
Runtime Verification of Contracts with Themulus‹

Alberto Aranda Garćıa1, Maŕıa-Emilia Cambronero1, and Christian Colombo3

and Luis Llana24 and Gordon J. Pace3

1 University of Castilla-La Mancha, Albacete, Spain
2 University Complutense of Madrid, Madrid, Spain

3 University of Malta, Malta.

Abstract. Contracts regulating the behaviour of multiple interacting
parties go beyond the notion of pure properties, but allow one to doc-
ument and analyse the ideal behaviour. In this paper we build upon
a real-time deontic logic allowing the description of such contracts and
present a runtime verification tool for monitoring of such contracts. We
present a verification algorithm used to monitor contracts written in this
logic and an airport agreement is used as a case study to illustrate how
such agreements and contracts can be monitored using our tool with
reasonable processing costs.

Keywords: Deontic Logic, Formal Methods, Runtime verification, LARVA

1 Introduction

With the rise of multi-party systems and services, the formal notion of contracts
or regulated interaction between participating parties has increased in impor-
tance. For many such situations, viewing a contract as a logical property which
is not to be violated is sufficient — whether it is for the verification, monitor-
ing or enforcing of the communication between parties. However, another view
is that the notion of contracts should be first-class objects which speak about
ideal behaviour but also cover the possibility that the actual behaviour does not
match the ideal one and its consequences. Deontic logics [10] address precisely
this aspect, typically using ideal-behaviour modalities such as obligations, per-
missions and prohibitions. Consider a multi-party system in which, whenever
a file is downloaded, then the user should pay. From a deontic perspective, we
would see an obligation to perform a pay action whenever we see a download
action. Within the deontic logic, one can also express reparation clauses e.g. an
obligation to pay a fine is added if the obligation to pay is not satisfied. Various
approaches have been proposed in the literature for the formal reasoning about
such deontic concepts e.g. defeasible logic in [11], event calculus-based in [12],
dynamic logic style in CL [15] and automata-based in [13]. The common theme

‹ Research partially supported by the Spanish MINECO/FEDER projects DArDOS
(TIN2015-65845-C3-1-R) and FAME (RTI2018-093608-B-C31) and the Comunidad
de Madrid project FORTE-CM (S2018/TCS-4314) co-funded by EIE Funds of the
European Union.

(O1) Okpaqrds
a,k−−−−Ñ J

(O2) Okpaqrds
pa,kq−−−−Ñ J

(O3) Okpaqrds
b,l−−Ñ Okpaqrds ,

pa, kq ‰ pb, lq

(O4) Okpaqrds
pb,lq−−−−Ñ Okpaqrds ,

pa, kq ‰ pb, lq

(O5) Okpaqrds
d1

✿✿❀ Okpaqrd− d1s ,
0 < d1 ď d

(F1) Fkpaqrds
a,k−−−−Ñ K

(F2) Fkpaqrds
pa,kq−−−−Ñ K

(F3) Fkpaqrds
b,l−−Ñ Fkpaqrds ,

pb, lq ‰ pa, kq

(F4) Fkpaqrds
pb,lq−−−−Ñ Fkpaqrds ,

pb, lq ‰ pa, kq

(F5) Fkpaqrds
d1

✿✿❀ Fkpaqrd− d1s,
0 < d1 ď d

(P1) Pkpaqrds
a,k−−−−Ñ J

(P2) Pkpaqrds
b,l−−Ñ Pkpaqrds,

pa, kq ‰ pb, lq

(P3) Pkpaqrds
pa,kq−−−−Ñ K

(P4) Pkpaqrds
pb,lq−−−−Ñ Pkpaqrds,

pa, kq ‰ pb, lq

(P5) Pkpaqrds
d1

✿✿❀ Pkpaqrd− d1s ,
0 < d1 ď d

(C1) condkpaqrdspϕ,ψq
a,k−−−−Ñ ϕ

(C2) condkpaqrdspϕ,ψq
pa,kq−−−−Ñ ϕ

(C3) condkpaqrdspϕ,ψq
b,l−−Ñ ψ,

pb, lq ‰ pa, kq

(C4) condkpaqrdspϕ,ψq
pb,lq−−−−Ñ ψ,

pb, lq ‰ pa, kq

(C5) condkpaqrdspϕ,ψq
d1

✿✿❀

condkpaqrd− d1spϕ,ψq ,
0 < d1 ď d

Fig. 1. Operational Semantics transition rules 1/2

across these and other related approaches is looking at contracts as first-class en-
tities which can be analysed and transformed independently of the systems they
regulate enabling analysis such as conflict analysis or contract bias evaluation.

One recurring challenge across these approaches, beyond the deontic one, is
that of addressing temporal issues [14], however, there has been limited work on
deontic logic allowing reasoning about continuous time contracts, and no tools
we are aware of. Recently, we have proposed Themulus [2], a real-time deontic
calculus to reason about contracts over continuous time. From a practical per-
spective, the use of the calculus for actual verification of system behaviour with
respect to a contract raises challenges, particularly due to the real-time nature
of the calculus. In this paper, we present some results proving the soundness
of a runtime verification algorithm of contracts written in Themulus. We have
implemented this algorithm on top of the runtime verification tool Larva [6] in
order to enable real-world agreements to be monitored.

2 Contracts and agents

In this section, we present some previous definitions published in [2]. We include
them here to make the paper self-contained. We will assume a time domain T
ranging over the non-negative reals4. In order to deal with the recursion operator,
we assume a set of variables fvars over which recursion will be defined.

Contracts regulate the behaviour of a number of agents, or parties running
in parallel. In this section we present the notation we will use to describe these

4 It is worth noting that the logic we present works equally well if the natural numbers
are used for a discrete time domain. However, we allow for real time values to cater
for any temporal constraints.

(AO1)
ϕ α−−Ñ ϕ1, ψ α−−Ñ ψ1

ϕ op ψ α−−Ñ ϕ1 op ψ1

(AO2)
ϕ

d
✿✿❀ ϕ1, ψ

d
✿✿❀ ψ1

ϕ op ψ
d

✿✿❀ ϕ1 op ψ1

(AO3)
ϕ

d
✿✿❀ J, ψ

d1

✿✿❀ ψ1

ϕ ^ ψ
d1

✿✿❀ ψ1
, d1 ě d

(AO4)
ϕ

d
✿✿❀ ϕ1, ψ

d1

✿✿❀ J

ϕ ^ ψ
d

✿✿❀ ϕ1
, d ě d1

(AO5)
ϕ

d
✿✿❀ K, ψ

d1

✿✿❀ ψ1

ϕ _ ψ
d1

✿✿❀ ψ1
, d1 ě d

(AO6)
ϕ

d
✿✿❀ ϕ1, ψ

d1

✿✿❀ K

ϕ _ ψ
d

✿✿❀ ϕ1
, d ě d1

(V1)
ϕ α−−Ñ ϕ1

ϕ § ψ α−−Ñ ϕ1 § ψ

(V2)
ϕ

d
✿✿❀ ϕ1

ϕ § ψ
d

✿✿❀ ϕ1 § ψ

(V3)
ϕ

d
✿✿❀ K,ψ

d1

✿✿❀ ψ1

ϕ § ψ
d+d1

✿✿✿✿❀ ψ1

(S1)
ϕ α−−Ñ ϕ1

ϕ;ψ α−−Ñ ϕ1;ψ

(S2)
ϕ

d
✿✿❀ ϕ1

ϕ;ψ
d

✿✿❀ ϕ1;ψ

(S3)
ϕ

d
✿✿❀ J, ψ

d1

✿✿❀ ψ1

ϕ;ψ
d+d1

✿✿✿✿❀ ψ1

(wait1) waitpdq
d1

✿✿❀ waitpd− d1q ,
0 < d1 ď d

(wait2) waitpdq α−−Ñ waitpdq

(rec1)
ϕ α−−Ñ ϕ1

rec x.ϕ α−−Ñ ϕ1rx{rec x.ϕs

(rec2)
ϕ

d
✿✿❀ ϕ1

rec x.ϕ
d

✿✿❀ ϕ1rx{rec x.ϕs

Fig. 2. Operational Semantics transition rules 2/2

agents and their behaviour in order to be able to formalize contracts in the
following sections.

Structurally, the underlying system consists of a number of indexed agents
running in parallel, using variables A, A1 to represent the individual agents. The
system as a whole will consist of the parallel composition of all agents indexed
by a finite set I i.e. the system will be of the form ||iPIAi. We will use variables
A, A1 to denote the state of the system as a whole. Agents semantics are thus
assumed to be represented as timed labelled transition systems:

– A a−−Ñ A1, for a P Act, indicates that agent A changes to A1 upon performing
action a. As it is usual in process algebrae [17], the execution of actions do not
consume time. The transition A a−−Û indicates that agent A cannot perform

action a: A a−−Û df
= !DA1 ¨ A a−−Ñ A1.

– A
d

✿✿❀ A1, for d ą 0 P T, indicates that agent A evolves to A1 after d time
units pass.

2.1 Contract Syntax

Definition 1. The set of contract formulae denoted by C (with variable ϕ P C
to range over the contracts) is syntactically defined as follows:

ϕ ::= J | K | Pkpaqrds | Okpaqrds | Fkpaqrds | waitpdq | condkpaqrdspϕ1,ϕ2q
| ϕ1;ϕ2 | ϕ1 ^ ϕ2 | ϕ1 _ ϕ2 | ϕ1 § ϕ2 | rec x.ϕ | x

where a P Act, x P fvars, k P I and d P T Y t8u.

he basic formulae J and K indicate, respectively, the contracts that are
trivially satisfied and violated. Then we have the operators that represent the

modalities from the deontic logic: obligations Okpaqrds, prohibitions Fkpaqrds
and permissions Pkpaqrds. In all three cases the operator indicates the agent k,
the action a, and the time constraint d (the modality is in force within d units
of time). We can find the contract disjunction ϕ1 _ϕ2, and contract conjunction
ϕ1 ^ ϕ2, sequential composition ϕ1;ϕ2, delay waitpdq, the conditional contract
condkpaqrdspϕ1,ϕ2q, and the reparation operator ϕ1 § ϕ2. Finally, there is the
possibility of repetition introduced by the variable x P fvars and the recursion
operator rec x.ϕ. Using these basic contract combinators, we can define more
complex ones, for example a prohibition which persists until a particular action
is performed — a prohibition on agent k from performing action a until party l
performs action b, written Fpra, ksU rb, lsq, and defined as follows:

Fpra, ksU rb, lsq
df
= rec x.

`

condkpaqr8spK,Jq ^ condlpbqr8spJ, xq
˘

In order to simplify the semantics of the language, we define a congruence in
the language.

Definition 2. We define the relation ” Ď CˆC as the least congruence relation
that includes:

1. ϕ ^ J ” ϕ 2. J ^ ϕ ” ϕ 3. K ^ ϕ ” K 4. ϕ ^ K ” K
5. ϕ _ J ” J 6. J _ ϕ ” J 7. ϕ _ K ” ϕ 8. K _ ϕ ” ϕ
9. J;ϕ ” ϕ 10. K;ϕ ” K 11. J § ϕ ” J 12. K § ϕ ” ϕ

13. Okpaqr0s ” K 14. Fkpaqr0s ” J 15. Pkpaqr0s ” J 16. waitp0q ” J
17. condkpaqr0spϕ,ψq ” ψ

The operational semantics of the language is defined by the rules appearing
in Figures 1 and 2. The operational semantics of the contracts has three kind

of transitions: (i) ϕ
a,k−−−−Ñ ϕ1 to denote that contract ϕ can evolve (in one step)

to ϕ1 when action a is performed, which involves party k (and possibly other

parties); or (ii) ϕ
pa,kq−−−−Ñ ϕ1 indicating that the contract ϕ can evolve to ϕ1 when

the action a is not offered by any party other than k; or (iii) ϕ
d

✿✿❀ ϕ1 to
represent that contract ϕ can evolve to contract ϕ1 when d time units pass. We
will use variable α to stand for a label of either form: pa, kq or pa, kq. The rules
of the operational semantics are always applied to irreducible terms.

Next, define the predicate viopϕq that indicates if if a contract is currently
violated.

Definition 3. We say that an irreducible contract ϕ is in a violated state, writ-
ten viopϕq, if and only if the contract has already been violated:

viopJq
df
= ff viopKq

df
= tt

viopPkpaqrdsq
df
= pa, kq viopOkpaqrdsq

df
= ff

viopFkpaqrdsq
df
= pa, kq viopwaitpdqq

df
= ff

viopϕ ^ ϕ1q
df
= viopϕq _ viopϕ1q viopϕ _ ϕ1q

df
= viopϕq ^ viopϕ1q

viopϕ § ϕ1q
df
= viopϕq ^ viopϕ1q viopcondkpaqrdspϕ,ϕ1qq

df
= ff

viopϕ;ϕ1q
df
= viopϕq vioprec x.ϕq

df
= viopϕq

We can now define how contracts evolve alongside a system, and what it
means for a system to satisfy a contract.

Definition 4. Given a contract ϕ P C with alphabet Act1 and a system A, we
define the semantics of ϕ}A — the combination of the system with the contract
— with alphabet Act with Act1 Ď Act through the following rules:

(M1)
ϕ

a,k−−−−Ñ ϕ1, A a,s−−−−Ñ A1

ϕ } A=ñ ϕ1 } A1
k P s (M2)

ϕ
pa,kq−−−−−Ñ ϕ1, A (xa, ky

ϕ } A=ñ ϕ1 } A

(M3)
A a,s−−−−Ñ A1

ϕ } A=ñ ϕ } A1
a R Act1 (M4)

A d
✿✿❀ A1, ϕ

d
✿✿❀ ϕ1,

@d1 < d ¨ if A d1

✿✿❀ A2 and

ϕ
d1

✿✿❀ ϕ2 then A2 (viopϕ2q
ϕ } A=ñ ϕ1 } A1

Rule M1 and M2 handles synchronization between the contract and the system.
If an action a performed by the system is of interest to the contract, the contract
evolves alongside the system (M1), if the contract allows an agent to perform an
action but only agent k (and no other agent) is willing to engage in the action,
then only the contract evolves (M2). Rule M3 handles actions on the system
which the contract is not interested in. Finally, ruleM4 ensures that time cannot
skip over a violation.

Definition 5. Let A be a system and ϕ P C be a contract.

– System A can break ϕ, written breakpA,ϕq, if there exists a computation
that leads to a violation of the contract: for some n ě 0 and contracts ϕ0 till
ϕn such that:

ϕ } A = ϕ0 } A0 =ñ ϕ1 } A1 =ñ . . .ϕn−1 } An−1 =ñ ϕn } An,

and An (viopϕnq.
– System A may fulfil ϕ, written fulfillpA,ϕq, if there exists a computation of

the system that fulfils the contract: for some n ě 0 and contracts ϕ0 till ϕn:

ϕ } A = ϕ0 } A0 =ñ ϕ1 } A1 =ñ . . .ϕn−1 } An−1 =ñ ϕn } An ,

and A (viopϕkq for 0 ď k < n, and ϕn ” J.

Note that there are contracts which may never be fulfilled. An example of such
a contract is ϕ = rec x.ra, k,8spK,8q, which may never be fulfilled since there
are no transitions from this contract leading to J. Nevertheless, if agent k never
performs action a, then neither is the contract broken.

3 Case Study

The case study presented in this section (Figure 3) is based on the Madrid
Barajas airport regulationsw [1]. The contract describing our case study can be

1. The passenger is permitted to check in her lug-
gage according to the stipulations of the class of
ticket they purchased from their respective air-
line company. It is necessary that the passenger
arrives at the airport, at least two hours before
her flight, in order to check-in her luggage and
pass the security controls. Then, the passenger
is permitted to use the check-in desk within two
hours before the plane takes off (t0). ϕ0

2. At the check-in desk, the passenger is obliged
to present her boarding pass within 5 minutes.
ϕ1

3. After presenting the boarding pass, the passen-
ger must show her passport. She has 5 minutes
for this purpose. ϕ2

4. The passenger is permitted to carry two pieces
(of hand luggage): one personal article and one
carry-on luggage. If the passenger has carry-on
luggage, she is obliged to fit it into the device
for hand luggage allowance, situated next to the
check-in desks. ϕ3

5. After presenting her passport, the passenger is
permitted to board within 90 minutes and to
present the hand-luggage to the airport staff
within 10 minutes. ϕ4 (the part before the repa-
ration)

6. The airline company is obliged to allow the
passenger to board within 90 minutes. ϕ4 (the
reparation part)

7. The passenger is obliged to pass the filters or
security checkpoints, before they access the re-
stricted safety areas of the airport, as boarding
gates and passenger-only zones, in accordance
with the safety regulations, within 60 minutes.
ϕ5

8. These security checkpoints consist of metal-
detector arches for the passengers and X-ray
detectors for their luggage. The airport secu-
rity staff are permitted to carry both systems
manually. ϕ6

9. If the hand luggage is a personal computer or
another electronic device, the airport security
staff is permitted to ask the passenger to take
it out of its protective case in order to be ex-
amined. ϕ7

10. The passenger is obliged to take out the per-
sonal computer protection if the airport staff
need to examine it. ϕ8

11. The passenger is forbidden from taking articles
to the security restricted area, or to the cabin

of the aircraft, which constitute a risk for the
health of other passengers, the crew and the
safety of the aircraft and the cargo. ϕ9

12. The passenger is obliged to included risk ar-
ticles at check-in as baggage and/or apply to
them the relevant procedure to be accepted on
board. Otherwise, the security staff can requi-
sition the articles. ϕ10

13. Security staff is permitted to deny access to the
boarding area and the airplane cabin to any
passenger in possession of an object which, even
if not considered forbidden, arouses their suspi-
cions ϕ7. If the passenger is stopped from car-
rying luggage, the airline company is obliged to
put the passenger’s hand luggage in the hold
within 20 minutes ϕ4 (reparation part).

14. The passenger is obliged to transport the liq-
uids in individual containers with a capacity of
fewer than 100 ml. These containers must be
carried in a resealable, transparent plastic bag
(for its easy inspection), with a capacity of not
more than 1 liter. Maximum one bag per pas-
senger. ϕ12

15. The passenger is obliged to accompany her med-
ication with a corresponding receipt, a medical
prescription or a specified statement about the
passenger’s health condition, in case the secu-
rity staff requires it. ϕ13

16. Even if the regulations for liquids do not apply
in the medication case, the passenger is obliged
to demonstrate all liquid medication to the se-
curity staff, apart from the transparent plastic
bag, used for the transport of other liquids. ϕ14

17. The passenger is obliged to check in all firearms,
which may not be transported. ϕ15

18. The passenger has an obligation to know her
rights if she wants to file a complaint. In this
case, she may ask for a document at any air-
port in Spain, in which his rights are described,
including some advice about how to act. Over
and above, the passenger may also contact the
Spanish National Aviation Agency (Agencia Es-
tatal de Seguridad Aérea — AESA). ϕ16

19. The passenger is entitled to present a claim, in
case of any violation of those rights, which can
result in a financial compensation or any other
kind of compensation. If a passenger is unhappy
with the service during a flight but is not enti-
tled to present a claim, he still has the option
to lodge a complaint or a suggestion. ϕ16

Fig. 3. Adaptation of the Madrid Barajas airport regulations

formalized using our contract calculus as follows:

PBS ::=ppϕ0 ^ ϕ10 ^ ϕ15q;ϕ1;ϕ2;ϕ3;

pϕ5 ^ ϕ6 ^ ϕ7 ^ ϕ8 ^ ϕ9 ^ ϕ12 ^ ϕ13 ^ ϕ14q;

pϕ4 ^ ϕ11qq ^ ϕ16 ^ ϕ17q

Where the formulas ϕ1, . . . ,ϕ17 are defined in Figure 4. Where p, S, c refer to
the passenger, the security airport staff, and the airline company, respectively.
t0 is departure estimated time. Note that the clauses ϕ0 to ϕ17 are used to
express the different parts of the contract, and combined in the top-level contract
expression PBS. The translation is quite straight forward although it is not
automatized. We have attach a formula to each point of the contract indicating
where it has been formalized.

ϕ0 ::= Pppcheckinqrt0 − 120s
ϕ1 ::= OppPBPqr5s
ϕ2 ::= OppShPqr5s
ϕ3 ::= PppCToHLqr120s
ϕ4 ::= pPppboardqr90s;Ppphlqr10sq§

pOcpboardqr90s; Ocphlholdqr20sq
ϕ5 ::= OppPSCqr60s
ϕ6 ::= PSpCDqr120s
ϕ7 ::= PSpEPPqr120s
ϕ8 ::= OppTOPqr120s
ϕ9 ::= pFprTRA, psU rlanding, psqq
ϕ10 ::= OppCRAqrt0 − 120s § PSpRRAqr10s
ϕ11 ::= PSpDRAqr10s
ϕ12 ::= Oppliquidsqr120s
ϕ13 ::= Oppmedicationqr120s
ϕ14 ::= Oppliqqr120s
ϕ15 ::= Oppfirearmsqrt0 − 120s
ϕ16 ::= Opprightsqr120s
ϕ17 ::= Pppcomplaintqr120s

checkin: Go to the checkin desk
PBP: Present boarding pass
ShP: Show her passport

CToHL: Carry two hand luggage
board: Board

hl: Board with hand luggage
PSC: Pass the security checkpoints
CD: Carry detectors

EPP: Examine passanger PC
TOP: Take out PC
TRA: Taking risk articles
CRA: Check in risk articles
RRA: Requisition of risk articles
DRA: Access to boarding area

hlhold: Put her hand luggage in the hold
board: Board

liquids: Liquids of 100ml
medication: Medication with receipt

liq: Demonstrate liquid medication
firearms: Check in the firearms

rights: Know her rights
complaint: File a complaint

Fig. 4. Madrid Barajas airport regulations formulae.

Then, this approach allows us to check and determine if any of the agents
involved in the plane boarding system break the contract. In this case, our for-
malism allows us to determine, for instance, if it was the passenger who violated
the contract and if so why, e.g. because she did not present her boarding pass
within the specified time at the check-in desk, or because she was taking articles
to the restricted security area.

4 Runtime Verification

The operational semantics we give to contracts provides us with a framework for
contract monitoring: to monitor contract ψ P C, we start the monitor in state
ψ and update the state whenever the system performs an action according to
the operational semantics. A violation is reached once the violation predicate is
satisfied by the system. In the rest of this section, we concretely show how our
logic can be automatically monitored using a derivative-based algorithm [4].

The idea behind derivative-based or term rewriting-based monitoring is that
the formula still to be monitored is used as the state of the monitoring system.
Whenever an event e is received with the system being in state ψ, the state
is updated to ψ1 such that any trace of events es matches ψ1, if and only if
e : es (the trace starting with e, followed by es) matches ψ. This is repeated
and a violation is reported when (and if) the monitoring state is reduced to a
formula which matches the empty trace. In our contract logic, the operational

semantics provide precisely this information, with ψ1 being chosen to be the

(unique) formula such that5 ψ
a,k−−−−Ñ ; ÞÝÑ ψ1 (where the monitoring systems

observes the action a performed by party k), and viopψq indicates whether ψ
matches the empty string (immediately violates the contract).

In timed logics, this approach has to be augmented with timeout events
which, in the absence of a system event, still change the formula. For example,
the contract waitpdq;ϕ would evolve to ϕ upon d time units elapsing. Similarly,
if d time units elapse (with no system events received), we evolve the contract
Okpaqrds;ϕ to K;ϕ, which is equivalent to K, thus enabling us to flag the viola-
tion as soon as it happens. If we were to wait for a system event, the violation
might end up being identified too late. In our case, we use the timeout function
to enable the setting of a timer to trigger the monitoring state update, evolv-
ing ϕ to the unique formula ϕ1 according to the timed operational semantics

ϕ
timeoutpϕq

✿✿✿✿✿✿✿❀ ; ÞÝÑ ϕ1. Also, system events carry a timestamp, through which
the contract can be moved ahead in time upon receiving the event.

In order to formalise these ideas, we need a notion of structural equivalence.
Intuitively, two contracts are structurally equivalent if they only differ in the
time constraints and so they can perform the same actions. the time constraints
and so they can perform the same actions.

Definition 6. Consider the relation R Ď C ˆ C defined as follows:

R df
= tpJ,Jq, pK,Kqu
Y tpFkpaqrds,Fkpaqrd1sq | d, d1 ą 0u
Y tpPkpaqrds,Pkpaqrd1sq | d, d1 ą 0u
Y tpOapkqrds,Oapkqrd1sq | d, d1 ą 0u
Y tpwaitpdq,waitpd1qq | d, d1 ą 0u
Y tpcondkpaqrdspϕ1,ϕ2q, condkpaqrd1spϕ1,ϕ2qq | d, d1 ą 0,

ϕ1,ϕ2 P Cu

The structural equivalence congruence, denoted by ”s is the smallest congruence
containing R.

Proposition 1. Let ϕ,ψ P C be two structurally equivalent contracts, ϕ ”s ψ.
Then viopϕq = viopψq and ϕ α−−Ñ χ iff ψ α−−Ñ χ.

Proof. The proof follows using structural induction.

Definition 7. The timeout of a contract ϕ, written timeoutpϕq, is inductively
defined as follows:

timeoutpJq
df
= 8 timeoutpKq

df
= 8

timeoutpPkpaqrdsq
df
= d timeoutpOkpaqrdsq

df
= d

timeoutpFkpaqrdsq
df
= d timeoutpcondkpaqrdspϕ1,ϕ2qq

df
= d

timeoutpwaitpdqq
df
= d timeoutpϕ1;ϕ2q

df
= timeoutpϕ1q

timeoutpϕ1 § ϕ2q
df
= timeoutpϕ1q timeoutprec x.ϕ | xq

df
= timeoutpϕq

timeoutpϕ1 ^ ϕ2q
df
= minttimeoutpϕ1q, timeoutpϕ2qu

timeoutpϕ1 _ ϕ2q
df
= minttimeoutpϕ1q, timeoutpϕ2qu

5 We write r; s to indicate the forward composition of the two relations r and s.

Finally, we obtain the result that we need: any timed transition taking less
than the timeout of a contract preserves the structure of a contract.

Proposition 2. Given contract ϕ and time t < timeoutpϕq, advancing ϕ by t

time preserves the structure of the contract: if ϕ
t

✿✿❀ ϕ1, then: ϕ ”s ϕ
1.

Proof. The proof is simple by structural induction.

We can now define the closure of a contract ϕ as all formulae reachable from
ϕ through action transitions and timeout time transitions.

Definition 8. We define the closure of a contract formula ϕ, written closurepϕq,
to be the set of all contract formulae reachable through a combination of visible
action transitions and timeout transitions. Formally, closurepϕq is the smallest

set such that: (i) ϕ P closurepϕq; (ii) if ϕ1 P closurepϕq, and ϕ1
a,k−−−−Ñ ϕ2, then

ϕ2 P closurepϕq; and (iii) if ϕ1 P closurepϕq, and ϕ1

timeoutpϕ1q
✿✿✿✿✿✿✿✿❀ ϕ2, then

ϕ2 P closurepϕq.

It is easy to prove, that for a contract ϕ whose time constraints are non-zero
constants, the closure of ϕ does not exhibit Zeno-like behaviour6. It also follows
that the relations of timeout time steps and visible event steps are sufficient to
characterise the operational semantics progress of a contract to a violation or
otherwise.

4.1 A Monitoring Algorithm

The monitoring algorithm for our contract logic is shown in Algorithm 1. The
state of the monitor is stored in variable contract while variable systime keeps
track of the last timestamp processed by the system. Initially, these variables are
set to ψ and 0 (line 1). The monitoring algorithm is effectively a loop (lines 2–17)
which checks whether there was a violation upon every iteration. Upon entering
the loop, any pending timer triggers are replaced (lines 3–5), enacting a process
which creates a special timeout event (line 4) to be launched (asynchronously)
after the current contract times out. In the meantime, execution is blocked until
an event is received (line 6). If the event received is the timeout event, the mon-
itored formula updated accordingly using the timestep function which returns

the unique formula satisfying ψ
t

✿✿❀ timesteppϕ, tq with the time advanced by
timeoutpψq time units (lines 7–10). If, however, the event received is a system
event e with timestamp t, the monitoring state is updated by first advancing
time by pt− systimeq time units, and then stepping forward using the step func-
tion which returns the unique formula such that ψ e−−Ñ steppψ, eq (lines 11–14).
Finally, the systime variable is updated accordingly (line 16).

6 By Zeno-like behaviour, we mean an infinite number of arbitrarily smaller time steps
whose sum converges, thus blocking time from progressing.

It is worth noting that the algorithm replicates the two types of transitions
required to advance a contract: (i) maximally advancing time until the struc-
ture of the contract changes (the case of a timeout event); and (ii) processing
a system event. This ensures that the state of the contract monitor advances
steadily in correct steps (assuming that timestep and step correctly implement
the rules from the semantics). Furthermore, progress is ensured since stepping
along maximal time steps never results in Zeno-like behaviour.

1 contract = ϕ; systime = 0;
2 while #vio(contract) do
3 reset timer to timeout(contract))
4 createEvent(Timeout);

5 end
6 switch getEvent() do
7 case Timeout do
8 ∆t = timeout(contract);
9 contract = timestep(contract, ∆t);

10 end
11 case Event e with Timestamp t do
12 ∆t = t− systime;
13 contract = step(timestep(contract, ∆t), e);

14 end

15 end
16 systime = systime+∆t;

17 end
18 report(Violation);

Algorithm 1: Algorithm to monitor timed contracts

5 Runtime Verification Using Larva

There are three main elements in DATE transitions: (i) Events refer to observ-
able actions which a DATE may react to. (ii) Conditions are boolean expressions
taking into consideration both the DATE’s symbolic state and the system state,
which decides whether a transition is taken or not. (iii) Actions are modifica-
tions that are done to the DATE or system state upon observing an event and
satisfying the condition. What follows formally defines these concepts.

Events which a DATE will be able to react to are either (i) system events
over an alphabet SystemEvent, corresponding to control- or data-flow points
of interest during the execution of the system; or (ii) timer events which are
triggered upon a timer t reaching a threshold limit L written t@L. Timer lim-
its can either take the form of a time constant T P T (where T refers to the
continuous time domain), or deadline variables D P Deadline. Unlike constant

limits, deadline variables can be dynamically modified during the traversal of
the DATE.

Event ::= SystemEvent | Timer@pT Y Deadlineq

DATE conditions and actions may also refer to the state of the system which
is being monitored e.g. to react to a login event only if the system is in alert
mode. The state of the system σ will be assumed to range over the type States.
Besides, monitors may keep their own state, e.g. the monitor may keep track of
how many users are logged in, in order to react to a login only when more than
100 concurrent users are using the system. The symbolic DATE state µ will be
assumed to range over the type Statem.

In addition, a DATE configuration will also keep track of the timer values
τ P StateT , assigning a time value to each time such that StateT = Timer Ñ
T. Similarly, it keeps track of the current value of the timer variable deadlines
δ P StateD where StateD = Deadline Ñ T. We will abuse notation and
write δpLq to extend the function to work also on constant deadlines (in which
case that constant deadline is returned) and τ +∆ (where ∆ P T) to denote the
timer state in which all timers are advanced by ∆ time units. The symbolic state
of a DATE is thus defined to be a combination of all these parts: State+M =
Statem ˆ StateT ˆ StateD.

Conditions c P Condition are predicates over the system and full monitoring
state:

Condition = pStates ˆ State+M q Ñ B

Similarly, actions α P Action are functions which, based on the system state,
may update any part of the full monitoring state:

Action = pStates ˆ State+M q Ñ State+M

Formally Defining DATEs A DATE is quadruple xQ, q0,K,By where Q is a
finite set of states, q0 P Q is the initial state, K Ď pQ ˆ Event ˆ Condition ˆ
Action ˆ Qq is a set of event-condition-action transitions, and B Ď Q is a set

of bad states. We will write q
e|c ÞÑα

ÝÝÝÝÑ q1 to denote a transition pq, e, c,α, q1q P K.
The following figure shows an example of a DATE whereupon the detection

of a login event on alert mode, a timer of ten minutes is started. If the ten
minutes elapse before a logout, the DATE reaches a bad state.

q1start q2

login | alertMode() ÞÑ t.reset();

logout

t@10

The event triggers from a DATE state q, written triggerspqq, are defined to

be all events which appear on transitions outgoing from q: triggerspqq
df
= te |

Dq1, c,α ¨ q
e|c ÞÑα

ÝÝÝÝÑ q1u.
The semantics of a DATE with dynamic timer deadlines can now be defined

using this notation. The configuration of the monitor consists of (i) the state
q P Q of the DATE; and (ii) the symbolic monitoring state σ P State+M of the
monitor. Given a monitoring configuration, the earliest timer trigger is the least
time which will trigger an outgoing timer event transition if no other event is
received:

earliestpq, pµ, τ, δqq
df
= mintδpLq − τptq | t@L P triggerspqq

^ δpLq ě τptqu

The semantics of DATEs will specify how the configuration of the DATE changes
upon event triggering or time passing. We will have two forms of operational

semantics relations: (i) C
e,∆,σ

ÝÝÝÑ C 1 to denote that the monitor moves from
configuration C to C 1 upon the system receiving event e after ∆ time units
(from the last transition) and with the system state snapshot at that time being

σ; (ii) C
∆,σ

C 1 to denote that the monitor goes from configuration C to C 1

after ∆ time units of inactivity at the end of which the system state is σ.

The first relation is defined with the implicit condition that an event e has
triggered and another two preconditions: the existence of a transition triggering
on e and the satisfaction of the condition c. The side-condition ensures that no
timer-triggered transitions should have modified the configuration before.

q
e|c ÞÑα

ÝÝÝÝÑ q1 cpσ, pµ, τ, δqq

pq, pµ, τ, δqq
e,∆,σ

ÝÝÝÑ pq1,αpµ, τ +∆, δqq
∆ < earliestpq, pµ, τ, δqq

The second relation is similar to the previous but, while not requiring the oc-
currence of a system event, requires that the timer has reached its deadline.

q
t@L|c ÞÑα

ÝÝÝÝÝÝÑ q1 τptq +∆ = δpLq cpσ, pµ, τ, δqq

pq, pµ, τ, δqq
∆,σ

pq1,αpµ, τ +∆, δqq
∆ = earliestpq, pµ, τ, δqq

Building on the earlier example, consider the case where the automaton is in the
second state with the timer just reset: pq2, p∅, t ÞÑ 0, t ÞÑ 10qq. If a logout event
occurs after six minutes, then ∆ = 6, while earliestpq2, p∅, t ÞÑ 6, t ÞÑ 10qq =
10−6 = 4. Therefore the first relation would apply, updating the configuration to
pq1, p∅, t ÞÑ 6, t ÞÑ 10qq. On the other hand, if no logout event occurs within ten
minutes, then earliestpq2, p∅, t ÞÑ 0, t ÞÑ 10qq = 10 − 0 = 10 causing the second
relation to be applied resulting in the configuration pqˆ, p∅, t ÞÑ 10, t ÞÑ 10qq.

6 Implementation

Rather than programming the runtime verification algorithm from scratch, we
have built it on top of an existing runtime verification tool. We used Larva [6],
which uses Dynamic Automata with Timers and Events (DATEs) as a speci-
fication language. DATEs are symbolic timed automata enriched in many as-
pects. The operational semantics given to the contracts, along with the timers
and events, provide the framework to transform contracts in our calculus into
DATEs which can be used to runtime verify the performance of parties involved.
More details about the implementation can be found in [3] and in the Appendix.

We have adapted the derivative-based [?] runtime verification algorithm in
order to obtain a DATE which reacts to the events appropriately. The resulting
two-state DATE keeps track of the current contract in a variable ϕ and updates
triggers on either an event or the timeout triggers. Initially, ϕ is set to the
contract to monitor, while T to timeoutpϕq:

start

e | viopnextpϕ, eqq

t@T | viopnexttimepϕqq

e | #viopnextpϕ, eqq ÞÑ ϕ = nextpϕ, eq;T = timeoutpϕq

t@T | #viopnexttimepϕqq ÞÑ ϕ = nexttimepϕq;T = timeoutpϕq

The function nextpϕ, eq corresponds to stepptimesteppϕ,∆tq, eq while nexttimepϕq
corresponds to timesteppϕ,∆tq — in both cases ∆t is the time elapsed since the
last processed event. Using this construction, a trace leads to the bad state of the
DATE if and only if it violates the initial contract. It is worth noting that since
any computable function can be embedded as the action of a DATE transition,
the translation is made possible by the computability of derivatives over time
and event steps.

Practical Evaluation To test our approach, we implemented the case study in
Java with each action represented as a method call. When evaluated empirically,
runtime verification tools, typically (e.g. [5]) get evaluated by comparing the time
needed to run the system with and without monitoring. In this case, this is not
practical since the system is simply a sequence of dummy method executions.
Instead, the purpose of this quantitative evaluation is (i) to verify the correct
behaviour of the monitor, i.e., that a violation is indeed reported when it actually
occurs and vice versa; and (ii) to verify our intuition that the monitor will scale
linearly with the size of the execution of the underlying system.

A number of test cases were generated, each representing the interactions of
a single user involving a varying number of actions. In each case, the monitor
verdict was as expected. Subsequently, different levels of traffic were generated
by launching several users in parallel ranging from 100 to 100,000 users. The
experiment7 was run on a laptop with an Intel i7-855U processor, 16GB RAM.

7 Code is available at: https://github.com/aarandag/larva-timedcontracts

https://github.com/aarandag/larva-timedcontracts

Thousands of users 0.1 0.5 1 5 10 50 100

No monitoring (s) 0.0556 0.231 0.261 0.736 0.811 7.00 12.1

With monitoring (s) 0.104 0.433 0.595 2.16 4.05 18.1 38.4

Difference (s) 0.0480 0.202 0.334 1.43 3.24 11.1 26.4

Difference per user (ms) 0.480 0.404 0.334 0.285 0.324 0.223 0.264

The results in the table above show that as the number of users increases,
the CPU time per user stabilises at around 0.3 milliseconds. This confirms our
reasoning that since the individual user monitors do not interact, the monitoring
effort scales linearly to the number of users. One would only expect this trend
to stop when reaching a large number of users such that the performance of
an underlying framework starts deteriorating, e.g., the thread pool grows larger
than what is efficiently manageable.

Regarding memory, since contract monitors only need to keep track of a state
of bounded size per user per contract, this was not considered to be an issue.

7 Conclusions and Future Work

In this paper, we have presented a runtime verification algorithm for a real-time
contract calculus, proved to be correct. Also, we presented an implementation
of the algorithm as part of an established runtime verification tool Larva.

It is worth noting that despite the fact that there is much work on real-time
deontic logics (see [2] for a summary and comparisons of such works), and limited
work on monitoring of deontic logics (e.g. see [7,16,8]), the overlap between the
two has been largely neglected.

There are various research directions this research opens. Regarding the run-
time verification aspect, an interesting challenge is how we can use our techniques
for runtime enforcement: starting from a specification, how we can synthesise al-
gorithmic machinery to ensure that the system under scrutiny does not violate
the specification, e.g. by delaying or injecting events. In particular, there is a
body of work on runtime enforcement of timed properties, e.g. [9] which could
offer insight on how our work can be extended to build contract enforcement
engines, a notion that has not been widely explored in the deontic logic world.

References

1. Madrid-Barajas Airport. Airport regulations. https://www.

aeropuertomadrid-barajas.com/eng/air-passenger-rights.htm, https://

www.aeropuertomadrid-barajas.com/eng/regulations-hand-luggage.htm and
https://www.aeropuertomadrid-barajas.com/eng/checkin-madrid-airport.

htm, last access 2020/05/25, 2020.

https://www.aeropuertomadrid-barajas.com/eng/air-passenger-rights.htm
https://www.aeropuertomadrid-barajas.com/eng/regulations-hand-luggage.htm
https://www.aeropuertomadrid-barajas.com/eng/checkin-madrid-airport.htm

2. Alberto Arana, Maŕıa-Emilia Cambronero, Christian Colombo, Luis Llana, and
Gordon J. Pace. Themulus: A timed contract-calculus. In Proceedings of the 8th
International Conference on Model-Driven Engineering and Software Development,
pages 193–204, 2020.

3. Alberto Aranda Garćıa, Maŕıa-Emilia Cambronero, Christian Colombo, Luis
Llana, and Gordon J. Pace. Themulus: A timed contract-calculus. Technical
Report TR-01-20, Universidad Complutense de Madrid, 2020.

4. Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494,
October 1964.

5. Feng Chen and Grigore Rosu. Mop: an efficient and generic runtime verification
framework. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2007, October 21-25, 2007, Montreal, Quebec, Canada, pages 569–588, 2007.

6. Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic event-based
runtime monitoring of real-time and contextual properties. In Formal Methods for
Industrial Critical Systems (FMICS), volume 5596 of Lecture Notes in Computer
Science, pages 135–149, L’Aquila, Italy, 2008.

7. Stephen Cranefield. A rule language for modelling and monitoring social expec-
tations in multi-agent systems. In Olivier Boissier, Julian A. Padget, Virginia
Dignum, Gabriela Lindemann, Eric T. Matson, Sascha Ossowski, Jaime Simão
Sichman, and Javier Vázquez-Salceda, editors, Coordination, Organizations, Insti-
tutions, and Norms in Multi-Agent Systems, AAMAS 2005 International Work-
shops on Agents, Norms and Institutions for Regulated Multi-Agent Systems,
ANIREM 2005, and Organizations in Multi-Agent Systems, OOOP 2005, Utrecht,
The Netherlands, July 25-26, 2005, Revised Selected Papers, volume 3913 of Lecture
Notes in Computer Science, pages 246–258. Springer, 2005.

8. Mehdi Dastani, Paolo Torroni, and Neil Yorke-Smith. Monitoring norms: a multi-
disciplinary perspective. Knowledge Eng. Review, 33:e25, 2018.

9. Yliès Falcone, Thierry Jéron, Hervé Marchand, and Srinivas Pinisetty. Runtime
enforcement of regular timed properties by suppressing and delaying events. Sci.
Comput. Program., 123:2–41, 2016.

10. Georg Henrik Von Wright. Deontic Logic. Mind, 60(237):1–15, January 1951.

11. Guido Governatori, Antonino Rotolo, and Giovanni Sartor. Temporalised nor-
mative positions in defeasible logic. In The Tenth International Conference on
Artificial Intelligence and Law, Proceedings of the Conference, June 6-11, 2005,
Bologna, Italy, pages 25–34, 2005.

12. Mustafa Hashmi, Guido Governatori, and Moe Thandar Wynn. Modeling obli-
gations with event-calculus. In Rules on the Web. From Theory to Applications
— 8th International Symposium, RuleML 2014, Co-located with the 21st European
Conference on Artificial Intelligence, ECAI 2014, Prague, Czech Republic, August
18-20, 2014. Proceedings, pages 296–310, 2014.

13. Gordon J. Pace and Fernando Schapachnik. Contracts for Interacting Two-Party
Systems. In FLACOS’12, volume 94 of ENTCS, pages 21–30, 2012.

14. Gordon J. Pace and Gerardo Schneider. Challenges in the specification of full
contracts. In Integrated Formal Methods, 7th International Conference, IFM 2009,
Düsseldorf, Germany, February 16-19, 2009. Proceedings, pages 292–306, 2009.

15. Cristian Prisacariu and Gerardo Schneider. A dynamic deontic logic for complex
contracts. The Journal of Logic and Algebraic Programming, 81(4):458 – 490, 2012.
Special Issue: NWPT 2009.

16. Bas Testerink, Mehdi Dastani, and John-Jules Ch. Meyer. Norm monitoring
through observation sharing. In Proceedings of the European Conference on Social
Intelligence (ECSI-2014), Barcelona, Spain, November 3-5, 2014, pages 291–304,
2014.

17. Wang Yi. CCS + time = an interleaving model for real time systems. In Automata,
Languages and Programming, 18th International Colloquium, ICALP91, Madrid,
Spain, July 8-12, 1991, Proceedings, pages 217–228, 1991.

