ‘remember-
ing’ the value of E at the beginning, we can define the semantics of the guarded
assignment statement simply as the sequential composition of the guard followed
by a zero-delay assignment of the variable to the remembered value of E:

[[V=g E]]W (D)
def
= ∃∃α · [[α=E ; g ; V=α]]W (D)

The semantics of sequential composition will be given later.

For a guarded assignment of the form g V=E, the semantics are even simpler:

[[g V=E]]W (D)
def
= [[g ; V=E]]W (D)

5.3.4 Constructive Operators

Conditional

The semantics of if-then-else statements follow in a rather natural fashion.
If the boolean guard is true at the start of the time interval the statement
behaves just like the then branch of instruction, otherwise it behaves like the
else branch.

[[if b then P else Q]]W (D)
def
= [[P]]W (D) / start(b) . [[Q]]W (D)

Conditionals with no else clause can also be defined:

if b then P ≡ if b then P else skip

Note that sometimes, we will also use the shorthand notation P / b . Q for the
Verilog program if (b) then P else Q.

50

Iteration

The while statement is defined using recursion.

[[while b do P]]W (D)
def
= µX · [[P]]W (X) / start(b) . D

Sometimes, we will use b*P as shorthand for while (b) P.

The do P while b construct is very similar and can be viewed as a special case
of the while b do P statement:

do P while b ≡ P; while b do P

This will sometimes be abbreviated to P*b.

Verilog also provides another loop statement: forever P. As expected, P is
repeatedly executed forever. Its semantics may thus be defined by replacing
all forever statements with while statements and using the semantics already
defined.

forever P ≡ while (true) do P

Sequential Composition

Thanks to the continuation semantics used, sequential composition is trivial to
define. The semantics of P;Q followed by D can be defined as the semantics of
P followed by the semantics of Q followed by D.

[[P;Q]]W (D)
def
= [[P]]W ([[Q]]W (D))

An immediate conclusion we can draw from this definition is the associativity
of sequential composition in Verilog.

Internal Parallel Composition

We will use the term internal parallel composition to refer to the fork . . . join

operator as opposed to the external parallel composition between modules.

Composing two programs in parallel will act just like running both at the same
time with the execution of the continuation resuming as soon as both programs
terminate. Note that the output variables W of the process will be divided
between the two processes such that P controls WP and Q controls WQ. The
variable sets must partition W ie W = WP ∪WQ and WP ∩WQ = ∅.

[[fork P ‖ Q join]]W (D)
def
=

(
[[P]]WP

(Const(WP) o

9
D) ∧ [[Q]]WQ

(D))
∨ [[Q]]WQ

(Const(WQ) o

9
D) ∧ [[P]]WP

(D))

)

An immediate corollary of this definition is that internal parallel composition is
commutative and associative.

51

5.3.5 Top-Level Instructions

At the top-level, we can now specify the complete semantics of a module without
needing to take into consideration what happens afterwards. These instructions
may thus be interpreted as closure operators — producing a closed system from
an open one.

Initial Statements

Informally initial P specifies that P will be executed once at the beginning.

[[initial P]]
def
= [[P]]αP(Const(αP))

The alphabet of P, αP, is the set of the local variables used in the process P and
also all the global variables assigned to by this process. These variables may be
obtained using a syntactic pass over P. It must be made sure that the alphabets
of different processes are pairwise disjoint.

Infinite Loops

always P specifies that P will be repeatedly executed forever. This is equivalent
to repeating P indefinitely at the beginning:

always P ≡ initial (forever P)

Continuous Assignments

Another type of module is the assign module, which performs a continuous
assignment. In this section, only the semantics of immediate assign modules
are considered. The case with a delay between the input and output is discussed
in a later section.

The module assign v=e makes sure that whenever expression e changes value,
v immediately gets the new value. This behaviour is practically identical to
that of a combinational circuit, where there is practically no delay between the
input and output of the component. The semantics of such a statement are
straightforward to define:

[[assign v=e]]
def
=
√

(v = e)

One must make sure that no combinational circuits arise from such statements
since such situations may lead to infinite changes in zero time. Two examples
showing this type of infinite behaviour are:

assign v = ¬v
assign v = ¬w ‖ assign w = ¬v

A simple syntactic check suffices to ensure that no such behaviour can arise. It
is discussed in detail in section 5.5.1.

52

Parallel Components

Given two top-level instructions in parallel, we will simply define their combined
semantics as:

[[P ‖ Q]] def
= [[P]] ∧ [[Q]]

Note that the following law justifies the use of internal parallel composition to
describe the fork ...join construct:

(
initial P

‖ initial Q

)

≡ initial fork P ‖ Q join

This also justifies the use of P ‖ Q as shorthand for fork P ‖ Q join.

5.4 Other Extensions to the Language

5.4.1 Local Variables

It is sometimes desirable to declare local variables to make code more readable.
The semantics of such a construct can be formalised as follows:

[[var v; P; end v;]]W (D)
def
= ∃∃v · [[P]]W∪{v}(D)

For simplicity we assume that v is not in W . To relax this restriction, we would
first rename the variable to a fresh instance and then use the semantics given
above.

5.4.2 Variable Initialisation

It is usually very useful to initialise global registers to particular values. This
is not possible because of the restriction that all assignments to such registers
must be time guarded. However this restriction may be slightly weakened by
introducing a new instruction:

〈initialisation〉 ::= init 〈var-list〉 = 〈bool-list〉
〈module〉 ::= initial 〈initialisation〉; 〈statement〉

| forever 〈initialisation〉; 〈statement〉
...

As expected, the variables in the initialisation list must be output variables of
the current module.

The semantics extend naturally for this new construct:

[[initial init V=E; P]]
def
= [[initial V=E;P]]

[[always init V=E;P]]
def
= [[initial V=E; forever P]]

In most cases, the init keyword will be left out since its presence can be deduced
immediately.

53

5.4.3 Delayed Continuous Assignments

Delayed continuous assignments behave like inertial delays between the input
and the output: whenever a change in the input wires is noticed, an assignment
of the input expression to the output is set to be executed after the delay. Any
other assignment to the same variable due to execute before the new assignment
is removed. In other words, the output changes value once the inputs have all
remained constant for the specified delay.

[[assign v = #n e]]
def
=

(
l < n ∧ b¬vc)

∨ (l = n ∧ d¬ve); true

)

∧

(∃b · dvar(e) = be) n−→ dv = n� ee ∧
¬ (∃b · dvar(e) = be) n−→ dv = 1� ve

where b is a sequence of boolean values of the same length as the sequence of
variables var(e). Thus, if the variables in expression e remain unchanged for n

time units, v takes that value, while if any of the variables have changed value,
v keeps its old value.

Notice that this behaviour does not fully encompass the behaviour of the assign
statement in Verilog. Whenever the variables in the expression remain constant
for exactly n time units, the simulator semantics allows one of two sequences of
execution:

1. The change on one of the variables of e takes place before the assignment
of v and thus pre-empts the upcoming assignment.

2. The assignment to v takes place before the change of value of the variable
in expression e.

This situation thus leads to a non-deterministic choice, with the behaviour de-
pending on how the simulator is implemented. This situation is undesirable
since the result does not fully describe the (intuitive) corresponding hardware.
More complex examples may exhibit even more unexpected behaviour. Our
view is that a more hardware related approach is to take the behaviour as al-
ready described. The simpler, more direct semantics are easier to handle and
to prove results in.

Hence, to make sure that these formal semantics correspond directly to the
semantics of actual Verilog, one would have to make sure that changes to the
variables in expression e would never occur exactly n time units apart. If on
the other hand one is viewing these semantics from a hardware point of view,
where the delayed continuous assignment corresponds to a high capacitance
delay, these semantics should be adequate.

Note that assign v=#n e guarantees that v does not change more often than
every n time units: S(v, n) and S(¬v, n).

5.4.4 Transport Delay

Another type of delayed assignment is transport delayed assignment. As op-
posed to inertial delay, an event on the variables on the right hand side of
the assignment take place no matter whether any other change occurs before

54

the actual assignment takes place. Later, it will be shown how transport de-
lay can be implemented as several inertial delays in sequence. Also, since we
would like our approach to be extendible and applicable to other hardware
description languages, we will also be using transport delay in the coming chap-
ters. For this reason, we introduce a continuous transport delay assignment:
assignT v=#n e.

[[assignT v=#n e]]
def
=

√
(v = n� e)

5.4.5 Non-Blocking Assignments

Non-blocking assignments behave just like blocking assignments except that
the next statement in the module executes immediately without waiting for
the assignment to terminate. Note that this may introduce concurrent threads
controlling the same variables and thus the parallel composition operator already
defined fails to correctly describe the semantics. The solution we opt for is
based on the concept of parallel by merge as described and expounded upon in
[HJ98]. The basic underlying idea is that each process controls a copy of the
shared variables, which are then merged into the actual variable when parallel
composition is performed. [HJ98] use this basic idea to generalise different
forms of parallel composition ranging from shared clock parallel programs to
concurrent logic programs. This approach is mentioned again in section 5.5.3,
where resolution functions are discussed.

The semantics of non-blocking assignment are defined by:

[[v<=c e]]W (D)
def
= [[v=c e]]{v}(Const(v)) ‖

{v}
D

Since both processes running in parallel can control the variable v, they are
composed together using a merging parallel composition operator. This operator
allows for common variables to be changed by more than one process. Whenever
a variable is assigned to by both processes it non-deterministically takes one of
the values it is assigned to. It should now be clear that it is necessary to maintain
an extra boolean state for every Verilog variable v: assignv, which holds in those
time slots when variable v has just been assigned a value.

The semantics of the merging parallel composition is given by renaming the
common variable and then merging the two together:

[[P ‖
{v}

Q]]W (D)
def
= ∃∃vP , vQ, assignvP

, assignvQ
·

P [vP , assignvP
/v, assignv] ∧

Q[vQ, assignvQ
/v, assignv] ∧

Merge(vP , vQ, v)

Merge(v1, v2, v) manages variable v as a merging of the two variables v1 and v2.
Obviously, assignv is true exactly when either of assignv1

and assignv2
is true.

Furthermore, for any time unit, the value of v is:

• the same as v1 whenever v1 has just been assigned a value, but not v2,

• the same as v2 whenever v2 has just been assigned a value, but not v1,

• the same as the previous value of v whenever neither v1 nor v2 have just
been assigned,

55

• a non-deterministic choice between v1 and v2 when both have just been
assigned a value.

Formally, this can be written as:

Merge(v1, v2, v)
def
= bassignv = assignv1

∨ assignv2
c ∧

2(ddassignv1
∧ ¬assignv2

ee ⇒ ddv = v1ee) ∧
2(ddassignv2

∧ ¬assignv1
ee ⇒ ddv = v2ee) ∧

2(ddassignv1
∧ assignv2

ee ⇒ ddv = v1 ∨ v = v2ee) ∧
2(dd¬assignv1

∧ ¬assignv2
ee ⇒ ddv = 1� vee)

Obviously, the state variables assignv need to be maintained by the model. This
is done by adding the information that assignv is true immediately after an
assignment:

[[v=e]]W (D)
def
= (de ∧ −−−−→assignv = true ∧ −→v = start(e) ∧ Const(W − {v})) o

9
D

Also, whenever a variable is kept constant with Const(v) we make sure that
assignv does not become true:

Const’(v)
def
= Const(v) ∧ (de ∨ (l = 1 ∧ Const(assignv)) o

9
(b¬assignvc ∧ −−−−→assignv = false)

In other words, assignv keeps the value it has just been assigned prior to the
current interval but then reverts to zero after one time unit.

Since a shared variable is not considered local, any input from a shared variable
v is changed to read from vin. At the topmost level, it would then be necessary
to add the invariant:

√
vin = v.

Finally note that the relational chop type is no longer the same as the alphabet
of the process (W) but:

W ∪ {assignv | v ∈ W}
As can be seen from the above discussion, using non-blocking assignments can
considerably complicate the model. However, the extra information does not
invalidate proofs about sub-systems which do not use non-blocking assignments.
In fact, it is possible to split the semantics of a process into the conjunction of
two separate parts: one controlling the variable values and the other recording
whether the variables have been assigned to. If the program has no non-blocking
assignments, the first conjunct will be identical to the semantics of the program
as given in a previous section. In brief, proofs on programs not using non-
blocking assignments can be done using the previous, simpler model. The extra
information about assignv would only be necessary in modules which use such
assignments.

A difference from standard Verilog is that, in our case, blocking and non-blocking
assignments have the same priority. In the case of standard Verilog, this is
not true, and changes to variable values induced by non-blocking assignments
are executed only when no other changes are possible. The model presented
here may be extended to deal with priority (possibly by introducing multi-level
signal strengths) but we choose to stay at a weaker, less deterministic level. For
example consider the program v<=#1 1; v=#1 0. In Verilog, v would always
end up with value 1, since the normal (blocking) assignment v=#1 0 would be
executed before the non-blocking assignment of v to 1. The semantics presented

56

here would not guarantee this, and it would be possible to show only that after
1 time unit v has value 1 or 0.

A more hardware oriented view is not to allow multiple drivers to assign a value
to the common output at the same time. This may effectively lead to a short
circuit, thus making the resultant circuit dangerous and its behaviour chaotic.
The semantics of parallel merging would look like:

[[P ‖
{v}

Q]]W (D)
def
= ∃∃vP , vQ, assignvP

, assignvQ
·

2(b¬assignvP
∨ ¬assignvQ

c)⇒ . . .

Whenever a multiple assignment takes place, the result would thus be chaos
(true) which implements only the trivial specification.

5.5 Discussion

5.5.1 Avoiding Combinational Loops

To avoid the possibility of combinational loops, it is sufficient to perform a
syntactic check. This check can be formalised by defining a dependency relation
con(P), where, if (v,w) is in the relation, then v is connected to w.

con(assign v=e)
def
= {(v,w) | w is a variable in e}

con(initial P)
def
= ∅

con(always P)
def
= ∅

con(P‖Q) def
= (con(P) ∪ con(Q))+

where R+ is the transitive closure of relation R.

To check that a program P has no combinational feedback, it is enough to make
sure that no wire is related to itself, or formally, that:

con(P) ∩ Id = ∅
where Id is the identity relation over the set of wires.

5.5.2 Time Consuming Programs

From the restrictions placed on Verilog, it is clear that we would like to assess
whether an instruction always take time to execute or not. To do this we will
define dur(P), meaning that P must always take time to execute, as follows:

dur(wait v)
def
= false

dur(@v)
def
= true

dur(@posedge v)
def
= true

dur(@negedge v)
def
= true

dur(#n)
def
= true iff n > 0

57

dur(g1 or g2)
def
= dur(g1) ∧ dur(g2)

dur(v = e)
def
= false

dur(v = g e)
def
= dur(g)

dur(g v = e)
def
= dur(g)

dur(skip)
def
= false

dur(if b then P else Q)
def
= dur(P) ∧ dur(Q)

dur(while b do P)
def
= false

dur(P ; Q)
def
= dur(P) ∨ dur(Q)

dur(fork P ‖ Q join)
def
= dur(P) ∨ dur(Q)

For any sequential program P, we can now show whether dur(P) is true or not.
Note that it is possible to show that if dur(P) is true, the execution of P takes
time to terminate:

([[t=0;P;t=1]]W (Const(W)) ∧ −→t = 1) ⇒ l > 0

It is now possible to formalise some of the restrictions:

• Body of loops must take time: To use while b do P, dur(P) must be true.

• Guarded assignments to global registers: If v is a global register, and
the current process can write to it, then v=g e and g v=e are acceptable
provided that dur(g) is true.

The second restriction can be relaxed by making sure that any two assignments
to a global variable are separated by a program of non-zero duration.

5.5.3 Extending Boolean Types

Verilog users may prefer to use the four valued logic with {x, 0, 1, z} rather than
the two valued one that is presented here. Such a system can be implemented by
having two boolean states describing the value of the variables. For a variable w,
w.m will be true if w has a meaningful value (0 or 1) and w.v will specify whether
the value is high or low (the value is either 1 or z if w.v is true). This extended
model is more complex and in many cases using 1 and 0 values is sufficient. It
is for these reasons that the semantic values were limited to the two boolean
ones.

An important use of the z and x values is when designing tri-state devices
[Pal96, SSMT93]. Obviously, in this case, simply adding the extra values will
not suffice since, in general, one would desire to have multiple drivers on the
same variables and possibly also use resolution functions to arbitrate resultant
values. Parallel merging is, once again, the way one could model such a situation.
As before, each process writes to a local variable, where all these local values are
then cascaded together using the merge operator. For example, in the case of a
bidirectional bus where one device may want to send a high impedance value z

to allow the other device to write a value, the part of the merge operator which
manages this situation would look like the following:

58

√
(v1 = z⇒ v = v2)

Once again notice the extra information which needs to be carried around to
handle this kind of situation. Also, due to the nature of the parallel merge oper-
ator, which acts as a closure operator, our model loses some of its compositional
aspects.

5.5.4 Concurrent Read and Write

The major constraint on the language is the fact that we do not allow con-
current read and write between processes. This constraint can be removed by
making the reading of non-local variables in assignment statements take either
the previous or next value non-deterministically. This should guarantee sound
semantics even if we allow processes to read and write concurrently. However,
the semantics will still not be complete since, for example, we would still not be
able to prove that at the end of @posedge v; w=v the variable w has value 1.

5.6 Related Work

The main aim of [Goo93b] was to analyse how structure and behaviour interact
in HDL specifications. However, it is one of the best overviews of the different
approaches taken to formalise HDL behaviour as of 1993. Unfortunately, it ex-
clusively discusses continuous assignment style specifications with no imperative
programming features.

Since then considerable work which formalises HDLs has appeared. However, as
we note in the introduction, not much work has been done on Verilog itself. A
notable exception is the VFE (Verilog Formal Equivalence) project [GG95] set
up by the M.J.C. Gordon and D.J. Greaves. [Gor95] set the scene for research
being done by the VFE project and also served as direct inspiration for this
work. [Gor98] shows how programs written in a subset of Verilog can be trans-
lated into Mealy machines hence enabling formal analysis of these programs.
In [GG98] the interpretation is done down to a RTL (Register Transfer Level)
specification language which is given a mathematical semantics. Two levels of
semantics are discussed: simulation (or event) semantics discuss the behaviour
at the simulation cycle level while trace semantics abstract over unstable and
intermediate states. Two other semantic levels are identified but not yet anal-
ysed.

Most of the work done on industry standard HDLs, however, tends to deal with
VHDL. Anthologies of formal semantics for VHDL have appeared in [KB95] and
[Bor95].

A popular approach is to give an operational semantics to emulate the HDL
simulation cycle. [Goo95] gives an operational semantics to VHDL, while [Tas90,
TH91, Tas92] use HOL to formally specify the behaviour of the simulation cycle.
The popularity of this sort of semantics for HDLs is natural, since most of the
intricate behaviour is closely related to the way the languages are simulated. In
our case, we prefer to restrict the language to give a more elegant and abstract
semantics.

Other approaches have also been reported in the literature. Of particular in-
terest is [WMS91] which proposes a semantics of VHDL based on an interval
temporal logic. The authors formalise a relatively large subset of VHDL but
leaving out delta delays. To deal with the relational-temporal nature of the

59

language they use an interesting mechanism, whereby the behaviour is first
specified in terms of steps in resource (as opposed to simulation) time, each
of which corresponds to a simulator instruction execution. This is then ab-
stracted away by introducing a global clock (counting simulation time) which
synchronises the different behaviour traces. The resultant semantics convey the
expected behaviour, but time related specifications in the resultant model lack
high level abstraction.

Other denotational approaches have appeared in [BS95, BFK95, Dav93]. In
particular, [BFK95] gives an elegant semantics using the idea of a world-line
and current time point to describe the state. This semantics is then used to
define an equivalent axiomatic semantics for VHDL. Various other approaches
have been tried, most of which are far too detached from our presentation to
merit discussion in detail. [KB95] is a good starting point for such research.

5.7 Conclusions

The semantics of the basic language are quite easy to handle. As we include
other features, the semantics grow more and more complicated. This indicates
the need for algebraic laws to reason about the language in a more abstract fash-
ion. These laws will be given in chapter 6. An attractive part of the language
semantics design is its modularity. One can reason about a program which
uses only blocking assignments using the simple semantics. If a non-blocking
assignment is to be added to the program, the behaviour of the extra boolean
states can be derived separately. Also, provided that there is no interference
between the non-blocking assignment and the already existent program, all pre-
vious results shown are still valid. This compositional approach to language
semantics promotes and gives the opportunity to follow good and sound design
methodologies.

60

Chapter 6

Algebraic Laws

6.1 Introduction

Having defined the semantics of the language in question, one can prove proper-
ties about programs. However, proving properties in terms of relational duration
calculus can, at times, be very tedious. Sometimes we would simply like to trans-
form a given implementation into an equivalent one, or refine a program into a
more efficient version. Following the approach as used in [H+85, RH86, HMC96]
we give a number of algebraic equalities (and inequalities) which are satisfied
by any Verilog program. These laws can be verified with respect to the seman-
tics given in the previous chapter, thus allowing us to prove results using these
laws rather than having to fall back onto the underlying semantics. The laws
are given in terms of variables which can be replaced by any arbitrary program
(unless there is a side condition which permits its use only on programs which
respect certain properties).

6.2 Notation

Most of these laws give an equality between two programs. Since we are giving
a continuation semantics of the language, it is important to explain what we
mean when we say that P = Q. The first condition is that the alphabet of P is
the same as that of Q. The other condition is that for any possible continuation,
the two programs behave identically. Formally, this may be written as:

P = Q
def
= [[P]]V (D) = [[Q]]V (D)

where D can range over all valid relational duration formulae with V being the
alphabet of both P and Q.

However, in certain cases, full blown equality is far too strong a condition to
satisfy. In such cases, we consider refinements: we say that a programQ refines a
program P (written as P v Q) if, under all possible continuations, the behaviour
of Q implies that of P .

P v Q def
= [[Q]]V (D)⇒ [[P]]V (D)

Again, the implication must be satisfied for any relational duration formula D
with V being the alphabet of P and Q.

61

Note that equality can be rephrased in terms of refinement as follows:

P = Q ≡ P v Q ∧ Q v P

Note that the left hand side and right hand side of the equalities and inequalities
must have the same output alphabet.

6.3 Monotonicity

The first class of laws we will be giving state that the programming constructs
in Verilog are monotonic. In other words, if we selectively refine portions of the
program, we are guaranteed a refinement of the whole program. The proofs of
these laws are given fully due to their importance. For the rest of the chapter
we will only state the nature of the proof.

The following lemma will be needed to prove some laws in this chapter.

Lemma: For any program P with alphabet W , [[P]]W is a monotonic function:

D ⇒ E ` [[P]]W (D)⇒ [[P]]W (E)

Proof: The proof proceeds by structural induction on the program.

Base cases:

Skip:

[[skip]]W (D)
= { by definition of semantics }

D
⇒ { by premise }

E
= { by definition of semantics }

[[skip]]W (E)

Assignment:

[[v = e]]W (D)
= { by definition of semantics }

(−→v = start(e) ∧ Const(W − {v}) ∧ de) o

9
D

⇒ { by monotonicity of relational chop and premise }
(−→v = start(e) ∧ Const(W − {v}) ∧ de) o

9
E

= { by definition of semantics }
[[v = e]]W (E)

Guards:

[[g]]W (D)
= { by definition of semantics }

(gnt ∧ Const(W)) ∨ ((gter ∧ Const(W)) o

9
D)

⇒ { by monotonicity of relational chop and disjunction and premise }
(gnt ∧ Const(W)) ∨ ((gter ∧ Const(W)) o

9
E)

= { by definition of semantics }
[[g]]W (E)

62

Inductive cases:

Sequential composition:

[[Q;R]]W (D)
= { by definition of semantics }

[[Q]]W ([[R]]W (D))
⇒ { inductive hypothesis on [[Q]]W and [[R]]W }

[[Q]]W ([[R]]W (E))
= { by definition of semantics }

[[Q;R]]W (D)

Conditionals:
[[if b then P else Q]]W (D)

= { by definition of conditional }
[[P]]W (D) /

←−
b . [[Q]]W (D)

⇒ { monotonicity of DC conditional, inductive hypothesis and premise }
[[P]]W (E) /

←−
b . [[Q]]W (E)

= { by definition of conditional }
[[if b then P else Q]]W (E)

Loops:

[[while b do P]]W (D)
= { by definition of semantics }

µX · [[P]]W (X) /
←−
b . D

⇒ { monotonicity, inductive hypothesis and premise}
µX · [[P]]W (X) /

←−
b . E

= { by definition of semantics }
[[while b do P]]W (E)

Internal parallel composition:

[[fork P; Q join]]W (D)
= { by definition of semantics }

([[P]]WP
(Const(WP) o

9
D) ∧ [[Q]]WQ

(D))
∨ ([[P]]WP

(D) ∧ [[Q]]WQ
(Const(WP) o

9
D))

⇒ { monotonicity and inductive hypothesis }
([[P]]WP

(Const(WP) o

9
E) ∧ [[Q]]WQ

(E))
∨ ([[P]]WP

(E) ∧ [[Q]]WQ
(Const(WP) o

9
E))

= { by definition of semantics }
[[fork P; Q join]]W (E)

Note that the lemma automatically holds for commands defined in terms of
these instructions and constructs (such as g v=e which is defined as g; v=e).

2

Law: Sequential composition is monotonic:

If P v Q then X ;P v X ;Q and P ;X v Q;X

Note that this law holds only for programs not using non-blocking assignments.

Proof: The lemma is needed to prove monotonicity on the first operand:
[[X ;P]]W (D)

= { definition of semantics }
[[X]]W ([[P]]W (D))

⇐ { by lemma and premise }
[[X]]W ([[Q]]W (D))

= { definition of semantics }
[[X ;Q]]W (D)

63

Monotonicicity on the second operand is easy to establish:
[[P ;X]]W (D)

= { definition of semantics }
[[P]]W ([[X]]W (D))

⇐ { premise }
[[Q]]W ([[X]]W (D))

= { definition of semantics }
[[Q;X]]W (D)

2

Law: Parallel composition is monotonic:

If P v Q then X‖P v X‖Q and P‖X v Q‖X
Proof: Monotonicity on the left operand:

[[P ‖ X]]W (D)
= { definition of semantics }

([[P]]WP
(D) ∧ [[X]]WX

(Const(WX) o

9
D))

∨ ([[P]]WP
(Const(WP) o

9
D) ∧ [[X]]WX

(D))
⇐ { premise and monotonicity }

([[Q]]WQ
(D) ∧ [[X]]WX

(Const(WX) o

9
D))

∨ ([[Q]]WQ
(Const(WQ) o

9
D) ∧ [[X]]WX

(D))
= { definition of semantics }

[[Q ‖ X]]W (D)

The proof for the second branch follows identically.
2

Law: Conditionals are monotonic:

If P v Q then X / b . P v X / b . Q and P / b . X v Q / b . X

Proof: Monotonicity of the left branch program:
[[P / b . X]]W (D)

= { definition of semantics }
[[P]]W (D) /

←−
b . [[X]]W (D)

⇐ { premise and monotonicity }
[[Q]]W (D) /

←−
b . [[X]]W (D)

= { definition of semantics }
[[Q / b . X]]W (D)

The proof for the second branch follows identically.
2

Law: Loops are monotonic:

If P v Q then b ∗ P v b ∗Q and P ∗ b v Q ∗ b
Proof: Monotonicity of while loops on their only operand:

[[b ∗ P]]W (D)
= { definition of semantics }

µX · [[P]]W (X) /
←−
b . D

⇐ { premise and monotonicity }
µX · [[Q]]W (X) /

←−
b . D

= { definition of semantics }
[[b ∗Q]]W (D)

64

Monotonicity of repeat loops then follows immediately:
P ∗ b

= { by definition }
P ; b ∗ P

v { by monotonicity of while loops and sequential composition }
Q; b ∗Q

= { by definition }
Q ∗ b

2

As with monotonicity of sequential composition, this law holds only in the se-
mantics of the language without non-blocking assignments.

These laws justify the use of algebraic representation. In other words, if we have
a program context C(P), then we can guarantee that

1. if P v Q then C(P) v C(Q). This follows directly from the laws just
given and structural induction on the context C.

2. if P = Q then C(P) = C(Q). This follows from the equivalence between
equality and refinement in both directions and point 1.

6.4 Assignment

Normally, in Verilog, immediate assignments do not follow the normal laws
of assignment statements, as for instance used in [H+85]. For example, the
program v=~v; v=~v is not equivalent to v=v, since a parallel thread may choose
to read the input at that very moment. Another possibility is that the spike
will trigger an edge guard.

In our case, the semantics we give to Verilog are for a specific subset of Verilog
programs for which this equality holds. The problem has been bypassed by
not allowing programs to read and write simultaneously. Also, spikes are not
possible since assignments to global variables cannot be instantaneous.

The laws in this section follow immediately from the semantics of assignment
and the definition of relational chop. In fact, as already mentioned in chapter
3, relational chop and pre- and post-values act almost like assignment, provided
that unchanged variables are explicitly stated to be so. The following laws are
very similar (and in some cases identical) to those in [H+85].

Law: Composition of immediate assignments:

v=e;w=f = v,w=e,f[e/v]

v=e;v=f = v=f[e/v]

These rules for combining single assignments can be generalised to parallel as-
signments:

Law: Parallel assignments can be commuted:

V=E = πV=π(F)

where π is a permutation.

This commutativity property is used to simplify the presentation of the parallel
assignment composition law:

65

Law: Composition of parallel immediate assignments:

U,V=E,F;U,W=G,H = U,V,W=G[E,F/U,V],F,H[E,F/U,V]

where variable sequences V and W have no elements in common.

Since concurrent read and write is not allowed, we have the following law:

Law: Assignments distribute in and out of parallel composition:

(V=E; P) ‖ Q = V=E; (P ‖ Q)
To prove this law it is sufficient to note that the behaviour of Q is not affected
by an initial change in the value of variable list V which can be proved by
structural induction on the program.

If we are using the semantic model which does not allow for non-blocking as-
signments, an assignment of a variable to itself has no noticeable effect:

Law: Skip and self-assignment (using the semantics which do not allow for
non-blocking assignments):

v=v = skip

The law follows immediately from the fact that (de ∧ Const(W)) acts like the

left one of
W
o

9
. Note that if non-blocking assignments are used, the behaviour of

the assignment can cause a situation where multiple values are assigned to the
same variable at the same time.

Law: Programs and assignment — provided that P does not assign to v or free
variables in e, all variables in e are in the output alphabet of P and v is not
free in e:

v=e; P = v=e; P; v=e

Again, this law holds provided that there are no non-blocking assignments to v.
The proof follows by structural induction on P to show that the post-value of
v remains constant, as does that of e. The proof fails if we take the semantics
which handle non-blocking assignment since the right hand side program guar-
antees that the post-value of assignv is true whereas the left hand side program
does not.

6.5 Parallel and Sequential Composition

Sequential composition is associative with skip as its left and right unit:

P ; (Q;R) = (P ;Q);R

P ; skip = P

skip;P = P

These laws follow immediately from the definition of skip and associativity of
functional composition.

The following laws about parallel composition hold for internal parallel compo-
sition (using the fork ...join construct). The following law, however, allows
most of these laws to be applied equally well to top-level parallel composition:

66

initial P ‖ initial Q = initial fork P ‖ Q join

This law follows from the fact that Const(W)
W
o

9
Const(W) = Const(W).

Parallel composition is commutative and associative with skip as its unit:

P ‖ Q = Q ‖ P
P ‖ (Q ‖ R) = (P ‖ Q) ‖ R
P ‖ skip = P

The laws follow from associativity and commutativity of conjunction.

For programs which take time to execute (dur(P) holds), #1 is also a unit of the
composition. This can be proved by structural induction on programs satisfying
dur(P).

Provided that dur(P):

P ‖ #1 = P

In fact #1 distributes in and out of parallel composition:

#1;P ‖ #1;Q = #1; (P ‖ Q)

Law: If P and Q have different output alphabets, we can show that composing
P with Q refines P :

P v (P ‖ Q)1

The main application of this law, is when we choose to refine individual parallel
threads independently. Thus, for example, if we prove that Pi v P ′i (i ranging
from 1 to n), we can use induction on n and this law to deduce that:

P1 ‖ . . . ‖ Pn v P ′1 | . . . ‖ Pn

1Note that this law cannot be applied if Q has a non-empty output alphabet (since the left
and right hand side would have different output alphabets). To solve this problem, we can
introduce a new program chaosV which allows the variables V to change non-deterministically.

[[chaosV]]V (D) = true

Clearly, any program outputting to V is a refinement of this program:
chaosV v P

This allows us to deduce the intended meaning of the parallel composition law, since P v P ,
the above law and monotonicity of parallel composition enable us to deduce:

(P ‖ chaosV) v (P ‖ Q)

where V is the output alphabet of Q.

67

6.6 Non-determinism and Assumptions

Restricting ourselves to the Verilog constructs can be problematic when proving
certain properties. Sometimes it is useful to introduce certain new constructs
which may feature in the middle part of the proof but would eventually be
removed to reduce the program back to a Verilog program. This approach is
used extensively in the correctness proofs of the hardware compiler in chapter
10.

One useful construct is non-deterministic composition. Informally, the non-
deterministic composition of two programs can behave as either of the two.
More formally, we define the semantics of non-determinism (u) as:

[[P uQ]]W (D)
def
= [[P]]W (D) ∨ [[Q]]W (D)

From this definition it immediately follows that non-determinism is commuta-
tive, associative, idempotent and monotonic:

P uQ = Q u P
P u (Q u R) = (P uQ) u R

P u P = P

If P v Q then P uR v Q u R
and R u P v R uQ

Non-determinism also distributes over sequential composition since disjunction
distributes over relational chop:

P ; (Q u R) = (P ;Q) u (P ;R)

(P uQ);R = (P ;R) u (Q;R)

Another useful class of statements we will use are assumptions. The statement
assume b, expressed as b>, claims that expression b has to be true at that point
in the program:

[[b>]]W (D)
def
= (de ∨ dbe; true) ∧D

false> and true> are, respectively, the left zero and one of sequential compo-
sition:

false>;P = false>

true>;P = P

Conjunction of two conditions results in sequential composition of the condi-
tions:

(b ∧ c)> = b>; c>

68

This law follows immediately from simple Duration Calculus reasoning. Two
corollaries of this law are the commutativity and idempotency of assumptions
with respect to sequential composition:

b> = b>; b>

b>; c> = c>; b>

Disjunction of two conditions acts like non-determinism:

(b ∨ c)>;P = (b>;P) u (c>;P)

Assumptions simply make a program more deterministic:

P v b>;P

This holds since prepending an assumption to a program P simply adds another
conjunct to the semantics of P .

6.7 Conditional

The conditional statement is idempotent and associative:

P / b . P = P

P / b . (Q / b . R) = (P / b . Q) / b . R

These properties follow immediately from the definition of the semantics of con-
ditional and idempotency and associativity of Duration Calculus conditionals.

Sequential, parallel and non-deterministic composition distributes out of condi-
tionals:

(P / b . Q);R = (P ;R) / b . (Q;R)

P u (Q / b . R) = (P uQ) / b . (P u R)

P ‖ (Q / b . R) = (P ‖ Q) / b . (P ‖ R)

Finally, a number of laws can be given which convey better the meaning of the
conditional statement:

P / true . Q = P

P / b . Q = Q / ¬b . P
P / b . (Q / b . R) = P / b . R

(P / b . Q) / b . R = P / b . R

Again, these laws follow from the definition of the semantics and the laws of
conditional in Duration Calculus.

69

Provided that the values of the variables in expression b are not changed im-
mediately by programs P and Q, a conditional can be expressed in terms of
non-determinism and assumptions:

P / b . Q = (b>;P) u (¬b>;Q)

In the language considered for hardware compilation (see chapter 10), the pre-
condition is always satisfied. In the general language, one would have to check
that P (Q) has a prefix P1 (Q1) such that dur(P1) (dur(Q1)) and the variables
of b are not assigned in P1 (Q1).

6.8 Loops

The recursive nature of loops can be expressed quite succinctly in terms of
algebraic laws:

Law: Unique least fixed point: Q = (P ;Q) / b . skip if and only if Q = b ∗ P .

As immediate corollaries of this law, we can show that:

(b ∗ P) / b . skip = b ∗ P
Q = P ;Q if and only if Q = forever P

Q = P ; (Q / b . skip) if and only if Q = P ∗ b

Law: The first law can be strengthened to: Q = (P ;Q) / b . R if and only if
Q = (b ∗ P);R.

The following law allows us to move part of a loop body outside:

Law: If Q;P ;Q = Q;Q then (P ;Q) ∗ b = P ; (Q ∗ b).
The unique fixed point law is one of the more interesting laws presented in this
chapter, and we will thus give a complete proof of the result.

Lemma 1: If dur(P) holds, then there exist relational duration formulae D1

and D2 such that, for any relational duration formula D:

[[P]]W (D) = D1 ∨ (D2 ∧ l ≥ 1)
W
o

9
D

where D1 and D2 are independent of D.

Proof: The proof proceeds by induction on the structure P with the following
inductive hypothesis:

[[P]]W (D) = D1 ∨ (D2 ∧ l ≥ 1)
W
o

9
D if dur(P)

[[P]]W (D) = D1 ∨D2

W
o

9
D

The proof follows in a routine manner and is thus left out.
2

Lemma 2: If dur(P) holds and l ≤ n⇒ Q = R, then:

l ≤ n+ 1⇒ P ;Q = P ;R

70

Proof:
[[P ;Q]]W (D)

= { by definition of semantics }
[[P]]W ([[Q]]W (D))

= { by lemma 1 }
D1 ∨ (D2 ∧ l ≥ 1) o

9
([[Q]]W (D))

= { l ≤ n+ 1 and chop definition }
D1 ∨ (D2 ∧ l ≥ 1) o

9
(l ≤ n ∧ [[Q]]W (D))

= { premise }
D1 ∨ (D2 ∧ l ≥ 1) o

9
(l ≤ n ∧ [[R]]W (D))

= { l ≤ n+ 1, chop definition and monotonicity of DC operators }
D1 ∨ (D2 ∧ l ≥ 1) o

9
([[R]]W (D))

= { by lemma 1 }
[[P]]W ([[R]]W (D))

= { by definition of semantics }
[[P ;R]]W (D)

2

Lemma 3: ∀n : � · (l ≤ n⇒ D = E) if and only if D = E.

Proof: Follows immediately from the underlying axiom ∃n : � · l = n.
2

To avoid long mathematical expressions, we will now define:

F (α)
def
= if b then (P ;α) else skip

We will also be referring to multiple applications of F to an arbitrary program
α:

F 1(α)
def
= F (α)

Fn+1(α)
def
= F (Fn(α))

Lemma 4: If α is a solution of the equation X = F (X), then α is also a
solution to X = F n(X), for any positive integer n.

Proof: The proof follows immediately from the definition of F i(X):

Base case: X = F (X) = F 1(X).

Inductive case:
X

= { premise }
F (X)

= { monotonicity of F and inductive hypothesis }
F (Fn(X))

= { by definition of F n+1 }
Fn+1(X)

2

Theorem: If α and β are solutions of the equation X = F (X) and dur(P),
then α = β.

Proof: By lemma 3, it is sufficient to prove that:

∀n : � · l ≤ n⇒ α = β

71

We will now show by induction on n, that this is true for any value of n.

Base case: n = 0

We start by proving the following equality:
l ≤ 0 ∧
[[P ;α]]W (D)

= { by definition of semantics }
l ≤ 0 ∧
[[P]]W ([[α]]W (D))

= { by lemma 1 }
l ≤ 0 ∧
(D1 ∨ (D2 ∧ l ≥ 1) o

9
([[α]]W (D)))

= { DC reasoning about interval length }
l ≤ 0 ∧D1

= { DC reasoning about interval length }
l ≤ 0 ∧
(D1 ∨ (D2 ∧ l ≥ 1) o

9
([[β]]W (D)))

= { by lemma 1 }
l ≤ 0 ∧
[[P]]W ([[β]]W (D))

= { by definition of semantics }
l ≤ 0 ∧
[[P ;β]]W (D)

We will now use this equality to prove the base case of the induction:
[[α]]W (D)

= { by lemma 4 }
[[F (α)]]W (D)

= { by definition of F }
[[if b then (P ;α) else skip]]W (D)

= { by definition of semantics }
[[P ;α]]W (D) /

←−
b . D

= { monotonicity of conditional, l ≤ 0 and previous result }
[[P ;β]]W (D) /

←−
b . D

= { by definition of semantics }
[[if b then (P ;β) else skip]]W (D)

= { by definition of F }
[[F (β)]]W (D)

= { by lemma 4 }
[[β]]W (D)

This concludes the base case of the theorem.

72

Inductive case: n = k + 1
[[α]]W (D)

= { by lemma 4 }
[[F k+1(α)]]W (D)

= { by definition of F k+1 }
[[F (F k(α))]]W (D)

= { by definition of F }
[[if b then (P ;F k(α)) else skip]]W (D)

= { by inductive hypothesis, lemma 2 and monotonicity of conditional }
[[if b then (P ;F k(β)) else skip]]W (D)

= { by definition of F }
[[F (F k(β))]]W (D)

= { by definition of F k+1 }
[[F k+1(β)]]W (D)

= { by lemma 4 }
[[β]]W (D)

2

From this theorem we can conclude that:

Corollary: Q = (P ;Q) / b . skip if and only if Q = b ∗ P .

Proof: (⇒) By definition, b ∗ P satisfies the equation X = F (X). By the first
equation, so does Q. Hence, by the theorem Q = b ∗ P .

(⇐) We simply unravel the loop once.
2

6.9 Continuous Assignments

Continuous assignments with no delay can be applied syntactically. This is a
direct consequence of Duration Calculus invariants’ laws:

(
assign v=e(x)

‖ assign x=f

)

=

(
assign v=e(f)

‖ assign x=f

)

If variable w is stable for at least 2 time units, we can transform a transport
delay into a number of unit inertial delays. Provided that S(w, 2) and S(¬w, 2):

assignT v=#n w = var v0, . . .vn

assign v1=w

‖ni=2 assign vi=#1 vi−1

‖ assign v=vn

end v0, . . .vn

Note that this law cannot be used if w is not a single variable (since inertial
delay is triggered not when the value of the whole expression changes but when
the value of any of the variables in the expression changes).

For convenient presentation of certain properties, we will also allow programs
of the form P; assign v=e. This will act like:

[[P]]W ([[assign v=e]] ∧ Const(W − {v}))
Similarly, P; (assign v=e ‖ Q) acts like:

[[P]]W ([[assign v=e ‖ initial Q]])

73

6.10 Communication

The use of synchronisation signals can greatly increase the readability of code.
This type of communication can be handled using the subset of Verilog we are
using.

These ‘channels’ can be implemented as global variables which have a normal
value of zero, but go briefly up to one when a signal is sent over them. ‘Wait
for signal’, s?, is thus easily implemented by:

s?
def
= wait s

The method used in the Fibonacci number calculator in section 2.4.2 to send
a signal on s was by using the following code portion: s=#1 1;s<=#1 0. Note
that this program blocks the execution of future events along this thread by one
time unit, which we would rather avoid.

To send a signal, without blocking the rest of the program for any measurable
simulation time but leaving the signal on for a non-zero time measure, the non-
blocking assignment statement can be quite handy:

s!
def
= s = 1 ; s <= #δ 0

So what value of δ is to be used? Obviously, δ has to be larger than zero.
However, taking a value of 1 or larger leads to a conflict in the program:

s! ; #δ ; s!

The solution is to use a value of 0.5 for δ. This may seem to invalidate all
the previous reasoning based on discrete time. However, this is not the case.
Effectively, what we have done is to reduce the size of the smallest time step to a
level which normal Verilog programs will not have direct access to. Alternatively,
one could have used a value of one for δ and multiplied all delays in the program
by a factor of two (effectively allowing Verilog programs to use only even sized
delays).

If non-blocking assignments are only used for signals, and signals are accessed
only using s! and f(s)?, we can guarantee the monotonicity of sequential com-
position and loops despite the presence of non-blocking assignments.

6.11 Algebraic Laws for Communication

6.11.1 Signal Output

Processes which write to a signal s are assumed to do so only using the command
s! (except for initialisation). We will use s! ∈ P as shorthand for the (syntactic)
check whether the command s! occurs anywhere in program P . Similarly, s! /∈ P
refers to the converse. In both cases, it is assumed that s is in the output
alphabet of P .

Signals start off as false, provided that they are not initially written to:

initial P ;Q = initial ¬s>;P ;Q

provided that dur(P) and s! /∈ P . The law can be proved by structural induction
on program P .

74

s! sets signal s to true:

s! = s!; s>

Between two programs which do not signal on s, both of which take time to
execute, s is false:

P ;Q = P ;¬s>;Q

provided that s! /∈ P ;Q and dur(P) and dur(Q). Again, structural induction on
P and Q is used to prove this property.

Output on a signal can be moved out of parallel composition:

(s!;P) ‖ Q = s!; (P ‖ Q)

The proof is almost identical to the similar law which moves assignments out of
parallel composition.

Signalling and assumptions commute:

s!; b> = b>; s!

6.11.2 Wait on Signal

Waiting stops once the condition is satisfied:

(s>;P) ‖ (s?;Q) = (s>;P) ‖ Q

Follows immediately from the definition of the semantics of s?.

Execution continues in parallel components until the condition is satisfied:

(¬s>;P ;Q) ‖ (s?;R) = ¬s>;P ; (Q ‖ s?;R)

provided that s! /∈ P . As before, follows from the semantics of s?.

If we also add the constraint that dur(P), we can even afford an extra time unit:

(¬s>;P ;Q) ‖ (#1; s?;R) = ¬s>;P ; (Q ‖ s?;R)

75

6.11.3 Continuous Assignment Signals

Sometimes, it may be necessary to have signals written to by continuous as-
signments. The laws given to handle signal reading and writing no longer apply
directly to these signals and hence need modification.

The following laws thus allow algebraic reasoning about a signal s written to by
a continuous assignment of the form:

assign s = f(s1, . . . , sn)

where all variables s1 to sn are signals. For s to behave like a normal signal
(normally zero except for half unit long phases with value one), f(0, 0, . . .0) has
to take value 0.

If b⇒ f(s) then:

assign s = f(s) ‖ b>;P = b>; s!; (assign s = f(s) ‖ P)

If b⇒ ¬f(s) and si /∈ P then:

assign s = f(s) ‖ b>;P ;Q = b>;P ; (assign s = f(s) ‖ Q)

To sequentialise outputs on signals si:

assign s = f(s) ‖ si!;P = si!; (assign s = f(s) ‖ s>i ;P)

The above laws are consequences of the following law:

assign s = f(s) ‖ P (s?) = assign s = f(s) ‖ P (f(s)?)

This law is a consequence of Duration Calculus invariants’ laws and the seman-
tics of s? and s!.

Furthermore, if P is the process controlling a signal s, and s starts off with a
value 0, the value of f(s) will remain that of f(0) until P takes over.

(s = 0)>; f(s)?;P = (s = 0)>; f(0)?;P

(the underlying assumption is that s is a signal and in the output alphabet of
P).

6.12 Signals and Merge

Signals now allow us to transform a process to use a different set of variables.
The trick used is to define a merging process which merges the assignments on
a variable to another.

76

The first thing to do is to make sure that we know whenever a variable has been
assigned to. The technique we use is simply to send a signal on assignv to make
it known that v has just been assigned a value. Note that we will only allow
this procedure to be used on global variables, which guarantees that no more
than one assignment on a particular variable can take place at the same time.

We thus replace all assignments: v=g e by v=g e; assignv! and similarly g v=e

by g v=e; assignv!

The program Merge will collapse the variables v1 and v2 into a single variable
v, provided that they are never assigned to at the same time:

Merge
def
= var v1, v2, assignv1

, assignv2

assign assignv = assignv1
∨ assignv2

‖ assign v = (v1 / assignv1
. v2) / assignv . v

−

‖ assign v− = #0.5 v

end v1, v2, assignv1
, assignv2

This merge program can be used, for instance to allow parallel programs effec-
tively to use the same variables. It also obeys a number of laws which relate
Merge to parallel composition and conditional:

(P [v1/v];Q[v2/v]) ‖ Merge = P ;Q

(P [v1/v] / b . Q[v2/v]) ‖ Merge = P / b . Q

Note that for the first law to hold, both sides of the equality must be valid
programs.

The laws given in this section follow by structural induction on the program
and the laws of invariants (which appear in Merge).

6.13 Conclusions

The aim of this chapter was to identify a number of algebraic laws which Verilog
programs obey. As discussed in [H+85], the formal semantics allow us to look
at programs as mathematical expressions. In mathematics, algebraic laws allow
the manipulation and simplification of programs with relative ease, without
having to refer back to the more complex underlying axioms. This is the main
motivation behind the work presented in this chapter.

77

Part III

This part explores the use of the formal seman-
tics. Chapter 7 presents the transformation of
of a real-time specification into a Verilog imple-
mentation, while chapter 8 shows how a simple
specification language for simple hardware com-
ponents can be defined. A set of laws which de-
compose and eventually implement components
in Verilog by following a simple decision proce-
dure are also given and are used in a number of
simple examples in chapter 9. Other examples
of the use of these semantics for verification can
also be found in [PH98].

78

Chapter 7

A Real Time Example

7.1 Introduction

One of the advantages of Verilog over most software languages is the control
over the passage of time. This makes it possible to implement time sensitive
specifications realistically. This chapter considers a standard real-time spec-
ification, and analyses its implementation in Verilog. The implementation is
constructed, rather than divined, thus reducing the number of proofs necessary.
This example should also indicate how general principles can be defined to be
used to convert standard sections of a specification into correct code.

The example considered is that of a railway level crossing, using the real-time
specification language based on duration calculus presented in chapter 4. The
specification is a combination of evolution and stability constraints. These en-
sure that the system evolves and changes when required, but will not do so
unnecessarily.

The contribution of this chapter is to show how one can derive a (correct)
Verilog implementation of an abstract specification. The specification is taken
from [HO94] where a clocked circuit implementation is also proved correct. The
implementations strategies differ considerably, since we have more abstract con-
structs at our disposal. The approach used in this chapter is much more con-
structive than that used in [HO94]. The resulting implementations are quite
different although they have a similar flavour, which may indicate that the
specification language is already rather low level.

7.2 System Specification

7.2.1 The Boolean States Describing the System

We consider a railway crossing with a gate, traffic lights and railtrack.

1. The environment will provide information as to whether the gate is open
or closed. The boolean states to represent these conditions are:

• O for open

• C for closed

2. The environment will also provide information whether the track is empty
or occupied by an approaching train:

79

• E for empty

• A for approaching

3. The implementation must provide the environment with a signal to start
opening or closing the gate:

• Oing for opening

• Cing for closing

4. The implementation will also be responsible for setting the traffic lights
red, yellow and green:

• R for red

• Y for yellow

• G for green

Note that we still have no restrictions implying that only one of the states can be
true at any one time. Up to this point all boolean states are independent of one
another. Thus, for instance, E and A can still both be satisfied simultaneously
— the track being empty and occupied at the same time!

7.2.2 System Requirements

We will now list the requirements of the railway crossing. The requirements will
be stated in terms of a specification constant ε. By designing an implementation
in terms of ε, we will effectively have designed a family of implementations, for
a family of specifications.

• Closing Gate

Once a train starts approaching, the gate must start closing within 15+ ε
time units:

Req1
def
= A

15+ε−→ Cing

Within ε time units, the light must not be green, but yellow or red:

Req2
def
= A

ε−→ (Y ∨R)

If 3 + ε time units elapse with the gate closing but it has not yet closed,
the light must be red:

Req3
def
= (Cing ∧ ¬C)

3+ε−→ R

• Opening Gate

After just ε time units with the track empty, the gate must start opening:

Req4
def
= E

ε−→ Oing

80

If the gate starts opening but does not open within 3 + ε time units,
something must be wrong, and we turn the red light on:

Req5
def
= (Oing ∧ ¬O)

3+ε−→ R

Otherwise, the light is green:

Req6
def
= E

ε−→ (G ∨ R)

• Light Control

The light must show at least one of red, yellow or green:

Req7
def
=
√

(R ∨ Y ∨G)

No two colours may be on at the same time:

Req8
def
=
√

(¬(G ∧ Y)) ∧ √(¬(R ∧ Y)) ∧ √(¬(R ∧G))

• Stability of the System

It takes at least 4 time units to open or close the gate:

Req9
def
= S(Oing , 4)

Req10
def
= S(Cing , 4)

7.2.3 System Assumptions

In order to prove our implementation correct, we make certain assumptions
about the system. Otherwise, certain parts will not be implementable or, just
as bad, trivially implementable (such as, for instance, by letting the red light
stay on indefinitely).

The train takes at least 20 time units to pass through the crossing:

Ass1
def
= S(A, 20)

Trains are separated one from another by at least 10 time units:

Ass2
def
= S(E, 10)

As already discussed, boolean states A and E must be mutually exclusive:

Ass3
def
= A⇔ ¬E

81

7.3 Implementing the Specification

Ideally, the work to prove the correctness of an implementation with respect
to a specification is reduced as much as possible. Proofs of specific, possibly
optimised code against a specification usually requires a lot of hard tedious work.
The approach we take is to design and transform the specification segments into
an implementation in a progressive, constructive fashion. This considerably
reduces the work necessary to provide a safe implementation.

If necessary, optimisation of the code can then be performed later, using alge-
braic laws which transform the program into a smaller or faster one, depending
on the particular needs and available resources.

7.4 Specification and Implementation Decompo-

sition

Note that in both the specification and implementation both composition op-
erators ∧ and ‖ are semantically equivalent, provided we keep to the signal
restrictions placed on Verilog. This allows us to construct an implementation
piecewise from the requirements. The following laws show how this is done. In
both cases, we assume that the parallel composition is legal:

• If [[P]]⇒ R then [[P‖P ′]]⇒ R

• If for all i (i ranging from 1 to n), [[P]]⇒ Ri then [[P]]⇒ ∧n

i=1 Ri

Both proofs are rather straightforward. In the first case:

[[P‖P ′]]
⇒ { by definition of parallel composition }

[[P]] ∧ [[P ′]]
⇒ { ∧ elimination }

[[P]]
⇒ { premise }

R

2

The second result is also easily proved by induction on n. When n = 1:

[[P]]
⇒ { premise }

R1

⇒ { by definition of
∧1

i=1 Ri }∧n

i=1 Ri

As for the inductive case, we assume that [[P]]⇒ ∧n

i=1 Ri and prove that [[P]]⇒
∧n+1

i=1 Ri:

[[P]]
⇒ { premise and inductive hypothesis }

Rn+1 ∧
∧n

i=0Ri

⇒ { by definition of
∧n+1

i=0 Ri }
∧n+1

i=0 Ri

2

We can now thus shift our focus to the implementation of the individual re-
quirements.

82

7.5 Calculation of the Implementation

7.5.1 Closing and Opening the Gate

Note that the behaviour of the closing state C ing is completely specified by

Req1 and Req10. The progress Req1 may be weakened to A
δ−→ Cing where δ ≤

15+ε. Furthermore, the requirement suggests an implementation using a delayed
continuous assignment. The following program satisfies this requirement:

assign Cing = #δ1 A δ1 ≤ 15 + ε

Does this implementation also satisfy Req10? Firstly, we note that from the
assignment assign v=#n e it immediately follows that v is stable for n time
units. Hence, by choosing δ1 to be 4 or more, we also satisfy Req11. In fact,
however, from the assign statement and assumption 2 it can be shown that
Req10 is also satisfied when δ1 < 4. We thus end up with the following program
which satisfies Req1 and Req10:

assign Cing = #δ1 A δ1 ≤ 15 + ε

Similarly, Req4 and Req9, specifying the behaviour of Oing are satisfied by:

assign Oing = #δ2 E δ2 ≤ 15 + ε

7.5.2 The Traffic Lights

Red

The behaviour of the red light is influenced by Req3, Req5, Req7 and Req8.
Since we have already seen how to implement progress requirements, we try
to construct such an implementation and then strive to satisfy the other re-
quirements later. However, apparently there is a problem since the specification
provides two, not one, progress requirements for red. This problem is solved by
combining the two Req3 and Req5 into one:

((Cing ∧ ¬C) ∨ (Oing ∧ ¬O))
3+ε−→ R

Using the monotonicity of the leads to operator, it is obvious that if this re-
quirement is satisfied, then so are Req3 and Req5.

Using the approach advocated in the previous section, this is implemented by:

assign Malfunction = (Cing and ∼C) or (Oing and ∼O)
‖ assign R = #δ3 Malfunction δ3 ≤ 3 + ε

Note that the decomposition of the implementation into two parts is done to
make the program clearer and to avoid complications arising from situations
where the individual variables, but not the value of the whole expression, change.

83

Yellow

The invariant conditions given in Req7 and Req8 indicate that at least one of
the traffic lights could be implemented to be on whenever the other two are off.
This immediately satisfies Req7 and part of Req8. For this we can choose either
yellow or green (since red has already been implemented). We choose yellow,
although an implementation could just as easily have been constructed if green
had been chosen.

assign Y = ∼G and ∼R

Green

Replacing Y by ¬G∧¬R reduces Req7 to true. Requirement 8 is simply reduced
to:

√
(¬(G ∧R))

Also, using this replacement and replacing E by ¬A (from assumption 3), Req2
and Req6 reduce to:

¬A ε−→ G ∨ R
A

ε−→ ¬G ∨R

If we use an intermediate state A−, we can use monotonicity of the leads to
operator to decompose these requirements into:

¬A ε−→ ¬A−
A

ε−→ A−

√
(A− ⇒ (¬G ∨ R))

√
(¬A− ⇒ (G ∨ R))

The first two lines are implemented by a continuous assignment:

assign A− = #δ4 A δ4 ≤ ε

Using propositional calculus transformations, it can easily be shown that if
G is replaced by ¬A− ∧ ¬R, the remaining two invariant conditions and the
transformed version of Req8 are all satisfied.

assign G = ∼A− and ∼R

This result may be reached by propositional calculus reasoning or by simply
drawing up a truth table of the invariants with the boolean states G, A−, R
and expressing G as a function of the other boolean states.

84

A

C

O

E

Cing

Oing

A
G

Y

R

Figure 7.1: A circuit satisfying the real-time constraints

7.6 The Implementation

A whole family of implementations has thus been calculated from the require-
ments. The whole implementation is the following:

assign Cing = #δ1 A

‖ assign Oing = #δ2 E

‖ assign Malfunction = (Cing and ∼C) or (Oing and ∼O)
‖ assign R = #δ3 Malfunction

‖ assign Y = ∼G and ∼R
‖ assign A− = #δ4 A

‖ assign G = ∼A− and ∼R

where the following restrictions are placed on the delays:

δ1 ≤ 15 + ε

δ2 ≤ 15 + ε

δ3 ≤ 3 + ε

δ4 ≤ ε

Thus, for example, if ε is at least 1, we can satisfy all constraints by taking
δ1 = δ2 = δ3 = δ4 = 1. This implementation is shown in figure 7.1.

7.7 Other Requirements

The original specification had one other requirement: The gate must remain
open for at least 15 time units:

Req11
def
= S(O, 15)

Two other assumptions about the system environment were also given to provide
valid implementations of the specification:

• The gate can only open when it receives an opening signal.

Ass4
def
= 2(d¬Oe ; dOe ⇒ true ; dOinge ; dOe)

85

• It remains open unless a closing signal is received:

Ass5
def
= O unless Cing

Note that the new requirement places a constraint on one of the system inputs,
not outputs, and is thus not possible to prove directly as part of the construction.

Furthermore, the implementation given here does not satisfy the new require-
ment and would thus require a more intelligent approach.

One possible implementation of the system would be to implement C ing more
intelligently as follows:

assign Cing = #δ1 K

‖ assign K = A∧¬Oing
Note that Req1 and Req10 are still satisfied using this implementation provided
that δ1 + δ2 ≤ 15 + ε.

Provided that ε ≥ 15, we can satisfy the new requirement by taking δ1 = δ2 =
15. Note that a more general implementation can also be derived using less
constructive techniques together with more intuition.

86

Chapter 8

Hardware Components

It is desirable to have a number of circuit properties from which one is able to
construct more complex circuit specifications. This chapter gives a number of
simple components which one may use to describe hardware. A normal form for
this specification language is identified and laws are given to transform arbitrary
specifications into this normal form. Finally, a set of laws converting normal
form specifications into Verilog code are also given.

8.1 Combinational Circuits

One common property is that of having a boolean state always carrying a func-
tion of a number of other states with no delay in between. This is basically a
combinational circuit. Such a property is specified as follows:

C(v ←− e) def
=
√

(v = e)

8.2 Transport Delay

Quite frequently, it is necessary to have a signal carrying the same information
as another wire but delayed by a number of time units. This type of delay is
called transport delay and can be specified by:

T (v
δ←− e) def

=
√

(v = δ � e)

8.3 Inertial Delay

A rather more complex type of delay is inertial delay. An inertially delayed
signal changes its value only after the inputs have remained constant for a given
number of time units. We can describe this delay by:

I(v δ←− e) def
=

Stable(var(e))
δ−→ dv = δ � ee

∧ ¬Stable(var(e))
δ−→ dv = 1� ve

where Stable(v)
def
= bvc ∨ b¬vc, and Stable(V)

def
=
∧

v∈V Stable(v).

87

Thus, if the variables in expression e remain unchanged for δ time units v takes
that value, while if any of the variables have changed value, v keeps its old value.

8.4 Weak Inertial Delay

The inertial delay behaviour, as described in the previous section can, in some
circumstances, be too strong. Usually, it is enough to ensure the positive be-
haviour of the inertial delay: that the output is specified whenever the input has
remained constant for at least δ time units. The extra requirement, that when-
ever the inputs have just changed, the output remains constant may be rather
difficult to implement in certain circumstances, and may not be necessary for
the whole design. For this reason, we define a weak inertial delay:

I−(v
δ←− e) def

= Stable(var(e))
δ−→ dv = δ � ee

8.5 Edge Triggered Devices

An edge triggered register will output its current state, which is changed to the
input whenever a rising (or falling) edge is encountered on the trigger signal.
This device will be written as ↑T |= v ←− e for input e, output v and trigger
signal T . It is sensitive to a rising edge on T (a downwards arrow instead of the
upwards one is used for falling edge triggered devices). To avoid feedback we
assume that T is not free in e.

A delayed edge triggered device acts just like a normal edge triggered device
but the state is changed δ units after the trigger event to the value of the input
(at the trigger event). We assume that the trigger will not have more than one
rising edge within δ time units of another. As before, T must not be free in e.

The formal definition of a delayed rising edge triggered device follows:

↑T |= v
δ←− e def

=
←−−
Rise(T)

δ−→ dv = δ � ee
∧ ¬←−−Rise(T)

δ−→ dv = 1� ve

where
←−−
Rise(T) states that T has risen at the start of the current interval:

←−−
Rise(T)

def
= (de ∧←−T = false ∧ −→T = true); true.

Immediate edge triggered components can now be defined in terms of the delayed
version:

↑T |= v ←− e def
= ↑T |= v

0←− e

8.6 Weak Edge Triggered Devices

As we did with the inertial delay it is sometimes sufficient to describe the be-
haviour of an edge triggered device weaker than the ones introduced in the
previous section. It is usually sufficient to specify that δ time units after a trig-
ger, the value of the output will change to the value of the input as it was at the
triggering event. The output will not change until another trigger is detected.

88

Note that we are weakening the specification by not determining the behaviour
of the output from when the trigger is detected until δ time units later. It is
usually far easier to satisfy this behaviour, and it is usually sufficient for most
behavioural purposes. Formally, this behaviour is specified as:

↑T |=− v δ←− e def
=

←−−
Rise(T)

δ−→ dv = δ � ee
∧ ¬←−−Rise(T) ∧ ¬Rise(T)

δ−→ dv = 1� ve

where Rise(T)
def
= 3(d¬T e ; dT e).

↑T |=− v ←− e def
= ↑T |=− v 0←− e

The behaviour of a weak falling edge triggered device can be similarly defined.

8.7 Hiding

Specifications are usually built hierarchically. Modules are specified in terms of
sub-modules, and the process is repeated until the resultant modules are simple
enough to specify directly. At every stage of abstraction, it is convenient to be
able to hide away information which will no longer be useful at the higher levels.
This is done via the hiding operator:

var v
P

end v

def
= ∃∃v · P

Since the hiding operator is commutative, we will extend these semantics to:

var u, . . . w
P

end u, . . . w

def
= ∃∃u, . . . w · P

8.8 Composition of Properties

Every component has a defined set of outputs, and a relation defining how the
signals are dependent on each other (in a combinational fashion). These are
defined in figures 8.1 and 8.2, where ∅ signifies the empty set and × is the
Cartesian product of two sets.

Given that two hardware properties P1 and P2 satisfy the following two condi-
tions, we will be able to define their composition P1 |||P2.

Condition 1: out(P1) ∩ out(P2) = ∅

Condition 2: (dep(P1) ∪ dep(P2))
+ ∩ Id = ∅

89

out(C(v ←− e)) def
= {v}

out(T (v
δ←− e)) def

= {v}
out(I(v δ←− e)) def

= {v}
out(I−(v

δ←− e)) def
= {v}

out(↑T |= v
δ←− e) def

= {v}
out(↓T |= v

δ←− e) def
= {v}

out(↑T |=− v δ←− e) def
= {v}

out(↓T |=− v δ←− e) def
= {v}

out(↑T |= v ←− e) def
= {v}

out(↓T |= v ←− e) def
= {v}

out(var v P end v)
def
= out(P)− {v}

Figure 8.1: The Output function

where R+ is the transitive closure of a relation, and Id is the identity function
over wires.

The first condition makes sure that no two properties control the same outputs.
The second makes sure that there are no combinational loops.

We can now define the composition of two properties as follows:

P1 |||P2
def
= P1 ∧ P2

out(P1 |||P2)
def
= out(P1) ∪ out(P2)

dep(P1 |||P2)
def
= (dep(P1) ∪ dep(P2))

+

8.9 Algebraic Properties of Hardware Compo-

nents

A number of algebraic properties pertaining to the specification components
will help us to prove theorems without having to fall back onto the original
definitions.

8.9.1 Combinational Properties

The laws of combinational properties listed here will frequently be used to split
specifications into simpler ones.

Law AP-1 Equivalence of combinational properties
Combinational circuits which compute equivalent propositions are themselves
equivalent.

If e = f then
C(v ←− e) = C(v ←− f) [Law – equivC]

90

dep(C(v ←− e)) def
= {v} × var(e)

dep(T (v
δ←− e)) def

= ∅
dep(I(v δ←− e)) def

= ∅
dep(I−(v

δ←− e)) def
= ∅

dep(↑T |= v
δ←− e) def

= ∅
dep(↓T |= v

δ←− e) def
= ∅

dep(↑T |=− v δ←− e) def
= ∅

dep(↓T |=− v δ←− e) def
= ∅

dep(↑T |= v ←− e) def
= {v} × var(e)

dep(↓T |= v ←− e) def
= {v} × var(e)

dep(var v P end v)
def
= {(u,w) ∈ dep(P) | u 6= v ∧ w 6= v}

Figure 8.2: The dependency function

Proof:
C(v ←− e)

= { by definition }√
v = e

= { monotonicity of invariants and premise }√
(v = e ∧ e = f)

= { monotonicity of invariants and premise }√
v = f

= { by definition }
C(v ←− f)

2

Law AP-2 Combinational properties and composition
Combinational equivalences can be propagated over parallel composition.

C(v ←− e) ||| Q⇒ Q[e/v] [Law – C − |||]

The proof of this law follows by induction on the structure of Q and the law of
duration calculus that: P (v) ∧ √(v = e)⇒ P (e).

8.9.2 Delay Properties

Law AP-3 Monotonicity of weak inertial delays
Weak inertial delays are refined as the delay decreases.

If ∆ ≥ δ then

I−(v
δ←− e)⇒ I−(v

∆←− e) [Law – mono I−]

Proof: An outline of the proof follows:

91

I−(v
δ←− e)

= { by definition }
Stable(var(e))

δ−→ dv = δ � ee
⇒ { monotonicity of leads to operator and ∆ ≥ δ }

Stable(var(e))
∆−→ dv = δ � ee

⇒ { definition of leads to operator }
2((Stable(var(e)) ∧ l = ∆); l > 0⇒ (l = ∆; dv = δ � ee)

⇒ { right hand side implies e remains constant }
2((Stable(var(e)) ∧ l = ∆); l > 0⇒ (l = ∆; dv = ∆� ee)

⇒ { definition of leads to operator }
Stable(var(e))

∆−→ dv = ∆� ee
= { by definition }

I−(v
∆←− e)

2

Law AP-4 Equivalence of delays
Delay circuits of the same type and which compute equivalent propositions are
themselves equivalent.

If e = f and var(e) = var(f) and D ∈ {T , I, I−} then

D(v
δ←− e) = D(v

δ←− f) [Law – equivD]

The proof of this law follows in a similar fashion to that of Law AP-2.

Law AP-5 Weak inertial delays in sequence
Weak inertial delays can be refined by decomposing them into smaller delays in
sequence.

I−(z
δ←− f(in′1, . . . in

′
n)) ||| I−(in′i

δ′

←− ini)

⇒ I−(z
δ+δ′

←− f(in1, . . . inn))
[Law – I− + I− → I−]

The proof follows almost identically the one given for Law AP-3, but uses ad-

ditivity of the leads to operator: (P
n1−→ Q ∧Q n2−→ R)⇒ P

n1+n2−→ Q.

8.9.3 Edge Triggers

Law AP-6 Weak edge trigger refined by strong edge trigger and weak inertial
delay
A weak edge triggered device may be decomposed into two parts: an immediate
trigger acting on the input and a weak inertial device to perform the computa-
tion.

↑T |= In′ ←− In ||| I−(v
δ←− f(in′1 . . . in

′
n))

⇒↑T |=− v δ←− f(in1 . . . inn)
[Law – weak decomp]

This law follows by reasoning similar to that of Law AP-3.

8.9.4 Composition

Law AP-7 Commutativity of composition
P ||| Q = Q ||| P [Law – comm |||]

92

Law AP-8 Associativity of composition
(P ||| Q) ||| R = P ||| (Q ||| R) [Law – assoc |||]

Law AP-9 Piecewise refinement (monotonicity of composition)
If P ⇒ Q and both P |||R and Q |||R are defined, then

P ||| R⇒ Q ||| R [Law – mono |||]

All three laws follow immediately from the fact that ||| is defined as conjunction
(which is commutative, associative and monotonic).

8.9.5 Hiding

The laws given in this section simplify statements which use hiding. All the
laws follow from the laws of state variable quantification.

Law AP-10 Renaming hidden variables
Provided that no name clashes occur, hidden variables may be renamed freely
with no consequence on the computation performed.

Provided that v′ is not free in P :
var v P end v = var v′ P [v′/v]; end v′

[Law – rename]

The proof of this law is very similar to that of Law AP-2.

Law AP-11 Moving hiding outside of properties
The scope of hidden variables may be increased as long as there is no name
clash.

Provided that v is not free in P :
P ||| var v Q end v = var v P ||| Q end v

[Law – out var/end]

Proof:
P ||| var v Q end v

= { by definition }
P ∧ ∃∃v ·Q

= { v is not free in P }
∃∃v · P ∧Q

= { by definition }
var v P ||| Q end v

2

Law AP-12 Monotonicity of hiding
Refinment may be performed within the hiding operator.

If P ⇒ Q then
var v P end v ⇒ var v Q end v

[Law – mono var/end]

The law follows immediately from monotonicity of quantification of state vari-
ables.

Law AP-13 One point rule
A hidden variable which is uniquely (and combinationally) determined can be
replaced throughout by its value.

var v P ||| C(v ←− e) end v ⇒ P [e/v] [Law – OPR]

Follows from the application of laws AP-2 and AP-12 and the fact that v is not
free in P [e/v].

93

8.10 Reducing Properties to a Normal Form

If the system complies with certain requirements, we can simplify and reduce
certain properties into simpler constituent ones. The following laws can be used
to reduce an arbitrary collection of properties into a normal form. The normal
form properties may then be implemented as a Verilog program.

8.10.1 The Normal Form

A property is said to be in normal form if it is a valid property and is of the
form var v, . . . z P end v, . . . z, where P is a composition of the following
types of properties:

• Combinational circuits

• Inertial delays

• Immediate positive edge triggered registers

8.10.2 Transport to Inertial Delay

These laws will be used to convert transport delays to inertial delays which are
more readily implementable as Verilog code.

Law NF-1 Equivalence between transport and inertial delay when δ = 1
Unit transport and inertial delays are interchangable.

I(v 1←− e) = T (v
1←− e) [NF – T1 → I1]

Proof:
I(v 1←− e)

= { by definition }
Stable(var(e))

1−→ dv = 1� ee
∧ ¬Stable(var(e))

1−→ dv = 1� ve
= { discrete duration calculus }

true
1−→ dv = 1� ee

∧ false
1−→ dv = 1� ve

= { DC reasoning about leads to operator }
true

1−→ dv = 1� ee
= { DC reasoning }√

(v = 1� e)

= { by definition }
T (v

1←− e)
2

Law NF-2 Decomposition of transport delay
Transport delay can be split into two delays in sequence such that the sum of
the decomposed delays is equal to the sum of the original delay.

T (v
δ1+δ2←− e) = var v′

T (v
δ2←− v′) ||| T (v′

δ1←− e);
end v′

[NF – decompT]

94

This is a consequence of the law of shift: (n1 + n2)� P = n1 � (n2 � P).

Law NF-3 Transport delay maintains stability
The output of a transport delayed stable variable is itself stable.

If S(var(e), n) and T (v
δ←− e) then

S(v, n) [NF – stabT]

This law follows immediately from the fact that shift maintains stability of state
expressions.

These three laws can be reduced to just one:

Law NF-4 Transport to Inertial delay
Transport delays may be decomposed into a number of sequential unit inertial
delays.

T (v
δ←− e) = var t1 . . . tδ

δ

|||||||||
i=0

I(ti 1←− ti+1)

end t1 . . . tδ

where t0 = v and tδ = e [NF – T → I]

8.10.3 Weak Inertial Delays

The behaviour of positive inertial delays is simulated by a transport delay.

Law NF-5 Weak Inertial to Transport delay
Transport delays are a refinement of weak inertial delays.

T (v
δ←− e)⇒ I−(v

δ←− e) [NF – I− → T]

Thus follows from the law: D ⇒ (E ⇒ D).

8.10.4 Edge Triggered Registers

The laws in this section are used to reduce delayed edge triggered registers into
transport delays and immediate acting edge triggered registers. All falling edge
triggers will be converted into rising edge sensitive ones.

Law NF-6 Falling to rising edge triggers (immediate)
Strong falling edge triggers can be emulated by strong rising edge triggers which
act on the negation of the original trigger.

↓T |= v ←− e = var T ′

C(T ′ ←− ¬T) ||| ↑T ′ |= v ←− e
end T ′

[NF – ↓→↑]

This is a consequence of law AP-2 and the definition of rising triggers. The next
two laws can also be similarly proved.

95

Law NF-7 Falling to rising edge triggers (weak)
Weak falling edge triggers can be emulated by weak rising edge triggers which
act on the negation of the original trigger.

↓T |=− v δ←− e = var T ′

C(T ′ ←− ¬T) ||| ↑T ′ |=− v δ←− e
end T ′

[NF – weak ↓→↑]

Law NF-8 Falling to rising edge triggers (delayed)
Delayed falling edge triggers can be emulated by delayed rising edge triggers
which act on the negation of the original trigger.

↓T |= v
δ←− e = var T ′

C(T ′ ←− ¬T) ||| ↑T ′ |= v
δ←− e

end T ′

[NF – ↓ δ→↑]

Law NF-9 Weak to strong rising edge triggered devices
Strong edge triggered devices are a refinement of weak edge triggered devices.

↑T |= v
δ←− e⇒↑T |=− v δ←− e

[NF – weak-strong ↑]

This is a direct consequence of conjunction elimination: (D ∧ E)⇒ D.

Law NF-10 Remove delayed triggers
Delayed triggers can be replaced by immediate triggers acting upon transport
delayed inputs and trigger signal.

↑T |= v
δ←− e = var e′, T ′

T (T ′
δ←− T)

||| T (e′
δ←− e)

||| ↑T ′ |= v ←− e′
end e′, T ′

[NF – δ → 0]

This law follows from monotonicity of invariants and the definition of rising edge
triggers.

8.11 Reduction to Normal Form

Given any property satisfying the constraints given in section 8.8, we can now
reduce it to normal form, together with a list of system requirements under
which the normal form implies the original property. The correctness of the
algebraic laws used in the process guarantees this implication.

Using the normal form laws just given, this transformation is rather straight-
forward. Throughout the following procedure, the laws about composition are
used repeatedly.

96

1. Using the hiding operator laws, all hidden variables can be renamed, if
necessary, and moved to the outermost level.

2. Using laws NF-6, NF-7 and NF-8, all falling edge triggers are converted
to rising edge ones.

3. Weak edge triggered devices are replaced by strong ones using law NF-9.

4. Using law NF-10 all delayed edge triggered registers are converted into im-
mediate ones (together with transport delays). Any new hiding operators
can be move immediately to the topmost level (as done in step 1).

5. Any weak inertial delay properties are converted into their transport delay
counterpart by using law NF-5.

6. Law NF-4 is now used to remove all transport delays.

This generates a normal form specification with a list of system requirements.

8.12 Implementation of Properties in Verilog

Law IMPL-1 Implementation of a combinational circuit
C(v ←− e) v assign v = e [Impl – C]

Proof:

[[assign v = e]]
= { by definition of semantics }√

v = e

⇒ { by definition of combinational circuit }
C(v ←− e)

2

Law IMPL-2 Implementation of an inertial delay

I(v δ←− e) v assign v = #δ e [Impl – I]

Proof:

[[assign v = #δ e]]
= { by definition of semantics }

(
l < δ ∧ b¬vc)

∨ (l = δ ∧ d¬ve); true

)

∧

(∃b · dvar(e) = be) δ−→ dv = δ � ee∧
¬(∃b · dvar(e) = be) δ−→ dv = 1� ve

⇒ { ∧ elimination }
(∃b · dvar(e) = be) δ−→ dv = δ � ee∧
¬(∃b · dvar(e) = be) δ−→ dv = 1� ve

⇒ { definition of Stable(W) }
Stable(var(e))

δ−→ dv = δ � ee∧
¬Stable(var(e))

δ−→ dv = 1� ve
= { by definition of inertial delay }

I(v δ←− e)
2

97

Law IMPL-3 Implementation of a rising edge triggered register
↑T |= v ←− e v always @posedge T v = e [Impl – ↑T]

Proof: Define LOOP as follows:

LOOP
def
= µX ·

(bT c ∧ Const(v))

∨ (bT c; b¬T c ∧ ¬−→T ∧ Const(v))

∨ (bT c; d¬T e ∧ −→T ∧ Const(v)) o

9
(de ∧ −→v = −→e) o

9
X

The invariant we will be working towards is:

Inv
def
=

(
2((¬←−−Rise(T) ∧ de)⇒←−v = −→v)∧
2((
←−−
Rise(T) ∧ de)⇒ −→v = −→e)

)

The following DC reasoning will be found useful later:

(−→v = −→e ∧←−−Rise(T) ∧ de) o

9
(bT c ∧ Const(v))

⇒ { relational chop and b·c definition }
(−→v = −→e ∧←−−Rise(T) ∧ de)∨
(−→v = −→e ∧←−−Rise(T) ∧ de) o

9
(dT e ∧ Const(v))

⇒ { relational chop definition and DC reasoning }
(−→v = −→e ∧←−−Rise(T) ∧ de)∨
(ddv = eee ∧ ←−−Rise(T)); (Const(v) ∧ 2(¬←−−Rise(T)))

⇒ { always DC clauses }
Inv

Now consider the following proof outline:

(−→v = −→e ∧←−−Rise(T) ∧ de) o

9
LOOP

⇒ { recursion unfolding and above DC reasoning }
Inv ∨ (l > 0 ∧ Inv); (−→v = −→e ∧←−−Rise(T) ∧ de) o

9
LOOP

⇒ { fixed point }
µX · Inv ∨ (l > 0 ∧ Inv);X

⇒ { always clauses and recursion }
Inv

Hence, we can deduce that:

[[always @posedge T v = e]]
= { by definition of semantics }

µX ·

(bT c ∧ Const(v))

∨ (bT c; b¬T c ∧ −→T = false ∧ Const(v))

∨ (bT c; d¬T e ∧ −→T = true ∧ Const(v)) o

9
(de ∧ −→v =←−e) o

9
X

= { no concurrent reading and writing and v /∈ var(e) }

µX ·

(bT c ∧ Const(v))

∨ (bT c; b¬T c ∧ ¬−→T ∧ Const(v))

∨ (bT c; d¬T e ∧ −→T ∧ Const(v)) o

9
(de ∧ −→v = −→e) o

9
X

98

⇒ { recursion unfolding }

(bT c ∧ Const(v))

∨ (bT c; b¬T c ∧ ¬−→T ∧ Const(v))

∨ (bT c; d¬T e ∧ −→T ∧ Const(v)) o

9
(de ∧ −→v = −→e) o

9
LOOP

⇒ { DC reasoning }
Inv ∨ (Inv; (−→v = −→e ∧←−−Rise(T) ∧ de) o

9
LOOP)

⇒ { previous reasoning and always clauses in DC }
Inv

⇒ { discrete DC and monotonicity of 2 and ; }
2((de ∧←−−Rise(T)); l > 0⇒ dv = ee; true) ∧
2((de ∧ ¬←−−Rise(T)); l > 0⇒ dv = 1� ve; true)

= { by definition of −→ }←−−
Rise(T) −→ dv = 0� ee∧
¬←−−Rise(T) −→ dv = 1� ve

= { by definition of triggered register with delay 0 }
↑T |= v

0←− e
= { by definition of immediate triggered register }

↑T |= v ←− e
2

Law IMPL-4 Implementation of composition
If P1 v Q1 and P2 v Q2 then

P1 |||P2 v Q1‖Q2 [Impl – |||]

Proof:

[[Q1 ‖ Q2]]
= { by definition of semantics }

[[Q1]] ∧ [[Q2]]
⇒ { by premise and monotonicity of ∧ }

P1 ∧ P2

= { by definition of ||| }
P1 |||P2

2

8.13 Summary

This chapter shows how one can design a specification language which can be
mechanically transformed into Verilog using verifiable laws. The specification
language given is not particularly high level, but it is sufficient to demonstrate
a number of interesting uses as will be shown in the next chapter.

99

Chapter 9

Decomposition of Hardware

Component Specifications:

Examples

This chapter will specify variations on an n-bit adder using the specification
language given in the previous chapter. The specifications will be modified
and then implemented as Verilog programs using the laws of the specification
language.

Three specifications of the adder are given: combinational, delayed and trig-
gered:

• At the simplest level, the whole circuit may be considered as a combi-
national one. The transformation becomes rather straightforward and
requires only the standard propositional calculus proof usually used to
prove the correctness of an n-bit adder.

• At a higher, slightly more complex, level the individual components are
given an inherent delay.

• Finally, a triggering signal is added to the circuit to set off the adder. A
rising edge on the trigger will, after a necessary delay, produce the desired
result on the outputs.

The main scope of this example is not simply the implementation of the given
specification as a Verilog program. The normal form conversion laws given in
chapter 8 allow us to do this automatically. Before the implementation process
is carried out, we split up the specification into a number of blocks in predefined
formats. In the combinational case, for example, the specification is split up into
AND, XOR and OR gate specifications. The eventual Verilog implementation
would thus be closer to the chosen hardware components.

9.1 A Combinational n-bit Adder

The first case is a combinational circuit specification. The complete specifica-
tion, for an n-bit adder can be thus described by:

100

0

Figure 9.1: The gates used: AND (∧), XOR (⊕), OR (∨), GND respectively

C-NBA-SPEC(sout, cout, a, b, n)
def
=

n

|||||||||
i=1

C(souti ←− (

n−1∑

j=0

2j(aj + bj))!i)

||| C(cout←− (

n−1∑

j=0

2j(aj + bj))!n)

where b!i is the ith bit of bit-string b.

Note that this may be immediately synthesised into Verilog code by using law
[Impl – C]. We would, however, prefer to decompose the adder into smaller
pieces and perform the transformation into Verilog on the component. We use
the standard method to build an n-bit adder from n full adders, each of which
is made up of two half adders and combinational gates. The half adders are
then built directly from combinational gates. We start by showing that this
decomposition of the circuit is in fact a correct one, and then, finally, transform
the eventual result into a Verilog program.

9.1.1 Combinational Gates

Figure 9.1 shows the different gates which will be used to build an adder. Their
semantics are defined as follows:

C-AND(z, a, b)
def
= C(z ←− a ∧ b)

C-XOR(z, a, b)
def
= C(z ←− a⊕ b)

C-OR(z, a, b)
def
= C(z ←− a ∨ b)

C-GND(z)
def
= C(z ←− 0)

9.1.2 Half Adder

A half adder can now be defined in terms of the combinational gates. Output
c is true if and only if the inputs a and b are both true (the one bit sum of a
and b leaves a carry). Output s carries the one-bit sum of a and b. Figure 9.2
shows the composed circuit, which is defined as:

C-HA(s, c, a, b)
def
= C-XOR(s, a, b) |||C-AND(c, a, b)

101

a b

c s

Figure 9.2: The composition of a half adder

cin

a

b

s

sout

cout

Adder
Half

Half
Adder c

c

Figure 9.3: Decomposition of s full adder into half adders

9.1.3 Full Adder

A full adder can now be constructed using two half adders and a disjunction.
Figure 9.3 shows how the construction is done.

C-FA(sout, cout, a, b, cin)
def
= var s′, c′, c′′

C-HA(s′, c′, cin, a)

||| C-HA(sout, c′′, s′, b)

||| C-OR(cout, c′, c′′)

end s′, c′, c′′

9.1.4 Correctness of the Full Adder

At this stage, we can show that the above definition of a full adder is, in fact,
a correct refinement of the following specification:

C-FA-SPEC(sout, cout, a, b, cin)
def
= C(cout←− (a+ b+ cin) div 2)

C(sout←− (a+ b+ cin) mod 2)

Note that a, b and cin are single bits and hence this definition is not more
abstract than the specification of the n-bit adder as given in section 9.1.

The proof is rather straightforward: The definition of C-FA(sout, cout, a, b, cin)
is opened up and law [Law – C − |||] is applied to s′, c′ and c′′. Using just
propositional calculus, and [Law – equivC] it can then be easily established
that:

C-FA(sout, cout, a, b, cin)⇒ C-FA-SPEC(sout, cout, a, b, cin)

102

ba0 0

Adder
Full

sout0

cout0

. Adder
Full

a

soutn-1

coutn-1

n-1n-1 b

cout0

a1 bn-2

Figure 9.4: Decomposition of an n-bit adder into full adders

An outline of the proof follows:

C-FA(sout, cout, a, b, cin)

⇒ { definition of C-FA }
var s′, c′, c′′

C(s′ ←− cin⊕ a)
||| C(c′ ←− cin ∧ a)
||| C(sout←− s′ ⊕ b)
||| C(c′′ ←− s′ ∧ b)
||| C(cout←− c′ ∨ c′′)

end s′, c′, c′′

⇒ { applying [Law – OPR] }
C(sout←− (cin⊕ a)⊕ b)
C(cout←− (cin ∧ a) ∨ ((cin⊕ a) ∧ b))

⇒ { using [Law – equivC] }
C(cout←− (a+ b+ cin) div 2)

C(sout←− (a+ b+ cin) mod 2)

⇒ { definition of C-FA-SPEC }
C-FA-SPEC(sout, cout, a, b, cin)

9.1.5 n-bit Adder

Finally, we prove, that if we connect n full adders together (as shown in figure
9.4), the resultant composition implies the original specification C-NBA-SPEC.

C-NBA(sout, cout, a, b, n)
def
= var cin, cout0, . . . coutn−1

C-NBA′(sout, cout, a, b, n)

end cin, cout0, . . . coutn− 1

103

where C-NBA′ is defined recursively as follows:

C-NBA′(sout, cout, a, b, cin, 1)
def
= GND(cin)

||| C-FA(sout0, cout0, a0, b0, cin)

C-NBA′(sout, cout, a, b, cin, n+ 1)
def
= C-NBA(sout, cout, a, b, cin, n)

||| C-FA(soutn, coutn, an, bn, coutn−1)

Again, the proof is rather straightforward. Simply by using predicate calculus
and monotonicity of combinational properties, it can be shown that the decom-
position of the n-bit adder is, in fact, correct.

Theorem: C-NBA′(sout, cout, a, b, cin, n)⇒ C-NBA(sout, cout, a, b, cin, n)

Proof: The proof proceeds by induction on n. A detailed outline of the proof
is presented below:

Base case: n = 1

C-NBA′(sout, cout, a, b, cin, 1)
= { by definition of C-NBA′ }

GND(cin) ||| C-FA(sout0, cout0, a0, b0, cin)
⇒ { result from section 9.1.4 }

GND(cin) ||| C-FA-SPEC(sout0, cout0, a0, b0, cin)
= { by definition }

C(cin←− 0)
||| C(cout0 ←− (a0 + b0 + cin) div 2)
||| C(sout0 ←− (a0 + b0 + cin) mod 2)

⇒ { using [Law – equivC] }
C(cout0 ←− (a0 + b0 + 0) div 2)

||| C(sout0 ←− (a0 + b0 + 0) mod 2)
⇒ { by definition of C-NBA-SPEC }

C-NBA-SPEC(sout, cout, a, b, cin, 1)

Inductive case: n = k + 1

C-NBA′(sout, cout, a, b, cin, k+ 1)
= { by definition of C-NBA′ }

C-NBA(sout, cout, a, b, cin, k)
||| C-FA(soutk, coutk, ak, bk, coutk−1)

⇒ { inductive hypothesis }
C-NBA-SPEC(sout, cout, a, b, cin, k)

||| C-FA(soutk, coutk, ak, bk, coutk−1)

⇒ { result from section 9.1.4 }
C-NBA-SPEC(sout, cout, a, b, cin, k)

||| C-FA-SPEC(soutk, coutk, ak, bk, coutk−1)
= { by definition }

k

|||||||||
i=1

C(souti ←− (
∑k−1

j=0 2j(aj + bj))!i)

||| C(coutk−1 ←− (
∑k−1

j=0 2j(aj + bj))!k)

||| C(coutk ←− (ak + bk + coutk−1) div 2)
||| C(soutk ←− (ak + bk + coutk−1) mod 2)

104

= { replacing equals for equals }
k

|||||||||
i=1

C(souti ←− (
∑k−1

j=0 2j(aj + bj))!i)

||| C(soutk+1 ←− (
∑k

j=0 2j(aj + bj))!k)

||| C(coutk−1 ←− (
∑k−1

j=0 2j(aj + bj))!k)

||| C(coutk ←− (ak + bk + coutk−1) div 2)
= { higher order bits do not affect lower order ones }

k

|||||||||
i=1

C(souti ←− (
∑k

j=0 2j(aj + bj))!i)

||| C(soutk+1 ←− (
∑k

j=0 2j(aj + bj))!k)

||| C(coutk−1 ←− (
∑k−1

j=0 2j(aj + bj))!k)

||| C(coutk ←− (ak + bk + coutk−1) div 2)
{ generalised parallel composition }

k+1

|||||||||
i=1

C(souti ←− (
∑k−1

j=0 2j(aj + bj))!i)

||| C(coutk−1 ←− (
∑k−1

j=0 2j(aj + bj))!k)

||| C(coutk ←− (ak + bk + coutk−1) div 2)
⇒ { replacing equals for equals }

k+1

|||||||||
i=1

C(souti ←− (
∑k

j=0 2j(aj + bj))!i)

||| C(coutk ←− (
∑k

j=0 2j(aj + bj))!(k + 1))

= { by definition }
C-NBA-SPEC(sout, cout, a, b, cin, k+ 1)

2

9.1.6 Implementation in Verilog

This alternative specification can be automatically implemented as a Verilog
program using the normal form method. Again, we stress that the only reason
because of which this transformation was not performed on the original specifi-
cation was the desire to transform the specification into a composition of parts
chosen from a limited set of components. This approach leads to enhanced
design modularity.

9.2 Delayed Adder

The next step is to introduce delays within the components. Rather than just
using a combinational circuit to represent the the components, we consider gates
with inherent delays. The specification of the n-bit adder is now:

105

D-NBA-SPEC(sout, cout, a, b, n, δ)
def
= I−(cout

δ
←− (

n−1∑

j=0

2j(aj + bj))!n)

n

|||||||||
i=1

I−(souti
δ
←− (

n−1∑

j=0

2j(aj + bj))!i)

Note that from the previous section this can be refined to:

D-NBA-SPEC(sout, cout, a, b, n, δ) v var sout′, cout′

C-NBA-SPEC(sout′, cout′, a, b, n)

||| I−(cout
δ←− cout′)

n

|||||||||
i=1

I−(sout!i
δ←− sout′!i)

end sout′, cout

However, we prefer to build the adder from delayed gates for a deeper study of
delays.

9.2.1 The Logic Gates

A number of logic gates with an inherent delay are defined.

D-AND(z, a, b, δ)
def
= I−(z

δ←− a ∧ b)
D-XOR(z, a, b, δ)

def
= I−(z

δ←− a⊕ b)
D-OR(z, a, b, δ)

def
= I−(z

δ←− a ∨ b)

9.2.2 Half Adder

A half adder can now be constructed using the gates just defined. To simplify
slightly the presentation, we take both gates in the half adder to have the same
delay δ.

D-HA(s, c, a, b, δ)
def
= D-XOR(s, a, b, δ)

||| D-AND(c, a, b, δ)

9.2.3 Full Adder

We can now construct a full adder by using two half adders and an OR gate. For
simplicity, we take both half adders and the disjunction gate to have the same
delay δ.

106

D-FA(s, cout, a, b, cin, δ)
def
= var s′, c′, c′′

D-HA(s′, c′, a, b, δ)

||| D-HA(s, c′′, s′, cin, δ)

||| D-OR(cout, c′, c′′, δ)

end s′, c′, c′′

9.2.4 Proof of Correctness

The specification of the full adder is modified for the new situation. Due to
the reaction time of the gates, we cannot be as optimistic about the circuit
behaviour as we were in the previous case. However, it will be enough for a
hardware engineer to be guaranteed that if the inputs remain stable for long
enough, the right result will finally appear on the output wires.

D-FA-SPEC(sout, cout, a, b, cin, δ)
def
= I−(cout

δ←− (a+ b+ cin) div 2)

||| I−(sout
δ←− (a+ b+ cin) mod 2)

We now claim that:

D-FA-SPEC(sout, cout, a, b, cin,∆) v D-FA(sout, cout, a, b, cin, δ)

provided that ∆ ≥ 3δ. This stability requirement is usually easy to fulfill, since
we would normally only allow changes on the global signals at a clock signal,
whose period would be much larger than the propagation delay within a logic
gate.

The proof of this claim is expounded below:

D-FA(sout, cout, a, b, cin, δ)

⇒ { definition of D-FA }
var s′, c′, c′′

I−(s′
δ←− cin⊕ a)

||| I−(c′
δ←− cin ∧ a)

||| I−(sout
δ←− s′ ⊕ b)

||| I−(c′′
δ←− s′ ∧ b)

||| I−(cout
δ←− c′ ∨ c′′)

end s′, c′, c′′

⇒ { applying [Law – I− + I− → I−] }
var s′, c′, c′′

I−(sout
2δ←− (cin⊕ a)⊕ b)

||| I−(cout
3δ←− (cin ∧ a) ∨ ((cin⊕ a) ∧ b))

end s′, c′, c′′

⇒ { applying [Law – mono I−] }

107

I−(sout
∆←− (cin⊕ a)⊕ b)

||| I−(cout
∆←− (cin ∧ a) ∨ ((cin⊕ a) ∧ b))

⇒ { applying [Law – equiv D] }

I−(sout
∆←− (a+ b+ c) mod 2)

||| I−(cout
∆←− (a+ b+ c) div 2)

⇒ { by definition of D-FA-SPEC }
D-FA-SPEC(sout, cout, a, b, cin,∆)

9.2.5 n-bit Delayed Adder

An n-bit adder can now be constructed from these components. The implemen-
tation is identical to the one in section 9.1.5 except that delayed full adders are
used. If full adders constructed from δ delay half adders are used, the imple-
mentation will guarantee the following specification:

D-NBA-SPEC(sout, cout, a, b, n,∆) v D-NBA(sout, cout, a, b, n, δ)

provided that the ∆ ≥ 3nδ.

The proof is similar to the proof of the correctness of the full adder decomposi-
tion.

9.2.6 Implementation in Verilog

By transforming D-NBA into normal form and implementing in Verilog, we auto-
matically have an implementation of D-NBA-SPEC(sout, cout, a, b, n,∆). Need-
less to say, we must ensure that the proof obligations arising from the transfor-
mation are satisfied for the non-input wires. This is easily shown to be satisfied
if the inputs remain constant for longer than the δ inherent delay of implemen-
tation of the n-bit adder. The resultant Verilog program is shown below:

D-NBA-VERILOG(sout, cout, a, b, δ, n)
def
=

assign cin = 0
‖ D-FA-VERILOG(soutp, cout0, a0, b0, cin)

‖
...

‖ D-FA-VERILOG(soutn−1, cout, an−1, bn−1, coutn−1)

where the full adder implementation is:

D-FA-VERILOG(sout, cout, a, b, cin, δ)
def
=

var cin

assign s
′ = #δ a⊕ b

‖ assign c
′ = #δ a ∧ b

‖ assign sout = #δ s
′ ⊕ cin

‖ assign c
′′ = #δ s

′ ∧ cin

‖ assign cout = #δ c
′ ∨ c

′′

end cin

108

9.3 Triggered Adder

Finally, we add a triggering signal T to the adder. δ time units after a rising
edge on the trigger the output represents the sum of the inputs at the time of
the trigger.

The specification of this device is rather straightforward:

T-NBA-SPEC(sout, cout, a, b, δ, n)
def
=

n

|||||||||
i=1

↑T |=− souti δ←− (
∑n−1

j=0 2j(aj + bj))!i

||| ↑T |=− cout δ←− (
∑n−1

j=0 2j(aj + bj))!n

9.3.1 Components

We now need another new basic component, a triggered register. Basically,
such a register changes its state to the current value of the input whenever a
triggering event occurs.

T-REG(T, z, a)
def
= ↑T |= z ←− a

9.3.2 Decomposition of the Specification

Using the implementation of a delayed n-bit adder, we can now easily obtain a
reasonable decomposition of the specification.

n

|||||||||
i=1

T-REG(T, a′!i, a!i)

n

|||||||||
i=1

T-REG(T, b′!i, b!i)

||| D-NBA(sout, cout, a′, b′, n, δ)

⇒ { definition of T-REG and correctness of D-NBA }
n

|||||||||
i=1

↑T |= a′i ←− ai

n

|||||||||
i=1

↑T |= a′i ←− ai

n

|||||||||
i=1

I−(souti
δ←− (

∑n−1
j=0 2j(a′j + b′j))!i)

||| I−(cout
δ←− (

∑n−1
j=0 2j(a′j + b′j))!n)

⇒ { using [Law – weak decomp] }

109

n

|||||||||
i=1

↑T |=− souti δ←− (
∑n−1

j=0 2j(aj + bj))!i

||| ↑T |=− cout δ←− (
∑n−1

j=0 2j(aj + bj))!n

⇒ { definition of T-NBA-SPEC }
T-NBA-SPEC(sout, cout, a, b, δ, n)

9.3.3 Implementation

The specification, which we have just transformed into logical blocks can now
be automatically translated into Verilog:

T-NBA-SPEC(sout, cout, a, b, δ, n) v T-NBA-VERILOG(sout, cout, a, b, δ, n)

where T-NBA-VERILOG(sout, cout, a, b, δ, n) is the following Verilog program:

T-NBA-VERILOG(sout, cout, a, b, δ, n)
def
= always @posedge T a

′ = a

‖ always @posedge T b
′ = b

‖ D-NBA-VERILOG(sout, cout, a, b, δ, n)

9.4 Conclusions

This chapter shows how the automatic normal form transformation from cir-
cuit specifications into Verilog does not need to be done immediately on the
specification. System modularity is achieved by using only a limited number of
components. The algebraic laws which are used, are usually sufficient to com-
bine a number of different delayed circuit properties into a single one. Hence,
the n-bit adder can be just as easily included in another design as the gates
were used in the full adder or the full adder in the n-bit adder. Since the laws
are always applied in the same fashion, this process may be (at least, partially)
mechanically done, which reduces tedious work and human errors. A similar
approach to triggered components may be used to decompose the n-bit trig-
gered adder into triggered full adders and the same approach would then be
applicable to design a circuit which uses n-bit adders.

The main restriction of the specification language which may seem to be, at
first sight, far too restrictive is the fact that combinational circuits with feed-
back are not allowed. This has been done so as to avoid certain problems such
as short circuits (for example C(v ←− ¬v)). On the other hand, one may ar-
gue that feedback is essential to build memory devices and is thus desirable.
Various approaches have been proposed in the literature to deal with this prob-
lem [Hoa90, Win86, Her88], most of which use sophisticated models to predict
such behaviour. With these models it is usually then possible to verify the
behaviour of a small number of devices which, when combined together under
certain restrictions (not unlike the ones placed in our language), their behaviour
can be described using a simpler description. The approach taken here was to
introduce memory devices as primitives, thus bypassing the problem altogether.

110

However note that we cannot decompose the memory devices any further within
our model.

Thanks to the restricted specification language, the transformation of circuit
properties into separate components can be handled rather easily at the speci-
fication level. This allows the generation of a Verilog program which uses only
certain components. An alternative approach would be to have a number of
laws to transform a Verilog program into a better structured one. Due to the
generality of Verilog programs, this would have been much more difficult than
the approach taken here.

111

Part IV

The use of the formal semantics of language is
not restricted to proving programs correct with
respect to a specification. In this final part we
consider two other aspects — we prove the cor-
rectness of a compilation procedure from Verilog
to hardware and show that a simple simulation
semantics is equivalent to the denotational se-
mantics already defined.

112

Chapter 10

A Hardware Compiler for

Verilog

10.1 Introduction

Verilog instructions can be rather neatly classified into two types: imperative
programming style instructions such as sequential composition and loops, and
more hardware oriented instructions such as continuous assignments. Design
of a product usually starts by writing a behavioural module which solves the
problem. This is, however, not directly implementable as hardware and has to be
refined to produce modules which can be synthesised to hardware. Refinement
is usually a rather ad hoc procedure where parts of the solution are proposed
and their output compared to that of the behavioural description via simulation.
The behavioural program is thus taken to be the specification of the product.

Various problems can be identified in this refinement process.

• The base case: the behavioural description of the problem is not guaran-
teed to be correct. The ‘correctness’ of the ‘specification’ (with respect to
the desired product) is usually checked via a number of simulation runs
on different inputs. This process is dangerous enough in a sequential pro-
gramming environment, let alone in a language like Verilog, where new
dangers introduced by parallel interleaving and the nature of most hard-
ware products to continuously sample the inputs (as opposed to being
given a number of inputs at the beginning of the run of a program). One
may argue that a mathematical description of the requirements still suf-
fers from the same problem. However, mathematics is a far more abstract
and powerful means of describing expectations and is thus considerably
less susceptible to this kind of error.

• The refinement steps: As already noted elsewhere, simulation can only
identify the presence of errors and not their absence. Nothing short of
exhaustive simulation can guarantee correctness.

The first problem can be solved by formally verifying the correctness of an im-
perative behavioural description with respect to a more abstract mathematical
specification. The second problem may also be solved in a similar fashion. In-
deed, one may choose to verify directly the correctness of the final product.
However, the closer we get to the lowest level implementation, the more diffi-
cult and tedious the proofs become. This problem can be solved in a different

113

fashion: by formally proving the correctness of a compilation process from im-
perative programs down to hardware-like programs.

In the approach presented here, the compilation procedure performs no prepro-
cessing on the input program. This contrasts with commercial synthesis tools
[Pal96, SSMT93], which perform certain transformations to help synthesize code
which would otherwise be impossible to convert to hardware in a meaningful
manner. For example, consider the following program:

always @clk v=¬v; w=v; v=¬v;
Clearly, unless v keeps the temporary value (the negation of its original value)
for an amount of time, w could never manage to read that value. However, on
the other hand, if the spike on v take any time at all, it may violate timing
constraints satisfied by the above code portion. The solution is to collapse the
assignments into a single parallel assignment:

always @clk v,w=v,¬v;
Note that in our case, this kind of transformations would have to be performed
manually, before the compilation procedure is performed.

The approach used here is very similar to [HJ94, Pag93, May90]. We compare
our work with their approach in more detail in section 10.5.4.

10.2 Triggered Imperative Programs

We will not be dealing with all programs, but only ones which are triggered
by a start signal and upon termination issue a finish signal. The environment
is assumed not to interfere with the program by issuing a further start signal
before the program has terminated.

Triggered programs can be constructed from general imperative programs:

ψf
s (P)

def
= forever (s?; P ; f !)

At the topmost level, these programs also ensure that the termination signal is
initialised to zero:

iψf
s (P)

def
= initial f = 0; ψf

s (P)

The environment constraint for two signals s and f may now be easily expressed:

εfs w forever (s!; #1; f?; ∆0)

where ∆0 is a statement which, once triggered, waits for an arbitrary length of
time (possibly zero or infinite) before allowing execution to resume.

[[∆0]]W (D)
def
= Const(W) ∨ Const(W) o

9
D

The unit delay ensures that if a start signal is sent immediately upon receiving
a finish signal, we do not interpret the old finish signal as another finish signal.

114

Now, we ensure that if we start off with a non-zero delay, the start signal is
initially off:

iεfs w ((¬s>; ∆) u skip) ; εfs

∆ is a statement almost identical to ∆0 but which, once triggered, waits for a
non-zero arbitrary length of time (possibly infinite) before allowing execution
to resume.

P w Q, read as ‘P is a refinement of Q,’ is defined as P ⇒ Q.

[[∆]]W (D)
def
= Const(W) ∨ (l > 0 ∧ Const(W)) o

9
D

∆ obeys a number of laws which we will find useful:

skip and delay: ∆0 = skip u ∆

dur(P) and delay: If dur(P), then ∆ v P 1.

Signals and delay: If a variable is a signal (recall definition of signals from
chapter 6), then its behaviour is a refinement of:

(skip u ¬s>; ∆); forever s!; ∆

The results which follow usually state a refinement which holds if a particular
environment condition holds. Hence, these are of the form:

environment condition ⇒ (P ⇒ Q)

To avoid confusion with nested implications, we define the conditional refine-
ment iεfs ` P v Q as follows:

iεfs ` P v Q
def
= ` iεfs ⇒ (Q⇒ P)

We can now use this to specify equality of processes under a particular environ-
ment condition:

iεfs ` P = Q
def
= (iεfs ` P v Q) ∧ (iεfs ` Q v P)

The following proofs assume that all programs (and sub-programs) satisfy dur(P)
(hence programs take time to execute). Note that if P and Q satisfy this con-
straint, so do P ;Q, P / b . Q and P ∗ b.
Since we will be replacing sequential composition by parallel composition, writ-
ing to a variable and then reading immediately after can cause problems. We
thus add the constraint that programs do not read or write as soon as they a
executed (P = Q;R such that Q does not read or write data. Again, note that if
all primitive programs satisfy this condition, so do programs constructed using
sequential composition, conditionals and loops.

1This has a similar type problem as we had with the law P v P ‖ Q. A similar approach,
using chaos can, however, resolve the problem.

115

10.3 The Main Results

10.3.1 Sequential Composition

Theorem 1.1: Sequential composition can be thus decomposed:

iεfs ` iψf
s (P ;Q) v iψm

s (P ′) ‖ iψf
m(Q′) ‖ Merge

where for any program P , we will use P ′ to represent P [vP /v]. Merge has been
defined in section 6.12.

Proof: First note the following result:

iεfs ‖ ψf
s (P ;Q)

= { communication laws }
(¬s>; ∆ u skip); s!;P ;Q; f !; ∆0; (ε

f
s ‖ ψf

s (P ;Q))

= { by law of ∆0 }
(¬s>; ∆ u skip); s!;P ;Q; f !; (¬s>; ∆ u skip); (εfs ‖ ψf

s (P ;Q))

= { by definition of iε }
(¬s>; ∆ u skip); s!;P ;Q; f !; (iεfs ‖ ψf

s (P ;Q))

= { definition of forever }
forever (¬s>; ∆ u skip); s!;P ;Q; f !

v { new signal introduction and laws of signals }
forever ¬m>; (¬s>; ∆ u skip); s!;P ;m!;Q; f !

Now consider the other side of the refinement:

iεfs ‖ iψm
s (P ′) ‖ ψf

m(Q′)

= { communication laws }
¬m>; (¬s>; ∆ u skip);P ′;m!;Q′; f !;¬m>; ∆0; (ε

f
s ‖ ψm

s (P ′) ‖ ψf
m(Q′))

= { definition of iε, iψ and law of ∆0 }
¬m>; (¬s>; ∆ u skip);P ′;m!;Q′; f !; (iεfs ‖ iψm

s (P ′) ‖ ψf
m(Q′))

= { definition of forever }
forever ¬m>; (¬s>; ∆ u skip);P ′;m!;Q′; f !

We can now prove the desired refinement:

iεfs ‖ iψf
s (P ;Q)

v { definition of iψ and proved inequality }
¬f>; forever ¬m>; (¬s>; ∆ u skip); s!;P ;m!;Q; f !

= { laws of merge from section 6.12 }
Merge ‖ (¬f>; forever ¬m>; (¬s>; ∆ u skip); s!;P ′;m!;Q′; f !)

= { above claim }
Merge ‖ (¬f>; (iεfs ‖ iψm

s (P ′) ‖ ψf
m(Q′))

= { definition of iψ and associativity of ‖ }
Merge ‖ iεfs ‖ iψm

s (P ′) ‖ iψf
m(Q′)

2

116

10.3.2 Conditional

Theorem 1.2: Conditional statements can be thus decomposed:

εfs ` ψf
s (P / b . Q) v ψfP

sP
(P ′) ‖ ψfQ

sQ
(Q′) ‖ Merge ‖ Interface

where

Interface = assign sP = s ∧ b ‖
assign sQ = s ∧ ¬b ‖
assign f = fP ∨ fQ

Proof: Again the proof proceeds by first proving two properties and then com-
bining the results to complete the theorem.

Result 1

iεfs ‖ ψfP

sP
(P ′) ‖ ψfQ

sQ
(Q′) ‖ Interface

= { communication laws }
(¬s>;¬s>P ;¬s>Q; ∆ u skip); s!;

(f?; εfs ‖ ψfP

sP
(P ′) ‖ ψfQ

sQ
(Q′) ‖ Interface)

= { communication laws }
(¬s>;¬s>P ;¬s>Q; ∆ u skip); s!; (sP !;P ′; fP !) / b . (sQ!;Q′; fQ!);

(¬s>; ∆ u skip); (εfs ‖ ψfP

sP
(P ′) ‖ ψfQ

sQ
(Q′) ‖ Interface)

= { definition of loops }
forever (¬s>;¬s>P ;¬s>Q; ∆ u skip); s!; (sP !;P ′; fP !) / b . (sQ!;Q′; fQ!)

w { variable hiding }
forever (¬s>; ∆ u skip); s!;P ′ / b . Q′; f !

Result 2: This result is just stated. The proof can be rather easily constructed
using the communication laws.

iεfs ‖ ψf
s (P / b . Q) = forever (¬s>; ∆ u skip); s!;P / b . Q; f !

Finally, we combine the two results to complete the desired proof.

iεfs ‖ iψf
s (P / b . Q)

= { result 2 }
(¬f>; ∆ u skip); forever (¬s>; ∆ u skip); s!;P / b . Q; f !

v { merge laws }
Merge ‖ (¬f>; ∆ u skip); forever (¬s>; ∆ u skip); s!;P ′ / b . Q′; f !

v { result 1 }
(¬f>; ∆ u skip); (iεfs ‖ ψfP

sP
(P ′) ‖ ψfQ

sQ
(Q′) ‖ Interface ‖ Merge)

v { definition of iε }
iεfs ‖ iψfP

sP
(P ′) ‖ iψfQ

sQ
(Q′) ‖ Interface ‖ Merge

2

117

10.3.3 Loops

Theorem 1.3: Loops can be decomposed into their constituent parts.

εfs ` ψf
s (P ∗ b) v ψfP

sP
(P) ‖ Interface

where

Interface = assign sP = s ∨ (fP ∧ b) ‖
assign f = fP ∧ ¬b

Proof: First of all, we note that:

¬f>; sP !; (ψfP
sP

(P) ‖ f?; ∆0; ε
f
s ‖ Interface)

= ¬f>; (sP !;P ; fP !) ∗ b; f !; (iεfs ‖ ψfP

sP
(P) ‖ Interface)

The outline of the proof is given below. Let us refer to the left hand side of the
equality as α:

α

= ¬f>; sP !; (ψfP
sP

(P) ‖ f?; ∆0; ε
f
s ‖ Interface)

= { laws of communication and loops }
¬f>; sP !;P ; fP !;α / b . (f !; (iεfs ‖ ψfP

sP
(P) ‖ Interface))

= { laws of loops }
¬f>; (sP !;P ; fP !) ∗ b; f !; (iεfs ‖ ψfP

sP
(P) ‖ Interface)

This can now be used in the main proof of the theorem. The theorem is proved
by showing that:

iεfs ‖ ψf
s (P ∗ b) v iεfs ‖ ψfP

sP
‖ Interface

The desired result would then follow immediately.

This inequality is proved as follows:

{ RHS (right hand side of inequality) }
= iεfs ‖ ψfP

sP
‖ Interface

= { by communication laws }
(¬s>;¬s>P ; ∆ u skip); s!; sP !;P ; fP !;α / b . (f !; RHS)

= { by the result just given }
(¬s>;¬s>P ; ∆ u skip); s!; sP !;P ; fP !;

(¬f>; (sP !;P ; fP !) ∗ b; f !; RHS) / b . (f !; RHS)

= { by distribution of sequential composition in conditionals }
(¬s>;¬s>P ; ∆ u skip); s!; sP !;P ; fP !; ((sP !;P ; fP !) ∗ b; /b . skip); f !; RHS

= { law of loops }

118

(¬s>;¬s>P ; ∆ u skip); s!; (sP !;P ; fP !) ∗ b; f !; RHS

= { definition of forever loops }
forever (¬s>;¬s>P ; ∆ u skip); s!; (sP !;P ; fP !) ∗ b; f !

w { hiding variables }
forever (¬s>; ∆ u skip); s!;P ∗ b; f !

But, on the other hand:

iεfs ‖ ψf
s (P ∗ b)

= { communication laws }
(¬s>; ∆ u skip); s!;P ∗ b; f !; (iεfs ‖ ψf

s (P ∗ b))
= { definition of loops }

forever (¬s>; ∆ u skip); s!;P ∗ b; f !

2

10.4 Compilation

Using these refinements, we can now define a compilation process:

Ψf
s (P ;Q)

def
= Ψm

s (P) ‖ Ψf
m(Q) ‖ Merge

Ψf
s (P / b . Q)

def
= ΨfP

sP
(P ′) ‖ ΨfQ

sQ
(Q′) ‖ Merge ‖ InterfaceC

Ψf
s (P ∗ b) def

= ΨfP

sP
(P) ‖ InterfaceL

Ψf
s (P)

def
= ψf

s (P) otherwise

We know that the individual steps of the compilation process are correct. How-
ever, it is not yet clear whether the environment conditions can flow through
the compilation. In other words, when we split sequential composition into
two parts, we showed that the environment conditions for both processes was
guaranteed. But is this still the case if we refine the processes further?

Lemma 2.1: Provided that s and f are signals, if
∫
f ≤

∫
s � 1 and

∫
f ≤

∫
s ≤

∫
f + 0.5 are valid duration formula, then so is iεfs .

Proof: Since the inequality holds for all prefix time intervals, and s and f are
both signals, we can use duration calculus reasoning to conclude that:

2((dse ∧ l = 0.5); true; (dse ∧ l = 0.5)⇒ l = 1; true; dfe; true)

This allows us to deduce that s!; ∆; s!; ∆⇒ s!; #1; f?; ∆0; s!; ∆.

But s is a signal, and hence satisfies (¬s>; ∆ u skip); forever s!; ∆.

forever s!; ∆

= { definition of forever loops }
s!; ∆; s!; ∆; forever s!; ∆

⇒ { by implication just given }
s!; #1; f?; ∆0; s!; ∆; forever s!; ∆

119

= { definition of forever loops }
s!; #1; f?; ∆0; forever s!; ∆

⇒ { definition of forever loops }
forever s!; #1; f?; ∆0

Hence, from the fact that s is a signal, we can conclude the desired result:

(¬s>; ∆ u skip); forever s!; ∆
⇒ (¬s>; ∆ u skip); forever s!; #1; f?; ∆0

= iεfs

2

Lemma 2.2: iεfs ⇒
∫
s ≤

∫
f + 0.5.

Proof: The proof of this lemma follows by induction on the number of times
that the environment loop is performed. We first note that iεfs can be rewritten
as:

(¬s>; ∆ u skip); s!; #1; forever (f?; ∆0; s!; #1)

Using the law f? = f> u (¬f>; #1; f?) and distributivity of non-deterministic
choice, it can be shown that this program is equivalent to:

(¬s>; ∆ u skip); s!; #1; forever

f>; s!; #1
u f>; ∆; s!; #1
u ¬f>; #1; f?; ∆0; s!; #1

Using the laws of loops this is equivalent to:

(¬s>; ∆ u skip); s!; #1; forever

f>; s!; #1
u ¬s>; f>; ∆; s!; #1
u ¬s>;¬f>; #1; f?; ∆0; s!; #1

The semantic interpretation of this program takes the form:
P ′ ∨ ∃n : � · P ;Qn;Q′

where P ′ corresponds to the partial execution of (¬s>; ∆uskip); s!; #1, and P
to its full execution. Similarly, Q′ and Q correspond to the partial and complete
execution of the loop body.

P ⇒ b¬sc; (dse ∧ l = 0.5); b¬sc
Q ⇒ (true; dfe; true ∧ b¬sc; (dse ∧ l = 0.5)); b¬sc
P ′ ⇒ b¬sc ∨ b¬sc; (dse ∧ l = 0.5); b¬sc
Q′ ⇒ b¬sc ∨ (b¬sc; (dse ∧ l = 0.5); b¬sc ∧ true; dfe; true)

Since P ′ ⇒
∫
s = 0.5, it immediately follows that P ′ ⇒

∫
s ≤

∫
f + 0.5.

We can also show, by induction on n, that P ;Qn implies this invariant. An
outline of the inductive case is given below:

P ;Qn+1

= P ;Qn;Q

⇒ (
∫
s ≤

∫
f + 0.5);Q

⇒ (
∫
s ≤

∫
f + 0.5); (

∫
s = 0.5 ∧

∫
f ≥ 0.5)

⇒
∫
s ≤

∫
f + 0.5

120

Finally, we can use this result to show P ;Qn;Q′ ⇒
∫
s ≤

∫
f + 0.5.

P ;Qn;Q′

⇒ (
∫
s ≤

∫
f + 0.5);Q′

⇒ (
∫
s ≤

∫
f + 0.5);

∫
s = 0 ∨

(
∫
s ≤

∫
f + 0.5); (

∫
s = 0.5 ∧

∫
f ≥ 0.5)

⇒
∫
s ≤

∫
f + 0.5

This completes the required proof.
2

Lemma 2.3: Provided that dur(P):
iψf

s (P)⇒
∫
f ≤

∫
s ∧

∫
f ≤

∫
s� 1

Proof: Note that iψf
s (P) is a refinement of (¬f>; ∆ u skip); forever f !; s?; ∆

which is almost identical to iεsf .

The proof follows almost identically to that of lemma 2.2 except that, unlike
the environment condition, iψf

s (P) cannot signal on f as soon as it receives a
signal on s (since P must take some time to execute). This allows us to gain
that extra 0.5 time unit.

2

Lemma 2.4: The environment conditions follow along the compilation process:

Ψf
s (P)⇒

∫
f ≤

∫
s

Proof: The proof uses structural induction on the program:

In the base case, P cannot be decomposed any further, and hence Ψf
s (P) =

ψf
s (P). Therefore, by lemma 2.3, we can conclude that

∫
f ≤

∫
s.

Inductive case: We proceed by considering the three possible cases: P = Q;R,
P = Q / b . R and P = Q ∗ b.

Sequential composition: P = Q;R

Ψf
s (P)

= { by definition of Ψ }
Ψm

s (Q) ‖ Ψf
m(R)

⇒ { by inductive hypothesis }
∫
f ≤

∫
m ∧

∫
m ≤

∫
s

⇒ { ≤ is transitive }
∫
f ≤

∫
s

Conditional: P = Q / b . R

Ψf
s (P)

= { by definition of Ψ }
ΨfQ

sQ
(Q) ‖ ΨfR

sR
(R) ‖ InterfaceC

121

⇒ { by inductive hypothesis }
∫
fQ ≤

∫
sQ ∧

∫
fR ≤

∫
sR ∧ InterfaceC

⇒ { by definition of InterfaceC }
∫
fQ ≤

∫
sQ ∧

∫
fR ≤

∫
sR ∧

∫
sQ +

∫
sR =

∫
s ∧

∫
f =

∫
fQ +

∫
fR −

∫
(fQ ∧ fR)

⇒ { by properties of ≤ and
∫
}

∫
f ≤

∫
s

Loops: P = Q ∗ b

Ψf
s (P)

= { by definition of Ψ }
ΨfQ

sQ
(Q) ‖ InterfaceL

⇒ { by inductive hypothesis }
∫
fQ ≤

∫
sQ ∧ InterfaceL

⇒ { by definition of InterfaceL and integral reasoning }
∫
fQ ≤

∫
sQ ∧

∫
f =

∫
s− (

∫
sQ −

∫
fQ)−

∫
(fQ ∧ b ∧ s)

⇒ { by properties of ≤ }
∫
f ≤

∫
s

This completes the inductive step and hence the result holds by induction.
2

Lemma 2.5: Ψf
s (P)⇒

∫
f ≤

∫
s� 1

Proof: The proof follows almost identically to that of lemma 2.4.
2

Theorem 2: If s is a signal, then:
∫
s ≤

∫
f + 0.5 ` ψf

s (P) v Ψf
s (P)

Proof: The proof follows by induction on the structure of the program P .

In the base case, when P is a simple program, Ψf
s (P) is just ψf

s (P), and hence
trivially guarantees correctness.

For the inductive case we consider the different possibilities:

Sequential composition: We need to prove that
∫
s ≤

∫
f+0.5 ` ψf

s (Q;R) v
Ψf

s (Q;R)

Assume that
∫
s ≤

∫
f + 0.5.

By lemma 2.4, Ψf
s (Q;R) guarantees that

∫
f ≤

∫
s and hence:

∫
f ≤

∫
s ≤

∫
f + 0.5

But, by definition of Ψ, and the further application of lemma 2.4:

122

Ψm
s (Q′) ‖ Ψf

m(R′)
∫
m ≤

∫
s

∫
f ≤

∫
m

Hence, combining the above inequalities with the previous ones:

∫
m ≤

∫
f + 0.5

∫
s ≤

∫
m+ 0.5

By the inductive hypothesis, we thus conclude that:

ψm
s (Q′) ‖ ψf

m(R′)

Also, by lemma 2.5 we can conclude that
∫
f ≤

∫
s � 1. This, together

with the first inequality allows us to apply lemma 2.1, implying that iεfs .
Thus we can apply theorem 1.1 to conclude that ψf

s (Q;R).

Therefore,
∫
s ≤

∫
f + 0.5 ` ψf

s (P ;Q) v Ψf
s (P ;Q).

Conditional: We need to prove that:
∫
s ≤

∫
f + 0.5 ` ψf

s (Q / b . R) v Ψf
s (Q / b . R)

As before, we know that:

∫
f ≤

∫
s ≤

∫
f + 0.5

Also, by definition of Ψ and lemma 2.4:

ΨfQ
sQ

(Q) ‖ ΨfR
sR

(R) ‖ InterfaceC
∫
fR ≤

∫
sQ

∫
fR ≤

∫
sR

Using simple duration calculus arguments on the interface part, we can
conclude that:

∫
s =

∫
sQ +

∫
sR

∫
f =

∫
fQ +

∫
fR −

∫
(fQ ∧ fR)

123

Hence:

∫
s ≤

∫
f + 0.5

⇒
∫
sQ +

∫
sR ≤

∫
fQ +

∫
fR + 0.5−

∫
(fQ ∧ fR)

⇒
∫
sQ ≤

∫
fQ + 0.5− (

∫
sR −

∫
fR)−

∫
(fQ ∧ fR)

⇒
∫
sQ ≤

∫
fQ + 0.5

The last step is justified since
∫
sR ≥

∫
fR.

The same argument can be used to show that
∫
sR ≤

∫
fR + 0.5. Hence,

we can use the inductive hypothesis to conclude that:

ψfQ

sQ
(Q) ‖ ψfR

sR
(R) ‖ InterfaceC

But the first inequality and lemma 2.5 imply (by lemma 2.1) that iεfs , and
thus by theorem 1.2 we can conclude the desired result:
∫
s ≤

∫
f + 0.5 ` ψf

s (Q / b . R) v Ψf
s (Q / b . R).

Loops: Finally, we need to prove that
∫
s ≤

∫
f + 0.5 ` ψf

s (Q ∗ b) v Ψf
s (Q ∗ b).

The argument is almost identical to the one given for the conditional
statement, except that the equality we need to derive from the interface
so as to enable us to complete the proof is that:

∫
sP =

∫
s+

∫
fP −

∫
f −

∫
s ∧ fP ∧ b

Hence, by induction, we can conclude that
∫
s ≤

∫
f + 0.5 ` ψf

s (P) v Ψf
s (P).

2

Corollary: iεfs ` iψf
s (P) v Ψf

s (P).

Proof: Follows immediately from lemma 2.2 and theorem 2.
2

10.5 Conclusions

10.5.1 Other Constructs

The definition of a number of simple constructs into a hardware-like format
allows this reasoning to be defined for other instructions. Thus, for example, if
we are interested in while loops, we can use the following algebraic reasoning
to justify a compilation rule. First note that b ∗ P is not a valid program to
be used in the transformation since it could possibly take zero time. Hence, we
consider b ∗ P ‖ #1:

124

b ∗ P ‖ #1

= { definition of while loops }
((P ; b ∗ P) / b . skip) ‖ #1

= { distribution of parallel composition into conditional }
(P ; b ∗ P ‖ #1) / b . (skip ‖ #1)

= { laws of #1 with parallel composition and dur(P) }
(P ; b ∗ P) / b .#1

= { by definition of repeat loops }
(P ∗ b) / b .#1

Hence, by monotonicity, ψf
s (b ∗ P ‖ #1) = ψf

s (P ∗ b / b . #1). Using the
compilation rules for repeat loops and conditional, we can therefore define a
new compilation rule for this type of loop:

Ψf
s (b ∗ P ‖ #1)

def
= Ψf1

s1
(#1) ‖ ΨfP

sP
(P ′) ‖ Merge ‖ Interface

where the interface is defined by:

Interface
def
= assign s1 = s ∧ ¬b
‖ assign s∗ = s ∧ b
‖ assign f = f1 ∨ f∗
‖ assign sP = s∗ ∨ (fP ∧ b)
‖ assign f∗ = fP ∧ ¬b

10.5.2 Basic Instructions

Implementation of a number of basic instructions in terms of continuous assign-
ments can also be easily done. Consider, for example:

Ψf
s (#1)

def
= assignT f = #1 s

Ψf
s (#1 v = e)

def
= assignT f = #1 s

‖ assignT v− = #0.5 v

‖ assign v = e / f . v−

For a definition Ψf
s (P)

def
= Q, it is enough to verify that iεfs ` ψf

s (P) v Q. The
result of the corollary can then be extended to cater for these compilation rules.
Hence, these laws can be verified, allowing a total compilation of a program
written in terms of these instructions and the given constructs into continuous
assignments.

10.5.3 Single Runs

Finally, what if we are interested in running a compiled program just once? It
is easy to see that iεfs v initial s!. Also, we can prove that:

125

initial s! ‖ ψf
s (P) = initial s!;P ; f !

Hence, for a single run of the program, we simply add an environment satisfying
the desired property: initial s!.

10.5.4 Overall Comments

This chapter applies to Verilog a number of techniques already established in
the hardware compilation community [KW88, May90, Spi97, PL91], giving us a
number of compilation rules which translate a sequential program into a parallel
one. Most of the proof steps involve a number of applications of simple laws of
Verilog, and would thus benefit from machine verification.

One interesting result of the approach advocated here is the separation placed
between the control and data paths, which is clearly visible from the compilation
procedure.

The method used here is very similar to the compilation procedure used with
Occam in [May90] and Handel in [HJ94, Pag93]. The transformation depends
heavily on the timing constraints — unlike the approach usually taken by com-
mercial synthesis tools which usually synchronise using global clock and reset
signals [Pal96, SSMT93]. The main difference between the compilation of Ver-
ilog programs we define with that of Occam or Handel is the fact that timing
control can be explicitly expressed in Verilog. It is thus not acceptable to as-
sume that immediate assignments take a whole time unit to execute (as is done
in the case of Occam and Handel). It was however necessary to impose the
constraint that all compiled programs take some time to execute. This limita-
tion obviously allows us to compile only a subset of Verilog programs. However,
clever use of algebraic laws can allow the designer to modify code so as to enable
compilation. How much of this can be done automatically and efficiently by the
compiler itself is still an open question.

The results in this chapter can be seen as one possible projection of a program
into a highly parallel format. The orthogonal projection into a sequential for-
mat is precisely what a simulator does. The next chapter treats this question
more formally by deriving an operational semantics of Verilog from the con-
tinuation semantics. The transitions of the operational semantics can then be
interpreted as sequential instructions, effectively transforming parallel programs
into a sequential form.

126

Chapter 11

An Operational Semantics

of Verilog

11.1 Introduction

As is the case with the majority of hardware description languages, one of the
high priorities in the design of Verilog was ease of simulation. In certain cases,
this was given precedence over giving the language a straightforward behavioural
interpretation which can be explained without having to go into the simulation
cycle semantics. This is one of the reasons behind the complexity and intricacy
of the denotational semantics given to the language.

On the other hand, this kind of approach to language design can sometimes mean
that an elegant operational semantics of the language is possible. In such cases,
one possible alternative approach to giving a denotational semantics to such a
language would be to derive it from the operational semantics. Unfortunately,
in the case of complex simulation semantics, this is not necessarily a trivial
task. The resulting denotational semantics may be complete with respect to
the operational ones but far too complex to be of any practical use.

Looking at the problem from a different perspective, we can first define a deno-
tational semantics of the subset of the language in which we are interested, from
which an operational semantics can then be derived. The resulting semantics
can then be used to implement as a simulator guaranteed to match our original
interpretation of the language. This is the approach taken here.

Transitions in the operational semantics are first given an algebraic interpre-
tation, effectively giving an algebraic semantics to the language. A number of
transition rules then follow immediately from the laws given in chapter 6, the
correctness of which guarantees that the denotational semantics give a solution
to the algebraic semantics. It is then shown that the only solution to these
equations is, in fact, the denotational one, proving the equivalence of the two
definitions.

Stopping at this point guarantees a correct operational semantics. However, if
we implement the transition laws as a simulator we have no guarantee that it
will always terminate when asked to give the behaviour of a program for a length
of time. Presence of a transition law like P −→ P may be executed repeatedly
by the simulator without reaching a state in which simulation time is advanced
any further. We thus finally prove that any execution order allowed by the
operational semantics must eventually lead to simulation time being advanced.

127

The language for which we will derive the operational semantics is a subset
of the basic language. In [HJ98], C.A.R. Hoare and Jifeng He show how an
operational semantics can be determined from a denotational semantics via
an algebraic semantics. To prove the equivalence of the semantics we adopt an
approach similar to the one used in this book and other similar work [Hoa94] but
avoid giving a complete algebraic semantics. However, the algebraic laws given
in chapter 6 will be found very useful in avoiding reproof of certain properties.
What is innovative in our presentation is the relevance of intermediate values
in the semantics.

11.2 The Program Semantics

11.2.1 Infinite Tail Programs

It will be convenient to discuss the denotational semantics without using con-
tinuations. If all modules are reduced to initial ones1, we can prove that, for
any program P :

[[initial P]] = [[initial P; END]]

where [[END]]W (D)
def
= Const(W).

Any program ending with the above instruction will be called an infinite tail
program. For such programs P , [[P]]W (D) is the same for any duration formula
D. We will be thus justified in writing the semantic interpretation operator for
infinite tail programs simply as [[P]]W .

This statement obeys the following law, which we will need later:

END = #1; END

11.2.2 Finite Loops

On the other hand, when using the simulation semantics we are only interested
in finite time prefix behaviour.

Since all while loop bodies must take time to execute, we can prove that:
l ≤ n⇒ [[P]] = [[Pn]]

where Pn is the result of replacing all loops (while b do Q) in P by finite
loops (whilen b do Q):

while0 do P
def
= skip

whilen+1 do P
def
= if b then (P; whilen do P) else skip

This enables us to reduce any program to a finite one, for whatever the length
of time we would like to monitor the behaviour. This simplifies certain proofs.

1We will not include continuous assignments in our presentation and this is therefore
justified.

128

11.3 The Operational Semantics

To state the operational semantics, we use the following notation:
(s, P) −→ (s′, Q)

This is read as ‘executing P in state s will change the storage to s′ and executable
program to Q’. P and Q range over valid Verilog programs, s and s′ are states
storing the values of the variables and −→ is a transition relation.

Formally, a state is a function from variable names to values. Given a state s and
variable v in its domain, s(v) is the value of v in that state. For an expression
e built from variables in the domain of state s, s[v ← e] represents a new state
matching s in all variables except v, which takes the value of expression e as
evaluated in s. To make the presentation more readable, we will also interpret
states as assignment statements. The assignment statement s refers to the
assignment of all variables v in the domain of s to s(v).

Two transition relations are defined: immediate changes (written as
0−→) and

time increasing changes (written as
1−→). These will then be combined to give

the complete operational semantics of Verilog. The simulation semantics can be
informally described as follows:

1. While there are any immediate changes possible, choose one, perform it
and repeat this step.

2. Perform a time increasing change along all parallel threads.

3. Go back to step 1.

Note that for any valid program in the subset of Verilog for which we defined
the semantics, step 1 eventually terminates since all loop bodies must take time
to execute.

11.3.1 Immediate Transitions

Certain transitions can take place without simulation time being advanced.

These transitions will be written as (s, P)
0−→ (s′, Q), and read as ‘P in state s

executes to Q with state s′ in zero time’.

Rather than simply coming up with the operational semantics, we give a formal
definition to the transition notation and derive the operational semantics from
the denotational semantics.

(s, P)
0−→ (s′, Q)

def
= s;P = s′;Q

For sequential programs P , Q and R, we derive the following transition relation:

129

(s, skip; P)
0−→ (s, P) [OP–skip]

(s,#0; P)
0−→ (s, P) [OP–#0]

(s, v = e; P)
0−→ (s[v ← e], P) [OP–:=]

Provided that s(b) = true

(s, (if b then P else Q); R)
0−→ (s, P ; R) [OP–cond(T)]

Provided that s(b) = false

(s, (if b then P else Q); R)
0−→ (s,Q; R) [OP–cond(F)]

Provided that s(b) = true

(s, (while b do P); R)
0−→ (s, P ; (while b do P); R) [OP–while(T)]

Provided that s(b) = false

(s, (while b do P); R)
0−→ (s,R) [OP–while(F)]

Provided that s(v) = true

(s, wait v; R)
0−→ (s,R) [OP–wait(T)]

Note that all these transition rules hold when interpreted as algebraic laws.

Definition: A sequential Verilog program P in state S is said to be stable if
none of the defined zero transition laws are applicable to it.

stable(s, P)
def
= � t, Q · (s, P)

0−→ (t, Q)

Definition: The multiple zero transition relation
0−→
∗

is defined to be the

reflexive transitive closure of
0−→.

Definition: A program P in state s is said to stablise to program Q in state t,
if there is a sequence of zero transitions which transform (s, P) to (t, Q) and Q
in t is stable:

(s, P)
07−→ (t, Q)

def
= (s, P)

0−→
∗

(t, Q) ∧ stable(t, Q)

Proposition 0: Interpreted in the same way as
0−→, stablising zero transitions

are also sound.

In other words, if (s, P)
07−→ (t, Q), then s;P = t;Q.

Lemma 0: If P is a sequential program with no loops, such that dur(P), then

for any state s, there is a program Q and state t such that (s, P)
07−→ (t, Q).

The lemma can be proved using induction on the structure of P and the defini-
tion of dur(P).

Corollary 0: (s, P ; (while b do Q);R) stablises, provided that (s, P ;R) sta-
blises.

Since we know that dur(Q) (from the fact that Q appears as the body of a loop),
we can use case analysis on whether b is true or not at the start of the loop and
Lemma 0 to prove the statement.

Lemma 1: If P is a sequential program (of the form P ′;END), we can find a

program Q and state t, such that: (s, P)
07−→ (t, Q).

Proof: Note that using Corollary 0, it is enough if we show that P with all the
loops removed can reach a stable state.

We define the size of a (loop-free) sequential program size(P) to be:

130

size(S)
def
= 1

size(if b then P else Q)
def
= 1 + size(P) + size(Q)

size(C;Q)
def
= size(C) + size(Q)

where S is a single simple instruction program (such as v=e, END etc) and C is
a single compound program (a single instruction or a conditional).

From the following facts:

• on non-stable program and state pairs,
0−→ is, by definition, a total func-

tion

• the initial input is always of the form END or P; END with P being a finite
program

• any transition on a program of the form P; END produces either END or a
program Q; END where size(Q) < size(P)

we conclude that in at most (size(P) − 1) transitions, we must eventually hit
on a stable program.

2

11.3.2 Extension to Parallel Composition

The ideas just presented can be readily extended to programs using parallel
composition. As a convention, we will use bold variables such as � , � to rep-
resent parallel programs and � i, � i for their components. The state is also
partitioned into parts, each of which is controlled by a single process (but which
other processes can read). We refer to the partition controlled by process i as
si.

Definition: The
0−→ relation can be extended to parallel programs as follows:

If (si, � i)
0−→ (ti, � i), then (s, �)

0−→ (t, �), where for any j 6= i, � j = � j and
sj = tj .

The definition for stability of programs remains unchanged: a parallel program
� is said to be stable if it cannot perform any zero transitions.

Corollary: A parallel program � is stable if and only if all its components are
stable:

stable(�) ⇐⇒
∧

i

stable(� i)

The definition of multiple zero transitions and stablising zero transitions also
remain unchanged.

Lemma 2: All zero transitions interpreted as equations are consequences of
the continuation semantics of Verilog.

Proof: All sequential program transitions follow immediately from the alge-
braic laws of chapter 6. The parallel program transitions then follow from the
distributivity of assignment over parallel composition.

131

2

Lemma 3: For any loop-free � and state s, application of zero transitions
in any order must eventually terminate. That is, by repeatedly applying zero
transitions, we must eventually hit upon a stable state.

Proof: The proof is simply an extension to the one given for lemma 1. We
extend the definition of the size of a program to parallel programs:

size(�)
def
=

∑

i

� i

Following precisely the same argument in lemma 1, zero transitions reduce the
size of programs. Since all programs end in a stable instruction END, in at most
size(�) transitions, the program must stablise.

2

11.3.3 Unit Time Transitions

Once no further immediate transitions can take place, simulation time is ad-

vanced throughout the system without changing the state. A relation
1−→ is

defined to specify how such a transition takes place.

As in the case of the
0−→ relation, we give an interpretation to this new transition

to direct the definition of laws:

(s, P)
1−→ (t, Q)

def
= s;P = t; #1;Q

(s,#(n+ 1); P)
1−→ (s,#n; P) [OP–#n]

(s, END)
1−→ (s, END) [OP–END]

If S(v) = false

(s, wait v; P)
1−→ (s, wait v; P) [OP–wait(F)]

This relation is extended to parallel processes by using:

If, for all i, (s, � i)
1−→ (s, � i), then (s, �)

1−→ (s, �).

Lemma 4: For any program � and state s, such that stable(s, �), there exists

a program � such that (s, �)
1−→ (s, �).

Furthermore, � is unique.

Proof: � is stable if all its components are stable. The unit transition relation
is total on stable sequential states and can thus be applied to all components of

� . Uniqueness follows from the functionality of the unit transition relation.
2

Lemma 5: All unit time transitions are consequences of the continuation se-
mantics.

Proof: The proof is identical to the one for lemma 2, but uses distributivity of
unit delay over parallel composition rather than the distributivity of assignment
statements.

132

2

Definition: A total time step transition is one which evolves a program � with
state s until it becomes stable, upon which a time transition takes place.

(s, �)→→ (t, �)
def
= ∃ � , u · (s, �)

07−→ (u, �) ∧ (u, �)
1−→ (t, �)

We would like to show that this relation (→→) is total. The first thing to prove is

that
07−→ is still total on parallel programs. As in the case of sequential programs,

the result is proved by giving a monotonically decreasing integer variant which
is bound below.

Consider the following definition of size′ (where P , Q and R stand for any
program and C stands for a single simple instruction, such as assignment, END,
etc):

size′(C)
def
= 1

size′(while b do P)
def
= size′(P) + 1

size′(if b then P else Q)
def
= size′(P) + size′(Q) + 1

size′(C;P)
def
=

{
1 if dur(C)
1 + size′(P) otherwise

size′((if b then P else Q);R)
def
=

size′(P) + size′(Q) + 1
if dur(if b then P else Q)

size′(P) + size′(Q) + size′(R)
otherwise

size′((while b do P);Q)
def
= size′(P) + size′(Q) + 1

Lemma 6: If dur(P), then for any program Q, size′(P ;Q) = size′(P). Oth-
erwise, if dur(P) is false, then for any program Q, size′(P ;Q) = size′(P) +
size′(Q).

Proof: The proof proceeds by structural induction on P .

Base cases: If P is simple instruction:

• If dur(P), then:

size′(P ;Q)
= { definition of size′ }

1
= { definition of size′ }

size′(P)

• If not dur(P), then:

size′(P ;Q)
= { definition of size′ }

1 + size′(Q)
= { definition of size′ }

size′(P) + size′(Q)

Inductive cases:

133

• P is a loop (while b do R): Note that, by definition, dur(P) is false:

size′(P ;Q)
= size′(while b do R;Q)
= { definition of size′ }

size′(R) + size′(Q) + 1
= { definition of size′ }

size′(while b do R) + size′(Q)
= size′(P) + size′(Q)

• P is a conditional (if b then R else S):

– Subcase 1: dur(R) and dur(S).

size′(P ;Q)
= size′((if b then R else S);Q)
= { definition of size′ and dur(P) }

size′(R) + size′(S) + 1
= { definition of size′

size′(P)

– Subcase 2: At least one of dur(R) and dur(S) is false (and hence so
is dur(P)).

size′(P ;Q)
= size′((if b then R else S);Q)
= { definition of size′ and the fact that dur(P) is false }

size′(R) + size′(S) + size′(Q) + 1
= { definition of size′ }

size′(if b then R else S) + size′(Q)
= size′(P) + size′(Q)

• P is a sequential composition (P = R;S):

– Subcase 1: dur(R) holds (and hence so does dur(P)).

size′(P ;Q)
= size′(R;S;Q)
= { inductive hypothesis and dur(R) }

size′(R)
= { inductive hypothesis and dur(R) }

size′(R;S)
= size′(P)

– Subcase 2: dur(S) holds, but not dur(R) (hence dur(P) holds).

size′(P ;Q)
= size′(R;S;Q)
= { inductive hypothesis and dur(R) is false }

size′(R) + size′(S;Q)
= { inductive hypothesis and dur(S) }

size′(R) + size′(S)
= { inductive hypothesis and dur(R) is false }

size′(R;S)
= size′(P)

– Subcase 3: Both dur(R) and dur(S) are false (therefore dur(P) is also
false).

134

size′(P ;Q)
= size′(R;S;Q)
= { inductive hypothesis and dur(R) is false }

size′(R) + size′(S;Q)
= { inductive hypothesis and dur(S) is false }

size′(R) + size′(S) + size′(Q)
= { inductive hypothesis and dur(R) is false }

size′(R;S) + size′(Q)
= size′(P)

2

Lemma 7: →→ is total.

Proof: We will show that if (s, P)
0−→ (t, Q), then size′(P) > size′(Q). Since

size′ is bounded below by 1, any chain of valid immediate transitions must be

finite. Since, by definition the set of time transition (
1−→) is a total relation on

stable programs, the totality of →→ will then follow immediately.

We proceed by analysing all possible immediate transitions:

• (s, skip;P)
0−→ (s, P):

size′(skip ;P)
= { by definition of size′ and dur }

1 + size′(P)
> size′(P)

• (s,#0;P)
0−→ (s, P): The proof is identical to the one in the previous

case.

• (s, v = e;P)
0−→ (s[v ← e], P): Again, the proof is identical to the first.

• (s, wait v;P)
0−→ (s, P): Again, the proof is identical to the first.

• (s, (if b then Q else R);S)
0−→ (s,Q;S):

Subcase 1: Both dur(Q) and dur(R) hold.

size′((if b then Q else R);S)
= { since dur(if b then Q else R) }

size′(Q) + size′(R) + 1
= { dur(Q) }

size′(Q;S) + size′(R) + 1
> size′(Q;S)

Subcase 2: dur(Q) holds but not dur(R).

size′((if b then Q else R);S)
= { since dur(if b then Q else R) is false }

size′(Q) + size′(R) + size′(S) + 1
> size′(Q)
= { lemma 6 and dur(Q) }

size′(Q;S)

Subcase 3: dur(R) holds but not dur(Q).

135

size′((if b then Q else R);S)
= { since dur(if b then Q else R) is false }

size′(Q) + size′(R) + size′(S) + 1
> size′(Q) + size′(S)
= { lemma 6 and dur(Q) is false }

size′(Q;S)

• (s, (if b then Q else R);S)
0−→ (s,R;S): The proof is symmetric to the

one given in the previous case.

• (s, (while b do Q);R)
0−→ (s,R):

size′((while b do Q);R)
= { by definition of size′ }

size′(Q) + size′(R) + 1
> size′(R)

• (s, (while b do Q);R)
0−→ (s,Q; (while b do Q);R): Note that dur(Q)

must hold, since Q is a loop body.

size′((while b do Q);R)
= { by definition of size′ }

size′(Q) + size′(R) + 1
> size′(Q)
{ lemma 6 and dur(Q) }

= size′(Q; (while b do Q);R)

2

11.4 Equivalence of Semantics

11.4.1 An Informal Account

The operational semantics give a set of algebraic equations which programs
will satisfy. These can be seen as a number of simultaneous equations which
an interpretation of the language should satisfy. Showing that the continuation
semantics in fact satisfies the equations is similar to fitting a number of constants
into a set of equations and showing that the equalities do in fact hold. However,
a question immediately arises — are there other interpretations which satisfy
these simultaneous equations? This is the question we now set out to answer.

11.4.2 Formalising the Problem

Since the laws given by the interpretation of the operational semantics are laws
of the denotational interpretation of the semantics, the family of interpretations
satisfying the laws is refined by the interpretation [[P]].

To prove equivalence, we would like to be able to show the reverse: that all the
semantic interpretations satisfying the transition laws are a just a refinement of
the denotational semantics. In effect, we would be showing that there is only
one unique interpretation satisfying the laws: that given by the denotational
semantics.

Different approaches can be taken towards proving this property. We choose
to show that any meaningful temporal interpretation of the language satisfying
the algebraic laws is in fact a refinement of the denotational semantics. An

136

alternative approach would have been to show that the algebraic laws have a
unique solution.

But what do we mean by a meaningful temporal interpretation of the language?
The trivial language interpretation which maps all programs to true obviously
satisfies the algebraic laws. So does the interpretation identical to the one given
in chapter 5 but changing the semantics of #n to:

[[#n]]W (D)
def
= (l ≤ 2n ∧ Const(W)) ∨

(l = 2n ∧ Const(W)) o

9
D

The solution we adopt is to define a relation on programs, ≤n, such that P ≤n Q
if Q refines the behaviour of P over the first n time units. We can then simply
say that P is refined by Q (P ≤ Q) if, for any number n, P ≤n Q. Two
programs are then said to be equivalent if they are refinements of each other.

Using this technique, we can define a refinement relation for both the opera-
tional and denotational semantics. The two semantics are then identical if the
equivalence relations defined by them are the same. By proving that whenever
two state-program pairs are equivalent in the denotational sense then they must
also be equivalent in the operational sense (theorem 1, case 2) we are showing
that both semantics partition the set of all possible state-program pairs in the
same way and thus, the only solution to the algebraic laws is the denotational
semantics given in chapter 5.

11.4.3 Refinement Based on the Denotational Semantics

Defining the timed refinement relation using the denotational semantics is quite
straightforward. Obviously, a program may only be a refinement of another if
both start with some particular configuration of the variables:

Definition: We define the statement ‘in the denotational interpretation, pro-
gram Q starting in state t refines P starting in state s for the first n time units’,
written as (s, P) Dvn (t, Q) as:

(s, P) Dvn (t, Q)
def
= l = n⇒

(∃←−−vars,−−→vars · [[t;Q]])⇒ (∃←−−vars,−−→vars · [[s;P]])

Definition: We simply say that using the denotational semantics, program Q
starting in state t refines P starting in state s, if the refinement holds for any
time prefix:

(s, P) Dv (t, Q)
def
= ∀n : � · (s, P) Dvn (t, Q)

Definition: Program P is refined by program Q (with respect to the denota-
tional semantics) if, whatever the starting state s, (s, P) is refined by (s,Q):

P Dv Q def
= ∀s · (s, P) Dv (t, Q)

Definition: We can now define what we mean by denotational equivalence:

137

P
D
= Q

def
= (P Dv Q) ∧ (Q Dv P)

Or more succinctly,
D
=

def
= Dv ∩ Dv−1, where R−1 is the inverse of relation R.

Sometimes, we will also refer to
D
=n, which is defined as Dvn ∩ Dv−1

n .

11.4.4 Refinement Based on the Operational Semantics

The operational semantics have no inherent notion of time. It is our interpre-

tation of the
1−→ relation that alludes to a time unit passing. This is the idea

we embody when defining time refinement using operational semantics. The
technique used is based on bisimulation as described in [Mil89].

Definition: We define the statement that in the operational semantics, program
Q starting in state t refines P starting in state s for the first n time units, written
as (s, P) Ovn (t, Q) using primitive recursion:

(s, P) Ov0 (t, Q)
def
= true

(s, P) Ovn+1 (t, Q)
def
= ∃u, P ′, Q′ ·

(s, P)→→ (u, P ′)
(t, Q)→→ (u,Q′)
(u, P ′) Ovn (u,Q′)

P and Q must have the same alphabet to be comparable.

Definition: We simply say that using the operational semantics, program Q
starting in state t refines P starting in state s, if the refinement holds for any
time prefix:

(s, P) Ov (t, Q)
def
= ∀n : � · (s, P) Ovn (t, Q)

Definition: Program P is refined by programQ (with respect to the operational
semantics) if, whatever starting state s, (s, P) is refined by (s,Q):

P Ov Q def
= ∀s · (s, P) Ov (s,Q)

Definition: We can now define what we mean by operational equivalence:

P
O
= Q

def
= (P Ov Q) ∧ (Q Ov P)

Or more succinctly,
O
=

def
= Ov ∩ Ov−1.

138

11.4.5 Preliminary Results

Proposition 1: Ovn is a partial order (with respect to
O
=).

Proposition 2: Dvn is a partial order (with respect to
D
=).

Lemma 1: For any programs P , Q and states s, t: (s, P) Dv0 (t, Q).

Proof: The lemma is proved if we show that for any state s and program P :

∃←−−vars,−−→vars · (l = 0 ∧ [[s;P]]) = l = 0

This can be proved using structural induction on P . To avoid the problem with
while loops, we can replace [[s;P]] with [[s;P1]].

2

Lemma 2.1: For any natural number n, programs P , Q and states s, t:

(s, P)
0−→
∗

(t, Q)⇒ (s, P)
O
=n (t, Q)

Proof: Clearly, by definition of Ov0, (s, P)
O
=0 (t, Q) is always true.

Now consider the case n+ 1, where n ≥ 0.

{ By totality of →→ }
∃u,R · (t, Q)→→ (u,R)

⇒ { definition of →→ and (s, P)
0−→
∗

(t, Q) }
∃u,R· (t, Q)→→ (u,R)

(s, P)→→ (u,R)

⇒ { O=n is reflexive }
∃u,R· (t, Q)→→ (u,R)

(s, P)→→ (u,R)

(u,R)
O
=n (u,R)

⇒ { R = S }
∃u,R, S· (t, Q)→→ (u,R)

(s, P)→→ (u, S)

(u,R)
O
=n (u, S)

⇒ { definition of Ovn+1 }
(s, P)

O
=n+1 (t, Q)

2

Lemma 2.2: For any natural number n, programs P , Q and states s, t:

(s, P)
0−→
∗

(t, Q)⇒ (s, P)
D
=n (t, Q)

Proof: From the arguments presented in section 11.3.1, it follows that:

(s, P)
0−→ (t, Q)⇒ (s, P)

D
=n (t, Q)

139

By definition of transitive reflexive closure, we know that:

(s, P)
0−→
∗

(t, Q)⇒ ∃m : � ·m ≥ 0 ∧ (s, P)
0−→

m

(t, Q)

To prove the statement, we use induction on m and the fact that
D
=n is reflexive

and transitive.

For the base case, when m = 0, we get that (s, P) = (t, Q), and hence (s, P)
D
=n

(t, Q).

Let us assume that the result holds for a particular value of m. Now consider
the case of m+ 1:

(s, P)
0−→

m+1
(t, Q)

⇒ ∃u,R · (s, P)
0−→ (u,R) ∧ (u,R)

0−→
m

(t, Q)

⇒ { by the inductive hypothesis }
∃u,R · (s, P)

0−→ (u,R) ∧ (u,R)
D
=n (t, Q)

⇒ { previous arguments in section 11.3.1 }
∃u,R · (s, P)

D
=n (u,R) ∧ (u,R)

D
=n (t, Q)

⇒ { transitivity of
D
=n }

(s, P)
D
=n (t, Q)

2

Lemma 3.1: For any natural number n, programs P , Q and state s:

(s, P)
1−→ (s,Q)⇒ (s, P)

O
=n (s,#1;Q)

Proof: The proof is similar to that of lemma 2.1. We consider two alternative
situations, n = 0 and n > 0. The result is trivially true in the first case. We
now consider the case n+ 1, where n ≥ 0.

{ definition of →→ }
(s,#1;Q)→→ (s,Q)

⇒ { premise and definition of →→ }
(s, P)→→ (s,Q) ∧ (s,#1;Q)→→ (s,Q)

⇒ { reflexivity of
O
=n }

(s, P)→→ (s,Q) ∧ (s,#1;Q)→→ (s,Q)

(s,Q)
O
=n (s,Q)

⇒ { u = s, R = Q and S = Q }
∃u,R, S· (s, P)→→ (u,R)

(s,#1;Q)→→ (u, S)

(u,R)
O
=n (u, S)

⇒ { definition of
O
=n+1 }

(s, P)
O
=n+1 (s,#1;Q)

2

140

Lemma 3.2: For any natural number n, programs P , Q and state s:

(s, P)
1−→ (s,Q)⇒ (s, P)

D
=n (s,#1;Q)

Proof: The proof follows directly from the argument given in section 11.3.3

and the definition of
D
=n.

2

Lemma 4: For any natural number n, programs P , Q and states s, t:

(s, P) Dvn (s,Q) ⇐⇒ (s,#1;P) Dvn+1 (s,#1;Q)

Proof: The proof is based on the definition of the denotational semantics and
a number of laws of duration calculus:

(s, P) Dvn (s,Q)

⇐⇒ { by definition of Dvn }
∃←−−vars,−−→vars · (l = n ∧ [[s;Q]])⇒ ∃←−−vars,−−→vars · [[s;P]]

⇐⇒ { monotonicity of o

9
}

∃←−−vars,−−→vars· (l = 1 ∧ Const(vars)) o

9

(l = n ∧ [[s;Q]])
⇒ ∃←−−vars,−−→vars· (l = 1 ∧ Const(vars)) o

9
[[s;P]]

⇐⇒ { duration calculus and denotational semantics }
∃←−−vars,−−→vars· (de ∧ −−→vars = s(vars)) o

9

(l = 1 ∧ Const(vars)) o

9

(l = n ∧ [[Q]])
⇒ ∃←−−vars,−−→vars· (de ∧ −−→vars = s(vars)) o

9

(l = 1 ∧ Const(vars)) o

9
[[P]]

⇐⇒ { denotational semantics }
∃←−−vars,−−→vars · ([[s; #1;Q]] ∧ l = n+ 1)⇒ ∃←−−vars,−−→vars · [[s; #1;P]]

⇐⇒ { by definition of Dvn+1 }
(s,#1;P) Dvn+1 (s,#1;Q)

2

Lemma 5: If (s, P) Dvn (t, Q) and n > 0 then:

∃u, P ′, Q′ · (s, P)→→ (u, P ′)

(t, Q)→→ (u,Q′)

Proof: Since →→ is total, we know that for some P ′, Q′, u and v:

(s, P)→→ (u, P ′)

(t, Q)→→ (v,Q′)

But we can decompose→→ into a number of
0−→ transitions and a

1−→ transition:

141

(s, P)
0−→
∗

(u, P ′′)
1−→ (u, P ′)

(t, Q)
0−→
∗

(v,Q′′)
1−→ (v,Q′)

By lemmata 3.2 and 2.2, we can thus conclude that:

(u, P ′′)
D
=n (u,#1;P ′)

(v,Q′′)
D
=n (v,#1;Q′)

(u, P ′′)
D
=n (s, P)

(v,Q′′)
D
=n (t, Q)

Hence, by transitivity of
D
=n:

(s, P)
D
=n (u,#1;P ′)

(t, Q)
D
=n (v,#1;Q′)

But, from the lemma premise we know that (s, P) Dvn (t, Q) and thus:

(u,#1;P ′) Dvn (v,#1;Q′)

Now, if u 6= v, the only way in which the above refinement can be satisfied is if:

l = n ∧ [[#1;Q′]] = false

But it is easy to see that for any program P , (l = n∧ [[P]]) is never false. Hence
u = v.

2

11.4.6 Unifying the Operational and Denotational Seman-

tics

Theorem 1: For any natural number n, programs P , Q and states s, t:

(s, P) Ovn (t, Q) ⇐⇒ (s, P) Dvn (t, Q)

In other words, Ovn= Dvn

Proof: We prove this theorem using induction on n.

Base case: n = 0. Lemma 1 already guarantees this.

Inductive hypothesis: Let us assume that the theorem holds for n:

(s, P) Ovn (t, Q) ⇐⇒ (s, P) Dvn (t, Q).

Inductive case: We would now like to show that:

(s, P) Ovn+1 (t, Q) ⇐⇒ (s, P) Dvn+1 (t, Q).

We now consider the two directions of the proof separately:

142

• Case 1: Ovn+1⊆ Dvn+1. In this part we will be proving that the denota-
tional semantics are complete with respect to the operational semantics.
Equivalently, it can be seen to show that the operational semantics are
sound with respect to the denotational semantics.

(s, P) Ovn+1 (t, Q)

⇒ { definition of Ovn+1 }
∃u, P ′′, Q′′· (s, P)→→ (u, P ′′)

(t, Q)→→ (u,Q′′)
(u, P ′′) Ovn (u,Q′′)

⇒ { inductive hypothesis }
∃u, P ′′, Q′′· (s, P)→→ (u, P ′′)

(t, Q)→→ (u,Q′′)
(u, P ′′) Dvn (u,Q′′)

⇒ { definition of →→ }
∃u, P ′, P ′′, Q′, Q′′· (s, P)

0−→
∗

(u, P ′)

(u, P ′)
1−→ (u, P ′′)

(t, Q)
0−→
∗

(u,Q′)

(u,Q′)
1−→ (u,Q′′)

(u, P ′′) Dvn (u,Q′′)

⇒ { Lemma 4 }
∃u, P ′, P ′′, Q′, Q′′· (s, P)

0−→
∗

(u, P ′)

(u, P ′)
1−→ (u, P ′′)

(t, Q)
0−→
∗

(u,Q′)

(u,Q′)
1−→ (u,Q′′)

(u,#1;P ′′) Dvn+1 (u,#1;Q′′)

⇒ { Lemma 3.2 }
∃u, P ′, Q′· (s, P)

0−→
∗

(u, P ′)

(t, Q)
0−→
∗

(u,Q′)
(u, P ′) Dvn+1 (u,Q′)

⇒ { Lemma 2.2 }
(s, P) Dvn+1 (t, Q)

• Case 2: Ovn⊇ Dvn. The is the dual of the first case, where we show
that the denotational semantics are sound with respect to the operational
semantics (or, equivalently, that the operational semantics are complete
with respect to the denotational semantics).

(s, P) Dvn+1 (t, Q)

⇒ { Lemma 5 }
∃u, P ′′, Q′′· (s, P)→→ (u, P ′′)

(t, Q)→→ (u,Q′′)
(s, P) Dvn+1 (t, Q)

⇒ { definition of →→ and
1−→ keeps state constant }

143

∃u, P ′, P ′′, Q′, Q′′· (s, P)
0−→
∗

(u, P ′)

(u, P ′)
1−→ (u, P ′′)

(t, Q)
0−→
∗

(u,Q′)

(u,Q′)
1−→ (u,Q′′)

(s, P) Dvn+1 (t, Q)

⇒ { Lemma 2.2 }
∃u, P ′, P ′′, Q′, Q′′· (s, P)→→ (u, P ′′)

(t, Q)→→ (u,Q′′)

(u, P ′)
1−→ (u, P ′′)

(u,Q′)
1−→ (u,Q′′)

(u, P ′) Dvn+1 (u,Q′)

⇒ { Lemma 3.2 twice }
∃u, P ′, P ′′, Q′, Q′′· (s, P)→→ (u, P ′′)

(t, Q)→→ (u,Q′′)

(u, P ′)
D
=n+1 (u,#1;P ′′)

(u,Q′)
D
=n+1 (u,#1;Q′′)

(u, P ′) Dvn+1 (u,Q′)

⇒ { transitivity of Dvn }
∃u, P ′′, Q′′· (s, P)→→ (u, P ′′)

(t, Q)→→ (u,Q′′)
(u,#1;P ′′) Dvn+1 (u,#1;Q′′)

⇒ { Lemma 4 and information from previous lines }
∃u, P ′′, Q′′· (s, P)→→ (u, P ′′)

(t, Q)→→ (u,Q′′)
(u, P ′′) Dvn (u,Q′′)

⇒ { inductive hypothesis and definition of →→ }
∃u, P ′′, Q′′· (s, P)→→ (u, P ′′)

(t, Q)→→ (u,Q′′)
(u, P ′′) Ovn (u,Q′′)

⇒ { definition of Ovn+1 }
(s, P) Ovn+1 (t, Q)

This completes the inductive case, and hence the proof.
2

Corollary 1: P
D
= Q ⇐⇒ P

O
= Q.

Proof: This follows almost immediately from Theorem 1.

{ Theorem 1 }
∀n : � · Dvn= Ovn

⇒ { definition of Dv and Ov }
Dv= Ov

⇒ { definition of
D
= and

O
= }

D
==

O
=

2

144

11.5 Conclusions

This chapter has unified two strictly different views of the semantics of Verilog.
On one hand we have the denotational semantics which allow us to compare
mathematical specifications with a Verilog program. On the other hand we
have an operational semantics which describes exactly the way in which the
language is interpreted. Essentially, the result is a set of laws which decide the
transformation of a Verilog program into a sequential one. This complements
the results given in the previous chapter, where the transformations parallelised
the code as much as possible. The two approaches complement each other and
serve to expose better the dual nature of languages which combine sequential
with parallel execution.

145

Part V

146

Chapter 12

Conclusions and Future

Work

12.1 An Overview

The main goal of this thesis is to show how standard industrial HDLs can be used
within a formal framework. Different research may have different motivations
for the formalisation of a language semantics. One such motivation can be to
formally document the behaviour of programs written in the language. Another
motive may be that of providing a sound mathematical basis to serve as a tool
for program development and verification. Our choice of the subset of Verilog
we choose to formalise indicates that our primary aim is more the second than
the first. We aimed at identifying a subset of Verilog with a clear semantics so
as to enable us to produce more elegant proofs. In particular, hardware acts
upon input varying over time to produce a time dependent output. It is thus
desirable to be able to talk about time related properties of such systems.

Algebraic reasoning in arithmetic and analysis has been used effectively by engi-
neers for centuries and we believe that this is also the way forward in hardware
engineering. However, one would desire a mathematical interpretation of the
language by which to judge these laws. This is the main motivation behind the
denotational semantics (chapter 5) and the algebraic laws (chapter 6).

In particular, if a decision procedure can be used to apply these laws effectively
towards a particular objective, their use becomes much more attractive. One
such application is the compilation procedure presented in chapter 10. Another
is the interpretation of the language by a simulator. Although such an inter-
pretation is usually seen as an operational semantics, there is no reason why we
should not view the operational transitions as algebraic laws in their own right
as shown in chapter 11.

12.2 Shortcomings

The evaluation of this thesis would be incomplete if it lacks to mention its
shortcomings. This section attempts to express and discuss the main ones.

Formalised subset of Verilog: The subset of Verilog which has been for-
malised is rather large. However, the side condition that the programs
must not perform any concurrent reading and writing on global variables

147

is rather strong. Certain frequently used programs such as (@clk v=d

or clk) are not allowed. The main problem is that the condition is not
syntactically checkable. Conventions could have been defined to (syntac-
tically) make sure that this condition is always satisfied, for example by
ensuring that reading is always performed at the rising edge of a global
clock, while writing is always performed at the falling edge. Alternatively,
the non-deterministic semantics given in section 5.5.4 could be used to
get around the problem. These non-deterministic semantics should be
analysed more thoroughly in the future.

Unknown and high impedance values: These values (denoted by x and z

respectively) are frequently used by hardware engineers to model tri-state
devices. Our basic Verilog semantics fail to handle these values and al-
though section 5.5.3 discusses possible ways to handle such values and
devices, they have not been explored any further in the thesis.

Case studies: The case studies analyed in chapters 7 to 9 are rather small.
Larger case studies (such as the correctness of a small processor) need to
be performed to judge better the utility of the semantics presented in this
thesis.

Mechanical proof checking: A number of rather complex theorems have been
proved in this thesis which would have benefitted from a run through a
mechanical proof checker. This is discussed in more detail in section 12.3.2.

The results presented thus still need considerable refinement before they can
find their place on the hardware engineer’s workbench. However, we believe
that this thesis is a step towards the use of formal tools and techniques in
hardware design.

12.3 Future Work

12.3.1 Other Uses of Relational Duration Calculus

Relational Duration Calculus has been developed with the semantics of Verilog
in mind. However, the formulation of the calculus is much more general than
this and should be found useful in describing other phenomena.

One of the differences between Verilog and VHDL is the concept of delta delays
in VHDL, where signal assignments are postponed until the simulator has to
execute a wait instruction1. On the other hand, variable assignments take place
immediately.

Consider the following VHDL portion of code:

s<=0; wait for 0ns; s<=1; v=1; w=s and v

where s is a signal and v, w are variables. We would expect w to be assigned
the value 0 (0 and 1). Note that v is updated immediately, while s is not.

This two-level hierarchy can be captured in Relational Duration Calculus thanks
to the typing of the relational chop operator:

1In a certain sense, this is quite similar to Verilog non-blocking assignments.

148

(−→s = 0
∧de∧
Const({v, w})

)
{s,v,w}

o

9

((−→s = 1
∧de∧
Const({v, w})

)
{v,w}

o

9

(−→v = 1
∧de∧
Const({w})

)
{v,w}

o

9

(−→w =←−v ∧←−s
∧de∧
Const({v})

))

In fact, this technique should also be applicable to other languages with an
inherently built synchronisation mechanism such as BSP. Going one step further,
one can construct a language with multiple ‘synchronisation layers’. VHDL has
only two such layers, the local (variables) and delta level (signals), as does BSP.
But one may construct a language with a whole family of such layers to aid
programming in, say, a network of distributed systems. The semantics of such
a language should be elegantly expressible in Relational Duration Calculus.

12.3.2 Mechanised Proofs

The work presented in this thesis can be pushed forward along various paths.
One obvious missing aspect is machine verified proofs of the theorems presented.
Ideally, one should provide support for machine proofs in Relational Duration
Calculus.

Not much work has yet been done in mechanising Duration Calculus proofs.
[SS93] embedded Duration Calculus in PVS and proved a number of number
of properties of standard case studies. They have also defined a number of
tactics, for instance, to automatically prove statements in a decidable subset of
Duration Calculus.

[Pac94] investigated the use of JAPE [SB93], a visual proof calculator, to prove a
number of hardware implementations of standard case studies correct. However,
the proofs were given with respect to a number of Duration Calculus laws, as
opposed to the underlying definitions or axioms. A number of tactics useful
in transforming some real-time specifications into a format closer to hardware
have also been presented there.

Embedding Relational Duration Calculus and the given Verilog semantics into
a standard theorem prover and proving the correctness of the algebraic laws
would allow the verification of the proofs given in the thesis. The hardware
compilation and simulation semantics could then be encoded as proof tactics.

12.3.3 Real-Time Properties and HDLs

An area which is only briefly touched upon in this thesis is the verification of
real-time properties of programs written in a hardware description language.
The use of Duration Calculus to specify the semantics of Verilog allows us to
handle such proofs in a straightforward manner. Unfortunately, we are not aware
of much other work done for this particular style of specification in conjunction
with HDLs. It would be interesting to study this area in more detail and see
what useful results can be achieved.

12.3.4 Extending the Sub-Languages

Another aspect which should ideally be extended is the sub-language which is
compiled into hardware-like format. Other constructs (such as fork ...join)

149

and instructions (such as @v) can be converted into a hardware-like format with-
out too much difficulty. One would still, however, desire a proof of correctness
for these additional transformations.

The same can be said of the comparison between the operational and denota-
tional semantics.

12.4 Conclusion

The main aim of this thesis was to study the development of a formal framework
for Verilog, as a typical industrial-strength hardware description language. The
main achievement was the building of a basis for such a framework, but more
work still needs to be done in order to make this framework robust and general
enough to be useful in a real-life hardware development environment.

150

Bibliography

[Bal93] Felice Balarin. Verilog HDL modelling styles for formal verifica-
tion. In D. Agnew and L. Claesen, editors, Computer Hardware
Description Languages and their Applications (A-32), pages 453–
466. Elsevier Science Publishers BV (North-Holland), 1993.

[BB92] J.C.M Baeten and J.A. Bergstra. Discrete time process algebra.
In W.R. Cleaveland, editor, Proceedings of CONCUR ’92, number
630 in Lecture Notes in Computer Science, pages 401–420. Springer,
1992.

[BB93] J.C.M Baeten and J.A. Bergstra. Real time process algebra with
infinitesimals. Technical Report P9325, Programming Research
Group, University of Amsterdam, October 1993.

[BFK95] Peter T. Breuer, Luis Sanchez Fernandez, and Carlos Delgado
Kloos. A simple denotational semantics, proof theory and a val-
idation condition generator for unit-delay VHDL. Formal Methods
in System Design, 7:27–51, 1995.

[BG96] C. Bolchini and C. Ghezzi. Software systems: Languages, models
and processes. In Giovanni de Micheli and Mariagiovanna Sami,
editors, Software Hardware Co-design, volume 310 of NATO ASI
series (Series E — Applied Sciences), pages 397–426. Kluwer Aca-
demic publishers (Netherlands), 1996.

[BGM95] E. Börger, U. Glässer, and W. Müller. Formal definition of an
abstract VHDL ’93 simulator by EA-machines. In C. Delgado Kloos
and P.T. Breuer, editors, Formal Semantics for VHDL, pages 107–
139. Kluwer Academic Press Boston/London/Dordrecht, 1995.

[Bla96] Gerald M. Blair. Verilog — accellerating digital design. IEE Elec-
tronics and Communication Engineering Journal, 9(2):68–72, 1996.

[Boc82] Gregor V. Bochmann. Hardware specification with temporal logic:
An example. IEEE Transactions on Computers, C-31(3):223–231,
March 1982.

[Bor95] Editor Dominique Borrione. Formal methods in system design, spe-
cial issue on VHDL semantics. Volume 7, Nos. 1/2, Aug 1995.

[Bou97] Richard J. Boulton. A tool to support formal reasoning about com-
puter languages. In E. Brinksma, editor, Proceedings of the Third
International Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS ’97), Enschede, The Nether-
lands, number 1217 in Lecture Notes in Computer Science, pages
81–95. Springer, April 1997.

151

[Bry86] Randal E. Bryant. Can a simulator verify a circuit? In G. Milne
and P.A. Subrahmanyam, editors, Formal Aspects of VLSI Design,
pages 125–136. Elsevier Science Publisher B.V., 1986.

[BS95] Dominique Borrione and Ashraf Salem. Denotational semantics of
a synchronous VHDL subset. Formal Methods in System Design,
7:53–71, 1995.

[BSC+94] C. Bayol, B. Soulas, F. Corno, P. Prinetto, and D. Borrione. A pro-
cess algebra interpretation of a verification oriented overlanguage
of VHDL. In EURO-DAC 1994/EURO-VHDL ’94, pages 506–511.
IEEE CS Press, 1994.

[BSK93] P.T. Breuer, L. Sánchez, and C. Delgado Kloos. Clean formal se-
mantics for VHDL. In European Design and Test Conference, Paris,
pages 641–647. IEEE Computer Society Press, 1993.

[Cam90] Albert Camilleri. Simulating hardware specifications within a theo-
rem proving environment. International Journal of Computer Aided
VLSI design, (2):315–337, 1990.

[CGH+93] Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska,
Luciano Lavagno, and Alberto Sangiovanni-Vincentelli. A formal
specification model for hardware/software codesign. In Proceedings
of International Workshop on Software-Hardware Codesign, Octo-
ber 1993.

[CGM86] Albert Camilleri, Mike Gordon, and Tom Melham. Hardware ver-
ification using higher order logic. Technical Report 91, University
of Cambridge Computing Laboratory, 1986.

[CHF96] Ching-Tsun Chou, Jiun-Lang Huang, and Masahiro Fujita. A high-
level language for programming complex temporal behaviours and
its translation into synchronous circuits. September 1996.

[CP88] Paolo Camurati and Paola Prinetto. Formal verification of hardware
correctness: Introduction and survey of current research. IEEE
Computer, pages 8–19, July 1988.

[Dav93] K.C. Davis. A denotational definition of the VHDL simulation ker-
nel. In P. Agnew, L. Claesen, and R. Camposano, editors, Pro-
ceedings of the 11th IFIP WG 10.2 International Conference on
Computer Hardware Description Languages and their applications
CHDL ’93, pages 523–536, 1993.

[Des96a] Chrysalis Symbolic Design. Design for verification strategies op-
timize advanced verification techniques, December 1996. available
from http://chrys.chrysalis.com/techinfo/.

[Des96b] Chrysalis Symbolic Design. Symbolic logic technology, January
1996. available from http://chrys.chrysalis.com/techinfo/.

[Des96c] Chrysalis Symbolic Design. What is formal verification, January
1996. available from http://chrys.chrysalis.com/techinfo/.

[DHP95] Gert Döhmen, Ronald Herrmann, and Hergen Pargmann. Trans-
lating VHDL into functional symbolic finite-state models. Formal
Methods in System Design, 7:125–148, 1995.

152

[Fou91] Micheal P. Fourman. Proof and design — machine-assisted formal
proof as a basis for behavioural design tools. Technical Report
LFCS-91-319, Laboratory for the foundations of Computer Science,
The University of Edinburgh, 1991.

[Frä95] Martin Fränzle. On appropiateness of the digitality abstrac-
tion taken in duration calculus to implementation developement.
ProCoS document, Christian-Albrechts-Universität Kiel, Germany,
1995.

[GG95] D.J. Greaves and M.J.C. Gordon. Checking equivalence
between synthesised logic and non-synthesisable behavioural
prototypes. Research Proposal, 1995. available from
http://www.cl.cam.ac.uk/users/djs1002/verilog.project.

[GG98] M.J.C. Gordon and A. Ghosh. Language independent RTL seman-
tics. In Proceedings of IEEE CS Annual Workshop on VLSI: System
Level Design, Florida, USA, 1998.

[Gol92] Robert Goldblatt. Logics of Time and Computation, chapter 6:
Temporal Logic. Number 7 in CLSI lecture notes. Center for the
Study of Language and Information, second edition, 1992.

[Gol94] Steve Golson. State machine design techniques for Verilog and
VHDL. Synopsys Journal of High-Level Design, September 1994.
Available from www.synopsys.com).

[Gol96] Ulrich Golze. VLSI Chip Design with the Hardware Description
Language VERILOG: an introduction based on a large RISC pro-
cessor. Springer, 1996.

[Goo93a] K.G.W. Goossens. The formalisation of a hardware description lan-
guage in a proof system: Motivation and applications. In Proceed-
ings of the XIII Conference of the Brazilian Computer Society, Flo-
rianopolis, Brazil, September 1993.

[Goo93b] K.G.W. Goossens. Structure and behaviour in hardware verifica-
tion. In Jeffrey J. Joyce and Carl-Johan H. Seger, editors, Higher
Order Logic Theorem Proving and its applications, 6th International
Workshop, HUG ’93, Vancouver, B.C. Canada, number 780 in Lec-
ture Notes in Computer Science, pages 73–87, 1993.

[Goo95] K.G.W. Goossens. Reasoning about VHDL using operational and
observational semantics. Technical Report SI/RR-95/06, Diparti-
mento di Scienze dell’ Informazione, Università degli Studi di Roma,
‘La Sapienza’, via Salaria, 113-I-00198, Roma, April 1995.

[Gor95] Mike Gordon. The semantic challenge of Verilog HDL. In Pro-
ceedings of the tenth annual IEEE symposium on Logic in Com-
puter Science (LICS ’95) San Diego, California, pages 136–145,
June 1995.

[Gor98] M.J.C. Gordon. Event and cycle semantics of hardware
description languages v1.4, January 1998. available from
http://www.cl.cam.ac.uk/users/djs1002/verilog.project/.

[H+85] C.A.R. Hoare et al. Laws of programming — a tutorial paper.
Technical Monograph PRG-45, Oxford University Computing Lab-
oratory, 1985.

153

[Hay82] John P. Hayes. A unified switching theory with applications to VLSI
design. Proceedings of the IEEE, 70(10):1140–1151, 1982.

[HB92] Jifeng He and Jonathan Bowen. Time interval semantics and imple-
mentation of a real-time programming language. In Proceedings of
the 4th Euromicro Workshop in Computing, pages 173–192, August
1992.

[HB93] Jifeng He and S.M. Brien. Z description of duration calculus.
Technical report, Oxford University Computing Laboratory (PRG),
1993.

[He93] Jifeng He. Synchronous realization of circuits. ProCos document
OU HJF 17/1, Oxford University Computing Laboratory, Program-
ming Research Group, Wolfson Building, Parks Road, Oxford, Oc-
tober 1993.

[He94] Jifeng He. From CSP to hybrid systems. In A.W. Roscoe, editor,
A Classical Mind, chapter 11, pages 171–189. Prentice-Hall, 1994.

[Hea93] Thomas Heath. Automating the compilation of software into hard-
ware. Master’s thesis, Oxford University Computing Laboratory,
Oxford University, 1993.

[Her88] John Herbert. Formal verification of basic memory devices. Tech-
nical Report 124, University of Cambridge Computing Laboratory,
1988.

[HH94] C.A.R. Hoare and Jifeng He. Specification and implementation of
a flashlight. ProCoS report, Oxford University Computing Labora-
tory, 1994.

[HHF+94] Jifeng He, C.A.R. Hoare, Martin Fränzle, Markus Müller-Olm,
Ernst-Rüdiger Olderog, Michael Schenke, Michael R. Hansen, An-
ders P. Ravn, and Hans Rischel. Provably correct systems. Technical
report, ProCoS, 1994.

[HHS93a] C.A.R. Hoare, Jifeng He, and A. Sampaio. From algebra to op-
erational semantics. Information Processing Letters, 45(2):75–80,
February 1993.

[HHS93b] C.A.R. Hoare, Jifeng He, and Augusto Sampaio. Normal form ap-
proach to compiler design. ACTA Informatica, 30:701–739, 1993.

[HI96] Dang Van Hung and Ko Kwang Il. Verification via digitized mod-
els of real-time systems. Research UNU/IIST Report No. 54,
The United Nations University, International Institute for Software
Technology, P.O. Box 3058, Macau, February 1996.

[HJ94] Jifeng He and Zheng Jianping. Simulation approach to provably
correct hardware compilation. In Formal Techniques in Real-Time
and Fault Tolerant Systems, number 863 in Lecture Notes in Com-
puter Science, pages 336–350. Springer-Verlag, 1994.

[HJ98] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming.
Prentice-Hall Series in Computer Science, 1998.

154

[HMC96] Jifeng He, Quentin Miller, and Lei Chen. Algebraic laws for BSP
programming. In Proceedings of EUROPAR 1996, number 1124
in Lecture Notes in Computer Science, pages 359–368. Springer-
Verlag, 1996.

[HMM83] Joseph Halpern, Zohar Manna, and Ben Moszkowski. A hardware
semantics based on temporal intervals. In 10th International Col-
loqium on Automata, Languages and Programming, number 154
in Lecture Notes in Computer Science, pages 278–291. Springer-
Verlag, 1983.

[HO94] Jifeng He and Ernst-Rüdiger Olderog. From real-time specification
to clocked circuit. ProCoS document, Department of Computer
Science, Technical University of Denmark, DK-2800, Lyngby, Den-
mark, 1994.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985.

[Hoa90] C.A.R. Hoare. A theory for the derivation of C-MOS circuit designs.
In Beauty is our Business, Texts and monographs in Computer
Science. Springer-Verlag, 1990.

[Hoa94] C.A.R. Hoare. Mathematical models for computer science. Lecture
Notes for Marktoberdorf Summer School, August 1994.

[Hol97] Clive Holmes. VHDL language course. Technical report, Rutherford
Appleton Laboratory, Microelectronics Support Centre, Chilton,
Didcot, Oxfordshire, February 1997.

[HP94] C.A.R. Hoare and Ian Page. Hardware and software: The closing
gap. Transputer Communications, 2(2):69–90, June 1994.

[HRS94] K.M. Hansen, A.P. Ravn, and V. Stravridou. From safety analysis
to formal specification. ProCoS document DTH KMH 1/1, De-
partment of Computer Science, Technical University of Denmark,
DK-2800, Lyngby, Denmark, February 1994.

[HZ94] M.R. Hansen and Chaochen Zhou. Duration calculus: Logical foun-
dations. Formal Aspects of Computing, 6(6A):826–845, 1994.

[HZS92] Michael Hansen, Chaochen Zhou, and Jørgen Straunstrup. A real-
time duration semantics for circuits. In Proceedings of Tau ’92:
1992 Workshop on Timing Issues in the Specification and Synthesis
of Digital Systems, ACM/SIDGA, September 1992.

[IEE95] IEEE. Draft Standard Verilog HDL (IEEE 1364). 1995.

[Joy89] Jeffrey J. Joyce. A verified compiler for a verified microprocessor.
Technical Report 167, University of Cambridge Computer Labora-
tory, March 1989.

[JS90] Geraint Jones and M. Sheeran. Circuit design in RUBY. In Jørgen
Straunstrap, editor, Formal Methods for VLSI Design, pages 13–70.
Elsevier Science Publications BV, 1990.

[JU90] Mark B. Josephs and Jan Tijmen Udding. An algebra for delay-
insensitive circuits. Technical Report WUCS-89-54, Department of
Computer Science, Washington University, Campus Box 1045, One
Brookings Drive, Saint Louis, MO 63130-4899, March 1990.

155

[KAJW93] Sunjaya Kumar, James H. Aylor, Barry W. Johnson, and W.A.
Wulf. A framework for software-hardware co-design. IEEE Com-
puter, 26(12):39–46, December 1993.

[KB95] Carlo Delgado Kloos and Peter T. Breuer. Formal Semantics for
VHDL. Number 307 in The Kluwer International Series in Engi-
neering and Computer Science. Kluwer Academic Publishers, 1995.

[KLMM95] D. Knapp, T. Ly, D. MacMillen, and R. Miller. Behavioral syn-
thesis methodology for HDL-based specification and validation. In
Proceedings of DAC ’95, 1995.

[Kroon] Thomas Kropf. Benchmark-circuits for hardware-verification v1.2.1.
Technical Report SFB 358-C2-4/94, Universität Karlsruhe, 1996
(updated version).

[KW88] K. Keutzer and W. Wolf. Anatomy of a hardware compiler. In
David S. Wise, editor, Proceedings of the SIGPLAN ’88 Conference
on Programming Lanugage Design and Implementation (SIGPLAN
’88), pages 95–104. ACM Press, June 1988.

[Lam85] Leslie Lamport. On interprocess communication. Technical Re-
port 8, Systems Research Center (SRC), December 1985.

[Lam91] Leslie Lamport. The temporal logic of actions (TLA). Technical Re-
port 79, Digital Equipment Corporation Systems Research centre,
1991.

[Lam93] L. Lamport. Hybrid systems in TLA+. In R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems,
volume 736 of Lecture Notes in Computer Science, pages 77–102.
Springer-Verlag, 1993.

[LL95] Yanbing Li and Miriam Leeser. HML: An innovative hardware de-
scription language and its translation to VHDL. Technical Report
EE-CE9-95-2, School of Electrical Engineering, Cornell University,
Ithaca, 1995.

[LMS86] Roger Lipsett, Erich Marchner, and Moe Shahdad. VHDL — the
language. IEEE Design and Test, 3(2):28–41, April 1986.

[LS93] Leslie Lamport and Merz Stephan. Hybrid systems in TLA+. In
R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors,
Hybrid Systems, number 736 in Lecture Notes in Computer Science,
pages 77–102. Springer-Verlag, 1993.

[LS94] Leslie Lamport and Merz Stephan. Specifying and verifying fault
tolerant systems. In Formal Techniques in Real-Time and Fault Tol-
erant Systems, number 863 in Lecture Notes in Computer Science,
pages 41–76. Springer-Verlag, 1994.

[Man81] Zohar Manna. Verification of sequential programs using temporal
axiomatization. Technical Report STAN-CS-81-877, Department of
Computer Science, Stanford University, September 1981.

[May90] D. May. Compiling occam into silicon. In C. A. R. Hoare, editor,
Developments in Concurrency and Communication, University of
Texas at Austin Year of Programming Series, chapter 3, pages 87–
106. Addison-Wesley Publishing Company, 1990.

156

[Maz71] Antoni W. Mazwikiewicz. Proving algorithms by tail functions.
Information and Control, 18:220–226, 1971.

[Mel87] Thomas Melham. Abstraction mechanisms for hardware verifica-
tion. Technical Report 106, University of Cambridge Computer
Laboratory, 1987.

[Mil83] G.J. Milne. Circal: A calculus for circuit description. Integration
VLSI Journal, 1(2,3), 1983.

[Mil85a] G.J. Milne. Circal and the representation of communication, con-
currency and time. ACM Transactions on Programming Languages
and Systems, 7(2):270–298, 1985.

[Mil85b] G.J. Milne. Simulation and verification: Related techniques for
hardware analysis. In C.J. Koomen and T. Moto-oka, editors, Pro-
ceedings of the 7th International Conference on Computer Hardware
Design Language Applications (CHDL ’85), Tokyo, pages 404–417,
1985.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall Inter-
national, 1989.

[Mil91] G.J. Milne. Formal description and verification of hardware timing.
IEEE transactions on Computers, 40(7):811–826, July 1991.

[Mil94] G.J. Milne. Formal Specification and Verification of Digital Sys-
tems. McGraw-Hill, 1994.

[MM83] Ben Moszkowski and Zohar Manna. Reasoning in interval temporal
logic. Technical Report STAN-CS-83-969, Department of Computer
Science, Stanford University, July 1983.

[Mol89] F. Moller. The semantics of CIRCAL. Technical Report HDF-
3-89, Department of Computer Science, University of Strathclyde,
Glasgow, Scotland, 1989.

[Moo94] J. Strother Moore. A formal model of asynchronous communica-
tion and its use in mechanically verifying a biphase mark protocol.
Formal Aspects of Computation, 6:60–91, 1994.

[Mos84] Ben Moszkowski. Executing temporal logic programs. Technical
Report 55, University of Cambridge Computer Laboratory, 1984.

[Mos85] Ben Moszkowski. A temporal logic for multilevel reasoning about
hardware. Computer, 2(18):10–19, February 1985.

[Mos86] Ben Moszkowski. Executing Temporal Logic Programs. Cambridge
University Press, 1986.

[MP81] Zohar Manna and Amir Pnueli. Verification of concurrent programs:
the temporal framework. In Robert S. Boyer and J. Strother Moore,
editors, The Correctness Problem in Computer Science, Int. Lecture
Series in Computer Science, pages 215–273. Academic Press, 1981.

[MP87] Zohar Manna and Amir Pnueli. A hierarchy of temporal proper-
ties. Technical Report STAN-CS-87-1186, Department of Computer
Science, Stanford University, October 1987.

157

[MP90] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties.
In Proceedings of the 9th Annual ACM Symposium on Principles of
Distributed Computing, pages 377–408. ACM Press, 1990.

[MP94] Zohar Manna and Amir Pnueli. Models for reactivity. In 3rd In-
ternational School and Symposium on Formal Techniques in Real
Time Systems and Fault Tolerant Systems, Lübeck Germany, 1994.

[MR93] Paulo C. Masiero and Anders P. Ravn. Refinement of real-time
specifications. ProCoS II document, Department of Computer Sci-
ence, Technical University of Denmark, DK-2800, Lyngby, Den-
mark, 1993.

[MW84] Zohar Manna and P.L. Wolper. Synthesis of computer processes
from temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems, 6(1):68–93, January 1984.

[NH84] R. De Nicola and M.C.B. Hennessy. Testing equivalences for pro-
cesses. Theoretical Computer Science, 34:83–133, 1984.

[Nor96] Anders Nordstrom. Formal verification — a viable alternative to
simulation? In Proceedings of International Verilog HDL Confer-
ence, February 1996.

[OC95] Serafin Olcoz and Jose Manuel Colom. A colored Petri net model
of VHDL. Formal Methods in System Design, 7:101–123, 1995.

[Ope93] Open Verilog International. Verilog Hardware Description Language
Reference Manual (Version 2.0). Open Verilog, March 1993.

[Pac94] Gordon J. Pace. Duration calculus: From parallel specifications
to clocked circuits. Master’s thesis, Oxford University Computing
Laboratory, 1994.

[Pag93] Ian Page. Automatic systems synthesis: A case study.
Technical report, Oxford University Computing Laboratory
(PRG), 1993. Available from http://www.comlab.ox.ac.uk in
/oucl/hwcomp.html.

[Pag96] Ian Page. Constructing hardware-software systems from a single
description. Journal of VLSI Signal Processing, 12(1):87–107, 1996.

[Pag97] Ian Page. Hardware-software co-synthesis research at Oxford.
UMIST Vacation School on Hardware/Software Codesign, 1997.

[Pal96] Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Syn-
thesis. Prentice Hall, New York, 1996.

[Per91] D.L. Perry. VHDL. McGraw-Hill, 1991.

[PH98] Gordon J. Pace and Jifeng He. Formal reasoning with Verilog HDL.
In Proceedings of the Workshop on Formal Techniques in Hardware
and Hardware-like Systems, Marstrand, Sweden, June 1998.

[PL91] Ian Page and Wayne Luk. Compiling occam into field-
programmable gate arrays. In Wayne Luk and Will Moore, editors,
FPGAs, pages 271–283. Abingdon EE&CS books, 1991.

158

[Poo95] Rob Pooley. Integrating behavioural and simulation modelling.
Technical Report ECS-CSG-8-95, Computer Systems Group, De-
partment of Computer Science, University of Edinburgh, The King’s
Buildings, Edinburgh, March 1995.

[PR95] P.K. Pandya and Y.S. Ramakrishna. A recursive mean-value cal-
culus. Technical Report TR-95/3, Tata Institute of Fundamental
Research, Bombay, India, 1995.

[Pro97] The Verilog Formal Equivalence (VFE) Project. Synthesiz-
able Verilog: Syntax and semantics, 1997. available from
http://www.cl.cam.ac.uk/users/djs1002/verilog.project.

[Pyg92] C.H. Pygott. Will proof replace simulation? In C.A.R. Hoare
and M.J.C. Gordon, editors, Mechanized Reasoning and Hardware
Design, pages 21–33. Prentice-Hall International, 1992.

[Qiw96] Xu Qiwen. Semantics and verification of extended phase transition
systems in duration calculus. Research UNU/IIST Report No. 72,
The United Nations University, International Institute for Software
Technology, P.O. Box 3058, Macau, June 1996.

[Rav95] Anders P. Ravn. Design of embedded real-time computing sys-
tems. Technical Report ID-TR:1995-170, Department of Computer
Science, Technical University of Denmark, Building 344, DK-2800
Lyngby, Denmark, October 1995.

[RH86] A.W. Roscoe and C.A.R. Hoare. The laws of occam programming.
Technical Monograph PRG-53, Oxford University Computing Lab-
oratory, 1986.

[RH88] A.W. Roscoe and C.A.R. Hoare. The laws of occam programming.
Theoretical Computer Science, 60(2):177–229, September 1988.

[Ris92] Hans Rischel. A duration calculus proof of Fisher’s mutual exclusion
protocol. ProCoS document DTH HR 4/1, Department of Com-
puter Science, Technical University of Denmark, DK-2800, Lyngby,
Denmark, December 1992.

[RK95] Ralf Reetz and Thomas Kropf. A flowgraph semantics of VHDL:
Toward a VHDL verification workbench in HOL. Formal Methods
in System Design, 7:73–99, 1995.

[Rus95] David M. Russinoff. A formalization of a subset of VHDL in the
Boyer-Moore logic. Formal Methods in System Design, 7:7–25, 1995.

[Sam93] A. Sampaio. An algebraic approach to compiler design. Technical
Monograph PRG-110, Oxford University Computing Laboratory,
1993.

[SB93] Bernard Sufrin and Richard Bornat. The gist of JAPE.
Technical report, Oxford University Computing Laboratory
(PRG), 1993. Available from http://www.comlab.ox.ac.uk/ in
oucl/bernard.sufrin/jape.shtml.

[Sch96] Michael Schenke. Transformational design of real-time systems.
Acta Informatica, 1996. To appear.

159

[Sch97] Michael Schenke. Modal logic and the duration calculus. To appear,
1997.

[SD97] Michael Schenke and Michael Dossis. Provably correct hard-
ware compilation using timing diagrams. Available from
http://semantic.Informatik.Uni-Oldenburg.DE/

persons/michael.schenke/, 1997.

[SHL94] Morten Ulrik Sørensen, Odd Eric Hansen, and Hans Henrik
Løvengreen. Combining temporal specification techniques. Pro-
CoS document DTU MUS 1/2, Department of Computer Science,
Technical University of Denmark, DK-2800, Lyngby, Denmark, May
1994.

[Smi96] Douglas J. Smith. VHDL and Verilog compared and contrasted
— plus modelled example written in VHDL, Verilog and C. In
Proceedings of the 33rd Design Automation Conference (Las Vegas
NV, USA), pages 771–776, 1996.

[SMSV83] R.L. Schwartz, P.M. Melliar-Smith, and F.H. Vogt. An interval
based temporal logic. In Proceedings of the second annual ACM
symposium on Principles of Distributed Computing, Montreal, Que-
bec, Canada, pages 173–186, 1983.

[Spi92] J.M. Spivey. The Z Notation: A Reference Manual (2nd edition).
Prentice Hall International, 1992.

[Spi97] Michael Spivey. Deriving a hardware compiler from operational
semantics. submitted to ACM TOPLAS, 1997.

[SS93] Jens U. Skakkebaek and N. Shankar. A duration calculus proof
checker: Using PVS as a semantic framework. Technical Report
SRI-CSL-93-10, SRI, 1993.

[SS94] Jens U. Skakkebaek and N. Shankar. Towards a duration calculus
proof assistant in PVS. In H. Langmaack, W.P. Roever, and J. Vy-
topil, editors, Formal Techniques in Real-Time and Fault Tolerant
Systems, number 863 in Lecture Notes in Computer Science, pages
660–679. Springer-Verlag, 1994.

[SSMT93] E Sternheim, R. Singh, R. Madhavan, and Y. Trivedi. Digital Design
and Synthesis with Verilog HDL. Automata Publishing Company,
1993.

[Ste97] Daryl Stewart. Modelling Verilog port connections, 1997. Avail-
able from http://www.cl.cam.ac.uk/ in
/users/djs1002/verilog.project/.

[SW74] Christopher Strachey and Christopher P. Wadsworth. Continua-
tions: A mathematical semantics for handling full jumps. Technical
Monograph PRG-11, Programming Research Group, Oxford Uni-
versity Computing Laboratory, 1974.

[Tan84] A.S. Tanenbaum. Structured Computer Organization (3rd edition).
Prentice-Hall International, 1984.

160

[Tan88] Tong Gao Tang. A temporal logic language for hardware simulation,
specification and verification. Technical Report CMU-CS-88-194,
Department of Computer Science, CMU, Pittsburgh, September
1988.

[Tas90] John Peter Van Tassel. The semantics of VHDL with VAL and
HOL: Towards practical verification tools. Technical Report 196,
University of Cambridge Computer Laboratory, June 1990.

[Tas92] John Peter Van Tassel. A formalization of the VHDL simulation
cycle. Technical Report 249, University of Cambridge Computer
Laboratory, March 1992.

[TH91] John Peter Van Tassel and David Hemmendinger. Toward formal
verification of VHDL specifications. In Luc Claesen, editor, Applied
Formal Methods for VLSI design, pages 399–408. Elsevier Science
Publications, 1991.

[Tho95] Donald E. Thomas. The Verilog HDL. Kluwer Academic, Boston,
Massachusetts, second edition, 1995.

[Win86] Glynn Winskel. Models and logic of MOS circuits. In International
Summer School on Logic of Programming and Calculi of Discrete
Systems, Marktoberdorf, Germany, 1986.

[Win87] Glynn Winskel. Relating two models of hardware. In D.H. Pitt,
A. Poigné, and D.E. Rydeheard, editors, Category Theory and Com-
puter Science (Edinburgh, U.K., September 1987), number 283 in
Lecture Notes in Computer Science, pages 98–113. Springer-Verlag,
1987.

[WMS91] Philip A. Wilsey, Timothy J. McBrayer, and David Sims. Towards
a formal model of VLSI systems compatible with VHDL. In A. Ha-
laas and P.B. Denyer, editors, VLSI ’91, pages 225–236. Elsevier
Science Publishers BV (North-Holland), Amsterdam, The Nether-
lands, August 1991.

[Wol93] W.H. Wolf. Software hardware co-design. Special Issue of IEEE
Design and Test, 10(3):5, September 1993.

[XJZP94] Yu Xinyao, Wang Ji, Chaochen Zhou, and Paritosh K. Pandya. For-
mal design of hybrid systems. Research UNU/IIST Report No. 19,
The United Nations University, International Institute for Software
Technology, P.O. Box 3058, Macau, 1994.

[Yoe90] Michael Yoeli. Formal Verification of hardware design, chapter 6:
Temporal Logic, pages 159–165. The Institute of Electrical and
Electronics Engineers, Inc, 1990.

[ZH92] Chaochen Zhou and C.A.R. Hoare. A model for synchronous switch-
ing circuits and its theory of correctness. Formal Methods in System
Design, 1(1):7–28, July 1992.

[ZH96a] Chaochen Zhou and Michael R. Hansen. Chopping a point. Techni-
cal report, Department of Information Technology, Technical Uni-
versity of Denmark, March 1996.

161

[ZH96b] Chaochen Zhou and Michael R. Hansen. Chopping a point. In
He Jifeng, John Cooke, and Peter Wallis, editors, BCS-FACS 7th
Refinement Workshop, Electronic Workshops in Computing, pages
256–266. Springer-Verlag, 1996.

[ZHK96] Ping Zhou, Jozef Hooman, and Ruurd Kuipei. Compositional veri-
fication of real-time systems with explicit clock temporal logic. For-
mal Aspects of Computing, 8(3):294–323, 1996.

[Zho93] Chaochen Zhou. Duration calculi: An overview. In Dines Bjørner,
Manfred Broy, and Igor V. Pottosin, editors, Formal Methods in
Programming and their Applications, number 735 in Lecture Notes
in Computer Science, pages 256–266. Springer-Verlag, 1993.

[ZHR91] Chaochen Zhou, C.A.R. Hoare, and Anders P. Ravn. A calculus of
durations. Information Processing Letters, 40(5):269–276, 1991.

[ZHRR91] Chaochen Zhou, Michael R. Hansen, Anders Ravn, and Hans
Rischel. Duration specifications for shared processors. In J. Vy-
topil, editor, Formal Techniques in Real Time and Fault Tolerant
Systems, number 571 in Lecture Notes in Computer Science, pages
21–32. Springer-Verlag, 1991.

[ZHX95a] Chaochen Zhou, Dang Van Hung, and Li Xiaoshan. A duration
calculus with infinite intervals. Research UNU/IIST Report No. 40,
The United Nations University, International Institute for Software
Technology, P.O. Box 3058, Macau, 1995.

[ZHX95b] Chaochen Zhou, Dang Van Hung, and Li Xiaoshan. A duration cal-
culus with infinite intervals. In Horst Reichel, editor, Fundamentals
of Computation, number 965 in Lecture Notes in Computer Science,
pages 16–41. Springer-Verlag, 1995.

[ZRH93] Chaochen Zhou, A.P. Ravn, and M.R. Hansen. An extended dura-
tion calculus for hybrid real-time systems. In Robert L. Grossman,
Anil Nerode, Anders P. Ravn, and Hans Rishel, editors, Hybrid
Systems, number 736 in Lecture Notes in Computer Science, pages
36–59. Springer-Verlag, 1993.

[ZX94] Chaochen Zhou and Li Xiaoshan. A mean-value duration calculus.
In A.W. Roscoe, editor, A Classical Mind. Prentice-Hall, 1994.

[ZX95] Chaochen Zhou and Li Xiaoshan. A mean-value duration calcu-
lus. Research UNU/IIST Report No. 5, The United Nations Uni-
versity, International Institute for Software Technology, P.O. Box
3058, Macau, March 1995.

162

